EP3080305A1 - Procédé pour réduire les émissions de co2, lors du fonctionnement d'une usine siderurgique - Google Patents

Procédé pour réduire les émissions de co2, lors du fonctionnement d'une usine siderurgique

Info

Publication number
EP3080305A1
EP3080305A1 EP14815577.3A EP14815577A EP3080305A1 EP 3080305 A1 EP3080305 A1 EP 3080305A1 EP 14815577 A EP14815577 A EP 14815577A EP 3080305 A1 EP3080305 A1 EP 3080305A1
Authority
EP
European Patent Office
Prior art keywords
gas
blast furnace
production
converter
steelworks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14815577.3A
Other languages
German (de)
English (en)
Inventor
Reinhold ACHATZ
Jens Wagner
Markus Oles
Peter SCHMÖLE
Ralph Kleinschmidt
Christoph Meissner
Denis KROTOV
Olaf Von Morstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
Original Assignee
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG filed Critical ThyssenKrupp AG
Publication of EP3080305A1 publication Critical patent/EP3080305A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/26Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to a method for reducing CO2 emissions during operation of a metallurgical plant comprising at least one blast furnace for pig iron production and a converter steelworks for crude steel production.
  • blast furnace Iron ores, aggregates and coke and other reducing agents such as coal, oil, gas, biomass, recycled waste plastics or other substances containing carbon and / or hydrogen are used in the blast furnace to produce pig iron.
  • the products of the reduction reactions are inevitably CO, CO 2 , hydrogen and water vapor.
  • a blast-furnace top gas withdrawn from the blast furnace process often has a high nitrogen content in addition to the abovementioned constituents.
  • the amount of gas and the composition of the blast furnace gas depends on the feedstock and the operation and is subject to fluctuations. However, blast furnace top gas typically contains 35 to 60% by volume of N 2> 20 to 30% by volume of CO, 20 to 30% by volume of CO 2 and 2 to 15% by volume of H 2 .
  • About 30 to 40% of the blast-furnace top gas produced in the production of pig iron is generally used for heating the hot blast for the blast furnace process in blast furnaces; the remaining blast furnace gas can be used in other areas of the plant for heating purposes or to generate electricity.
  • pig iron is converted to crude steel. Inflating oxygen to molten pig iron removes interfering contaminants such as carbon, silicon, sulfur and phosphorus. Since the oxidation processes cause a strong evolution of heat, scrap is often added in amounts of up to 25% based on the pig iron as a coolant. Further, lime for slag formation and alloying agent are added. From the steel converter, a converter gas is withdrawn, which has a high content of CO and also contains nitrogen, hydrogen and CO 2 .
  • a typical converter gas composition comprises 50 to 70% by volume CO, 10 to 20% by volume N 2 , about 15% by volume CO 2 and about 2% by volume H 2 . The converter gas is
  • CONFIRMATION COPY either flared or caught in modern steelworks and fed to an energetic use.
  • An improvement in the C0 2 emissions in the iron and steel making is according to the prevailing doctrine requires process changes that affect the operation of the blast furnace. These include, for example, a nitrogen-free operation of the blast furnace, in which instead of a hot blast cold oxygen is blown in the blow mold and the majority of the blast furnace gas is supplied to CO 2 . It has also been proposed to heat the blast furnace with plasma. The process of the plasma-heated blast furnace requires neither hot air nor oxygen and no additional replacement reducing agent. However, the introduction of new blast furnace processes is a serious encroachment on the proven technology of pig iron and crude steel production and involves considerable risks. against this background, the object of the invention is to improve the CO 2 balance of a metallurgical plant which has a conventionally operated blast furnace for producing pig iron and a conventionally operated converter steelwork.
  • synthesis gas is generated from at least a subset of the blast-furnace top gas produced in the blast furnace in the blast furnace and / or a subset of the converter gas resulting from the crude steel production, which gas is used to produce chemical products.
  • the energy demand of the steelworks is no longer covered and is covered according to the invention at least in part by using electric power, which is obtained from renewable energy.
  • the smelting works is operated in conjunction with a coke oven plant, it is expedient to use at least a subset of a coke oven gas falling in the coke oven plant for producing syngas.
