EP3087238B1 - Assombrissement de barres omnibus dans des structures de vitrage électrochromiques - Google Patents

Assombrissement de barres omnibus dans des structures de vitrage électrochromiques Download PDF

Info

Publication number
EP3087238B1
EP3087238B1 EP14873490.8A EP14873490A EP3087238B1 EP 3087238 B1 EP3087238 B1 EP 3087238B1 EP 14873490 A EP14873490 A EP 14873490A EP 3087238 B1 EP3087238 B1 EP 3087238B1
Authority
EP
European Patent Office
Prior art keywords
spacer
igu
bus bar
bus bars
substantially transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14873490.8A
Other languages
German (de)
English (en)
Other versions
EP3087238A4 (fr
EP3087238A1 (fr
Inventor
Robert T. Rozbicki
Gordon Jack
Disha Mehtani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
View Inc
Original Assignee
View Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by View Inc filed Critical View Inc
Priority to EP21162654.4A priority Critical patent/EP3907368A1/fr
Publication of EP3087238A1 publication Critical patent/EP3087238A1/fr
Publication of EP3087238A4 publication Critical patent/EP3087238A4/fr
Application granted granted Critical
Publication of EP3087238B1 publication Critical patent/EP3087238B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/068Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • B32B17/10045Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet
    • B32B17/10055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets with at least one intermediate layer consisting of a glass sheet with at least one intermediate air space
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells

