EP3083780A1 - Film pvdf résistant a la déchirure a basse température et ininflammable - Google Patents

Film pvdf résistant a la déchirure a basse température et ininflammable

Info

Publication number
EP3083780A1
EP3083780A1 EP14830819.0A EP14830819A EP3083780A1 EP 3083780 A1 EP3083780 A1 EP 3083780A1 EP 14830819 A EP14830819 A EP 14830819A EP 3083780 A1 EP3083780 A1 EP 3083780A1
Authority
EP
European Patent Office
Prior art keywords
film
vinyl
alkyl
film according
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14830819.0A
Other languages
German (de)
English (en)
Inventor
Florent ABGRALL
Samuel Devisme
Thomas Fine
Jean-Jacques Flat
Emmanuel Veret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3083780A1 publication Critical patent/EP3083780A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/24Graft or block copolymers according to groups C08L51/00, C08L53/00 or C08L55/02; Derivatives thereof

Definitions

  • the present invention relates to a fluorinated film having properties making it suitable for use outdoors, particularly in the field of breeding as cover films houses or shelters for livestock.
  • the film according to the invention comprises a polyvinylidene fluoride matrix, at least one impact modifier and a flame retardant.
  • Agricultural greenhouses are used to shelter livestock, protecting them from climatic elements.
  • the cover of these greenhouses is translucent and generally made of glass, but also of plastic (for example: polyethylene film, semi-rigid PVC sheets) rigid or flexible, generally treated to withstand ultraviolet light. This film can be armed to increase its resistance to rips.
  • the films used for the roofs of livestock buildings must have multiple properties:
  • WO 2011/121228 discloses multilayer fluorinated films comprising at least 3 layers, including a layer A in a first copolymer of vinylidene fluoride having a crystallization temperature TcA, and a layer B in a second copolymer of vinylidene fluoride having a crystallization temperature TcB, TcA being greater than TcB, layers A and B being alternate, layer A being placed on the outside and layer B between two layers A.
  • TcA being greater than TcB
  • layers A and B being alternate, layer A being placed on the outside and layer B between two layers A.
  • the tear resistance of these films has been significantly improved, compared to known fluorinated films, however it remains insufficient at low temperature.
  • fluorinated films for application as a roof and / or facade of livestock buildings which, in addition to the general characteristics described above, have good tear resistance properties in a temperature range from - 20 ° C to + 60 ° C and leave partially light, contributing to the welfare of animals by a harmonious distribution of natural light, while having a good fire resistance.
  • One of the objects of the present invention consists of a PVDF monolayer film modified by addition of at least one heart-bar shock modifier ("coreshell”) and also containing a flame-retardant agent.
  • coreshell heart-bar shock modifier
  • PVDF layer a multilayer film comprising at least one modified PVDF layer as described above, and at least one layer of unmodified PVDF, that is to say a PVDF which contains neither a modified shock nor a flame retardant (hereinafter referred to as "PVDF layer").
  • PVDF layer a PVDF which contains neither a modified shock nor a flame retardant
  • this PVDF layer is located outside the multilayer film.
  • Another subject of the invention relates to the use of the films according to the invention as roofing materials for agricultural buildings, in particular as roofs and / or facades for greenhouses for animals.
  • the invention relates to a monolayer polymer film comprising a polyvinylidene fluoride (PVDF) matrix, at least one impact modifier and a flame retardant, in which the impact modifier mass ratio varies between 2.5% and less. 40%.
  • PVDF polyvinylidene fluoride
  • the object of the invention therefore relates to the addition of a second flame retardant additive, which makes it possible to restore the fire resistance of the product while maintaining an improved tear resistance by the presence of impact modifiers.
  • a second flame retardant additive which makes it possible to restore the fire resistance of the product while maintaining an improved tear resistance by the presence of impact modifiers.
  • phosphorus flame retardants for example metal or organometallic salts of phosphonate,
  • the ratio of the total amount of flame retardant to that of impact modifier is between 1/30 and 1/1, preferably between 1/15 and 1/7.
  • the thickness of the film according to the invention is between 30 and 200 microns, preferably between 80 and 150 microns (inclusive).
  • the impact modifying rate is greater than 5% and less than or equal to 30% of the total weight of the film.
  • the level of impact modifier is greater than or equal to 10% and less than or equal to 30%.
  • the monolayer film according to the invention consists of a PVDF matrix, at least one core-shell shock modifier and a flame retardant agent.
  • VDF vinylidene fluoride
  • VF3 trifluoroethylene
  • CTFE chloro
  • said matrix is made of PVDF homopolymer.
  • said matrix consists of a VDF copolymer.
  • the fluorinated comonomer is chosen from chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), trifluoroethylene (VF3) and tetrafluoroethylene (TFE), and mixtures thereof.
  • the comonomer is advantageously the HFP.
  • the copolymer comprises only VDF and HFP.
  • the fluorinated copolymers are copolymers of VDF such as VDF-HFP containing at least 50% by weight of VDF, advantageously at least 75% by weight of VDF and preferably at least 80% by weight of VDF.
  • VDF-HFP a copolymer of VDF containing more than 75% of VDF and HFP supplement marketed by Arkema under the name Kynar Flex ®.
  • the core-shell shock modifier is, in one embodiment, in the form of fine particles having an elastomeric core (having a glass transition temperature of less than 25 ° C, preferably less than 0 ° C, more preferably less than -5 ° C, even more preferably less than -25 ° C), and at least one thermoplastic bark (comprising at least one polymer having a glass transition temperature greater than 25 ° C).
  • the size of the particles is generally less than one micron and advantageously between 50 and 300 nm.
  • homopolymers of isoprene or butadiene may be mentioned, copolymers of isoprene with at most 30 mol% of a vinyl monomer and copolymers of butadiene with at most 30 mol% of a vinyl monomer.
  • the vinyl monomer may be styrene, alkylstyrene, acrylonitrile or alkyl (meth) acrylate.
  • Another family of cores consists of the homopolymers of an alkyl (meth) acrylate and the copolymers of an alkyl (meth) acrylate with at most 30 mol% of a monomer chosen from another (meth) ) alkyl acrylate and a vinyl monomer.
  • the alkyl (meth) acrylate is advantageously butyl acrylate.
  • the core of the impact modifier consists of 2-ethyl-exyl acrylate, which gives a gain in tear-resistance properties equivalent to the product based on butyl-acrylate.
  • the core of the core shell copolymer may be crosslinked in whole or in part. It suffices to add at least difunctional monomers during the preparation of the core, these monomers may be chosen from poly (meth) acrylic esters of polyols such as butylene di (meth) acrylate and trimethylolpropane trimethacrylate. Other difunctional monomers are, for example, divinylbenzene, trivinylbenzene, vinyl acrylate and vinyl methacrylate.
  • the core may also be cross-linked by grafting or as a comonomer during the polymerization, unsaturated functional monomers such as unsaturated carboxylic acid anhydrides, unsaturated carboxylic acids and unsaturated epoxides. Mention may be made, for example, of maleic anhydride, (meth) acrylic acid and glycidyl methacrylate.
  • the bark or barks are homopolymers of styrene, alkylstyrene or methyl methacrylate or copolymers comprising at least 70 mol% of one of these monomers and at least one comonomer selected from the other monomers above another alkyl (meth) acrylate, vinyl acetate and acrylonitrile.
  • the bark may be functionalized by introducing, by grafting or as comonomer during the polymerization, unsaturated functional monomers such as unsaturated carboxylic acid anhydrides, unsaturated carboxylic acids and unsaturated epoxides. Mention may be made, for example, of maleic anhydride, (meth) acrylic acid and glycidyl methacrylate.
  • the bark may be partially reticulated.
  • the bark polymer is made of polystyrene or PMMA.
  • core-bark polymers with two barks, one made of polystyrene and the other outside PMMA.
  • the core represents, by weight, 70 to 98% of the core-shell polymer and the bark at 2%.
  • All of these heart-shell shock modifiers are sometimes called soft / hard because of the elastomeric core.
  • bark-like shock modifiers such as hard / soft / hard, that is to say they have in this order a hard heart, soft bark and hard bark.
  • the hard parts may consist of the above soft / hard bark polymers and the soft part may consist of the above soft / hard core polymers. For example, those made in this order:
  • a bark copolymer of methyl methacrylate and ethyl acrylate is a bark copolymer of methyl methacrylate and ethyl acrylate.
  • heart-bar shock modifiers such as hard (heart) / soft / hard.
  • the intermediate bark is a copolymer of methyl methacrylate, styrene and at least one monomer selected from alkyl acrylates, butadiene and isoprene.
  • the outer bark is a PMMA homopolymer or copolymer. For example, those made in this order:
  • the impact modifier contains a core consisting of butylene acrylate or butylene-co-butadiene acrylate or else 2-ethyl-exyl acrylate.
  • the bark is formed of poly (methyl methacrylate) or copolymer of methyl methacrylate and another acrylic monomer. These include products from the DURASTRENGTH ® range from ARKEMA.
  • acrylic impact modifiers can be used such as the Paraloid TM EXL range from Dow or the range of KANE ACE® on Kaneka.me KANE ACE ® acrylic based Kaneka.
