EP3087318A1 - Procédé de traitement de cendres provenant d'installations d'incinération d'ordures par classement par voie humide - Google Patents

Procédé de traitement de cendres provenant d'installations d'incinération d'ordures par classement par voie humide

Info

Publication number
EP3087318A1
EP3087318A1 EP14827784.1A EP14827784A EP3087318A1 EP 3087318 A1 EP3087318 A1 EP 3087318A1 EP 14827784 A EP14827784 A EP 14827784A EP 3087318 A1 EP3087318 A1 EP 3087318A1
Authority
EP
European Patent Office
Prior art keywords
fraction
residue
screening device
pollutants
screening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14827784.1A
Other languages
German (de)
English (en)
Other versions
EP3087318B1 (fr
Inventor
Manfred Klinkhammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schauenburg Maschinen-Und Anlagen-Bau GmbH
Original Assignee
Schauenburg Maschinen-Und Anlagen-Bau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schauenburg Maschinen-Und Anlagen-Bau GmbH filed Critical Schauenburg Maschinen-Und Anlagen-Bau GmbH
Priority to PL14827784T priority Critical patent/PL3087318T3/pl
Publication of EP3087318A1 publication Critical patent/EP3087318A1/fr
Application granted granted Critical
Publication of EP3087318B1 publication Critical patent/EP3087318B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/04General arrangement of separating plant, e.g. flow sheets specially adapted for furnace residues, smeltings, or foundry slags
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/01001Sorting and classifying ashes or fly-ashes from the combustion chamber before further treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/01005Mixing water to ash