Definitions

  • the embodiments disclosed herein relate generally to techniques for obscuring from view bus bars and other features within an electrochromic (EC) glass structure assembly having, for example, one or more insulated glass units (IGUs).
  • EC electrochromic
  • IGUs insulated glass units
  • Electrochromism is a phenomenon in which a material exhibits a reversible electrochemically-mediated change in an optical property when placed in a different electronic state, typically by being subjected to a voltage change.
  • the optical property is typically one or more of color, transmittance, absorbance, and reflectance.
  • One well known electrochromic material is tungsten oxide (WO 3 ).
  • Tungsten oxide is a cathodic electrochromic material in which a coloration transition, transparent to blue, occurs by electrochemical reduction.
  • Electrochromic materials may be incorporated into, for example, windows for home, commercial and other uses.
  • the color, transmittance, absorbance, and/or reflectance of such windows may be changed by inducing a change in the electrochromic material, that is, electrochromic windows are windows that can be darkened or lightened electronically.
  • electrochromic windows are windows that can be darkened or lightened electronically.
  • a small voltage applied to an electrochromic device of the window will cause them to darken; reversing the voltage causes them to lighten. This capability allows control of the amount of light that passes through the windows, and presents an opportunity for electrochromic windows to be used as energy-saving devices.
  • Certain embodiments described herein generally relate to techniques for obscuring bus bars in electrochromic glass structures.
  • an insulated glass unit comprising first and second substantially transparent substrates, a spacer between the first and second substantially transparent substrates, a primary seal, an electrochromic device, and a bus bar associated with the electrochromic device.
  • the primary seal is between the spacer and the first substantially transparent substrate and between the spacer and the second substantially transparent substrate.
  • the electrochromic device is on at least one of the first and second substantially transparent substrates.
  • the bus bar is configured to power the electrochromic device and located in the primary seal, the bus bar camouflaged to blend in with its background of the primary seal, the spacer and/or the electrochromic device. In some cases, camouflaged can mean having minimal optical contrast between the bus bar and the primary seal and/or spacer.
  • the bus bar is made of an electrically conductive material comprising a tinting agent configured to approximate the color and luminescence of the bus bar to its background.
  • an electrochromic structure comprising a substantially transparent substrate, an electrochromic device disposed on the substantially transparent substrate.
  • the electrochromic device has one or more transparent conductive layers.
  • the electrochromic structure further comprises a bus bar configured to power the electrochromic device and an opaque obscuring layer located in a region between the bus bar and the substantially transparent substrate, wherein at least one of the one or more transparent conductive layers is between the bus bar and the opaque obscuring layer.
  • the opaque obscuring layer has at least a width configured to block view of the bus bar from an observer outside the electrochromic structure.
  • the bus bar is made of a material with a color and luminescence configured to blend in with background.
  • the bus bar material comprises one or more of carbon black, graphite, graphite-based materials, graphene, or graphene-based materials.
  • an IGU comprising a first pane having a first substantially transparent substrate, an electrochromic device disposed on the second substantially transparent substrate, the electrochromic device comprising a first transparent conductive layer proximal the second substantially transparent substrate, an clcctrochromic stack, and a second transparent conductive layer.
  • the IGU further comprises a second pane having a second substantially transparent substrate, a spacer between the first and second panes, a primary sealant adhering the spacer to the first and second panes, and a pair of bus bars on the first transparent conductive layer, nearest the first pane, and one or more transparent bus bars on the second transparent conductive layer, wherein the one or more transparent bus bars are located in area of the IGU that is viewable to an observer.
  • the pair of bus bars is located between the spacer and the first substantially transparent substrate such that the spacer blocks view of the pair of bus bars from an observer viewing through the second pane.
  • the pair of bus bars is made of materials configured to match color and luminescence to the spacer and/or the primary sealant.
  • the additional one or more transparent bus bars are patterned onto the first substantially transparent substrate and then the first transparent conductor layer is fabricated thereon. In one case, the additional one or more transparent bus bars are embedded in the first substantially transparent substrate in at least in the viewable region of the IGU.
  • an IGU or laminate comprising an electrochromic device on at least one transparent substrate, of at least two transparent substrates of the IGU or laminate and at least one transparent bus bar configured to electrically power the electrochromic device.
  • the transparent bus bar comprises a transparent conductive material embedded with conductive particles.
  • the conductive particles are nanoparticles.
  • the at least one transparent bus bar is a thin layer of metal or metal alloy. In one example, the thin layer of metal or metal alloy is between about 1 nm and about 10 nm thick. In another example, the thin layer of metal or metal alloy is less than about 5 nm thick.
  • An electrochromic (EC) glass structure can refer to a structure including one or more EC panes (also referred to herein as EC lites) such as, for example, an insulated glass unit (IGU) or an EC pane laminated to another pane, EC or not.
  • An example of an EC glass structure assembly is an EC window assembly having one or more IGUs. Each IGU is manufactured from two or more panes where at least one of the panes is an EC pane. Each of the EC pane and/or mate lite of an IGU may be alone or laminated to another pane for strength.
  • the EC pane comprises a substantially transparent substrate (e.g., glass substrate) and an EC device fabricated on the substrate.
  • EC panes, laminates and IGUs Methods of fabricating EC panes, laminates and IGUs can be found in U.S. patent application No. 13/456,056 titled "ELECTROCHROMIC WINDOW FABRICATION METHODS," filed on April 25, 2012.
  • EC panes with fully assembled EC devices are fabricated first, and then IGUs are manufactured using one or more of the EC panes.
  • an IGU is formed by placing a sealing separator, for example, a gasket or seal (for example made of PVB (polyvinyl butyral), PIB or other suitable elastomer) around the perimeter of the substrate.
  • a sealing separator for example, a gasket or seal (for example made of PVB (polyvinyl butyral), PIB or other suitable elastomer)
  • the sealing separator includes a metal, or other rigid material, spacer and sealant between the spacer and each substrate.
  • a secondary seal is provided around the outer perimeter of the spacer, for example a polymeric material, e.g. a silicone-based material that resists water and that adds structural support to the assembly.
  • a desiccant may be included in the IGU frame or spacer during assembly to absorb any moisture.
  • the sealing separator surrounds the bus bars and electrical leads to the bus bars extend through the seal.
  • the IGU is filled with inert gas such as argon.
  • the completed IGU can be installed in, for example, a frame or wall and connected to a power source (or wirelessly powered) and a controller to control power to transition the optical states of the EC device(s).
  • a power source or wirelessly powered
  • a controller to control power to transition the optical states of the EC device(s).
  • Examples of bus bars and spacers can be found in U.S. Patent application No. 13/312,057 titled “SPACERS FOR INSULATED GLASS UNITS" and filed on December 6, 2011 and U.S. Patent application No. 13/452,032 titled “ANGLED BUS BAR” and filed on April 20, 2012.
  • Figure 1A shows a conventional electrochromic IGU, 100, and an observer viewing the IGU (as depicted with the stylized eye) that might be able to see both bus bars and other features when the EC coating is darkened or in the clear state.
  • Figure 1A is a schematic drawing of a cross section of an IGU 100 of an EC IGU 100.
  • a spacer, 105 is used to separate a first EC pane 110 from a second pane 220.
  • the first EC pane includes an EC device fabricated on a substantially transparent substrate such as a glass substrate.
  • the second pane 220 in this example is a non-EC pane.
  • second pane 220 can have an EC device thereon and/or one or more coatings such as low-E coatings and the like.
  • a primary seal 130 between spacer 105 and, in this example, the substrate of first EC pane 110 is a primary seal, 130.
  • This primary seal 130 is also between spacer 105 and the second non-EC pane 220.
  • Around the perimeter of spacer 105 is a secondary seal, 140 (bus bar wiring may traverse the primary seal for connection to controller). These seals aid in keeping moisture out of the interior space, 150, of IGU 100.
  • areas 112(a) and 112 (b) represent where the EC device stack has been removed (e.g., by laser scribing), in this example, at a perimeter region.
  • the area 112(a) passes through the second transparent conducting oxide (TCO), the EC stack and the first TCO, and may be able to isolate the operable EC device from other portions of the EC device that were potentially damaged during edge deletion.
  • the EC stack comprises an EC layer, a counter electrode (CE) layer, and an optional discrete ion conducting (IC) layer.
  • Area 112(b) also passes through the second TCO and the device stack, but not the bottom first TCO, as this serves as the lower conductor in electrical communication with bus bar 2.
  • areas 112(a) and 112 (b) allow light to pass through the glass, even though the EC device layers may be darkened.
  • the EC stack, the first TCO and the diffusion barrier were removed in the edge deletion areas, and the outer perimeter of the EC device does not pass under the spacer into the primary seal, thus areas 112(c) will also allow light to pass through even when the EC device is darkened, because they have no EC coating.
  • bus bar 1 160(a) is fabricated on the second TCO of the EC stack and bus bar 2 160(b) is fabricated on the first TCO.
  • the illustrated eye shows the perspective of an observer viewing the IGU 100 from the outside.
  • Figure 1B shows plan views of IGU 100 in an un-tinted state (left hand side illustration) and a tinted state (right hand side illustration) from the perspective of the observer shown by the illustrated eye in Figure 1A .
  • the bus bars and/or the scribe lines in IGU 100 are visible in contrast with its background of the EC device (tinted and untinted) and/or the surrounding spacer.
  • bus bar bus bar 1 160(a) and bus bar 2 160(b) may also be partially visible in the tinted state.
  • bus bar bus bar 1 160(a) and bus bar 2 160(b) are visible.
  • IGUs for example, as described in U.S. Patent Application No. 13/456,056 , are configured with bus bars under the spacer, i.e. in the primary seal, of the IGU (similarly, IGUs may have the bus bar in the secondary seal area).
  • FIG 2A a partial cross-section of an EC IGU 200, bus bar 270 is embedded in the primary seal 230 of the IGU 200; that is, the bus bar is sandwiched between the glass substrate and the spacer 220.
  • an electrically insulated spacer e.g.
  • bus bar 270 is lying on the EC device 210 disposed on a substrate.
  • bus bars are typically fabricated from a metallic material such as silver ink, they usually have a metallic color such as silver or copper. These metallic-colored bus bars can be visible when seen in contrast with the rest of the assembly. It is undesirable from an aesthetic standpoint to be able to see these bus bars and other uncoated regions (e.g., scribe lines) within the assembly.
  • FIG. 3A is a schematic drawing of an EC window assembly 10(a) having butt joints between four (4) IGUs 100(a) butted together. Butt joints are used in window structures to increase the visible area by combining EC glass structures (e.g., IGUs) with little or no extra framing added. Electrochromic window assemblies that have a butt joint generally have one or more structural member between the EC glass structures butted together that provide support at the joint.
  • a structural member may provide support between the panes of the butted IGUs, at least partially in the secondary seal area of each IGU.
  • the EC window assembly 10(a) includes butt joints without framing (or flashing) exterior to the panes on either side.
  • the illustrated embodiment shows adjacent IGUs butted together at a 180 angle, butt joints that provide a corner such as, for example, 45 degrees, 165 degrees, 90 degrees, etc. may also be used. In certain cases, mitering may also be used at a butt joint having a corner.
  • Figure 3B are side cross-sectional views of different possible butt joint configurations of embodiments.
  • the illustrated butt joints may be silicone butt joints in one example. In these configurations, the bus bar is visible from the outside looking in (because the EC pane is typically mounted on the outer pane of an IGU), and this is an undesirable result.
  • FIG 3C is a schematic drawing of a cross-sectional view of a portion of an EC window assembly 10(b) including a butt joint 320 between two IGUs 100(b) butted together.
  • the butt joint 320 in Figure 3C may be an example of a structure that is used to join the abutted IGUs 100(a) in Figure 3A .
  • each IGU 100(b) includes two panes, each pane comprising a substantially transparent substrate (e.g., glass or polymer substrate).
  • a substantially transparent substrate e.g., glass or polymer substrate.
  • one of the substrates includes an EC device 350 on a portion of the inner surface. In other embodiments, both substrates may have EC devices 350 and/or the EC devices 350 may be on different surfaces of the substrates.
  • the butt joint 320 includes a structural member 330 having a generally rectangular cross-sectional shape.
  • the structural member 330 have opposing vertical and horizontal legs that provide structural support by locating structural member 330 between the opposing panes, at last partially in the secondary seal area of the adjoining IGUs. Depressions along the four corner edges of the structural member 330 are configured to interface with the panes of the IGUs.