  • the impact modifier contains an acrylate-polysiloxane copolymer core and a hard resin bark.
  • the heart is a flexible rubber-like material prepared by polymerizing one or more vinyl monomers in the presence of a rubber-like polymer obtained from monomers such as alkyl acrylates or alkyl methacrylates, wherein the alkyl group contains 2 to 10 carbon atoms.
  • Polyfunctional monomers such as divinylbenzene, ethylene dimethacrylate, triallyl cyanurate, or triallyl isocyanurate may be added during the polymerization as crosslinking agents.
  • the rubber-like polymer thus obtained is combined with a rubber containing polysiloxane.
  • the elastomers thus prepared contain at least 20% by weight of rubber-like polymer, preferably at least 40% by weight.
  • this type of impact modifier are rubber-based graft copolymers prepared by graft copolymerization of a composite rubber with at least one vinyl monomer, wherein the composite rubber comprises from 5 to 95% by weight of a rubber based on polysiloxane and 5 to 95% by weight of a polyacryl (meth) acrylate rubber.
  • the particle size of these impact modifiers varies between 0.01 and 1 micron.
  • this type of impact modifier consists of a copolymer core of polysiloxane and butyl acrylate surrounded by a bark of poly (methyl methacrylate). Products of this type are marketed by Mitsubishi Rayon under the reference Metablen ® S-2001.
  • the impact modifier is composed of a poly (organosiloxane) core and a thermoplastic resin bark.
  • the organic groups of the poly (organosiloxane) cores are preferably alkyl or vinyl radicals containing between 1 and 18 carbons, advantageously between 1 and 6 carbons, or substituted aryl radicals or hydracarbones.
  • the poly (organosiloxane) contains one or more of these groups.
  • the siloxanes have a variable degree of functionahsation which defines the degree of crosslinking of the poly (organosiloxane).
  • the average degree of functionahsation is between 2 and 3 thus forming a partially crosslinked core.
  • the bark is formed of polymers or copolymers derived from monomers such as acrylates or alkyl methacrylate, acrylonitrile, styrene, vinylstyrene, vinylpropionate maleimide, vinyl chloride, ethylene, butadiene, isoprene and chloroprene.
  • the bark is composed of styrene or acrylate or alkyl methacrylate, the alkyl having between 1 and 4 carbons.
  • the fraction of the core represents between 0.05 and 90% by weight of the particles, preferably between 60 and 80% by weight.
  • the particle size is between 10 and 400 nm.
  • This shock modifier can also be in the form of a heart surrounded by 2 successive barks.
  • the description of the core and the outer bark remains identical to that of the silicone shock modifiers with a single bark previously presented.
  • the intermediate bark consists of a poly (organosiloxane) different from that of the heart but chosen from the same family of composition.
  • this type of impact modifier consists of a polydimethyl siloxane core and a poly (methyl methacrylate) bark.
  • Genioperl® range of Silicone Waker can be cited as an example.
  • the monolayer film according to the invention comprises an additive reflecting infrared radiation.
  • This additive may be a titanium oxide or a mixed compound such as a mother-of-pearl constituted in its center of mica and covered with a layer of titanium oxide.
  • Metal alloys can also be used as infrared reflectors. They contain two or more of the following: iron, chromium, cobalt, aluminum, manganese, antimony, zinc, titanium, magnesium.
  • this alloy consists of two elements: cobalt and aluminum, or it is a ternary alloy of cobalt, chromium and aluminum.
  • the monolayer film according to the invention further comprises at least one additive chosen from:
  • plasticizers chosen preferably from dibutyl sebacate, dioctyl phthalate, N-n-butylsulfonamide and polymeric polyesters such as those derived from the combination of adipic, azelaic or sebacic acid and diols. Combinations of these compounds may also be used.
  • the films according to the invention have the particularity of combining a high resistance to cold tear with a fire resistance equivalent to that of PVDF.
  • the film according to the invention comprises a VDF / HFP copolymer matrix (the compound Al in the examples), an impact modifier having a poly (methyl methacrylate) bark (30%) containing cores of polydimethylsiloxane (70%), and 2% by weight of calcium tungstate as flame retardant.
  • the film according to the invention comprises a PVDF homopolymer matrix, an impact modifier having a poly (methacrylate) bark. methyl) (30%) contain polydimethyl-siloxane cores (70%), and 2% by weight calcium tungstate as flame retardant.
  • the film according to the invention comprises a VDF / HFP copolymer matrix (the compound Al in the examples), an impact modifier containing a partially crosslinked butyl polyacrylate core (90% by weight) and a bark consists of a copolymer of methyl methacrylate and ethyl acrylate (10%), and 3% of calcium tungstate as flame retardant.
  • the film according to the invention comprises a VDF / HFP copolymer matrix (the compound Al in the examples), an impact modifier containing a partially crosslinked butyl polyacrylate core (90% by weight) and a bark is composed of a copolymer of methyl methacrylate and ethyl acrylate (10%), and 2% by weight of benzyl penta-brominated polyacrylate as flame retardant.
  • the invention relates to a multilayer film comprising at least one layer of the described monolayer film and at least one other layer of PVDF.
  • the overall thickness is between 30 and 200 microns.
  • the multilayer film consists of a central layer of PVDF modified with a core - shell shock modifier and containing a flame retardant, and two outer layers of PVDF. These may have the same structure, or they may have different structures.
  • modified PVDF layer 20%> - 95%>
  • unmodified PVDF layer 5% - 80%
  • modified PVDF layer 21 microns
  • unmodified PVDF layer 9 microns.
  • the invention relates to the methods of preparing films described above.
  • PVDF / impact modifier / flame retardant mixtures are obtained by melt compounding techniques known to those skilled in the art, such as BUSS or twin screw.
  • the films are then obtained by jacket blowing or by the technique of cast film, these techniques advantageously making it possible to obtain films of large widths.
  • the films can be extruded at a temperature between 200 and 280 ° C.
  • the inflation rate should be between 1.2 and 4, preferably between 1.5 and 3.
  • the stretching ratio should be between 2 and 15, preferably between 5 and 10.
  • the invention relates to the use of the monolayer film or multilayer film comprising at least one layer of said monolayer film, as material for the manufacture of films for roofs and / or facades of buildings, particularly agricultural buildings such as livestock buildings.
  • These films then have the advantage of having improved durability combined with good resistance to deformation and fire.
  • the compounds are produced according to the rules of the art in a twin-screw corotative extruder.
  • the films are then made by flat extrusion at 220 ° C. using a flat die with a gap of 1 mm, and stretched by a calendrette to adjust the thickness of the product to the desired target (100 ⁇ ).
  • VDF / HFP copolymer having a melt flow rate (MFR) of 7 g / 10min (5kg, 230 ° C), a melting temperature (Tf) of 142 ° C and a Young's modulus of 650 MPa at 23 ° C., measured according to ISO 178.
  • MFR melt flow rate
  • Tf melting temperature
  • Young's modulus 650 MPa at 23 ° C.
  • A2 PVDF homopolymer of melt index of 0.14 g / 10 min (5 kg, 230 ° C.) and melting point 168 ° C.
  • Shock modifier :
  • Bl Durastrength ® D380 acrylic impact modifier from Arkema, in the form of core-shell particles 250 nm in diameter. 90% of partially cross-linked butyl polyacrylate forms the core of the particles.
  • the bark (10%>) consists of a copolymer of methyl methacrylate and ethyl acrylate.
  • Characterization of the fire resistance the film is placed on a vertical support and is ignited by a flame calibrated according to the UL94 standard. The flame is placed 10 mm below the bottom end of the film and is maintained for 5s. The flame persistence time, the area burned and the presence of inflamed drop are noted. 5 test pieces are analyzed for each sample. Characterization of the resistance to cold tearing: a film of thickness 100 ⁇ is supported by a frame so as to stretch it by applying a tension of IN. A conical 980 g striker is released from a height of 230 mm and pierces the sample. Depending on the rupture profile of the film (long crack propagated in the film or localized stretching), the fragile or ductile nature of the deformation can be estimated. This test is performed at different temperatures to estimate the ductile / brittle transition temperature of the products.
  • the most influencing parameter on puncture resistance of the films is in the shock modifier incorporated in the formulation. Its mass fraction and its nature directly impact the ductile or fragile nature of the deformation after cold impact.
  • plasticizer in the mixture allows a slight improvement of the ductile behavior of the film at low temperature but its effect is limited as shown by the lack of property noted between Examples 10 and 11 and 12 and 13.
  • the change in nature of the Shock modifier in these last 2 examples also causes a significant evolution of the ductile-brittle transition.
  • the intrinsic fire resistance of the films is degraded by the presence of the impact modifying particles which are dispersed in the sample, as illustrated in Examples 1 to 5.
  • the addition of specific flame retardants in the film formulation makes it possible to simultaneously achieve high fire resistance of the film and a low temperature brittle ductile transition temperature as shown in Examples 14-17.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Protection Of Plants (AREA)
  • Greenhouses (AREA)