Definitions

  • the invention relates to a method for the treatment of ash from waste incineration plants, in particular municipal waste incineration plants, by wet classification.
  • Classification is understood as meaning a separation of a starting material consisting of particles with a given particle size distribution into a plurality of fractions of different particle size distribution.
  • the classification serves, in particular, to separate the ashes into different proportions of pollutants.
  • a method for the treatment of ash from waste incineration plant by wet classification in which the ash is mixed in a mash vessel with liquid and fed by screening a coarse fraction as a feed stream of a classification, the upstream classifier and an upstream hydrocyclone includes.
  • the feed stream is separated in the classifying stage into a pollutant-free material fraction and a residual fraction loaded with pollutants, wherein the residual fraction is withdrawn as a suspension at the top of a fluidized bed produced in the upflow classifier and wherein the removed on the underside of the fluidized bed Gutfrtress is drained by a sieve.
  • the Gutfr quasi-strength has a grain size between 0.25 mm and 4 mm and can be landfilled without environmental requirements or possibly also economically, z. B. be used as an aggregate in road construction.
  • the residue contains particles having a particle size of less than 250 ⁇ and contains pollutants, eg. As heavy metals, organic light materials and metal oxides, which deposit as a coating on the particles.
  • pollutants eg. As heavy metals, organic light materials and metal oxides, which deposit as a coating on the particles.
  • the residue fraction contains some value
  • Substances such as iron and non-ferrous metals.
  • the residue is thickened and must be disposed of in compliance with applicable legal regulations at the expense.
  • the dry weight fraction of the contaminated residue fraction is between 10% and 30% of the ash feed.
  • the object of the invention is to further reduce the amount of residue which can not be utilized economically and to recover valuable substances in a pure form, which enables economic utilization.
  • Ash from a waste incineration plant is mixed with liquid in a mash tank and, after screening off a coarse fraction, is fed as a feed stream to a first classification stage, where the feed stream is separated into a pollutant-free material fraction and a residual fraction contaminated with pollutants.
  • the material fraction is dewatered by means of a first screening device, wherein a sieve residue with a lower particle size of more than 150 m, preferably obtained with a lower particle size of about 250 ⁇ .
  • the loaded with pollutants residual fraction is separated in a second classification stage in a finely divided mineral fraction and a contaminated with pollutants residue, the residue has a grain upper limit between 20 ⁇ and 50 ⁇ .
  • the finely divided mineral fraction is dewatered by means of a second screening device.
  • metals are separated from the screen residue of the first screening device and / or from the screen residue of the second screening device.
  • the metal deposition may relate both to the deposition of non-ferrous metals and of iron constituents which are separated from the sieve residue.
  • the dewatered residue of the second screening device forms a finely divided mineral fraction without interfering ingredients that can be recycled economically.
  • As valuable products also finely divided metals are obtained, which are separated by means of metal deposition from the screen residue of the first screening device and / or the second screening device.
  • An advantageous embodiment of the method according to the invention provides that in the first classification stage at the top of a fluidized bed produced in a Aufstromklassierer contaminated with pollutants fraction is withdrawn as a suspension and that the Gutfr forcing deducted at the bottom of the upflow kl assierers and Entraces means of the first screening device - Sert, wherein the passage of the first sieve device is recycled to a hydrocyclone plant.
  • the hydrocyclone plant is upstream of the upstream classifier.
  • the hydrocyclone plant is designed so that the cyclone overflow essentially carries only particles with a particle size of less than 100 m.
  • the hydrocyclone plant is operated so that the upper grain boundary of the withdrawn in the hydrocyclone overflow suspension is in a range between 60 ⁇ and 70 ⁇ .
  • the hydrocyclone overflow of the hydrocyclone plant is fed together with the extracted from the upstream classifier and loaded with pollutants fraction as a residual fraction of the second classification stage.
  • the hydrocyclone plant may comprise two parallel-connected hydrocyclones, the feed stream being fed to a first hydrocyclone of the hydrocyclone plant and the sieve throughput of the first screening device to the second hydrocyclone of the hydrocyclone plant.
  • the cyclone overflows of the parallel
  • Each hydrocyclone contains only particles which are smaller than the separating grain of the first screening device and are fed to the second classification stage.
  • the separating grain is understood to mean the grain size which is roughly 50% coarse and 50% fine.
  • a further advantageous embodiment of the method according to the invention provides that organic light substances are separated from the fraction loaded with pollutants from the upcurrent fraction. These include in particular fibrous materials. For example, a tumble screen can be used to separate off the organic impurities. In addition, automatic backflush filters can be used.
  • the fraction is fed together with the cyclone overflow of the hydrocyclone plant of the second classification stage.
  • a hydrocyclone plant which, as a multicyclone, can comprise a plurality of hydrocyclones connected in parallel.
  • the mineral fraction is withdrawn as a cyclone underflow.
  • the cyclone overflow carries the polluted with pollutants residue. This has a grain spectrum with a grain upper limit between 20 ⁇ and 50 ⁇ on.
  • the hydrocyclone plant of the second classification stage is operated so that the residue in the cyclone overflow has a grain upper limit of about 25 ⁇ .
  • the cyclone overflow of the hydrocyclone units used in the second classification stage is expediently concentrated in a thickener, which can be designed as a continuously operated sedimentation separator. Clarified liquid is withdrawn from the thickener and returned to the process as process fluid.
  • the liquid return may comprise a liquid tank to which a water treatment plant is connected. As part of the water treatment at least a pH adjustment is made. From the thickener, a suspension with high solids content is withdrawn. This is then dewatered, wherein for dehydration of the residue preferably a pressure filtration is used.
  • the pressure filtration can be designed, for example, as a chamber filter press or as a drum filter press.
  • a significant advantage of the method according to the invention over the prior art from DE 10 201 1 013 030 A1 is that the thickener is a much lower mass flow with finely divided particles having a particle size of less than 50 ⁇ , and as a result, the downstream pressure drainage procedurally easier and can be operated with smaller apparatus.
  • the ash 1 comes from a waste incineration plant, in particular a domestic waste incineration plant, and is mixed with liquid 3 in a mash tank 2 and, after screening a coarse fraction 4, is fed to a first classification stage 5.
  • the coarse fraction 4 comprises a grain spectrum between 4 mm and 60 mm and can optionally be divided into two or more coarse fractions.
  • the sieve devices used for this purpose can
  • the classifying stage 5 comprises an upflow classifier 6 and an upstream hydrocyclone plant 7.
  • the feed stream is separated in the classification stage 5 into a pollutant-free material fraction 8 and a polluted with pollutants residual fraction 9, wherein the residual fraction 9 at the top of a fluidized bed produced in the upflow classifier 6 as a suspension is withdrawn and wherein the deducted at the bottom of the fluidized bed Gutfr disorders 8 is drained by a first screening device 10.
  • the Siebschreibstand 1 1 of the first screening device 10 advantageously has a lower particle size of more than 150 ⁇ on.
  • the classifying stage 5 is operated so that the screen residue 1 1 of the screening device 10 has a particle size range between 250 m and 4 mm. From the sieve residue metals 12 are deposited, which can be recycled as recyclables.
  • the Siebschreibstand 1 1 with a particle size range between 0.25 mm to 4 mm is pollutant-free and can be recycled economically.
  • the screen passage 13 of the screening device 10 is returned to the hydrocyclone unit 7, which in the exemplary embodiment has two parallel hydrocyclones 14, 14 '.
  • the feed stream is fed to a first hydrocyclone 14 of the hydrocyclone unit 7.
  • the sieve passage 13 of the sieve device 10 passes as a feed into the second hydrocyclone 14 'of the hydrocyclone plant 7.
  • the screen residue 1 1 of the first screening device 10 has a lower particle size of more than 150 m, preferably a lower particle size of about 250 ⁇ m.
  • organic lightweight materials in particular also fibrous substances, are separated off, wherein the separation of the light substances can take place, for example, by means of a tumble screen 16.
  • the residual fraction 9 is fed together with the cyclone overflows 15, 15 'to a second classification stage 17, in which the material streams are separated into a finely divided mineral fraction 18 and a residue 19 contaminated with pollutants.
  • the second classification stage 17 is operated so that the residue 19 has a grain upper limit between 20 ⁇ and 50 ⁇ .
  • a grain upper limit of the residue 19 of about 25 ⁇ .
  • a hydrocyclone plant 20 is used, wherein the finely divided mineral fraction 18 is withdrawn as a cyclone underflow and the cyclone overflow entrained with pollutants finely divided residue 19.
  • the cyclone underflow is dewatered by means of a second screening device 21, wherein metals 23 are expediently separated from the screen residue 22. It falls to a finely divided mineral value product, which has a particle size range between 20 ⁇ and 250 ⁇ .
  • metals 23 fall in finely divided form, which can also be recycled as recyclables.
  • the hydrocyclone plant 20 has two hydrocyclones 29, 29 'connected in parallel, the feed stream being fed to a first hydrocyclone 29 of the hydrocyclone plant 20 and the sieve passage 30 of the second screening device 21 to the second hydrocyclone 29' of the hydrocyclone plant.
  • Runs 31, 31 'of the parallel-connected hydrocyclones 29, 29' are fed to a thickener 24.
  • the cyclone overflow of the hydrocyclone plant 20 used in the second classification stage 17 is concentrated in the thickener 24, wherein clarified liquid 25 is withdrawn from the thickener 24 and returned to the process.
  • the liquid return comprises a liquid tank 26 to which a water treatment plant is connected.
  • a suspension 28 with a high solids content is withdrawn, which is subsequently dewatered by a pressure filtration 27.
  • the finely divided residue has a grain spectrum with a grain upper limit between 20 ⁇ and 50 ⁇ , preferably a Kornoberalia of about 25 ⁇ is selected.
  • the residue, which consists exclusively of very finely divided particles, has a large surface, at which the pollutants contained in the ash are effectively bound. Metal oxides are also deposited with the finely divided residue.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Cyclones (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