  • wires for electrical connectivity between the EC devices 350 and other elements may run in the center volume of the structural member 330.
  • FIG 3C there is at least some secondary sealant 380 (e.g., black silicone) between the structural member 330 and each spacer 340 and primary seal 360.
  • the IGUs 100(b) have an interior space 300, which may be filled with an inert gas such as argon and pressurized.
  • an inert gas such as argon and pressurized.
  • Bus bars 370 for powering the EC devices 350 are located between the spacer 340 and the edge of the EC devices 350.
  • the illustrated eye shows the perspective of an observer viewing the EC window assembly 10(b) from the outside.
  • the observer can view, through the glass, bus bar 370 under the spacer 340 unless the techniques for obscuring bus bars of certain embodiments described herein are used. There is no frame, flashing or other material to block the end user's line of site, the bus bars are obvious and visually distracting. As depicted, the observer can view the bus bar or uncoated region through the proximal pane when viewing the IGU 100(b) from the outside.
  • Embodiments disclosed herein relate generally to techniques for obscuring from view bus bars and other features within an EC glass structure assembly. Some examples of these techniques are described below, in some cases with reference to the Figures. For example, certain embodiments are directed to camouflaging visible features to blend in with their background. As another example, certain embodiments are directed to adding an obscuring layer between the visible feature and the observer to obscure it from view. In another example, certain embodiments are directed to transparent or substantially transparent features.
  • camouflaging techniques may be used to make the bus bar or other visible feature in the EC window assembly the same or similar color as the "background.”
  • Background can refer to the element or elements of the EC window assembly that are visible from the outside of the assembly and are from the viewpoint of the observer behind the feature being camouflaged.
  • the "background" to a bus bar is the spacer or sealant in a primary seal of an IGU.
  • the background to the bus bars 370 is the sealant 360. Black and gray are common background colors, although other colors may apply.
  • the goal of camouflaging techniques is to reduce the contrast between the bus bar or other visible feature and the background (e.g., sealant and/or spacer).
  • Contrast can refer to the difference in color (hue) and/or brightness (luminance) between the foreground feature being camouflaged and its background.
  • One metric of a difference in color contrast is the Delta E (or ⁇ E) developed by the International Commission on Illumination (CIE). Other measurements of color contrast may also be used such as CIE76, CIE94, CIEDE2000, etc.
  • a tinting agent can be added to the material used to fabricate the bus bar to mask its normal color and brightness and make it the same or similar to the background. Since black is a common background color, carbon black, or graphite may be used as a tinting agent in some cases.
  • the tinting agent and/or the amount of tinting agent is selected based on measured luminance contrast ratio and measured color contrast (e.g., measured Delta E) between the final color of the bus bar and the background. In one case, the tinting agent and/or amount of tinting agent is selected to be within a range of acceptable contrast values.
  • bus bars may be fabricated from non-conventional bus bar materials that have the same color or similar color to the background and are also electrically conductive such as, for example, certain carbon-based materials.
  • suitable carbon-based materials include materials having carbon black, graphite, graphite-based materials, graphene, graphene-based materials, etc. These materials have been shown to have excellent electrical conductivity and may be processed to fabricate conductive strips or similar structures suitable for bus bars.
  • the features in the background of the bus bar may be fabricated to have the same or similar color as the bus bar (or other visible feature being camouflaged).
  • tinting agents may be added to the sealant or a coating applied over the sealant to make the sealant the same or similar color as the feature being camouflaging.
  • an opaque obscuring layer between the bus bar and an observer to block the view of the bus bar from the observer.
  • the obscuring layer is made of a material having a color that is the same or similar to the background.
  • a tinting agent may be used in the opaque obscuring layer.
  • the obscuring layer has at least a width needed to prevent an observer from viewing the bus bar being obscured from a range of viewing angles or from all possible viewing angles (i.e. vantage points).
  • the obscuring layer has a width that is at least the width of the bus bar.
  • a tinted coating can be applied between the bus bar and the EC coating's top TCO to mask its normal color and make it the same or similar to the background color.
  • the tinted coating may have a tinting agent as discussed above.
  • the color of the tinted coating may be selected so that the contrast between the tinted coating and the background has a luminance contrast ratio and/or color contrast within a range of acceptable values.
  • the tinted coating is electrically conductive, e.g. if it covers the entire area that the bus bar occupies on the EC coating.
  • FIG. 4 is a schematic drawing of a portion of an EC pane 100(d) having an opaque obscuring layer 450, according to embodiments.
  • the illustrated eye shows the perspective of an observer viewing the EC pane 100(d) from the outside.
  • the single pane includes a substantially transparent substrate 402 having one or more layers of an EC device 420. These layers include one or two TCO layers.
  • the bus bar 410 is formed on the one or more layers of the EC device 420.
  • the opaque obscuring layer is formed between the one or more layers of the EC device 420 and the substantially transparent substrate 402 in a region adjacent the bus bar 410.
  • Obscuring layer 450 is depicted as being approximately as thick as coating 420, but this is not necessary. Layer 450 may be much thinner.
  • a typical EC device coating may be on the order of 1 micron thick; while the obscuring layer can be between about 1 nm and 500 nm thick; between about 1 nm and about 100 nm thick; between about 1 nm and about 50 nm thick; or between about 1 nm and about 10 nm thick.
  • the obscuration layer may be sputter deposited, e.g. a metal oxide, metal, or other material.
  • the obscuration layer may be selectively applied, e.g. in the desired areas, or e.g. applied across the entire glass surface and selectively removed from areas where it is not desired.
  • plasma or laser may be used to remove the obscuration layer material from the substrate.
  • bus bar 370 can be blocked from view with an opaque obscuring layer located between the bus bar 370 and one or both of the TCOs in the EC device 350 or between the EC device 350 and the substantially transparent substrate.
  • the width of the obscuring layer is at least the width of the bus bar 370.
  • the obscuring layer may be made of material having the same or similar color to sealant 360 that is background to the bus bar 370.
  • bus bar 1 160(a) can be blocked from view with an opaque obscuring layer located between the first TCO and the diffusion barrier or between the diffusion barrier and the substrate under bus bar 2 160(b).
  • Bus bar 2 160(b) can be blocked from view with an opaque obscuring layer located outside the second TCO under bus bar 1 160(a).
  • obscuring techniques include fabricating and using a transparent, substantially transparent bus bar, or otherwise optically unobtrusive bar.
  • the bus bar will not be visibly discernible and/or visually distracting to an observer.
  • An observer viewing the general area of the bus bar will see through the bus bar and to any background (primary sealant and/or spacer) behind the bus bar or in the case of a transparent bus bar in the viewable area, will see through bus bar in the viewable area.
  • bus bar 370 shown in Figure 3C were fabricated to be transparent or substantially transparent, the observer from the vantage point of the illustrated eye outside the EC glass structure would view the sealant 360 when the EC device 350 is in the untinted state (or tinted but still allowing some light to pass through).
  • bus bar 1 160(a) shown in Figure 1A is fabricated to be transparent or substantially transparent according to an embodiment, the observer from the vantage point of the illustrated eye would view through the bus bar in the visible area of the IGU, thus avoiding a visually distracting, high contrast bus bar.
  • a transparent or substantially transparent bus bar may be fabricated from a transparent or substantially transparent material having electrically conductive properties.
  • the transparent or substantially transparent bus bar may be made from an ITO or other TCO doped with an electronically conductive agent such as conductive nanowires or other conductive nanostructure.
  • the dopant may introduce haze, the bus bar will be far less visible than a conventional bus bar.
  • any haze that may be introduced will not be a problem since the bus bar will be viewed in contrast to its background (e.g., sealant). In these cases, the contrast between the bus bar and the background will be minimal and may not be discernable by an observer from outside the EC glass structure.
  • the transparent bus bar may be fabricated by screen printing a transparent or translucent ink containing metal nanoparticles, or by using masks during sputtering to produce a thicker region of the TCO that serves as the transparent bus bar.
  • low-haze metal doped transparent conductor materials are described in the current literature. These low-haze materials can be used for transparent bus bars.
  • one or more transparent or substantially transparent or otherwise optically unobtrusive bus bars may be applied to an EC lite within the viewable region of the EC window.
  • the viewable region can refer to the area of the EC window where an observer can generally see through the window unless the EC device(s) is tinted.
  • the viewable region is defined by the region of the EC window having a perimeter defined by the inner perimeter of the IGU spacer and/or the inner perimeter of a frame.
  • One advantage of using bus bars in the viewable region is to improve switching uniformity and increase speed of transition between optical states. These advantages may be more significant as EC lites and their associated windows are scaled up in size as techniques for manufacturing EC coatings become more sophisticated.
  • the transparent or substantially transparent or otherwise optically unobtrusive bus bars may be made of material selected such that the refractive index of the entire EC device stack and the optically unobtrusive bus bar less visibly distracting.
  • the material of the bus bar may be selected for a refractive index to tune the material properties of the bus bar and EC stack to make the bus bar less distinctive visually.
  • the material of the bus bar and/or other material layers of the EC stack may be selected to avoid an interference pattern.
  • the transparent bus bar may have a refractive index that approximates the TCO upon which it rests or the glass substrate, e.g. the transparent bus bar has a refractive index of between about 1.3 and about 2.0.
  • the transparent or substantially transparent or otherwise optically unobtrusive bus bars may be made of a conductive and/or substantially transparent material. In some cases, these bus bars may be made of a thin layer of metal or metal alloy. In one example, the bus bar may be a thickness in the range of 1 nm and 10 nm. In one example, the bus bar has a thickness of less than about 3 nm. In another example, the bus bar has a thickness of less than about 5 nm. In other embodiments, the optically unobstrusive bus bars may be made of a non-metallic and conductive material. In certain cases, the optically unobstrusive bus bars may be made of silver nanowires or conductive carbon nanotubes (CNT) in a binding paste (i.e. CNT or silver nanowire based pastes).
  • CNT conductive carbon nanotubes
  • the optically unobtrusive bus bars may be fabricated onto the surface (e.g., bus bar 860(c) shown in Figure 5D ) of a substrate or embedded into the substrate (e.g., bus bar 910(c) shown in Figure 6A and bus bar 930(c) shown in Figure 6B ) in some cases.
  • the optically unobstrusive bus bars may be fabricated onto the substantially transparent substrate by patterning material such as, for example, by rolling lithography.
  • the optically unobstrusive bus bars may be embedded into the substrate by first grinding or otherwise fabricating trenches into the substrate, filling the trenches with the bus bar material, and then planarizing the substrate before depositing the EC device layers. In this example, distortion of the EC device layers may be avoided.
  • Figure 5A is a drawing of a cross-sectional view of an EC IGU, 500, comprising an optically unobtrusive bus bar 560(c) within a viewable region, according to an embodiment.
  • Figure 5A also includes an observer viewing the IGU (as depicted with the stylized eye) from, for example, the inside of a building. This is a not-to-scale, partially exploded view showing certain components of the fabricated assembly of the IGU 500 separated.
  • a spacer, 570 is used to separate an EC pane (lite), 510, from a non-EC pane 520.
  • the first EC pane 510 comprises a first TCO, an EC stack, and second TCO, fabricated on a first substantially transparent substrate, such as a glass substrate.
  • the second pane 520 is a non-EC pane that is a substantially transparent substrate.
  • the second pane 520 can have an EC device thereon and/or one or more coatings such as low-E coatings and the like.
  • between spacer 570 and, in this example, the first substrate of first EC pane is a primary seal. This primary seal is also between spacer 570 and the second non-EC pane 520.
  • Around the outer perimeter of spacer 570, and between the substrates, is fabricated a secondary seal (not shown). These seals aid in keeping moisture out of the interior space, 590, of the IGU 500.
  • the EC IGU 500 comprises a transparent or substantially transparent or otherwise optically unobtrusive bus bar 560(c) fabricated on the second TCO of the first EC pane 510 in the viewable area of the IGU 500 between the spacers 570.
  • the EC IGU 500 further comprises two bus bars 560(a) fabricated on the first TCO of the first EC pane 510 and two bus bars 560(b) (which are optional) fabricated on the second TCO outside the generally viewable area of the IGU 500.
  • Bus bars 560(a) and 560(b) are blocked by the spacer 570 from view by an observer from the viewpoint of the stylized eye.