Abstract

La présente invention concerne un film fluoré possédant des propriétés le rendant apte à une utilisation à l'extérieur, notamment dans le domaine agricole comme film de serre pour animaux. Le film selon l'invention est un film polymère monocouche comprenant une matrice de polyfluorure de vinylidène (PVDF), au moins un modifiant choc, dans lequel le taux massique de modifiant choc varie entre 2,5% et moins de 40% et un agent ignifugeant. Selon une variante de réalisation, l'invention a trait à des films multicouches comprenant au moins une couche dudit film fluoré et au moins une couche de PVDF non modifié.

Description

FILM PVDF RESISTANT A LA DECHIRURE A BASSE
TEMPERATURE ET ININFLAMMABLE
La présente invention concerne un film fluoré possédant des propriétés le rendant apte à une utilisation à l'extérieur, notamment dans le domaine de l'élevage comme films de couverture des habitations ou des abris pour le bétail. Le film selon l'invention comprend une matrice de polyfluorure de vinylidène, au moins un modifiant choc et un agent ignifugeant.
Dans les régions au climat rude, un minimum de protection devrait être offert aux animaux, notamment pendant les saisons froides et humides. L'absence de protection contre le vent peut en particulier avoir des conséquences néfastes sur l'état de santé des animaux. Les serres agricoles permettent d'abriter le bétail, en le protégeant des éléments climatiques. La couverture de ces serres est translucide et généralement en verre, mais aussi en matière plastique (par exemple: film en polyéthylène, plaques semi-rigides en PVC) rigide ou souple, généralement traité pour résister aux ultraviolets. Ce film peut être armé pour augmenter sa résistance aux déchirements.
De façon générale, les films utilisés pour les toitures de bâtiments d'élevage doivent présenter de multiples propriétés :
- mécaniques, telles que : résistance à la déchirure dans une gamme de température de -20°C à +60°C, résistance au fluage, capacité d'étirage;
- optiques, telles que la transmission partielle de la lumière visible et le caractère diffus de la lumière transmise ;
- de résistance chimique, notamment aux environnements riches en ammoniaque ; de durabilité : résistance à la chaleur humide et au froid ; résistance aux rayons UV ; une capacité élevée à réfléchir les rayons infrarouges issus du soleil pendant la journée et de l'intérieur du bâtiment la nuit afin d'assurer la stabilité de la température au sein du bâtiment ;
- de résistance au feu ;
- des propriétés antibuée et anti-poussière.
II est connu d'employer des polymères fluorés, notamment à base de fluorure de vinylidène, pour fabriquer des films monocouche utilisés pour la fabrication de bâtiments agricoles (au sens d'endroit clos). Les films monocouche à base de PVDF (poly fluorure de vinylidène) ou de copolymères VDF/HFP (fluorure de vinylidène / hexafiuoropropylène), obtenus par soufflage de gaine ou par la technique du film coulé, présentent de bonnes propriétés mécaniques, optiques, résistance chimique et durabilité, si bien que ce sont de bons candidats pour l'application serres agricoles. La résistance à la déchirure de ces films est toutefois insuffisante, surtout dans le sens d'extrusion (MD).
Le document WO 2011/121228 décrit des films fluorés multicouches comprenant au moins 3 couches, dont une couche A en un premier copolymère de fluorure de vinylidène ayant une température de cristallisation TcA, et une couche B en un deuxième copolymère de fluorure de vinylidène ayant une température de cristallisation TcB, TcA étant supérieure à TcB, les couches A et B étant alternes, la couche A étant placée à l'extérieur et la couche B entre deux couches A. La résistance à la déchirure de ces films a été significativement améliorée, par rapport à aux films fluorés connus, cependant elle reste insuffisante à basse température.
Il serait donc souhaitable de disposer de films fluorés pour application comme couverture et/ou façade de bâtiments d'élevage qui, en plus des caractéristiques générales exposées plus haut, présentent de bonnes propriétés de résistance à la déchirure dans une gamme de températures allant de -20°C à +60°C et laissent partiellement diffuser la lumière, contribuant ainsi au bien-être des animaux par une répartition harmonieuse de la lumière naturelle, tout en présentant une bonne résistance au feu.
Il a maintenant été trouvé qu'en modifiant un polymère de polyfluorure de vinylidène par ajout de modifiant choc de type cœur - écorce, on obtient une amélioration significative de la résistance à la déchirure du film, notamment à basse température, tout en conservant un niveau de transmission dans le domaine visible compatible avec l'utilisation du film comme film pour les bâtiments agricoles. D'autre part, l'ajout d'un agent ignifugeant confère de bonnes propriétés de résistance au feu, indispensables pour une utilisation comme film de serre pour animaux.
Un des objets de la présente invention consiste en un film monocouche en PVDF modifié par ajout d'au moins un modifiant choc de type cœur - écorce (« coreshell ») et contenant également un agent ignifugeant.
Un autre objet de l'invention concerne un film multicouche comprenant au moins une couche de PVDF modifié comme décrit plus haut, et au moins une couche de PVDF non- modifîé, c'est-à-dire un PVDF qui ne contient ni un modifiant choc ni un agent ignifugeant (appelé ci-après «couche de PVDF »). Selon un mode de réalisation, cette couche de PVDF est située à l'extérieur du film multicouche.
Un autre objet de l'invention concerne l'utilisation des films selon l'invention comme matériaux de couverture de bâtiments agricoles notamment comme toitures et/ou façades de serres pour animaux.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de l'exposé qui suit.
Selon un premier aspect, l'invention concerne un film polymère monocouche comprenant une matrice de polyfluorure de vinylidène (PVDF), au moins un modifiant choc et un agent ignifugeant, dans lequel le taux massique de modifiant choc varie entre 2,5% et moins de 40%.
Bien que permettant d'atteindre les propriétés mécaniques désirées, l'ajout de modifiant choc dans les films a généralement aussi pour conséquence de les rendre inflammables. L'objet de l'invention porte donc sur l'addition d'un second additif ignifugeant, qui permet de restaurer la résistance au feu du produit tout en conservant une résistance à la déchirure améliorée par la présence des modifiants chocs. Plusieurs familles d'ignifugeants peuvent remplir ce rôle. A titre d'exemple on peut citer :
les ignifugeants halogénés,
les ignifugeants phosphorés, par exemple les sels métalliques ou organométalliques de phosphonate,
les tungstates de calcium, et
les silicates d'aluminium.
Plusieurs de ces composés peuvent être utilisés simultanément comme ignifugeant. Le rapport de la quantité totale d'ignifugeant par rapport à celle de modifiant choc est compris entre 1/30 et 1/1, préférentiellement entre 1/15 et 1/7.
L'épaisseur du film selon l'invention est située entre 30 et 200 microns, de préférence entre 80 et 150 microns (bornes comprises).
