EP3090268B1 - Handling slower scan outputs at optimal frequency - Google Patents
Handling slower scan outputs at optimal frequency Download PDFInfo
- Publication number
- EP3090268B1 EP3090268B1 EP14875966.5A EP14875966A EP3090268B1 EP 3090268 B1 EP3090268 B1 EP 3090268B1 EP 14875966 A EP14875966 A EP 14875966A EP 3090268 B1 EP3090268 B1 EP 3090268B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- scan
- outputs
- clock
- packing
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3183—Generation of test inputs, e.g. test vectors, patterns or sequences
- G01R31/318335—Test pattern compression or decompression
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31725—Timing aspects, e.g. clock distribution, skew, propagation delay
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3177—Testing of logic operation, e.g. by logic analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318533—Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
- G01R31/318544—Scanning methods, algorithms and patterns
- G01R31/318547—Data generators or compressors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
- G01R31/318533—Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
- G01R31/318552—Clock circuits details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31727—Clock circuits aspects, e.g. test clock circuit details, timing aspects for signal generation, circuits for testing clocks
Definitions
- This relates in general to scan testing, and in particular to scan testing of semiconductor devices such as integrated circuits (ICs).
- ICs integrated circuits
- Scan based techniques offer an efficient alternative to achieve high fault coverage compared to the functional pattern based testing. Examples of scan based architectures can be found in US 2011/0307750 A1 and US 2005/0268194 A1 . As the design size increases and multi-core SoCs (system-on-chip) becomes essential to drive high speed applications, test data volume and test application time grow unwieldy even in the highly efficient and balanced scan based designs. Scan compression technique is, so far, the best technique for test data volume and test time reduction during pattern execution of scan inserted designs. Few compression techniques that are implemented in SoCs include broadcast or Illinois architecture, muxed and XOR architecture or MISR (multiple input shift register) based compression architecture.
- MISR multiple input shift register
- a problem in today's power consuming devices is to handle the leakage power.
- Efforts are made to use ultra-low leakage library (ULL) cells.
- ULL cell library based input/output (IO) receives a scan input on an input terminal and generates a scan output on an output terminal.
- the ULL cell library based IOs have relatively high inertial delay on clock and data path at the output terminal that can reach as high as the order of 30ns.
- the input terminal of these IOs is not affected by this timing issue because the inertial delay between clock and data path is relatively low. Under such conditions, it is not possible to drive scan operation at higher frequency, such as 30MHz or higher.
- VLCT very low cost tester
- VLCT very low cost tester
- the circuit includes a scan compression architecture driven by a scan clock and generates M scan outputs, where M is an integer.
- a clock divider is configured to divide the scan clock by k to generate k number of phase-shifted scan clocks, where k is an integer.
- a packing logic is coupled to the scan compression architecture and generates kM slow scan outputs in response to the M scan outputs and the k number of phase shifted scan clocks.
- the packing logic further includes M number of packing elements, and each packing element of the M number of packing elements receives a scan output of the M scan outputs.
- Each packing element includes k number of flip-flops, and each flip-flop of the k number of flip-flops in a packing element receives a scan output of the M scan outputs.
- Each flip-flop receives a phase-shifted scan clock of the k number of phase-shifted scan clocks, such that each flip-flop generates a slow scan output of the kM slow scan outputs in response to the scan output and the phase-shifted scan clock.
- Another embodiment provides a method of testing, in which k number of phase-shifted scan clocks is generated from a scan clock, where k is an integer.
- a packing logic generates kM slow scan outputs from M scan outputs.
- the packing logic includes M number of packing elements, where M is an integer. Each packing element of the M number of packing elements generates k slow scan output in response to a scan output of the M scan outputs and the k number of phase-shifted scan clocks.
- an embodiment provides a computing device that includes a processing unit, multiple logic circuits coupled to the processing unit and a testing circuit.
- the testing circuit is coupled to at least one logic circuit of the multiple logic circuits.
- the testing circuit includes a scan compression architecture driven by a scan clock and generates M scan outputs, where M is an integer.