  • the bus bars 560(a) and/or 560(b) are made of or coated by a material that blends in optically with the background of the spacer 570 so that an observer from the opposite side (e.g., outside the building) cannot discern the bus bars 560(a) and 560(b).
  • the bus bars 560(a) and/or 560(b) may be transparent or substantially transparent or otherwise optically unobtrusive. That is, bus bars 560(a) would be discernable from the viewpoint of an observer from the opposite side unless bus bars 560(a) blend into the background of the spacer 570 or are optically unobtrusive.
  • bus bars 560(b) would be discernable from the opposite side if the EC device is in the un-tinted state and may be discernable if the EC device is in the tinted state unless bus bars 560(a) blend into the background of the spacer 570 or are optically unobtrusive. Although a single optically unobtrusive bus bar 560(c) is shown in the illustrated example, additional bus bars 560(c) may be fabricated on the first TCO, the EC stack, the second TCO, and/or onto/into the substrate in other examples. One embodiment, for example, is an EC device coating with multiple bus bars on the second TCO (upper), e.g. EC device 510b.
  • the bus bars may be substantially transparent, e.g. made of metal, or other transparent materials described herein.
  • the EC device has, e.g. two bus bars on the bottom TCO, e.g. configured as depicted in Figure 5A , that is, under the spacer.
  • the bottom TCO has a bus bar on each side of the bottom TCO, e.g. four bus bars or two L-shaped bus bars.
  • the top TCO has two L-shaped bus bars, substantially transparent, while the bottom TCO has bus bars configured as described in the previous two sentences.
  • Figure 5B is a drawing of a cross-sectional top view of an EC IGU, 600, comprising an optically unobtrusive bus bar 660(c) within a viewable region, according to an embodiment.
  • Figure 5B also includes an observer viewing the IGU from, for example, the inside of a building. This is a not-to-scale, partially exploded view showing certain components of the fabricated assembly of the IGU separated.
  • a spacer, 670 is used to separate an EC pane (lite), 610, from a non-EC pane 620.
  • the first EC pane 610 comprises a first TCO, an EC stack, and second TCO, fabricated on a first substantially transparent substrate, such as a glass substrate.
  • the second pane 620 is a non-EC pane that is a substantially transparent substrate.
  • the second pane 620 can have an EC device thereon and/or one or more coatings such as low-E coatings and the like.
  • a primary seal between spacer 670 and, in this example, the first substrate of first EC pane is a primary seal. This primary seal is also between spacer 670 and the second non-EC pane 620.
  • Around the perimeter of spacer 670 is a secondary seal. These seals aid in keeping moisture out of the interior space, 690, of the IGU 600.
  • the EC IGU 600 comprises a transparent or substantially transparent or otherwise optically unobtrusive bus bar 660(c) fabricated on the EC stack of the first EC pane 610 in the viewable area of the IGU 600 between the spacers 670.
  • the EC IGU 600 further comprises two bus bars 660(a) fabricated on the first TCO of the first EC pane 610 and two bus bars 660(b) (which are optional) fabricated on the second TCO outside the generally viewable area of the IGU 500. In other cases, the two bus bars 660(b) may be fabricated on the EC stack of the first EC pane 610.
  • bus bars 660(a) and 660(b) are blocked by the spacer 670 from view by an observer from the viewpoint of the stylized eye.
  • the bus bars 660(a) and/or 660(b) are made of or coated by a material that blends in optically with the background of the spacer 670 so that an observer from the opposite side (e.g., outside the building) cannot discern the bus bars 660(a) and 660(b).
  • the bus bars 660(a) and/or 660(b) may be transparent or substantially transparent or otherwise optically unobtrusive.
  • bus bars 660(a) would be discernable from the viewpoint of an observer from the opposite side unless bus bars 660(a) blend into the background of the spacer 670 or are optically unobtrusive.
  • bus bars 660(b) would be discernable from the opposite side if the EC device is in the un-tinted state and may be discernable if the EC device is in the tinted state unless bus bars 660(a) blend into the background of the spacer 670 or are optically unobtrusive.
  • optically unobtrusive bus bar 660(c) may be fabricated on the first TCO, the EC stack, the second TCO, and/or onto/into the substrate in other examples.
  • Figure 5C is a drawing of a cross-sectional top view of an EC IGU, 700, comprising an optically unobtrusive bus bar 760(c) within a viewable region, according to an embodiment.
  • Figure 5C also includes an observer viewing the IGU from, for example, the inside of a building. This is a not-to-scale, partially exploded view showing certain components of the fabricated assembly of the IGU separated.
  • a spacer, 770 is used to separate an EC pane (lite), 710, from a non-EC pane 720.
  • the first EC pane 710 comprises a first TCO, an EC stack, and second TCO, fabricated on a first substantially transparent substrate, such as a glass substrate.
  • the second pane 720 is a non-EC pane that is a substantially transparent substrate.
  • the second pane 720 can have an EC device thereon and/or one or more coatings such as low-E coatings and the like.
  • a primary seal between spacer 770 and, in this example, the first substrate of first EC pane is a primary seal. This primary seal is also between spacer 770 and the second non-EC pane 720.
  • Around the perimeter of spacer 770 is a secondary seal. These seals aid in keeping moisture out of the interior space, 790, of the IGU 700.
  • the EC IGU 700 comprises a transparent or substantially transparent or otherwise optically unobtrusive bus bar 760(c) fabricated on the first TCO of the first EC pane 710 in the viewable area of the IGU 700 between the spacers 770.
  • the EC IGU 700 further comprises two bus bars 760(a) fabricated on the first TCO of the first EC pane 710 and two bus bars 760(b) fabricated on the second TCO outside the generally viewable area of the IGU 700.
  • bus bars 760(a) and 760(b) are blocked by the spacer 770 from view by an observer from the viewpoint of the stylized eye.
  • the bus bars 760(a) and/or 760(b) are made of or coated by a material that blends in optically with the background of the spacer 770 so that an observer from the opposite side (e.g., outside the building) cannot discern the bus bars 760(a) and 760(b).
  • the bus bars 760(a) and/or 760(b) may be transparent or substantially transparent or otherwise optically unobtrusive. That is, bus bars 760(a) would be discernable from the viewpoint of an observer from the opposite side unless bus bars 760(a) blend into the background of the spacer 770 or are optically unobtrusive.
  • bus bars 760(b) would be discernable from the opposite side if the EC device is in the un-tinted state and may be discernable if the EC device is in the tinted state unless bus bars 760(a) blend into the background of the spacer 770 or are optically unobtrusive. Although a single optically unobtrusive bus bar 760(c) is shown in the illustrated example, additional bus bars 760(c) may be fabricated on the first TCO, the EC stack, the second TCO, and/or onto/into the substrate in other examples.
  • Figure 5D is a drawing of a cross-sectional top view of an EC IGU, 800, comprising an optically unobtrusive bus bar 860(c) within a viewable region, according to an embodiment.
  • Figure 5D also includes an observer viewing the IGU from, for example, the inside of a building. This is a not-to-scale, partially exploded view showing certain components of the fabricated assembly of the IGU separated.
  • a spacer, 870 is used to separate an EC pane (lite), 810, from a non-EC pane 820.
  • the first EC pane 810 comprises a first TCO, an EC stack, and second TCO, fabricated on a first substantially transparent substrate, such as a glass substrate.
  • the second pane 820 is a non-EC pane that is a substantially transparent substrate.
  • the second pane 820 can have an EC device thereon and/or one or more coatings such as low-E coatings and the like.
  • a primary seal between spacer 870 and, in this example, the first substrate of first EC pane is a primary seal. This primary seal is also between spacer 870 and the second non-EC pane 820.
  • Around the perimeter of spacer 870 is a secondary seal. These seals aid in keeping moisture out of the interior space, 890, of the IGU 800.
  • the EC IGU 800 comprises a transparent or substantially transparent or otherwise optically unobtrusive bus bar 860(c) fabricated on the surface of the substrate of the first EC pane 810 in the viewable area of the IGU 800 between the spacers 870.
  • the transparent or otherwise optically unobtrusive bus bar 860(c) may be patterned on the substrate with, for example, rolling lithography.
  • the EC IGU 800 further comprises two bus bars 860(a) fabricated on the first TCO of the first EC pane 810 and two bus bars 860(b) fabricated on the second TCO outside the generally viewable area of the IGU 800.
  • the two bus bars 860(b) may be fabricated on the substrate of the first EC pane 810.
  • bus bars 860(a) and 860(b) are blocked by the spacer 870 from view by an observer from the viewpoint of the stylized eye.
  • the bus bars 860(a) and/or 860(b) are made of or coated by a material that blends in optically with the background of the spacer 870 so that an observer from the opposite side (e.g., outside the building) cannot discern the bus bars 860(a) and 860(b).
  • the bus bars 860(a) and/or 860(b) may be optically unobtrusive.
  • bus bars 860(a) would be discernable from the viewpoint of an observer from the opposite side unless bus bars 860(a) blend into the background of the spacer 870 or are optically unobtrusive.
  • bus bars 860(b) would be discernable from the opposite side if the EC device is in the un-tinted state and may be discernable if the EC device is in the tinted state unless bus bars 860(a) blend into the background of the spacer 870 or are optically unobtrusive.
  • bus bar 860(c) may be fabricated on the first TCO, the EC stack, the second TCO, and/or onto/into the substrate in other examples.
  • one or more transparent or substantially transparent or otherwise optically unobtrusive bus bars may be embedded in the substrate of an EC pane in the viewable area of an EC window.
  • the optically unobtrusive bus bars may be embedded into the substrate by first grinding or otherwise fabricating trenches into the substrate, filling the trenches with the bus bar material, and then planarizing the substrate before depositing the EC device layers.
  • Figure 6A illustrates an example with a single optically unobtrusive bus bar embedded in the substrate of an EC pane.
  • Figure 6B illustrates an example with multiple optically unobtrusive bus bars embedded in the substrate of an EC pane.
  • Figure 6A is a drawing of a cross-sectional top view of an EC IGU, 900, comprising an optically unobtrusive bus bar 910(c) within a viewable region, according to an embodiment.
  • Figure 6A also includes an observer viewing the IGU from, for example, the inside of a building. This is a not-to-scale, partially exploded view showing certain components of the fabricated assembly of the IGU separated.
  • a spacer, 925 is used to separate an EC pane (lite), 902, from a non-EC pane 904.
  • the first EC pane 902 comprises a first TCO, an EC stack, and second TCO, fabricated on a first substantially transparent substrate, such as a glass substrate.
  • the second pane 904 is a non-EC pane that is a substantially transparent substrate.
  • the second pane 904 can have an EC device thereon and/or one or more coatings such as low-E coatings and the like.
  • a primary seal may lie between the spacer 925 and the substrate of the first EC pane 902 and also between the spacer 925 and the second non-EC pane 904.
  • a second seal lies around the perimeter of the spacer 925. These seals aid in keeping moisture out of the interior space, 927, of the IGU 900.
  • the EC IGU 900 comprises a transparent or substantially transparent or otherwise optically unobtrusive bus bar 910(c) embedded in the substrate of the first EC pane 902 in the viewable area of the IGU 900 between the spacers 925.
  • the EC IGU 900 further comprises two bus bars 910(a) fabricated on the first TCO of the first EC pane 902 and two bus bars 910(b) fabricated on the second TCO outside the generally viewable area of the IGU 800.
  • the two bus bars 910(b) may also be embedded in the substrate of the first EC pane 902.
  • bus bars 910(a) and 910(b) are blocked by the spacer 925 from view by an observer from the viewpoint of the stylized eye.
  • the bus bars 910(a) and/or 910(b) are made of or coated by a material that blends in optically with the background of the spacer 870 so that an observer from the opposite side (e.g., outside the building) cannot discern the bus bars 910(a) and 910(b).
  • the bus bars 910(a) and/or 910(b) may be optically unobtrusive.
  • bus bars 910(a) would be discernable from the viewpoint of an observer from the opposite side unless bus bars 910(a) blend into the background of the spacer 870 or are optically unobtrusive.
  • bus bars 910(b) would be discernable from the opposite side if the EC device is in the un-tinted state and may be discernable if the EC device is in the tinted state unless bus bars 910(a) blend into the background of the spacer 870 or are optically unobtrusive.
  • Figure 6B is a drawing of a cross-sectional top view of an EC IGU, 950, comprising an optically unobtrusive bus bar 980(c) within a viewable region, according to an embodiment.
  • Figure 6B also includes an observer viewing the IGU 950 from, for example, the inside of a building. This is a not-to-scale, partially exploded view showing certain components of the fabricated assembly of the IGU separated.
  • a spacer, 970 is used to separate an EC pane (lite), 960, from a non-EC pane 962.
  • the first EC pane 960 comprises a first TCO, an EC stack, and second TCO, fabricated on a first substantially transparent substrate, such as a glass substrate.
  • the second pane 962 is a non-EC pane that is a substantially transparent substrate.
  • the second pane 962 can have an EC device thereon and/or one or more coatings such as low-E coatings and the like.
  • a primary seal may lie between the spacer 970 and the substrate of the first EC pane 960 and also between the spacer 970 and the second non-EC pane 962.
  • a second seal lies around the perimeter of the spacer 970. These seals aid in keeping moisture out of the interior space, 990, of the IGU 950.
  • the EC IGU 950 comprises five (5) optically unobtrusive bus bar 980(c) embedded in the substrate of the first EC pane 902 in the viewable area of the IGU 950 between the spacers 970. Although five (5) optically unobtrusive bus bars 980(c) are shown in the illustrated example, other numbers may be used.