Selon un mode de réalisation, le taux de modifiant choc est supérieur à 5%> et inférieur ou égal à 30%> du poids total du film. De préférence, le taux de modifiant choc est supérieur ou égal à 10%> et inférieur ou égal à 30%>. Selon un mode de réalisation, le film monocouche selon l'invention est constitué d'une matrice de PVDF, d'au moins un modifiant choc cœur - écorce et d'un agent ignifugeant.
La matrice de PVDF est constituée d'un PVDF homopolymère ou d'un copolymère préparé par copolymérisation du fluorure de vinylidène (VDF, CH2=CF2) avec un comonomère fluoré choisi parmi : le fluorure de vinyle; le trifluoroéthylène (VF3); le chlorotrifluoroethylène (CTFE); le 1 ,2-difluoroéthylène; le tetrafluoroéthylène (TFE); l'hexafluoropropylène (HFP); les perfluoro(alkyl vinyl) éthers tels que le perfluoro(méthyl vinyl)éther (PMVE), le perfluoro(éthyl vinyl) éther (PEVE) et le perfluoro(propyl vinyl) éther (PPVE); le perfluoro(l,3-dioxole); le perfluoro(2,2-diméthyl-l,3-dioxole) (PDD).
Selon un mode de réalisation, ladite matrice est constituée de PVDF homopolymère.
Selon un autre mode de réalisation, ladite matrice est constituée d'un copolymère de VDF. De préférence le comonomère fluoré est choisi parmi le chlorotrifluoroéthylène (CTFE), l'hexafluoropropylène (HFP), le trifluoroéthylène (VF3) et le tétrafluoroéthylène (TFE), et leurs mélanges.
Le comonomère est avantageusement l'HFP. De préférence, le copolymère ne comprend que du VDF et de l'HFP.
De préférence, les copolymères fluorés sont des copolymères de VDF comme le VDF-HFP contenant au moins 50% en masse de VDF, avantageusement au moins 75% en masse de VDF et de préférence au moins 80%> en masse de VDF. On peut citer par exemple plus particulièrement les copolymères de VDF contenant plus de 75% de VDF et le complément de HFP commercialisés par la société ARKEMA sous le nom KYNAR FLEX®. Le modifiant choc cœur-écorce se présente, selon un mode de réalisation, sous la forme de fines particules ayant un cœur en élastomère (ayant une température de transition vitreuse inférieure à 25°C, de préférence inférieure à 0°C, de préférence encore inférieure à -5°C, de manière encore plus préférée inférieure à -25°C), et au moins une écorce thermoplastique (comprenant au moins un polymère ayant une température de transition vitreuse supérieure à 25 °C). La taille des particules est en général inférieure au micron et avantageusement comprise entre 50 et 300 nm. A titre d'exemple de cœur on peut citer les homopolymères de l'isoprène ou du butadiène, les copolymères de l'isoprène avec au plus 30% en moles d'un monomère vinylique et les copolymères du butadiène avec au plus 30%> en moles d'un monomère vinylique. Le monomère vinylique peut être le styrène, un alkylstyrène, l'acrylonitrile ou un (méth)acrylate d'alkyle. Une autre famille de cœur est constituée par les homopolymères d'un (méth)acrylate d'alkyle et les copolymères d'un (méth)acrylate d'alkyle avec au plus 30% en moles d'un monomère choisi parmi un autre (méth)acrylate d'alkyle et un monomère vinylique. Le (méth)acrylate d'alkyle est avantageusement l'acrylate de butyle. Selon un mode de réalisation, le cœur du modifiant choc est constitué de 2-éthyle-exyl acrylate, qui confère un gain en propriétés de résistance à la déchirure équivalent au produit sur base butyle-acrylate.
Le cœur du copolymère cœur écorce peut être réticulé en tout ou partie. Il suffit d'ajouter des monomères au moins difonctionnels au cours de la préparation du cœur, ces monomères peuvent être choisis parmi les esters poly(méth)acryliques de polyols tels que le di(méth)acrylate de butylène et le triméthylol propane triméthacrylate. D'autres monomères difonctionnels sont par exemple le divinylbenzène, le trivinylbenzène, l'acrylate de vinyle et le méthacrylate de vinyle. On peut aussi réticuler le cœur en y introduisant, par greffage ou comme comonomère pendant la polymérisation, des monomères fonctionnels insaturés tels que des anhydrides d'acides carboxyliques insaturés, des acides carboxyliques insaturés et des époxydes insaturés. On peut citer à titre d'exemple l'anhydride maléïque, l'acide (méth)acrylique et le méthacrylate de glycidyle.
L'écorce ou les écorces sont des homopolymères du styrène, d'un alkylstyrène ou du méthacrylate de méthyle ou des copolymères comprenant au moins 70% en moles de l'un de ces monomères précédents et au moins un comonomère choisi parmi les autres monomères précédents, un autre (méth)acrylate d'alkyle, l'acétate de vinyle et l'acrylonitrile. L'écorce peut être fonctionnalisée en y introduisant, par greffage ou comme comonomère pendant la polymérisation, des monomères fonctionnels insaturés tels que des anhydrides d'acides carboxyliques insaturés, des acides carboxyliques insaturés et des époxydes insaturés. On peut citer à titre d'exemple l'anhydride maléïque, l'acide (méth)acrylique et le méthacrylate de glycidyle. L'écorce peut être partiellement réticulée.
Selon un mode de réalisation, le polymère écorce est constitué de polystyrène ou de PMMA. Il existe aussi des polymères cœur-écorce ayant deux écorces, l'une en polystyrène et l'autre à l'extérieur en PMMA.
Avantageusement, le cœur représente, en poids, 70 à 98%> du polymère cœur-écorce et l'écorce 30 à 2%. Tous ces modifiants choc de type cœur-écorce sont parfois appelés mou / dur à cause du cœur en élastomère. Il existe aussi d'autres types de modifiants choc de type cœur écorce tels que les dur / mou / dur c'est-à-dire qu'ils ont dans cet ordre un cœur dur, une écorce molle et une écorce dure. Les parties dures peuvent être constituées des polymères de l'écorce des mou / dur précédents et la partie molle peut être constituée des polymères du cœur des mou / dur précédents. On peut citer par exemple ceux constitués dans cet ordre :
• d'un cœur en copolymère du méthacrylate de méthyle et de l'acrylate d'éthyle,
• d'une écorce en copolymère de l'acrylate de butyle et du styrène,
· d'une écorce en copolymère du méthacrylate de méthyle et de l'acrylate d'éthyle.
Il existe encore d'autres types de modifiants choc de type cœur écorce tels que les dur (le cœur) / mou / mi dur. Par rapport aux précédents, la différence vient de l'écorce extérieure "mi-dur" qui est constituée de deux écorces : l'une intermédiaire et l'autre extérieure. L'écorce intermédiaire est un copolymère du méthacrylate de méthyle, du styrène et d'au moins un monomère choisi parmi les acrylates d'alkyle, le butadiène et l'isoprène. L'écorce extérieure est un PMMA homopolymère ou copolymère. On peut citer par exemple ceux constitués dans cet ordre :
• d'un cœur en copolymère du méthacrylate de méthyle et de l'acrylate d'éthyle, d'une écorce en copolymère de l'acrylate de butyle et du styrène,
· d'une écorce en copolymère du méthacrylate de méthyle, de l'acrylate de butyle et du styrène,