- a clock divider is configured to divide the scan clock by k to generate k number of phase-shifted scan clocks, where k is an integer.
- a packing logic is coupled to the scan compression architecture and generates kM slow scan outputs in response to the M scan outputs and the k number of phase shifted scan clocks.
- the packing logic further includes M number of packing elements, and each packing element of the M number of packing elements receives a scan output of the M scan outputs.
- Each packing element includes k number of flip-flops, and each flip-flop of the k number of flip-flops in a packing element receives a scan output of the M scan outputs.
- Each flip-flop receives a phase-shifted scan clock of the k number of phase-shifted scan clocks, such that each flip-flop generates a slow scan output of the kM slow scan outputs in response to the scan output and the phase-shifted scan clock.
- FIG. 1 is a schematic of a circuit 100 for testing an integrated circuit (IC).
- the circuit 100 includes IO (input/output) circuits 104, a decompressor 108, scan chains 112, a scan clock 128, a compressor 118, an internal comparator 122 and a status register 126.
- the IO circuits 104 receive N data inputs 102 from a tester (not shown in FIG. 1 ), where N is an integer. Examples of testers include very low cost testers (VLCT) and high-end testers.
- the IO circuits 104 are coupled to the decompressor 108.
- the decompressor 108 is coupled to the scan chains 112.
- Each scan chain of the scan chains 112 includes scan cells, such as scan cells 114 of FIG. 1 .
- the scan chains 112 are driven by the scan clock 128.
- the compressor 118 is coupled to the scan chains 112.
- the IO circuits 104, the decompressor 108, the scan chains 112 and the compressor 118 together form a scan compression architecture 105.
- the compressor 118 is coupled to the internal comparator 122.
- the internal comparator 122 receives an expected scan response input 124 from the tester.
- the status register 126 is coupled to the internal comparator 122.
- the IO circuits 104 receive N data inputs 102 from the tester and generate N scan inputs 106.
- the decompressor 108 receives the N scan inputs 106 and generates core scan inputs 110 in response to the N scan inputs 106.
- the core scan inputs 110 are provided to the scan chains 112. Each scan cell 114 of the scan cells shifts a core scan input of the core scan inputs 110 at a frequency of the scan clock 128.
- the scan chains 112 generate core scan outputs 116, in response to the core scan inputs 110 received by the scan chains 112.
- the compressor 118 receives the core scan outputs 116 and generates M scan outputs 120 in response to the core scan outputs 116, where M is an integer.
- the internal comparator 122 receives the M scan outputs 120 from the compressor 118.
- the internal comparator 122 also receives the expected scan response input 124 from the tester.
- the internal comparator 122 is configured to compare the M scan outputs 120 and the expected scan response input 124 to generate a test result 125.
- the test result 125 is stored in the status register 126.
- the status register 126 is capable of storing the test results in the form of one or more bits.
- the status register 126 includes one or more flip-flops (such as a D flip-flop) or latches.
- the tester In each testing cycle, the tester generates a set of bits, which are provided as N data inputs 102 to the scan compression architecture 105, and multiple testing cycles constitute a testing pattern.
- the test result 125 generated in each testing cycle is stored in the status register 126 and analyzed at the end of each testing pattern.
- the internal comparator 122 also receives unknown values (either "0" or "1"), which are termed as masked bits. In those situations, when values in M scan outputs 120 include masked bits, it is excluded from comparison with the expected scan response input 124 by the internal comparator 122. The internal comparator 122 continues to compare the normal logic "1" bits and logic "0" bits for comparison to ascertain the nature (faulty/fault-free) of the integrated circuit that is being tested. However, the use of internal comparator 122 inhibits analysis of test results at the end of each testing cycle, and the test results in circuit 100 are analyzed at the end of the testing pattern. Also, the unknown values are needed to be masked in M scan outputs 120, which add an additional overhead per scan output.
- FIG. 2 is a schematic of a circuit 200 for testing an integrated circuit (IC), according to an embodiment.