L'invention concerne un procédé de traitement de cendres provenant d'installations d'incinération d'ordures par classement par voie humide. Selon ledit procédé, les cendres (1) sont mélangées à un liquide (3) dans une cuve de mélange (2) et, après criblage d'une fraction grossière (4), amenées sous la forme d'un flux d'alimentation à un premier étage de classement (5). Le flux d'alimentation est séparé au premier étage de classement (5) en une fraction de matière (8) exempte de substances nocives et en une fraction résiduelle (9) chargée en substances nocives, la fraction de matière (8) étant égouttée au moyen d'un premier dispositif de criblage (10) et un refus de criblage (11) présentant une grosseur inférieure de grain de plus de 150 µm s'accumulant. La fraction résiduelle (9) est séparée à un deuxième étage de classement (17) en une fraction minérale (18) finement divisée et en un résidu (19) chargé en substances nocives, le résidu présentant une limite granulométrique supérieure entre 20 μm et 50 μm. La fraction minérale (18) finement divisée est égouttée au moyen d'un deuxième dispositif de criblage (21). Des métaux (12, 23) sont extraits du refus de criblage (11) du premier dispositif de criblage (10) et/ou du refus de criblage (22) du deuxième dispositif de criblage (21).
EP14827784.1A 2013-12-23 2014-12-23 Procédé de traitement de cendres provenant d'installations d'incinération d'ordures par classement par voie humide Active EP3087318B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14827784T PL3087318T3 (pl) 2013-12-23 2014-12-23 Sposób obróbki popiołów ze spalarni odpadów z użyciem klasyfikacji na mokro