• d'une écorce en copolymère du méthacrylate de méthyle et de l'acrylate d'éthyle. Selon un mode de réalisation préféré, le modifiant choc contient un cœur constitué d'acrylate de butylène ou d'acrylate de butylène-co-butadiène ou encore de 2-éthyle-exyl acrylate. L'écorce est formée de poly (méthacrylate de méthyle) ou de copolymère de méthacrylate de méthyle et d'un autre monomère acrylique. Il s'agit notamment des produits de la gamme DURASTRENGTH® de la société ARKEMA. D'autre modifiants chocs acryliques peuvent être utilisés tels que la gamme Paraloïd™ EXL sur de Dow ou encore la gamme des KANE ACE® sur de Kaneka.me des KANE ACE® sur base acrylique de Kaneka.
Selon un autre mode de réalisation, le modifiant choc contient un cœur en copolymère acrylate-polysiloxane et une écorce en résine dure. Dans ce cas, le cœur est un matériau de type caoutchouc flexible préparé par polymérisation d'un ou plusieurs monomères vinyliques en présence d'un polymère de type caoutchouc obtenu à partir de monomères comme les acrylates d'alkyle ou les méthacrylates d'alkyle, dans lesquels le groupe alkyle contient de 2 à 10 atomes de carbone. Des monomères polyfonctionnels tels que divinylbenzène, éthylène diméthacrylate, triallyl cyanurate, ou triallyl isocyanurate peuvent être rajouté au cours de la polymérisation comme des agents réticulants. Le polymère de type caoutchouc ainsi obtenu est combiné avec un caoutchouc contenant du polysiloxane. Les élastomères ainsi préparés contiennent au moins 20% en poids de polymère de type caoutchouc, de préférence au moins 40%> en poids. Des exemples de ce type de modifiant choc sont les copolymères greffés à base de caoutchouc préparés par copolymérisation par greffage d'un caoutchouc composite avec au moins un monomère vinylique, dans lesquels le caoutchouc composite comprend de 5 à 95% en poids d'un caoutchouc à base de polysiloxane et de 5 à 95% en poids d'un caoutchouc polyacryl(méth)acrylate. La taille des particules de ces modifiants-choc varie entre 0,01 et 1 micron. Préférentiellement, ce type de modifiant choc est constitué d'un cœur de copolymère de polysiloxane et d'acrylate de butyle entouré d'une écorce de poly (méthacrylate de méthyle). Des produits de ce type sont commercialisés par Mitsubishi Rayon sous la référence Metablen® S-2001.
Selon un autre mode de réalisation le modifiant choc est composé d'un cœur de poly(organo-siloxane) et d'une écorce de résine thermoplastique. Les groupements organiques des cœurs poly(organo-siloxane) sont préférentiellement des radicaux alkyl ou vinyle contenant entre 1 et 18 carbones, avantageusement entre 1 et 6 carbones, ou des radicaux aryle ou des hydracarbones substitués. Le poly(organo-siloxane) contient un ou plusieurs de ces groupements. Les siloxanes ont un degré de fonctionnahsation variable qui définit le taux de réticulation du poly(organo-siloxane). Préférentiellement le degré de fonctionnahsation moyen est compris entre 2 et 3 formant ainsi un cœur partiellement réticulé. L'écorce est formée de polymères ou de copolymères issus de monomères tels que les acrylates ou méthacrylate d'alkyle, l'acrylonitrile, le styrène, le vinylstyrène, le vinyle propionate maléimide, le chlorure de vinyle, l'éthylène, le butadiène, l'isoprène et le chloroprène. Préférentiellement, l'écorce est composée de styrène ou d'acrylate ou de méthacrylate d'alkyle, l'alkyle possédant entre 1 et 4 carbones. La fraction du cœur représente entre 0,05 et 90% en poids des particules, préférentiellement entre 60 et 80% en poids. La taille des particules est comprise entre 10 et 400 nm. Ce modifiant choc peut aussi se présenter sous la forme d'un cœur entouré de 2 écorces successives. La description du cœur et de l'écorce extérieure reste identique à celle des modifiants chocs siliconés à une seule écorce précédemment présentés. L'écorce intermédiaire est constituée d'un poly(organo-siloxane) différent de celui du cœur mais choisi dans la même famille de composition. Préférentiellement, ce type de modifiant choc est constitué d'un cœur de polydiméthyle siloxane et d'une écorce de poly (méthacrylate de méthyle). La gamme Genioperl® de Waker Siliconés peut être citée à titre d'exemple.
Selon un mode de réalisation, le film monocouche selon l'invention comprend un additif réfléchissant les rayonnements infrarouges. Cet additif peut être un oxyde de titane ou un composé mixte tel une nacre constituée en son centre de mica et recouverte d'une couche d'oxyde de titane. Des alliages métalliques peuvent également être utilisés comme réfléchissant infrarouge. Ils contiennent deux ou plus des éléments suivants : fer, chrome, cobalt, aluminium, manganèse, antimoine, zinc, titane, magnésium. Préférentiellement, cet alliage est constitué des deux éléments : cobalt et aluminium, ou il s'agit d'un alliage ternaire de cobalt, de chrome et d'aluminium.
Selon un autre mode de réalisation, le film monocouche selon l'invention comprend en outre au moins un additif choisi parmi :
les agents matifiants,
les agents opacifiants,
- les homopolymères ou copolymères acryliques,
les plastifiants choisis de préférence parmi le sebaçate de dibutyle, le phtalate de dioctyle, le N-n-butylsulfonamide et les polyesters polymériques tels que ceux issus de la combinaison d'acide adipique, azelaique ou sebacique et de diols. Des combinaisons de ces composés peuvent aussi être utilisées. Les films selon l'invention ont la particularité de combiner une grande résistance à la déchirure à froid avec une résistance au feu équivalente à celle du PVDF.
Selon un mode de réalisation, le film selon l'invention comprend une matrice de copolymère VDF/HFP (le composé Al dans les exemples), un modifiant choc ayant une écorce de poly(méthacrylate de méthyle) (30%) renferment des cœurs de polydiméthyle- siloxane (70%), et 2% en poids d'un tungstate de calcium comme ignifugeant.
Selon un autre mode de réalisation, le film selon l'invention comprend une matrice de PVDF homopolymère, un modifiant choc ayant une écorce de poly(méthacrylate de méthyle) (30%) renferment des cœurs de polydiméthyle-siloxane (70%), et 2% en poids de tungstate de calcium comme ignifugeant.
Selon un autre mode de réalisation, le film selon l'invention comprend une matrice de copolymère VDF/HFP (le composé Al dans les exemples), un modifiant choc contenant un cœur de polyacrylate de butyle partiellement réticulé (90%>en poids) et une écorce est constituée de copolymère de méthacrylate de méthyle et d'acrylate d'éthyle (10%>), et 3% de tungstate de calcium comme ignifugeant.
Selon un autre mode de réalisation, le film selon l'invention comprend une matrice de copolymère VDF/HFP (le composé Al dans les exemples), un modifiant choc contenant un cœur de polyacrylate de butyle partiellement réticulé (90%>en poids) et une écorce est constituée de copolymère de méthacrylate de méthyle et d'acrylate d'éthyle (10%>), et 2% en poids de polyacrylate de benzyle penta-bromé comme ignifugeant.