- the circuit 200 includes first IO circuits 204, a decompressor 208, scan chains 212, a compressor 218, a packing logic 222, second IO circuits 226, a scan clock 230 and a clock divider 232.
- the IO circuits 204 receive N data inputs 202 from a tester (not shown in FIG. 2 ), where N is an integer. Examples of testers include very low cost testers (VLCT) and high-end testers.
- the IO circuits 204 are coupled to the decompressor 208.
- the decompressor 208 is coupled to the scan chains 212.
- Each scan chain of the scan chains 212 includes scan cells, such as scan cells 214.
- the scan chains 212 are driven by the scan clock 230.
- the compressor 218 is coupled to the scan chains 212.
- the IO circuits 204, the decompressor 208, the scan chains 212 and the compressor 218 together form a scan compression architecture 205.
- the compressor 218 is coupled to the packing logic 222.
- the packing logic 222 receives a signal from the clock divider 232.
- the packing logic 222 is coupled to the IO circuits 226.
- the IO circuits 204 receive N data inputs 202 from the tester and generate N scan inputs 206.
- the decompressor 208 receives the N scan inputs 206 and generates core scan inputs 210 in response to the N scan inputs 206.
- the core scan inputs 210 are provided to the scan chains 212.
- the scan chains 212 are driven by the scan clock 230.
- Each scan cell 214 of the scan cells shifts a core scan input of the core scan inputs 210 at a frequency of the scan clock 230.
- the scan chains 212 generate core scan outputs 216 in response to the core scan inputs 210 received by the scan chains 212.
- the compressor 218 receives the core scan outputs 216 and generates M scan outputs 220 in response to the core scan outputs 216, where M is an integer. In one embodiment, M is equal to N.
- the clock divider 232 is configured to divide the scan clock 230 by k to generate k number of phase-shifted scan clocks, where k is an integer. For example, when frequency of scan clock 230 is 30 MHz, and k is equal to 3, the clock divider generates three phase-shifted scan clocks each of 10MHz.
- the phase shift in the scan clocks is a function of k, such as 360 0 / k.
- the phase shift in the scan clocks is 0 degrees, so the generated scan clocks are in same phase.
- the phase-shift in the clocks is predefined by a user and hardwired in the circuit 200. In at least one example, the clocks are phase shifted by 45, 90 or 180 degrees.
- the packing logic 222 is coupled to the scan compression architecture 205 and generates kM slow scan outputs 224 in response to the M scan outputs 220 and k number of phase-shifted scan clocks. The features and operation of the packing logic 222 are further discussed in connection with FIG. 3 .
- the packing logic 222 is coupled to the IO circuits 226.
- the IO circuits 226 are configured to generate kM data outputs 228 in response to the kM slow scan outputs 224.
- the N data inputs 202, the N scan inputs 206 and the M scan outputs 220 operate at a higher frequency, as compared to the kM slow scan outputs 224 and kM data outputs 228.
- the circuit 200 addresses the issue of handling kM slow scan outputs 224, even when the M scan outputs 220 are received at a faster rate, without loss of data and thereby saving time for testing the integrated circuit.
- the tester In each testing cycle, the tester generates a set of bits, which are provided as N data inputs 202 to the scan compression architecture 205, and multiple testing cycles constitute a testing pattern.
- the packing logic 222 allows analysis of test results at the end of each testing cycle. Also, in situations when packing logic 222 receives unknown values (either "0" or "1"), which are termed as masked bits, these masked bits are treated as regular bits and do not add more overhead on the circuit 200.
- FIG. 3 is a schematic of a packing logic 300, according to an embodiment.
- the packing logic 300 is similar in connection and operation to the packing logic 222 in the circuit 200.
- the packing logic 300 includes M number of packing elements (where M is an integer), such as packing elements 305A, 305B and 305M.
- the packing element 305M is the M th packing element of the M number of packing elements.
- Each of the M packing elements is configured to receive a respective one of M scan outputs 320.