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013021790 2013-12-23
DE102014100725.5A DE102014100725B3 (de) 2013-12-23 2014-01-23 Verfahren zur Aufbereitung von Asche aus Müllverbrennungsanlagen durch Nassklassierung
PCT/EP2014/079260 WO2015097256A1 (fr) 2013-12-23 2014-12-23 Procédé de traitement de cendres provenant d'installations d'incinération d'ordures par classement par voie humide

Publications (2)

Publication Number Publication Date
EP3087318A1 true EP3087318A1 (fr) 2016-11-02
EP3087318B1 EP3087318B1 (fr) 2018-12-12

Family

ID=52017617

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14825112.7A Active EP3087317B1 (fr) 2013-12-23 2014-12-09 Procédé de traitement de cendres provenant d'installations d'incinération d'ordures par classification hydraulique
EP14827784.1A Active EP3087318B1 (fr) 2013-12-23 2014-12-23 Procédé de traitement de cendres provenant d'installations d'incinération d'ordures par classement par voie humide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14825112.7A Active EP3087317B1 (fr) 2013-12-23 2014-12-09 Procédé de traitement de cendres provenant d'installations d'incinération d'ordures par classification hydraulique

Country Status (6)

Country Link
US (1) US10213790B2 (fr)
EP (2) EP3087317B1 (fr)
CN (1) CN105980775B (fr)
DE (1) DE102014100725B3 (fr)
PL (2) PL3087317T3 (fr)
WO (2) WO2015096977A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3325167T3 (da) * 2015-07-25 2020-10-12 Tav Holdings Inc System og fremgangsmåde til genvinding af ønskede materialer fra finpartikler i aske fra forbrændingsanlæg
PL414609A1 (pl) * 2015-10-29 2017-05-08 Henryk Karcz Sposób odzysku masy palnej z popiołu dennego oraz instalacja do odzysku masy palnej z popiołu
DE102016106054A1 (de) * 2016-04-03 2017-10-05 Schauenburg Maschinen- Und Anlagen-Bau Gmbh Verfahren und Anlage zur Aufbereitung von Asche aus Müllverbrennungsanlagen
DE102016106053A1 (de) 2016-04-03 2017-10-05 Schauenburg Maschinen- Und Anlagen-Bau Gmbh Verfahren und Anlage zur Aufbereitung von Asche aus Müllverbrennungsanlagen
ES2803239T3 (es) * 2016-05-30 2021-01-25 Martin Gmbh Fuer Umwelt Und Energietechnik Método para procesar la escoria de un dispositivo de combustión
DE102016117741B4 (de) * 2016-09-20 2019-01-24 Schauenburg Maschinen- Und Anlagen-Bau Gmbh Verfahren und Anlage zur Aufbereitung von Asche aus Müllverbrennungsanlagen
CN108918367B (zh) * 2018-06-15 2021-04-09 酒泉钢铁(集团)有限责任公司 一种快速识别铁矿粉中有害物质来源的检测方法
US20220056554A1 (en) * 2018-12-18 2022-02-24 Sepro Mineral Systems Corp. Recovery of material from wet incinerator bottom ash

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL78361C (fr) 1950-03-09
GB777561A (en) 1951-12-21 1957-06-26 Siteg Siebtech Gmbh Process of continuously dehydrating muds containing recoverable minerals
US5794791A (en) * 1987-11-30 1998-08-18 Genesis Research Corporation Coal cleaning process
FI93753C (fi) * 1993-07-28 1995-05-26 Ahlstroem Oy Menetelmä ja laitteisto täyteainepitoisen materiaalin, kuten kierrätyskuidun käsittelyyn
FI97736C (fi) * 1995-03-07 1997-02-10 Ahlstrom Machinery Oy Menetelmä ja laitteisto täyteainepitoisen materiaalin, kuten kierrätyskuidun käsittelyyn
US20020017224A1 (en) 2000-05-03 2002-02-14 Robert Horton Method for the treatment of pozzolanic materials
EP2052780B1 (fr) 2007-10-26 2013-06-05 Scherer & Kohl GmbH & Co. KG Procédé destiné au traitement de scories
CN101433880B (zh) * 2008-11-07 2012-05-23 倪志群 一种煤灰渣分选方法
DE102011013030A1 (de) * 2011-03-04 2012-09-06 Alexandra Beckmann Aufbereiten von Müllverbrennungsasche
DE102011013033A1 (de) 2011-03-04 2012-09-06 Alexandra Beckmann Aufbereiten von Müllverbrennungsasche
CN102284350B (zh) * 2011-08-01 2013-09-04 福建耀中建材实业有限公司 炉渣综合利用之分选分离工艺
AT512479B1 (de) * 2012-02-10 2013-11-15 Andritz Energy & Environment Gmbh Verfahren zur feinstoffreduktion im rea-gips