Selon un deuxième aspect, l'invention a trait à un film multicouche comprenant au moins une couche du film monocouche décrit et au moins une autre couche de PVDF. Par « couche de PVDF » on comprend une couche constituée d'un PVDF homopolymère ou d'un copolymère préparé par copolymérisation du fluorure de vinylidène (VDF, CH2=CF2) avec un comonomère fluoré choisi parmi : le fluorure de vinyle; le trifluoroéthylène (VF3); le chlorotrifluoroethylène (CTFE); le 1 ,2-dif uoroéthylène; le tetrafluoroéthylène (TFE); l'hexafluoropropylène (HFP); les perfluoro(alkyl vinyle) éthers tels que le perfluoro(méthyl vinyl)éther (PMVE), le perfluoro(éthyl vinyle) éther (PEVE) et le perfluoro(propyl vinyle) éther (PPVE); le perfluoro(l,3-dioxole); le perfluoro(2,2- diméthyl-l,3-dioxole) (PDD).
Dans le cas d'un film multicouche l'épaisseur globale est située entre 30 et 200 microns. Selon un mode de réalisation, le film multicouche est constitué d'une couche centrale de PVDF modifié avec un modifiant choc cœur - écorce et contenant un agent ignifugeant, et de deux couches externes de PVDF. Ces dernières peuvent avoir la même structure, ou bien elles peuvent avoir des structures différentes.
La répartition des épaisseurs en pourcentage de l'épaisseur finale de la structure est la suivante : couche PVDF modifiée : 20%>-95%>, couche de PVDF non modifiée : 5%- 80%), soit par exemple pour une épaisseur totale de 30 microns et une répartition 70/30: couche PVDF modifiée: 21 microns et couche PVDF non modifiée: 9 microns.
Selon un autre aspect, l'invention concerne les procédés de préparation de films décrits ci-dessus. Les mélanges PVDF/modifîant choc/agent ignifugeant sont obtenus par des techniques de compoundage en milieu fondu connu de l'homme de l'art, comme le BUSS ou la bivis. Les films sont ensuite obtenus par soufflage de gaine ou par la technique du film coulé, ces techniques permettant avantageusement d'obtenir des films de largeurs importantes. Les films peuvent être extrudés à une température comprise entre 200 et 280°C. Le taux de gonflage doit être compris entre 1,2 et 4, de préférence entre 1,5 et 3. Le taux d'étirage doit lui être compris entre 2 et 15, de préférence entre 5 et 10.
Selon un autre aspect, l'invention concerne l'utilisation du film monocouche ou du film multicouche comprenant au moins une couche dudit film monocouche, comme matériau pour la fabrication de films pour les toitures et/ou façades de bâtiments, notamment des bâtiments agricoles comme les bâtiments d'élevage. Ces films présentent alors l'avantage d'avoir une durabilité améliorée combinée à une bonne résistance à la déformation et au feu.
Les exemples suivants illustrent l'invention sans la limiter. Formulations
Les compounds sont réalisés selon les règles de l'art en extrudeuse bivis corotative. Les films sont ensuite réalisés par extrusion à plat à 220°C en utilisant une filière plate d'entrefer 1 mm, et étirés par une calendrette pour ajuster l'épaisseur du produit à la cible désirée (100 μιη).
Matériaux d'étude
Matrice :
Al : Copolymère VDF/HFP ayant un indice de fluidité (« melt flow rate » ou MFR) de 7 g/10min (5kg, 230°C), une température de fusion (Tf) de 142°C et un module de Young de 650 MPa à 23°C, mesuré selon la norme ISO 178. La Tf a été mesurée par DSC ou calorimétrie différentielle à balayage lors d'une montée en température à un rythme de 10°C/ min. L'indice de fluidité est mesuré selon la norme ISO 1133.
A2 : Homopolymère PVDF d'indice de fluidité de 0,14 g/10min (5kg, 230°C) et de point de fusion 168°C. Modifiant choc :
Bl : modifiant choc acrylique Durastrength® D380 de la société Arkema, sous forme de particules cœur-écorce de 250 nm de diamètre. 90% de polyacrylate de butyle partiellement réticulé forme le cœur des particules. L'écorce (10%>) est constituée de copolymère de méthacrylate de méthyle et d'acrylate d'éthyle.
B2 : modifiant choc acrylique Durastrangth® D200 de la société Arkema formé de cœurs de polyacrylate de butyle partiellement réticulé (70%>) entourés d'écorces de copolymère de méthacrylate de méthyle et d'acrylate d'éthyle (30%).
B3 : Particules cœur-écorces de Genioperl® P52 de la société Waker. Les écorces de poly (méthacrylate de méthyle) (30%>) renferment des cœurs de polydiméthyle-siloxane (70%>).
Plastifiant :
C : Dibutyle sebaçate
Ignifugeant :
Dl : Polyacrylate de benzyle penta-bromé FR-1025 de la société ICL D2 : Tungstate de calcium sous forme de poudre de la société Chem-Met.
Les tests réalisés sont les suivants :
Caractérisation de la résistance au feu : le film est placé sur un support vertical et subit une inflammation par une flamme calibrée selon la norme UL94. La flamme est placée à 10 mm sous l'extrémité basse du film et est maintenue pendant 5s. Le temps de persistance de flamme, la surface brûlée ainsi que la présence de goutte enflammée sont relevées. 5 éprouvettes sont analysées pour chaque échantillon. Caractérisation de la résistance à la déchirure à froid : un film d'épaisseur 100 μιη est supporté par un cadre de manière à le tendre en lui appliquant une tension de IN. Un percuteur conique de 980 g est lâché d'une hauteur de 230 mm et transperce l'échantillon. Selon le profil de rupture du film (longue fissure propagée dans le film ou étirement localisé), le caractère fragile ou ductile de la déformation peut être estimé. Ce test est réalisé à différentes températures pour estimer la température de transition ductile/fragile des produits. Exemple 1 : Résistance à la perforation à froid de formulations de référence sans ignifugeant
Comme l'illustrent les exemples 1 à 7 dans le Tableau 1 ci-dessus, le paramètre le plus influant sur la résistance à la perforation des films tient dans le modifiant choc incorporé dans la formulation. Sa fraction massique et sa nature impactent directement le caractère ductile ou fragile de la déformation après impact à froid.
La comparaison des exemples 5 et 8 ainsi que 7 et 9 montre qu'un changement de matrice d'un copolymère VDF/HFP pour un homopolymère PVDF n'a qu'un effet limité sur le comportement en perforation du film.
La présence de plastifiant dans le mélange permet une légère amélioration du comportement ductile du film à basse température mais son effet reste limité comme le montre l'absence de propriété relevée entre les exemples 10 et 11 ainsi que 12 et 13. Le changement de nature du modifiant choc dans ces 2 derniers exemples provoque là aussi une évolution significative de la transition ductile- fragile.
Tableau 1 Exemple 2 : Résistance au feu et maintient des propriétés mécaniques
Tableau 2
* La valeur de 5890 mm2 correspond à la combustion de la totalité de l'échantillon analysé
Les résultats obtenus sont montrés dans le Tableau 2. Ces résultats montrent que l'ajout de 2% ou de 3% d'ignifugeant (c'est-à-dire un rapport de 2/15 ou de 1/5 avec la quantité de modifiant choc) dans la formulation de film permet de rétablir la résistance au feu du film à un niveau équivalent à celui de la matrice pure.
La résistance au feu intrinsèque des films est dégradée par la présence des particules de modifiant choc qui sont dispersées dans l'échantillon, comme l'illustre les exemples 1 à 5. L'ajout d'ignifugeants spécifiques dans la formulation de film permet d'atteindre simultanément une résistance au feu élevé du film et une basse température de transition ductile fragile à basse température comme le montrent les exemples 14 à 17.