- the packing element 305A receives a scan output 320A
- the packing element 305B receives a scan output 320B
- the packing element 305M receives a scan output 320M.
- the scan output 320M is the M th scan output of the M scan outputs 320.
- Each packing element includes k number of flip-flops, where k is an integer.
- the packing element 305A includes flip-flop 302a, 302b and 302k.
- the flip-flop 302k is the k th flip-flop of the k number of flip-flops.
- the packing element 305M includes flip-flops 306a, 306b and 306k.
- the flip-flop is a latch, a combination of flip-flops, or a register.
- the packing logic 300 is configured to receive k number of phase shifted scan clocks from a clock divider (not shown in FIG. 3 ), similar to the clock divider 232 of FIG. 2 .
- the packing logic 300 receives k phase shifted scan clocks, such as scan clock 1 (315a), scan clock 2 (315b) and scan clock k (315k).
- the scan clock k is the kth scan clock of the k phase shifted scan clocks.
- the phase shift in the scan clocks is a function of k, such as 360 0 / k.
- the phase shift in the scan clocks is 0 degrees, so the generated scan clocks are in same phase.
- the phase-shift in the clocks is predefined by a user and hardwired in the packing logic 300. In at least one example, the clocks are phase shifted by 45, 90 or 180 degrees.
- Each of the k flip-flops is configured to receive a respective one of the k phase-shifted scan clocks.
- flip-flops 302a, 304a and 306a receive scan clock 1 (315a).
- the flip-flops 302b, 304b and 306b receive scan clock 2 (315b), and flip-flops 306a, 306b and 306k receive scan clock k (315k).
- Each flip-flop is configured to generate a slow scan output in response to a scan output and a phase-shifted scan clock. Accordingly, each packing element generates k slow scan outputs in response to the scan output and the k number of phase-shifted scan clocks.
- the packing element 305A generates slow scan outputs 324A1, 324A2 and 324Ak, where 324Ak is the k th slow scan output.
- the packing element 305B generates slow scan outputs 324B1, 324B2 and 324Bk, where 324 Bk is the k th slow scan output.
- the packing logic 300 generates kM slow scan outputs 324 in response to the M scan outputs 320.
- the packing logic 300 receives two scan outputs and includes two packing element, each with two flip-flops. Accordingly, the packing logic generates four slow scan outputs. The operation of packing logic is further discussed in connection with FIG. 4A and FIG. 4B .
- FIG. 4A is a timing diagram of a clock divider, according to an embodiment.
- FIG. 4A shows the timing diagram when a clock divider, such as clock divider 232 (shown in FIG. 2 ), receives a scan clock (such as scan clock 230) and generates k number of phase-shifted scan clocks, where k is an integer.
- FIG. 4A shows the phase-shifted scan clocks from the clock divider 232, when k is equal to 3.
- the clock divider is configured to divide the scan clock by k to generate k number of phase-shifted scan clocks. For example, if the frequency of the scan clock is 30MHz, then the clock divider would generate three phase-shifted scan clocks of 10MHz each.
- the scan clock 430 is received by the clock divider 232.
- the clock divider generates phase-shifted scan clock 1 (415a), scan clock 2 (415b) and scan clock 3 (415c).
- Each scan clock is phase-shifted by 120 degrees.
- scan clock 2 (415b) is phase-shifted 120 degrees with respect to the scan clock 1(415a) and similarly, scan clock 3 (415c) is phase shifted 120 degrees with respect to the scan clock 2 (415b).
- the phase shift in the scan clocks is a function of k, such as 360 0 / k.
- the phase shift in the scan clocks is 0 degrees, so the generated scan clocks are in same phase.
- the phase-shift in the clocks is predefined by a user and hardwired in the clock divider 232. In at least one example, the clocks are phase shifted by 45, 90 or 180 degrees.
- FIG. 4B is a schematic of a packing logic 400, according to an embodiment.
- the packing logic 400 is similar in connection and operation to the packing logic 300.
- the function of packing logic of FIG. 4B is when k is equal to 3 and M is equal to 4.