  • the EC IGU 950 further comprises two bus bars 980(a) fabricated on the first TCO of the first EC pane 960 and two bus bars 980(b) fabricated on the second TCO outside the generally viewable area of the IGU 950. In other cases, the two bus bars 980(b) may also be embedded in the substrate of the first EC pane 960.
  • bus bars 980(a) and 980(b) are blocked by the spacer 970 from view by an observer from the viewpoint of the stylized eye.
  • the bus bars 980(a) and/or 980(b) are made of or coated by a material that blends in optically with the background of the spacer 970 so that an observer from the opposite side (e.g., outside the building) cannot discern the bus bars 980(a) and 980(b).
  • the bus bars 980(a) and/or 980(b) may be transparent or substantially transparent or otherwise optically unobtrusive.
  • bus bars 980(a) would be discernable from the viewpoint of an observer from the opposite side unless bus bars 980(a) blend into the background of the spacer 970 or are optically unobtrusive.
  • bus bars 980(b) would be discernable from the opposite side if the EC device is in the un-tinted state and may be discernable if the EC device is in the tinted state unless bus bars 980(a) blend into the background of the spacer 970 or are optically unobtrusive.
  • an EC device has multiple transparent bus bars embedded in the substrate and also multiple transparent bus bars on the top TCO, as depicted in Figure 5A (bottom).
  • This configuration allows more even and faster tinting of the EC device stack.
  • the bus bars on the top and bottom of the device structure may be parallel or not.
  • Advantages to having non-parallel bus bars, e.g., is wiring of the bus bar ends for each TCO can be done on orthogonal sides.
  • the number of transparent bus bars on the top and or bottom of the EC device as described herein can be one, two, three, four, five or more; depending on the size of the substrate the conductivity of the bus bar material used, the conductivity of the TCO to which the bus bars are electrically communicating with, switching speed desired, etc.
  • conductor layers in an EC device are designed to match resistively to each other.
  • these conductor layers may not match, for example, the top and bottom TCOs may have substantially different electrical conductivity.
  • the bottom TCO may have a low resistivity, e.g. ⁇ 5 ohms/sq, while the top TCO might have a resistivity of greater than 10 ohms/sq.
  • the material of the bus bar may be selected to compensate for the resistive properties and to match the resistive properties of the conductive layers.
  • a series of transparent bus bars may be fabricated on the top TCO to compensate for this resistivity difference, i.e.
  • this is one desirable construct; i.e. where a top TCO is purposefully fabricated with a higher resistivity than the bottom TCO, in anticipation of further fabricating multiple transparent bus bars thereon (so as not to have a final device structure that would otherwise have a resistivity mismatch where the top TCO has a net lower resistivity than the bottom TCO due to added conducting bus bars on the top TCO).
  • Some conventional IGUs have a bus bar on the inner surface of an EC lite that traverses the primary seal (between the spacer and the EC pane). That is, this bus bar is located on this inner surface running primarily within the inner perimeter of the spacer and exits through the primary seal under the spacer to connect to a power line outside the outer perimeter of the spacer.
  • the EC coating does not lie outside the inner perimeter of the spacer i.e. under the spacer.
  • these conventional IGUs also have scribe lines in the EC coating within this inner perimeter of the spacer.
  • Some conventional systems use a coating applied over the bus bar to keep the IGU sealed from leaking gas from the sealed space within the IGU.
  • These conventional IGUs use blocking material to prevent viewers from seeing the bus bars from both sides of the IGU from within the inner perimeter of the spacer.
  • These IGUs use a laminated outer lite to sandwich the blocking material between a support substrate and an inner substrate having the EC device on the opposite surface from the blocking material. This block material in the laminated lite must also block the scribe lines from viewers as well. From one side of the IGU, a blocking layer is used to prevent view of the bus bars and scribe lines.
  • bus bars of EC glass structures described herein reside almost entirely under the spacer. In these cases, the bus bar does not pass through the inner diameter and avoids creating a leak path in the seal that could potentially allow gas within the sealed volume of the IGU to leak out. Since these bus bars reside under the spacer (e.g., embedded in the seal or the EC coating), the spacer itself blocks the bus bars from being viewed from one side. In this case, only a single direction of view of the bus bars from the other side must be obscured. In this direction, the bus bars have the primary seal of the spacer in the background. Since only the view outside of the inner perimeter of the spacer needs to be blocked from view, much of the area within the inner perimeter of the spacer is available as viewable area.
  • an obscuration layer is located at the same interface as the EC coating, where the interface is between an inner IGU substrate and the spacer.
  • the obscuration layer is only required to block the view of the bus bar from the single direction since it lies under the spacer and cannot be seen through the opposite side through the spacer.
  • the obscuration layer does not reside within the inner perimeter of the spacer.
  • the obscuration layer is only blocking from view the embedded bus bar with the spacer in the background.
  • the bus bar does not reside within the inner perimeter of the spacer and thus, there would be no reason to place an obscuration layer within the inner perimeter.
  • the obscuration layer the obscuration layer need only be the width of the bus bar or about the width of the bus bar to block the view of the bus bar. For example, ink or other materials may be applied to an area that does not exceed the spacer's inner perimeter.
  • FIG. 7 shows an example of a cross section, 1100, of an edge region of an IGU where the spacer 1110 of the IGU and a bus bar 1120 reside.
  • the bus bar 1120 resides under the spacer 1110.
  • a spacer, 1110 is sandwiched between two sheets of glass near the edge of the IGU.
  • the glass interfaces directly with a primary seal material, 1115, (e.g., a thin elastomeric layer, such as PIB or PVB), which is in direct contact with spacer 1110.
  • primary seal material e.g., a thin elastomeric layer, such as PIB or PVB
  • spacer 1110 may be metal spacer, such as a steel spacer or a stainless steel spacer, for example.
  • This three-part interface i.e., glass/primary seal material/spacer
  • Spacer 1110 may have a hollow structure, as depicted in Figure 7 .
  • the spacer may have a substantially rectangular cross section.
  • spacers described herein have at least two surfaces, each substantially parallel to the lites of the IGU in which they are to be incorporated.
  • the remaining cross section, e.g., surfaces of the spacer that face the interior space of the IGU and the exterior, secondary seal area, space may have any number of contours, i.e., they need not be flat, but may be.
  • the top and bottom outer corners of the spacer are beveled and/or rounded to produce a shallower angle in these areas. Rounding, beveling, or smoothing may be included to ensure there are no sharp edges that might enhance electrical shorting.
  • An electrochromic device stack, 1105 is fabricated on the lower glass lite, as depicted.
  • a bus bar, 1120 is located on electrochromic device stack 1105 in order to make electrical contact with one of the electrodes of the device.
  • bus bar 1120 is between spacer 1110 and the lower glass lite. This is accomplished by configuring one of the aforementioned surfaces below (see top surface of spacer 1110 ) or above (see bottom surface of spacer 1110 ) the other surface on the face of the spacer that forms the primary seal with the glass surface. This configuration of surfaces forms "notch" 1101; see further description below.
  • Primary seal material 1115 serves as an insulating layer between bus bar 1120 and spacer 1110. Spacer embodiments with notches may help to accommodate added vertical thickness, e.g. due to obscuration layers.
  • spacer 1110 is relatively thicker (wider) in the direction parallel to the glass sheet (i.e., a larger footprint).
  • a conventional metal spacer is approximately 6 millimeters in width.
  • Spacer 1110 is about two times to about two and one half times (about 2 ⁇ to about 2.5 ⁇ ) that width.
  • spacer 1110 may be about 10 millimeters to about 15 millimeters wide, about 13 millimeters to about 17 millimeters wide, or about 11 millimeters wide. This additional width may provide a greater margin of error in a sealing operation compared to a conventional spacer.
  • spacer 1110 may include two notches, and in some embodiments, the spacer may include one notch.
  • Two notches e.g., as depicted in Figure 7 , may be used for an IGU containing two electrochromic lites, or may be useful in fabricating IGUs with only one electrochromic light.
  • a recess or notch may extend from a corner of one side of the rectangular cross section of the spacer to a point along the one side of the rectangular cross section of the spacer. At least one notch provides an area for covering the bus bar formed on the glass surface and/or covering the bus bar formed on electrochromic device stack 505 formed on the glass surface.
  • the bus bar is about 2 millimeters to about 3 millimeters in width and about 0.01 millimeters to about 0.1 millimeter in height (thickness).
  • the bus bar length depends on the window size.
  • a bus bar may have a length about the length of the electrochromic device.
  • the added width along with the "notched" profile of spacer 1110 that accommodates the bus bar, creates a region of "encapsulation” whereby the bus bar is unlikely to contact the spacer at any point along the length of the bus bar, but is encapsulated in the primary sealant.
  • the portion of the spacer's face that does not include the notch is approximately the same width as a normal spacer employed in non-electrochromic IGU applications.
  • bus bar 1120 is entirely covered by the spacer 1110. As a consequence, the bus bar is not visible to a user of the window.
  • electrochromic device stack 1105 extends underneath bus bar 1120 and partially into the region formed by notch 1101 in spacer 1110.
  • an electrochromic device stack typically includes a conductive electrode layer such as ITO or TEC.
  • Electrochromic device stack 1105 may be entirely removed from the edge of the glass surface by an edge deletion process, described above. However, the removal by edge deletion may not extend entirely up to the edge of the bus bar, as this would be unacceptable given normal process tolerances. Therefore, electrochromic device stack 1105 may extend just slightly beyond bus bar 1120, e.g., while still residing in notch 1101.
  • Figure 8 shows an example of a cross-sectional illustration of a spacer which has a notch on the bottom to accommodate the full length of an embedded bus bar.
  • a spacer, 1205 is between two glass lites, 1210 and 1215.
  • spacer 1205 may be a metal spacer, such as a steel spacer or a stainless steel spacer, for example.
  • spacer 1205 may have a substantially rectangular cross section.
  • spacer 1205 may be hollow.
  • Spacer 1205 includes a notch or recess, 1220, to accommodate a bus bar, 1225. Notch or recess 1220 may form a channel that accommodates the length of bus bar 1225.
  • Notch 1220 should be distinguished from a channel or a "mouse hole" in the spacer which may accommodate a bus bar lead.
  • An electrochromic device stack, 1202 is fabricated on glass lite 815.
  • Bus bar 1225 located on electrochromic device stack 1202 makes electrical contact with one of the electrodes of electrochromic device stack 1202.
  • Notch 1220 in spacer 1205 resides in the middle of the underside of spacer 1205.
  • the dimensions of notch 1220 are suitable to accommodate bus bar 1225, factoring in tolerances of the process used to form the notch, as discussed above.
  • the notch width is about 2 millimeters to about 5 millimeters, and the notch height is about 0.1 millimeters to 1 millimeter.
  • the notch width is about 3 millimeters to 4 millimeters, and the notch height is about 0.1 millimeter to about 0.5 millimeters.
  • notch 1220 is in the middle of the underside of the spacer and notch 1101 is at the interior edge of the underside of the spacer.
  • the embodiment shown in Figure 8 may be similar to the embodiment shown in Figure 7 .
  • Spacer 1205 may be relatively thicker (wider) in the direction parallel to the glass sheet compared to conventional metal spacers.
  • a conventional metal spacer is approximately 6 millimeters in width. Spacer 1205 is about two times to about two and one half times (about 2 ⁇ to about 2.5 ⁇ ) that width.
  • spacer 1205 may be about 10 millimeters to about 15 millimeters, about 13 millimeters to about 17 millimeters, or about 11 millimeters wide. This additional width may provide a greater margin of error in a sealing operation compared to a conventional spacer.
  • the bus bar is about 2 millimeters to about 3 millimeters in width and about 0.01 millimeters to about 0.1 millimeter in height (thickness). The bus bar length depends on the window size. In some embodiments, a bus bar may have a length about the length of the electrochromic device.
  • the basic IGU primary seal is comprised of interfaces between glass lites 1210 and 1215 and primary seal material (e.g., PIB), 1230, and between primary seal material 1230 and spacer 1205.
  • primary seal material e.g., PIB
  • the channel for the bus bar lead is located, but need only penetrate part way under the spacer because the bus bar resides midway underneath the spacer. In some embodiments, the bus bar lead channel resides on an outside edge of the spacer or on an outside edge of a corner of the spacer.
  • the electrochromic device stack 1202 when in a colored state may color all the way under the spacer such that electrochromic device stack 1202 is substantially uniformly colored. Further, the bus bar may not be visible.
  • bus bar 1 160(a) may be an optically unobtrusive bus bar and an obscuring layer may be used under bus bar 2 160(b).
  • bus bar 1 160(a) may be an optically unobtrusive bus bar and an obscuring layer may be used under bus bar 2 160(b).
  • both bus bars will not be visible in the untinted state since bus bar 1 is transparent and bus bar 2 is blocked from view by the obscuring layer. In the tinted state, bus bar 2 will continue to be blocked from view.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)