Claims

REVENDICATIONS
1. Film polymère monocouche comprenant une matrice de polyfluorure de vinylidène (PVDF), au moins un modifiant choc cœur - écorce et un agent ignifugeant, dans lequel le taux massique de modifiant choc varie entre 2,5% et moins de 40%.
2. Film selon la revendication 1 dans lequel le taux massique de modifiant choc est supérieur à 5% et inférieur ou égal à 30%.
3. Film selon l'une des revendications 1 et 2 dans lequel le rapport de la quantité d'ignifugeant par rapport à celle de modifiant choc est compris entre 1/30 et 1/1, préférentiellement entre 1/15 et 1/7.
4. Film selon l'une des revendications 1 à 3 dans lequel la matrice de PVDF est constituée d'un PVDF homopolymère ou d'un copolymère préparé par copolymérisation du fluorure de vinylidène avec un comonomère fluoré choisi parmi : le fluorure de vinyle; le trifluoroéthylène; le chlorotrifluoroethylène le 1 ,2- dif uoroéthylène; le tetraf uoroéthylène; l'hexafluoropropylène; les perfluoro(alkyl vinyle) éthers choisis parmi le perfluoro(méthyl vinyl)éther, le perfluoro(éthyl vinyle) éther (PEVE) et le perfluoro(propyl vinyle) éther ; le perfluoro(l,3- dioxole); et le perfluoro(2,2-diméthyle-l,3-dioxole).
5. Film selon l'une des revendications 1 à 4 dans lequel le modifiant choc contient un cœur en élastomère et au moins une écorce thermoplastique.
6. Film selon la revendication 5 dans lequel le cœur est composé de poly(organo- siloxane) portant un ou plusieurs radicaux choisis parmi les radicaux alkyles ou vinyle comptant de 1 à 18 carbones, les radicaux aryles et les hydrocarbones substitués.
7. Film selon la revendication 5 dans lequel le cœur comprend un polymère choisi parmi les homopolymères de l'isoprène ou du butadiène, les copolymères de l'isoprène avec au plus 30%> en moles d'un monomère vinylique et les copolymères du butadiène avec au plus 30%> en moles d'un monomère vinylique, les homopolymères d'un (méth)acrylate d'alkyle et les copolymères d'un (méth)acrylate d'alkyle avec au plus 30% en moles d'un monomère choisi parmi un autre (méth)acrylate d'alkyle et un monomère vinylique, le monomère vinylique étant le styrène, un alkylstyrène, l'acrylonitrile, le butadiène ou l'isoprène.
8. Film selon la revendication 6 dans lequel l'écorce est formée de polymères ou de copolymères issus de monomères choisis parmi les acrylates ou méthacrylates d'alkyle, l'alkyle possédant entre 1 et 4 carbones, Pacrylonitrile, le styrène, le vinylstyrène, le vinyle propionate maléimide, le chlorure de vinyle, l'éthylène, le butadiène, l'isoprène et le chloroprène.
9. Film selon l'une des revendications 5 ou 7 dans lequel ledit cœur est réticulé en tout ou partie au moyen d'un monomère au moins difonctionnel choisi parmi les esters poly(méth)acryliques de polyols, le divinylbenzène, le trivinylbenzène, l'acrylate de vinyle et le méthacrylate de vinyle, ou au moyen d'un monomère fonctionnel insaturé choisi parmi les anhydrides d'acides carboxyliques insaturés, les acides carboxyliques insaturés et les époxydes insaturés.
10. Film selon la revendication 5 dans lequel le cœur est un matériau de type caoutchouc flexible combiné avec un caoutchouc contenant du polysiloxane, ledit caoutchouc flexible étant préparé par polymérisation d'un ou plusieurs monomères vinyliques en présence d'un polymère de type caoutchouc obtenu à partir des acrylates d'alkyle ou des méthacrylates d'alkyle, dans lesquels le groupe alkyle contient de 2 à 10 atomes de carbone.
11. Film selon l'une des revendications 5, 7, 9 ou 10 dans lequel l'écorce ou les écorces sont des homopolymères du styrène, d'un alkylstyrène ou du méthacrylate de méthyle ou des copolymères comprenant au moins 70% en moles de l'un de ces monomères précédents et au moins un comonomère choisi parmi les monomères restants, un autre (méth)acrylate d'alkyle, l'acétate de vinyle et l'acrylonitrile.
12. Film selon l'une quelconque des revendications précédentes ayant une épaisseur située entre 30 et 200 microns, de préférence entre 80 et 150 microns.
13. Film selon l'une quelconque des revendications précédentes, ledit film comprenant au moins un additif choisi parmi : les agents matifiants, les agents opacifiants, les homo ou copolymères acryliques, les plastifiants et les agents réfléchissant les rayonnements infrarouges choisis parmi les oxydes de titane, les pigments nacrés à base de mica et d'oxyde de titane et les alliages métalliques.
14. Film selon l'une quelconque des revendications précédentes dans lequel l'agent ignifugeant est sélectionné parmi les ignifugeants halogénés, les ignifugeants phosphorés, les tungstates de calcium, et les silicates d'aluminium.
15. Film multicouche comprenant au moins une couche d'un film selon l'une quelconque des revendications 1 à 14 et au moins une couche de PVDF.
16. Film selon la revendication 15 consistant en une couche interne selon l'une des revendications 1 à 14 et deux couches externes de PVDF, lesdites couches externes ayant une structure identique ou différente.
17. Utilisation du film selon l'une des revendications 1 à 14 ou du film selon l'une des revendications 15 ou 16 comme matériau pour la fabrication de films pour les toitures et/ou façades de bâtiments, notamment des bâtiments agricoles comme les bâtiments d'élevage.
EP14830819.0A 2013-12-18 2014-12-17 Film pvdf résistant a la déchirure a basse température et ininflammable Withdrawn EP3083780A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362876A FR3014878B1 (fr) 2013-12-18 2013-12-18 Film pvdf resistant a la dechirure a basse temperature et ininflammable
PCT/FR2014/053399 WO2015092282A1 (fr) 2013-12-18 2014-12-17 Film pvdf résistant a la déchirure a basse température et ininflammable