- the packing logic 400 includes four packing elements 405A, 405B, 405C and 405D.
- the packing logic 400 receives four scan outputs 420A, 420B, 420C and 420D.
- Each of the four packing elements is configured to receive a respective one of the four scan outputs 420.
- the packing element 405A receives a scan output 420A
- the packing element 405B receives a scan output 420B
- the packing element 405D receives a scan output 420D.
- Each packing element includes three flip-flops.
- the packing element 405A includes flip-flop 402a, 402b and 402c.
- the packing element 405C includes flip-flop 406a, 406b and 406c.
- the flip-flop is a latch, a combination of flip-flops or a register.
- the packing logic 400 is configured to receive three phase shifted scan clocks from a clock divider (not shown in FIG. 4B ), similar to clock divider 232 of FIG. 2 .
- the packing logic 400 receives phase shifted scan clock 1 (415a), scan clock 2 (415b) and scan clock 3 (415c) of FIG. 4A .
- the phase shift in the scan clocks is a function of k, such as 360 0 / k. In one embodiment, the phase shift in the scan clocks is 0 degrees, so the generated scan clocks are in same phase.
- the phase-shift in the clocks is predefined by a user and hardwired in the packing logic 400. In at least one example, the clocks are phase shifted by 45, 90 or 180 degrees.
- Each flip-flop is configured to receive a phase-shifted scan clock. For example, flip-flops 402a, 404a, 406a and 408a receive scan clock 1 (415a).
- each flip-flop receives scan clock 2 (415b), and flip-flops 402c, 404c, 406c and 408c receive scan clock 3 (415c).
- Each flip-flop is configured to generate a slow scan output in response to a scan output and a phase-shifted scan clock. Accordingly, each packing element generates three slow scan outputs in response to the scan output and the phase-shifted scan clocks. For example, the packing element 405A generates slow scan outputs 424A1, 424A2 and 424A3. Similarly, the packing element 405B generates slow scan outputs 424B1, 424B2 and 424B3.
- the packing logic 400 generates 12 (4*3) slow scan outputs 424 in response to the four scan outputs 420.
- FIG. 5 is a timing diagram 500 of a packing logic, according to an embodiment.
- the timing diagram 500 is explained with reference to FIG. 4A , FIG. 4B and packing logic 400.
- FIG. 5 shows the phase-shifted scan clocks and the slow scan outputs, when k is equal to 3 and M is equal to 4.
- FIG. 5 shows the timing diagram 500 when a clock divider, such as clock divider 232 (shown in FIG. 2 ), receives a scan clock 430 and generates phase-shifted scan clock 1 (415a), scan clock 2 (415b) and scan clock 3 (415c). The generation of scan clocks is discussed hereinabove in connection with FIG. 4A .
- the packing element 405A receives the scan output 420A.
- the timing diagram 500 shows three slow scan outputs, which are being generated by a packing element, such as packing element 405A in the packing logic 400 (shown in FIG. 4B ).
- the flip-flop 402a receives the scan clock 1(415a) and the scan output 420A and generates a slow scan output 1 (424A1).
- the flip-flop 402b generates a slow scan output 2 (424A2) in response to the scan clock 2(415b) and the scan output 420A.
- the flip-flop 402c generates a slow scan output (424A3) in response to the scan clock 3(415c) and the scan output 420A.
- the timing diagram 500 further shows that for one scan output, the packing element generates three slow scan outputs.
- the scan output 420A is received by the packing logic 400 at the frequency of the scan clock 430, but the slow scan outputs (424A1-424A3) are generated at a frequency that is one-third of the frequency of the scan clock 430. Accordingly, each slow scan output is available as an output of the packing logic 400 for three pulses of the scan clock 430, so the packing logic 400 allows analysis of test results at the end of each pulse of clock cycle. The test results at the end of each pulse of clock cycle enable diagnosis of failing scan chain. Accordingly, the packing logic 400 addresses the issue of handling 12 slow scan outputs, even when the four scan outputs are received at a faster rate, without loss of data and thereby saving time for testing the integrated circuit.