Claims (12)

  1. Unité de verre isolé (IGU) (100b) comprenant :
    des premier et second substrats sensiblement transparents ;
    un espaceur (340) entre les premier et second substrats sensiblement transparents ;
    un joint primaire (360) entre l'espaceur (340) et le premier substrat sensiblement transparent et entre l'espaceur (340) et le second substrat sensiblement transparent ;
    un dispositif électrochrome (350) sur le premier et/ou le second substrat sensiblement transparent ; et
    une barre omnibus (370) conçue pour alimenter le dispositif électrochrome (350) et située dans le joint primaire (360),
    caractérisée en ce que
    la barre omnibus (370) est camouflée pour se fondre avec son arrière-plan de joint primaire (360), d'espaceur (340) et/ou de dispositif électrochrome (350).
  2. IGU (100b) selon la revendication 1, dans laquelle des moyens camouflés présentent un contraste optique minimal entre la barre omnibus (370) et le joint primaire (360) et/ou l'espaceur (340) de l'IGU (100b).
  3. IGU (100b) selon la revendication 1, dans laquelle la barre omnibus (370) est constituée d'un matériau conducteur d'électricité comprenant un agent de coloration conçu pour rapprocher la couleur et la luminescence de la barre omnibus (370) de celles de son arrière-plan.
  4. IGU (100b) selon la revendication 3, dans laquelle l'agent de coloration comprend du noir de carbone, du graphite et/ou du graphène.
  5. Structure électrochrome (100(d)) comprenant :
    un substrat sensiblement transparent (402) ;
    un dispositif électrochrome (420) disposé sur le substrat sensiblement transparent (402), le dispositif électrochrome (420) présentant une ou plusieurs couches conductrices transparentes ; et
    une barre omnibus (410) conçue pour alimenter le dispositif électrochrome (420) ;
    caractérisée en ce que la structure électrochrome comprend
    une couche d'obscurcissement opaque (450) située dans une zone entre la barre omnibus (410) et le substrat sensiblement transparent (402), dans laquelle au moins l'une des couches conductrices transparentes se situe entre la barre omnibus (410) et la couche d'obscurcissement opaque (450).
  6. Structure électrochrome (100(d)) selon la revendication 5, dans laquelle la couche d'obscurcissement opaque (450) présente au moins une largeur conçue pour bloquer la vue de la barre omnibus (410) du point de vue d'un observateur à l'extérieur de la structure électrochrome (100(d)).
  7. Structure électrochrome (100(d)) selon la revendication 6, dans laquelle la couche d'obscurcissement opaque (450) présente une largeur supérieure à une largeur de la barre omnibus (410).
  8. Unité de verre isolé (IGU) (500, 600, 700, 800, 900, 950) comprenant :
    une première vitre (510, 610, 710, 810, 902, 960) présentant un premier substrat sensiblement transparent, un dispositif électrochrome disposé sur le premier substrat sensiblement transparent, le dispositif électrochrome comprenant une première couche conductrice transparente à proximité du premier substrat sensiblement transparent, un empilement électrochrome et une seconde couche conductrice transparente ;
    une seconde vitre (520, 620, 720, 820, 904, 962) présentant un second substrat sensiblement transparent ;
    un espaceur (570, 670, 770, 870, 925, 970) entre les première et seconde vitres (510, 520, 610, 620, 710, 720, 810, 820, 902, 904, 910, 920) ;
    un produit d'étanchéité et d'isolation primaire faisant adhérer l'espaceur (570, 670, 770, 870, 925, 970) aux première et seconde vitres (510, 520, 610, 620, 710, 720, 810, 820, 902, 904, 910, 920) ; et
    une paire de barres omnibus (560(a), 660(a), 760(a), 860(a), 910(a), 980(a)) sur et en contact avec la première couche conductrice transparente, la plus proche de la première vitre (510, 610, 710, 810, 902, 960) ;
    caractérisée en ce que l'unité de verre isolé comprend
    une ou plusieurs barres omnibus transparentes (560(c), 660(c), 760(c), 860(c), 910(c), 980(c)) sur et en contact avec la seconde couche conductrice transparente,
    dans laquelle la ou les barres omnibus transparentes (560(c), 660(c), 760(c), 860(c), 910(c), 980(c)) sont situées dans une zone de l'IGU (500, 600, 700, 800, 900, 950) visible par un observateur.
  9. IGU (500, 600, 700, 800, 900, 950) selon la revendication 8, dans laquelle la paire de barres omnibus (560(a), 660(a), 760(a), 860(a), 910(a), 980(a)) est située entre l'espaceur (570, 670, 770, 870, 925, 970) et le premier substrat sensiblement transparent de sorte que l'espaceur (570, 670, 770, 870, 925, 970) bloque la vue de la paire de barres omnibus (560(a), 660(a), 760(a), 860(a), 910(a), 980(a)) du point de vue d'un observateur regardant à travers la seconde vitre (520, 620, 720, 820, 904, 962), et dans laquelle la paire de barres omnibus (560(a), 660(a), 760(a), 860(a), 910(a), 980(a)) est constituée de matériaux conçus pour faire correspondre la couleur et la luminescence à celles de l'espaceur (570, 670, 770, 870, 925, 970) et/ou à celles du produit d'étanchéité et d'isolation primaire de l'IGU (500, 600, 700, 800, 900, 950).
  10. IGU (500, 600, 700, 800, 900, 950) selon la revendication 8, dans laquelle la ou les barres omnibus transparentes (560(c), 660(c), 760(c), 860(c), 910(c), 980(c)) se trouvent dans une zone visible de l'IGU (500, 600, 700, 800, 900, 950).
  11. IGU (500, 600, 700, 800, 900, 950) selon la revendication 10, comprenant en outre une ou plusieurs barres omnibus transparentes supplémentaires (560(c), 660(c), 760(c), 860(c), 910(c), 908(c)) en communication électrique avec la première couche conductrice transparente et également dans la zone visible de l'IGU (500, 600, 700, 800, 900, 950).
  12. IGU (800, 900, 950) selon la revendication 11, dans laquelle la ou les barres omnibus transparentes supplémentaires (860(c)) sont couchées sur le premier substrat sensiblement transparent, puis la première couche conductrice transparente est fabriquée dessus, ou dans laquelle la ou les barres omnibus transparentes supplémentaires (910(c), 980(c)) sont intégrées dans le premier substrat sensiblement transparent au moins dans la zone visible de l'IGU (800, 900, 950).
EP14873490.8A 2013-12-24 2014-12-24 Assombrissement de barres omnibus dans des structures de vitrage électrochromiques Active EP3087238B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21162654.4A EP3907368A1 (fr) 2013-12-24 2014-12-24 Assombrissement de barres omnibus dans des structures de vitrage électrochromiques