Also Published As

Publication number Publication date
PL3087318T3 (pl) 2019-05-31
EP3087317A1 (fr) 2016-11-02
EP3087317B1 (fr) 2018-12-12
DE102014100725B3 (de) 2014-12-31
WO2015096977A1 (fr) 2015-07-02
CN105980775A (zh) 2016-09-28
WO2015097256A1 (fr) 2015-07-02
CN105980775B (zh) 2018-07-20
PL3087317T3 (pl) 2019-05-31
EP3087318B1 (fr) 2018-12-12
US10213790B2 (en) 2019-02-26
US20160310960A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
EP3087318B1 (fr) Procédé de traitement de cendres provenant d'installations d'incinération d'ordures par classement par voie humide
DE2612874C2 (de) Verfahren und Vorrichtung zur Aufbereitung von Schrott
DE4034054C1 (fr)
DE2809630A1 (de) Verfahren zur nassen verdichtung von feiner kohle
DE19645142A1 (de) Verfahren und Vorrichtung zum Recyceln von Sanden
DE3043220C2 (de) Verfahren und Anlage zur Reduzierung des Ölgehaltes von ölverschmutztem Walzsinter u.dgl.
EP2818250B1 (fr) Procédé de préparation de cendres d'incinération de déchets
EP3301360B1 (fr) Procédé et installation de traitement de cendres d'une installation d'incinération de déchets
DE4027880C2 (fr)
DE102005043435B4 (de) Verfahren und Vorrichtung zur Reinigung von Wasser mittels Magnetseparation
DE19520399C2 (de) Verfahren und Einrichtung zur Aufbereitung von Abwässern aus Naßentstaubungen von Shredderanlagen
DE3120463C1 (de) Verfahren und Anlage zur Reduzierung des Ölgehaltes von ölverschmutztem Walzsinter u.dgl.
WO2017174500A1 (fr) Procédé et installation servant au traitement de cendres provenant d'un incinérateur de déchets
DE19520494C2 (de) Verfahren zum Wiedergewinnen von Fasern und Fraktionieranlage für eine Papierfabrik
DE19949265C2 (de) Verfahren zum Minimieren des Neuwassereinsatzes im Wasserkreislauf bei einer Aufbereitungsanlage
DE4307952C2 (de) Anlage und Verfahren zur Bodenreinigung
EP3439788B1 (fr) Procédé et installation servant au traitement de cendres provenant d'un incinérateur de déchets
DE202023106530U1 (de) Anordnung zur Aufbereitung von Bauschutt
DE4307951C2 (de) Anlage zur Bodenreinigung
DE2906630C2 (de) Verfahren und Anlage zur Saugfilter-Entwässerung von Schlamm, insbesondere bei der Aufbereitung von Kohle
DE3312246A1 (de) Verfahren zum entwaessern einer waessrigen suspension
DE102020109403A1 (de) Verfahren zur Entfernung von Feinstpartikeln aus Abwasserströmen
DE2250446A1 (de) Verfahren zur aufbereitung von abwasserschlaemmen aus klaeranlagen und vorrichtung zu dessen durchfuehrung
AT514456B1 (de) Verfahren zur Aufbereitung von Müllverbrennungsschlacke
DE102015100506A1 (de) Verfahren und Vorrichtung zur Aufbereitung von Asche einer Müllverbrennungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1076523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014010353

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014010353

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

26N No opposition filed

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141223

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231220

Year of fee payment: 10

Ref country code: DE

Payment date: 20231231

Year of fee payment: 10

Ref country code: AT

Payment date: 20231221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231218

Year of fee payment: 10