Publications (1)

Publication Number Publication Date
EP3083780A1 true EP3083780A1 (fr) 2016-10-26

Family

ID=50289962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14830819.0A Withdrawn EP3083780A1 (fr) 2013-12-18 2014-12-17 Film pvdf résistant a la déchirure a basse température et ininflammable

Country Status (11)

Country Link
US (1) US20180163041A1 (fr)
EP (1) EP3083780A1 (fr)
JP (1) JP2017502136A (fr)
KR (1) KR20160101995A (fr)
CN (1) CN105814122A (fr)
AU (1) AU2014369588B2 (fr)
CA (1) CA2933636A1 (fr)
FR (1) FR3014878B1 (fr)
IL (1) IL246198A0 (fr)
MX (1) MX2016007847A (fr)
WO (1) WO2015092282A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774208B2 (en) * 2015-03-11 2020-09-15 Arkema Inc. High impact blends of vinylidene fluoride-containing polymers
JP6712445B2 (ja) * 2015-05-27 2020-06-24 株式会社バルカー 熱可塑性フッ素樹脂組成物、及び架橋体の製造方法
FR3070042B1 (fr) 2017-08-09 2020-08-21 Arkema France Transistor organique a effet de champ contenant une couche dielectrique a haute permittivite dielectrique et stable en temperature
FR3070041B1 (fr) * 2017-08-09 2019-08-30 Arkema France Formulations a base de fluoropolymeres electroactifs et leurs applications
US11952471B2 (en) * 2019-09-20 2024-04-09 Korea Advanced Institute Of Science And Technology Ultrathin and stretchable polymer dielectric and its formation method
CN116948238B (zh) * 2023-07-20 2024-01-30 嘉兴高正新材料科技股份有限公司 一种超耐低温耐紫外透明聚偏氟乙烯薄膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070185270A1 (en) * 2004-05-14 2007-08-09 Roehm Gmbh Polymer mixture consisting of an impact-resistance modified poly (meth) acrylate and a fluoropolymer
US20070225430A1 (en) * 2004-05-17 2007-09-27 Daikin Industries Ltd. Thermoplastic Polymer Composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2995790B2 (ja) * 1990-03-19 1999-12-27 ジェイエスアール株式会社 熱可塑性樹脂組成物
EP0884358B1 (fr) * 1997-06-12 2003-07-23 Atofina Compositions à base de poly(fluorure de vinylidène), souples et résilientes, leur procédé de préparation
KR100638434B1 (ko) * 2004-10-25 2006-10-24 주식회사 엘지화학 우수한 착색성을 갖는 실리콘-아크릴계 충격보강제 및이를 포함하는 열가소성 수지조성물
KR100838451B1 (ko) * 2005-12-30 2008-06-16 제일모직주식회사 내열도가 높고, 내충격성이 우수한 난연성 폴리카보네이트수지 조성물
DE102007007336A1 (de) * 2007-02-14 2008-08-21 Wacker Chemie Ag Redispergierbare Kern-Schale Polymere und ein Verfahren zu deren Herstellung
FR2935706A1 (fr) * 2008-09-08 2010-03-12 Arkema France Composition fluoree pour tuyau offshore
JP2011195721A (ja) * 2010-03-19 2011-10-06 Fuji Xerox Co Ltd 改質剤、樹脂組成物、及び樹脂成形体
FR2958206A1 (fr) 2010-03-30 2011-10-07 Arkema France Films fluores multicouche

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070185270A1 (en) * 2004-05-14 2007-08-09 Roehm Gmbh Polymer mixture consisting of an impact-resistance modified poly (meth) acrylate and a fluoropolymer
US20070225430A1 (en) * 2004-05-17 2007-09-27 Daikin Industries Ltd. Thermoplastic Polymer Composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015092282A1 *

Also Published As

Publication number Publication date
JP2017502136A (ja) 2017-01-19
WO2015092282A1 (fr) 2015-06-25
KR20160101995A (ko) 2016-08-26
CA2933636A1 (fr) 2015-06-25
FR3014878B1 (fr) 2015-12-18
US20180163041A1 (en) 2018-06-14
FR3014878A1 (fr) 2015-06-19
AU2014369588A1 (en) 2016-06-30
AU2014369588B2 (en) 2018-01-04
CN105814122A (zh) 2016-07-27
MX2016007847A (es) 2017-02-13
IL246198A0 (en) 2016-07-31

Similar Documents

Publication Publication Date Title
CA2909485C (fr) Film fluore
EP3083780A1 (fr) Film pvdf résistant a la déchirure a basse température et ininflammable
EP3055357A1 (fr) Composition fluoree contenant un absorbeur uv et son utilisation en tant que couche protectrice transparente
TW200920770A (en) PMMA/PVDF foil with particularly high weathering resistance and high UV-protective action
US20050187354A1 (en) Composition Coextrudable with PVDF and having no stress-whitening effect
JP4809614B2 (ja) 応力下で白化しないpvdfと一緒に共押出し可能な組成物
EP2627705A1 (fr) Film a base de polymere fluore pour application photovoltaïque
WO2011121228A1 (fr) Films fluores multicouche
WO2012146880A1 (fr) Utilisation d'une structure multicouche pvc/polymere fluore pour la protection arriere des panneaux solaires
WO2011086318A1 (fr) Film a base de polymere fluore sans odeur acrylique pour application photovoltaïque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEVISME, SAMUEL

Inventor name: FLAT, JEAN-JACQUES

Inventor name: FINE, THOMAS

Inventor name: VERET, EMMANUEL

Inventor name: ABGRALL, FLORENT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190924

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603