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361920684P 2013-12-24 2013-12-24
PCT/US2014/072362 WO2015100419A1 (fr) 2013-12-24 2014-12-24 Assombrissement de barres omnibus dans des structures de vitrage électrochromiques

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP21162654.4A Division EP3907368A1 (fr) 2013-12-24 2014-12-24 Assombrissement de barres omnibus dans des structures de vitrage électrochromiques

Publications (3)

Publication Number Publication Date
EP3087238A1 EP3087238A1 (fr) 2016-11-02
EP3087238A4 EP3087238A4 (fr) 2017-09-13
EP3087238B1 true EP3087238B1 (fr) 2021-03-17

Family

ID=53479704

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21162654.4A Pending EP3907368A1 (fr) 2013-12-24 2014-12-24 Assombrissement de barres omnibus dans des structures de vitrage électrochromiques
EP14873490.8A Active EP3087238B1 (fr) 2013-12-24 2014-12-24 Assombrissement de barres omnibus dans des structures de vitrage électrochromiques

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP21162654.4A Pending EP3907368A1 (fr) 2013-12-24 2014-12-24 Assombrissement de barres omnibus dans des structures de vitrage électrochromiques

Country Status (5)

Country Link
US (3) US9952481B2 (fr)
EP (2) EP3907368A1 (fr)
CN (2) CN105814271B (fr)
CA (1) CA2934277C (fr)
WO (1) WO2015100419A1 (fr)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155833A1 (fr) 2016-03-09 2017-09-14 View, Inc. Procédé de mise en service de fenêtres électrochromiques
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US11137659B2 (en) 2009-12-22 2021-10-05 View, Inc. Automated commissioning of controllers in a window network
US10429712B2 (en) 2012-04-20 2019-10-01 View, Inc. Angled bus bar
US10989976B2 (en) 2011-03-16 2021-04-27 View, Inc. Commissioning window networks
KR20200035328A (ko) 2011-12-12 2020-04-02 뷰, 인크. 박막 디바이스 및 제조
US11865632B2 (en) 2011-12-12 2024-01-09 View, Inc. Thin-film devices and fabrication
US10802371B2 (en) 2011-12-12 2020-10-13 View, Inc. Thin-film devices and fabrication
US20210394489A1 (en) 2011-12-12 2021-12-23 View, Inc. Thin-film devices and fabrication
EP3223532B1 (fr) 2012-04-13 2019-10-09 View, Inc. Applications pour commander des dispositifs commutables optiquement
US11255120B2 (en) 2012-05-25 2022-02-22 View, Inc. Tester and electrical connectors for insulated glass units
RU2678028C2 (ru) 2013-06-18 2019-01-22 Вью, Инк. Электрохромные устройства непрямоугольных форм
US11906868B2 (en) 2013-12-24 2024-02-20 View, Inc. Obscuring bus bars in electrochromic glass structures
WO2015100419A1 (fr) 2013-12-24 2015-07-02 View, Inc. Assombrissement de barres omnibus dans des structures de vitrage électrochromiques
US10884311B2 (en) 2013-12-24 2021-01-05 View, Inc. Obscuring bus bars in electrochromic glass structures
US11743071B2 (en) 2018-05-02 2023-08-29 View, Inc. Sensing and communications unit for optically switchable window systems
CN113655669A (zh) 2014-12-19 2021-11-16 唯景公司 减少电致变色装置中汇流条下方的缺陷
CN115951532A (zh) * 2015-12-21 2023-04-11 唯景公司 遮蔽电致变色玻璃结构中的汇流条
US10222674B2 (en) * 2016-04-19 2019-03-05 Sage Electrochromics, Inc. Electrochromic device including a transparent conductive oxide layer and a bus bar and a process of forming the same
WO2017218705A1 (fr) 2016-06-17 2017-12-21 View, Inc. Atténuation des défauts dans un dispositif électrochrome sous une barre omnibus
CN110337716A (zh) * 2017-02-27 2019-10-15 Sage电致变色显示有限公司 包括基板和透明导电层的电气设备及形成电气设备的方法
US10866480B2 (en) 2017-04-20 2020-12-15 Cardinal Ig Company High performance privacy glazing structures
US11747696B2 (en) 2017-04-26 2023-09-05 View, Inc. Tandem vision window and media display
CA3069532A1 (fr) 2017-07-13 2019-01-17 Cardinal Ig Company Configurations de connexion electrique de structures de vitrage opaque
JP2019045669A (ja) * 2017-09-01 2019-03-22 凸版印刷株式会社 調光体
WO2019055306A1 (fr) 2017-09-12 2019-03-21 Sage Electrochromics, Inc. Dispositif à transmission variable non électroluminescent et son procédé de formation
EP3707555A1 (fr) 2017-11-06 2020-09-16 Cardinal Ig Company Système de vitrage opaque à conducteur électrique distinct
EP3790735A1 (fr) 2018-05-09 2021-03-17 Cardinal Ig Company Vitrage de confidentialité à commande électrique avec dispositif d'entraînement de recapture d'énergie
AU2019299000B2 (en) 2018-07-06 2023-01-19 Merlin Solar Technologies, Inc. Method for blackening a metallic article
CN108646495A (zh) * 2018-07-17 2018-10-12 合肥威驰科技有限公司 用于交通工具的可分区变色调光玻璃
US10968684B2 (en) 2018-08-17 2021-04-06 Cardinal Ig Company Privacy glazing structure with asymetrical pane offsets for electrical connection configurations
EP3636422A1 (fr) * 2018-10-09 2020-04-15 Essilor International (Compagnie Generale D'optique) Procédé et machine de stratification ayant un support de bloqueur améliorée
EP3887902A1 (fr) 2018-11-26 2021-10-06 View, Inc. Barres omnibus adhésives dans des fenêtres électrochromiques
US11474385B1 (en) 2018-12-02 2022-10-18 Cardinal Ig Company Electrically controllable privacy glazing with ultralow power consumption comprising a liquid crystal material having a light transmittance that varies in response to application of an electric field
CA3129408A1 (fr) 2019-02-08 2020-08-13 Cardinal Ig Company Dispositif d'excitation a faible puissance pour les vitrages d'intimite
WO2020173785A1 (fr) * 2019-02-27 2020-09-03 Saint-Gobain Glass France Ensemble vitrage et procédé pour sa fabrication
US11325352B2 (en) 2019-04-29 2022-05-10 Cardinal Ig Company Leakage current detection and control for one or more electrically controllable privacy glazing structures
CA3138515A1 (fr) 2019-04-29 2020-11-05 Cardinal Ig Company Systemes et procedes pour faire fonctionner une ou plusieurs structures de vitrage teintees pouvant etre commandees electriquement
JP2022530547A (ja) 2019-04-29 2022-06-29 カーディナル アイジー カンパニー 複数の電気的に制御可能なプライバシーガラス構造のスタガされた駆動電気制御
TW202206925A (zh) 2020-03-26 2022-02-16 美商視野公司 多用戶端網路中之存取及傳訊
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
CN114173496A (zh) * 2020-09-11 2022-03-11 Oppo广东移动通信有限公司 盖板组件及电子设备
US11558010B2 (en) 2021-02-22 2023-01-17 Merlin Solar Technologies, Inc. Method for blackening an electrical conduit