- FIG. 6 shows a computing device 600 of an embodiment.
- the computing device 600 is, or is an integrated circuit incorporated into, a server farm, a computing device with hard-drive, a video recorder, a bluetooth device, a remote control, a keyboard, a mobile communication device (such as a mobile phone or a personal digital assistant), a personal computer, or any other type of electronic system.
- the computing device 600 can be a microcontroller, microprocessor or a system-on-chip (SoC), which includes a processing unit 612 such as a central processing unit (CPU).
- the processing unit 612 can be a CISC-type (complex instruction set computer) CPU, RISC-type (reduced instruction set computer) CPU, or a digital signal processor (DSP).
- a tester 610 is coupled to the computing device 600.
- the tester 610 includes logic that supports testing and debugging of the computing device 600 executing the software applications 630.
- the tester 610 is useful to emulate a defective or unavailable component(s) of the computing device 600.
- the processing unit 612 includes cache-memory and logic, which store and use information frequently accessed from the tester 610, so the processing unit 612 is responsible for directing complete functionality of the computing device 600.
- the computing device 600 includes logic circuits 615. At least one of the logic circuits 615 is coupled to a testing circuit 620.
- the testing circuit 620 is analogous to the circuit 200 in connection and operation. The testing circuit operates in conjunction with the tester 610.
- the testing circuit 620 addresses the issue of handling kM slow scan outputs, even when the M scan outputs are received at a faster rate, without loss of data and thereby saving time for testing the integrated circuit, where k, M and N are integers.
- the tester 610 In each testing cycle, the tester 610 generates a set of bits, which are provided as N data inputs to the testing circuit 620, and multiple testing cycles constitute a testing pattern.
- the testing circuit 620 allows analysis of test results at the end of each testing cycle. Also, in situations when testing circuit 620 receives unknown values (either "0" or "1"), which are termed as masked bits, the testing circuit 620 treats them as regular bits and does not add more overhead on the computing device 600.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electronic Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/145,293 US9261560B2 (en) | 2013-12-31 | 2013-12-31 | Handling slower scan outputs at optimal frequency |
PCT/US2014/073090 WO2015103440A1 (en) | 2013-12-31 | 2014-12-31 | Handling slower scan outputs at optimal frequency |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3090268A1 EP3090268A1 (en) | 2016-11-09 |
EP3090268A4 EP3090268A4 (en) | 2017-08-30 |
EP3090268B1 true EP3090268B1 (en) | 2019-09-04 |
Family
ID=53481402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14875966.5A Active EP3090268B1 (en) | 2013-12-31 | 2014-12-31 | Handling slower scan outputs at optimal frequency |
Country Status (5)
Country | Link |
---|---|
US (1) | US9261560B2 (enrdf_load_stackoverflow) |
EP (1) | EP3090268B1 (enrdf_load_stackoverflow) |
JP (1) | JP6521983B2 (enrdf_load_stackoverflow) |
CN (1) | CN105874343B (enrdf_load_stackoverflow) |
WO (1) | WO2015103440A1 (enrdf_load_stackoverflow) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9448284B2 (en) * | 2014-05-08 | 2016-09-20 | Texas Instruments Incorporated | Method and apparatus for test time reduction using fractional data packing |
EP3153873A1 (en) * | 2015-10-07 | 2017-04-12 | Lantiq Beteiligungs-GmbH & Co. KG | On-chip test pattern generation |
US10060979B2 (en) | 2016-08-02 | 2018-08-28 | Texas Instruments Incorporated | Generating multiple pseudo static control signals using on-chip JTAG state machine |
US11073557B2 (en) * | 2019-05-08 | 2021-07-27 | Texas Instruments Incorporated | Phase controlled codec block scan of a partitioned circuit device |