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484533B1 (fr) 1990-05-19 1995-01-25 Anatoly Nikiforovich Papyrin Procede et dispositif de revetement
US5604626A (en) 1995-02-10 1997-02-18 Donnelly Corporation Photochromic devices
JPH10239716A (ja) * 1996-12-24 1998-09-11 Nippon Oil Co Ltd エレクトロクロミック素子用対向電極及び素子
US6433154B1 (en) 1997-06-12 2002-08-13 Bristol-Myers Squibb Company Functional receptor/kinase chimera in yeast cells
WO1999049447A1 (fr) 1998-03-24 1999-09-30 Add-Vision, Inc. Lampe electroluminescente comportant des obturateurs thermochromiques
US6317248B1 (en) 1998-07-02 2001-11-13 Donnelly Corporation Busbars for electrically powered cells
US7324261B2 (en) 1999-07-09 2008-01-29 Gentex Corporation Electrochromic devices with thin bezel-covered edge
US6561460B2 (en) * 2000-08-03 2003-05-13 Ppg Industries Ohio, Inc. Switchable electrochromic devices for use in aircraft transparency windows
US6471360B2 (en) * 2000-08-03 2002-10-29 Ppg Industries Ohio, Inc. Switchable electrochromic devices with uniform switching and preferential area shading
US6924919B2 (en) * 2000-10-17 2005-08-02 Ppg Industries Ohio, Inc. Polymeric electrochromic devices
CN1159620C (zh) 2000-11-10 2004-07-28 株式会社村上开明堂 固态电致变色器件和使用这种器件的反射镜系统和crt显示器
US6961168B2 (en) 2002-06-21 2005-11-01 The Regents Of The University Of California Durable electrooptic devices comprising ionic liquids
EP1608719A2 (fr) 2003-03-05 2005-12-28 Electrochromix, Inc Miroirs electrochromiques et autres dispositifs electro-optiques
JP2006522425A (ja) 2003-03-18 2006-09-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 熱クロミックまたはフォトクロミック材料を有する光情報担体
DE102004005611B4 (de) 2004-02-05 2006-04-27 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparente Scheibe mit partiell abdunkelbarem Sichtfeld und Verfahren zum Steuern eines elektrochrom verfärbbaren Flächenelements in einer transparenten Scheibe, insbesondere einer Windschutzscheibe
US7133181B2 (en) * 2004-07-23 2006-11-07 Sage Electrochromics, Inc. Control system for electrochromic devices
US20060091117A1 (en) 2004-11-04 2006-05-04 United Technologies Corporation Plasma spray apparatus
US7733555B2 (en) 2005-06-17 2010-06-08 Electro Chromix, Inc. Environmentally safe electrochromic mirrors
US7586664B2 (en) * 2005-07-01 2009-09-08 Ppg Industries Ohio, Inc. Transparent electrode for an electrochromic switchable cell
KR101167318B1 (ko) 2005-08-31 2012-07-19 엘지디스플레이 주식회사 입체 영상 표시 장치
JP4694640B2 (ja) 2006-09-01 2011-06-08 プレオティント エル エル シー リガンド交換サーモクロミック(letc)系
US20090322070A1 (en) 2006-12-27 2009-12-31 Jay Reichelsheimer Method and system for hiding information
US8294139B2 (en) 2007-06-21 2012-10-23 Micron Technology, Inc. Multilayer antireflection coatings, structures and devices including the same and methods of making the same
TWI487125B (zh) * 2007-04-20 2015-06-01 Cambrios Technologies Corp 複合透明導體及形成其之方法
WO2009020804A1 (fr) 2007-08-06 2009-02-12 Olzak James M Procédé de dépôt de matériau électriquement conducteur sur un substrat
FR2922905B1 (fr) 2007-10-26 2009-12-18 Arjowiggins Licensing Sas Structure de securite comportant un element thermochromique et un element photochromique
US8988756B2 (en) 2008-01-31 2015-03-24 Ajjer, Llc Conductive busbars and sealants for chromogenic devices
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same
KR20100001642A (ko) * 2008-06-27 2010-01-06 삼성전자주식회사 투명 디스플레이 장치
US7719751B2 (en) 2008-09-17 2010-05-18 Soladigm, Inc. Electrical contact technique for electrochromic windows
CN102598878B (zh) 2009-10-30 2015-03-11 尖端研究公司 具有改进的汇流条连接件的悬浮颗粒装置膜和光阀层压体
US8808810B2 (en) * 2009-12-15 2014-08-19 Guardian Industries Corp. Large area deposition of graphene on substrates, and products including the same
US8213074B1 (en) * 2011-03-16 2012-07-03 Soladigm, Inc. Onboard controller for multistate windows
US8493646B2 (en) * 2010-04-22 2013-07-23 Sage Electrochromics, Inc. Series connected electrochromic devices
US20220137472A9 (en) 2010-11-08 2022-05-05 View, Inc. Adhesive bus bars in electrochromic windows
US8164818B2 (en) 2010-11-08 2012-04-24 Soladigm, Inc. Electrochromic window fabrication methods
US9958750B2 (en) * 2010-11-08 2018-05-01 View, Inc. Electrochromic window fabrication methods
US9442339B2 (en) * 2010-12-08 2016-09-13 View, Inc. Spacers and connectors for insulated glass units
US8643933B2 (en) * 2011-12-14 2014-02-04 View, Inc. Connectors for smart windows
EP3444664A1 (fr) 2010-12-08 2019-02-20 View, Inc. Espaceurs améliorés destinés à des éléments de vitrage isolant
WO2012109494A2 (fr) * 2011-02-09 2012-08-16 Kinestral Technologies, Inc. Dispositifs multicouches électrochromiques à commutation coordonnée spatialement
US9030725B2 (en) * 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US10429712B2 (en) * 2012-04-20 2019-10-01 View, Inc. Angled bus bar
US9454055B2 (en) * 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
CN103562788A (zh) 2011-05-26 2014-02-05 赛智电致变色公司 用于电致变色装置的桥接的汇流条
CN202111111U (zh) * 2011-06-07 2012-01-11 常州天合光能有限公司 隐藏汇流条的光伏组件
CN102998872A (zh) * 2011-09-08 2013-03-27 华德塑料制品有限公司 光电变色器件
KR20200035328A (ko) * 2011-12-12 2020-04-02 뷰, 인크. 박막 디바이스 및 제조
WO2013138535A1 (fr) 2012-03-13 2013-09-19 View, Inc. Atténuation de trou d'épingle pour dispositifs optiques
US20130258436A1 (en) 2012-04-03 2013-10-03 Sage Electrochromics, Inc. Patterned obscuration lines for electrochromic devices
RU2623920C2 (ru) * 2012-04-25 2017-06-29 Вью, Инк. Способы изготовления электрохромных окон
EP2845051B1 (fr) 2012-05-02 2021-06-02 View, Inc. Dispositif électrochrome, méthode de fabrication d'un élément électrochrome à couche unique et système intégré de dépôt pour la fabrication d'une fenêtre électrochrome
US9158172B2 (en) 2012-11-14 2015-10-13 Sage Electrochromics, Inc. Color matched coating for bus bars
EP2965149B1 (fr) 2013-03-08 2023-06-28 Sage Electrochromics, Inc. Dispositif électrochromique comprenant plusieurs zones pouvant être commandées de manière indépendante et des barres-omnibus internes
US9691515B2 (en) 2013-10-09 2017-06-27 Hamilton Sundstrand Corporation Bus bar assembly comprising a memory metal composition
CN103643871A (zh) 2013-11-15 2014-03-19 成都市翻鑫家科技有限公司 新型可自动调节光线的窗户
JP2017504057A (ja) 2013-12-19 2017-02-02 スイッチ マテリアルズ インコーポレイテッドSwitch Materials Inc. スイッチング可能な物体および製造方法
US10884311B2 (en) 2013-12-24 2021-01-05 View, Inc. Obscuring bus bars in electrochromic glass structures
WO2015100419A1 (fr) 2013-12-24 2015-07-02 View, Inc. Assombrissement de barres omnibus dans des structures de vitrage électrochromiques
US11906868B2 (en) 2013-12-24 2024-02-20 View, Inc. Obscuring bus bars in electrochromic glass structures
KR101592186B1 (ko) 2014-01-27 2016-02-05 동서대학교산학협력단 색변화 기반의 전원 제어상태 확인 기능을 구비한 멀티 콘센트
WO2015195715A1 (fr) 2014-06-17 2015-12-23 Sage Electrochromics, Inc. Dispositif électrochromique résistant à l'humidité
CN104859408A (zh) 2014-12-18 2015-08-26 北汽福田汽车股份有限公司 一种智能遮阳系统
CA2991892A1 (fr) 2015-07-10 2017-01-19 View, Inc. Dispositifs electrochromiques sans danger pour les oiseaux
CN104950473B (zh) 2015-07-13 2017-07-07 山东大学 一种智能变色眼镜及其控制方法
CN115951532A (zh) 2015-12-21 2023-04-11 唯景公司 遮蔽电致变色玻璃结构中的汇流条
WO2017156157A1 (fr) 2016-03-09 2017-09-14 View, Inc. Barres omnibus d'accrétion de métal
WO2017218705A1 (fr) 2016-06-17 2017-12-21 View, Inc. Atténuation des défauts dans un dispositif électrochrome sous une barre omnibus
WO2019055306A1 (fr) 2017-09-12 2019-03-21 Sage Electrochromics, Inc. Dispositif à transmission variable non électroluminescent et son procédé de formation
US10976633B2 (en) 2018-10-09 2021-04-13 Gentex Corporation Conductive bus bar with dark or colored appearance
EP3887902A1 (fr) 2018-11-26 2021-10-06 View, Inc. Barres omnibus adhésives dans des fenêtres électrochromiques
WO2020173785A1 (fr) 2019-02-27 2020-09-03 Saint-Gobain Glass France Ensemble vitrage et procédé pour sa fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US11966141B2 (en) 2024-04-23
CA2934277C (fr) 2023-09-26
US10969644B2 (en) 2021-04-06
US20180231859A1 (en) 2018-08-16
CN110058471A (zh) 2019-07-26
CN105814271A (zh) 2016-07-27
US20210200053A1 (en) 2021-07-01
CN105814271B (zh) 2019-03-22
US20160377948A1 (en) 2016-12-29
EP3087238A4 (fr) 2017-09-13
US9952481B2 (en) 2018-04-24
EP3907368A1 (fr) 2021-11-10
WO2015100419A1 (fr) 2015-07-02
CA2934277A1 (fr) 2015-07-02
EP3087238A1 (fr) 2016-11-02

Similar Documents

Publication Publication Date Title
US11966141B2 (en) Obscuring bus bars in electrochromic glass structures
US11500259B2 (en) Obscuring bus bars in electrochromic glass structures
US11960189B2 (en) Spacers for insulated glass units
CN108463769B (zh) 遮蔽电致变色玻璃结构中的汇流条
US20220019114A1 (en) Adhesive bus bars in electrochromic windows
WO2019178540A9 (fr) Dispositif électrochromique à réflectance et à transmission de couleur
US11906868B2 (en) Obscuring bus bars in electrochromic glass structures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170817

RIC1 Information provided on ipc code assigned before grant

Ipc: E06B 3/677 20060101AFI20170810BHEP

Ipc: G02F 1/153 20060101ALI20170810BHEP

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1227962

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190329

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200409

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200924

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF INTERNATIONAL SA, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014075849

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372393

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1372393

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014075849

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211224

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141224

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231226

Year of fee payment: 10

Ref country code: FR

Payment date: 20231227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231227

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 10