JP1656709S (enrdf_load_stackoverflow) * | 2019-05-31 | 2020-04-06 | ||
JP2021038982A (ja) * | 2019-09-02 | 2021-03-11 | 株式会社東芝 | 半導体装置 |
US12175176B2 (en) * | 2021-03-17 | 2024-12-24 | Synopsys, Inc. | Fast synthesis of logical circuit design with predictive timing |
TWI800925B (zh) * | 2021-09-17 | 2023-05-01 | 瑞昱半導體股份有限公司 | 測試系統以及測試方法 |
EP4232833B1 (en) * | 2022-01-05 | 2024-10-09 | Google LLC | High-throughput scan architecture |
US12203985B1 (en) | 2023-07-17 | 2025-01-21 | Stmicroelectronics International N.V. | Test-time optimization with few slow scan pads |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5663966A (en) * | 1996-07-24 | 1997-09-02 | International Business Machines Corporation | System and method for minimizing simultaneous switching during scan-based testing |
US6694467B2 (en) * | 1999-06-24 | 2004-02-17 | Texas Instruments Incorporated | Low power testing of very large circuits |
EP1242885B1 (en) * | 1999-11-23 | 2009-10-07 | Mentor Graphics Corporation | Continuous application and decompression of test patterns to a circuit-under-test |
US6545549B2 (en) * | 2000-03-02 | 2003-04-08 | Texas Instruments Incorporated | Remotely controllable phase locked loop clock circuit |
US6766487B2 (en) * | 2000-03-09 | 2004-07-20 | Texas Instruments Incorporated | Divided scan path with decode logic receiving select control signals |
EP1146343B1 (en) * | 2000-03-09 | 2005-02-23 | Texas Instruments Incorporated | Adapting Scan-BIST architectures for low power operation |
US8091002B2 (en) * | 2001-02-15 | 2012-01-03 | Syntest Technologies, Inc. | Multiple-capture DFT system to reduce peak capture power during self-test or scan test |
US7231570B2 (en) * | 2004-05-26 | 2007-06-12 | Syntest Technologies, Inc. | Method and apparatus for multi-level scan compression |
JP2006003317A (ja) * | 2004-06-21 | 2006-01-05 | Renesas Technology Corp | スキャンテスト回路 |
US7404126B2 (en) * | 2006-03-29 | 2008-07-22 | Texas Instruments Incorporated | Scan tests tolerant to indeterminate states when employing signature analysis to analyze test outputs |
US7793179B2 (en) * | 2006-06-27 | 2010-09-07 | Silicon Image, Inc. | Test clock control structures to generate configurable test clocks for scan-based testing of electronic circuits using programmable test clock controllers |
US7372305B1 (en) * | 2006-10-31 | 2008-05-13 | International Business Machines Corporation | Scannable dynamic logic latch circuit |
US7823034B2 (en) * | 2007-04-13 | 2010-10-26 | Synopsys, Inc. | Pipeline of additional storage elements to shift input/output data of combinational scan compression circuit |
JP2009222644A (ja) * | 2008-03-18 | 2009-10-01 | Toshiba Corp | 半導体集積回路、及び設計自動化システム |
US8726112B2 (en) * | 2008-07-18 | 2014-05-13 | Mentor Graphics Corporation | Scan test application through high-speed serial input/outputs |
US8856601B2 (en) | 2009-08-25 | 2014-10-07 | Texas Instruments Incorporated | Scan compression architecture with bypassable scan chains for low test mode power |
US8458543B2 (en) | 2010-01-07 | 2013-06-04 | Freescale Semiconductor, Inc. | Scan based test architecture and method |
US8464117B2 (en) * | 2010-05-25 | 2013-06-11 | Freescale Semiconductor, Inc. | System for testing integrated circuit with asynchronous clock domains |
US8887018B2 (en) | 2010-06-11 | 2014-11-11 | Texas Instruments Incorporated | Masking circuit removing unknown bit from cell in scan chain |
US8887019B2 (en) * | 2010-11-16 | 2014-11-11 | Cadence Design Systems, Inc. | Method and system for providing efficient on-product clock generation for domains compatible with compression |
US9746519B2 (en) * | 2011-03-25 | 2017-08-29 | Nxp B.V. | Circuit for securing scan chain data |
US8671320B2 (en) | 2011-06-21 | 2014-03-11 | Lsi Corporation | Integrated circuit comprising scan test circuitry with controllable number of capture pulses |
-
2013
- 2013-12-31 US US14/145,293 patent/US9261560B2/en active Active
-
2014
- 2014-12-31 JP JP2016544161A patent/JP6521983B2/ja active Active
- 2014-12-31 EP EP14875966.5A patent/EP3090268B1/en active Active
- 2014-12-31 CN CN201480071759.7A patent/CN105874343B/zh active Active
- 2014-12-31 WO PCT/US2014/073090 patent/WO2015103440A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3090268A4 (en) | 2017-08-30 |
JP6521983B2 (ja) | 2019-05-29 |
WO2015103440A1 (en) | 2015-07-09 |
EP3090268A1 (en) | 2016-11-09 |
US9261560B2 (en) | 2016-02-16 |
CN105874343A (zh) | 2016-08-17 |
JP2017507323A (ja) | 2017-03-16 |
US20150185283A1 (en) | 2015-07-02 |
CN105874343B (zh) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3090268B1 (en) | Handling slower scan outputs at optimal frequency | |
US20120159274A1 (en) | Apparatus to facilitate built-in self-test data collection | |
US20100262879A1 (en) | Internally Controlling and Enhancing Logic Built-In Self Test in a Multiple Core Microprocessor | |
US8479068B2 (en) | Decoded register outputs enabling test clock to selected asynchronous domains | |
JP5536297B2 (ja) | コ−デバッギング機能を支援する半導体集積回路および半導体集積回路テストシステム | |
JP2010518405A (ja) | 低消費電力スキャンテスト技術および装置 | |
US8841952B1 (en) | Data retention flip-flop | |
TWI510797B (zh) | 用於核心的全域低功率擷取方案之方法及系統 | |
CN114667455A (zh) | 用于测试电路的通用压缩器架构 | |
US8839063B2 (en) | Circuits and methods for dynamic allocation of scan test resources | |
US9264023B2 (en) | Scannable flop with a single storage element | |
US9599673B2 (en) | Structural testing of integrated circuits | |
US9009553B2 (en) | Scan chain configuration for test-per-clock based on circuit topology | |
US20100058130A1 (en) | Processor to jtag test access port interface | |
US9970987B2 (en) | Method and apparatus for test time reduction using fractional data packing | |
US9389635B2 (en) | Selectable phase or cycle jitter detector | |
US20250076380A1 (en) | High-throughput scan architecture | |
Kramer et al. | Utilization of a local grid of Mac OS X-based computers using Xgrid | |
US8793545B2 (en) | Apparatus and method for clock glitch detection during at-speed testing | |
Velayaudhan et al. | BUFIT: FINE-GRAINED DYNAMIC BURST FAULT INJECTION TOOL FOR EMBEDDED field programmable gate array TESTING | |
KR20240178647A (ko) | 로직 비스트 회로 및 이를 포함한 반도체 디바이스 | |
Ravi et al. | FPGA implementation of low power self testable MIPS processor | |
Yu et al. | The software-hardware co-debug environment with emulator | |
Tehranipour et al. | Signal integrity loss in SoC's interconnects: a diagnosis approach using embedded microprocessor | |
Mot et al. | Performance enhancement of serial based FPGA probabilistic fault emulation techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160801 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170802 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01R 31/28 20060101AFI20170727BHEP Ipc: G01R 31/3183 20060101ALI20170727BHEP Ipc: G01R 31/317 20060101ALI20170727BHEP Ipc: G01R 31/3185 20060101ALI20170727BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190319 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1176115 Country of ref document: AT Kind code of ref document: T Effective date: 20190915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014053204 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190904 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191204 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191205 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1176115 Country of ref document: AT Kind code of ref document: T Effective date: 20190904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200106 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014053204 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200105 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20200605 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190904 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241121 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241122 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241121 Year of fee payment: 11 |