  • 1% to 60%, preferably a proportion of 10 to 60%, of the raw gases which are obtained as blast-furnace top gas and converter gas or as blast-furnace top gas, converter gas and coke-oven gas is used for synthesis gas production.
  • the synthesis gas production expediently includes gas purification and gas conditioning, wherein for gas conditioning, for example, a steam reforming with water vapor and / or a partial oxidation with air or oxygen and / or a water-gas shift reaction for the conversion of CO can be used.
  • the conditioning steps may be used singly or in combination.
  • the synthesis gas produced by the process according to the invention is a gas mixture which is used for the synthesis.
  • the term "synthesis gas" includes, for example, gas mixtures of N 2 and H 2 for ammonia synthesis and, above all, gas mixtures which mainly contain CO and H 2 or CO 2 and H 2 or CO, CO 2 and H 2 . From the synthesis gases chemical products can be produced in a chemical plant, which each contain the components of the educt. Chemical products may be, for example, ammonia or methanol or other hydrocarbon compounds.
  • a synthesis gas which contains nitrogen and hydrogen in the correct ratio.
  • the nitrogen can be obtained from blast furnace gas.
  • blast furnace gas or converter gas can be used as the hydrogen source, wherein hydrogen is converted by conversion of the CO fraction by a water-gas shift reaction (CO + H 2 O CO 2 + H 2 ) is generated.
  • a synthesis gas for ammonia synthesis a mixture of coke oven gas and blast furnace gas or a mixed gas of coke oven gas, converter gas and blast furnace gas can be used.
  • a synthesis gas consisting essentially of CO and / or CO 2 and H 2 which contains the components carbon monoxide and / or carbon dioxide and hydrogen in the correct ratio.
  • the ratio is often described by the module (H 2 -CO 2 ) / (CO + CO 2 ).
  • the hydrogen can be generated, for example, by converting the CO fraction in the blast furnace gas by a water-gas shift reaction.
  • Converter gas can be used to provide CO.
  • the CO 2 source can be blast furnace gas and / or converter gas.
  • For the production of hydrocarbon compounds is also a mixed gas of coke oven gas and converter gas or a mixed gas of coke oven gas, converter gas and blast furnace gas.
  • a biotechnological plant can be used within the scope of the invention.
  • This is a plant for the fermentation of synthesis gas.
  • synthesis gas are preferably to be understood with a high CO content, with which alcohols, acetone, or organic acids can be prepared in this case, mixtures of CO and H 2.
  • the hydrogen essentially comes from the water used as a medium during fermentation.
  • Converter gas is preferably used as the CO source.
  • the use of blast furnace gas or a mixed gas of converter gas and blast furnace gas is also possible.
  • the use of coke oven gas is unfavorable for a biotechnological process.
  • a further embodiment of the method according to the invention provides that synthesis gas is enriched with hydrogen, which is produced by electrolysis of water, wherein also electric power from renewable energy is used for the electrolysis of water.
  • the steelworks can be operated in an electrical network with an energy storage, which is fed with electricity from renewable energy and the stored energy with a time delay returns to electrical consumers of the steelworks.
  • the steelworks is used in conjunction with a power plant, which is designed as a gas turbine power plant or gas turbine steam turbine power plant and is operated with a part of the steel mill as blast furnace gas, converter gas or coke oven gas resulting gases.
  • the plant network including the power plant is designed so that the power plant can be used in stand-by mode and at least temporarily shut down.
  • the power plant can be used when the chemical plant or a biotechnological plant is out of service or the energy from regenerative sources or stored in an energy storage temporarily insufficient to meet the energy needs of the mill.
  • the energy store can be designed as a chemical or electrochemical storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

L'invention concerne un procédé pour réduire les émissions de CO2 lors du fonctionnement d'une usine sidérurgique qui comprend au moins un haut-fourneau pour la production de fonte brute et un convertisseur pour la production d'acier brut. Selon l'invention, à partir d'au moins une partie du gaz de haut-fourneau produit lors de la production de fonte brute dans le haut-fourneau et/ou une partie du gaz de convertisseur produit lors de la production d'acier brut, on produit un gaz de synthèse qui est utilisé pour la fabrication de produits chimiques. Parallèlement, les besoins en énergie de l'usine sidérurgique sont couverts au moins en partie au moyen du courant électrique obtenu à partir d'énergie renouvelable.
EP14815577.3A 2013-12-12 2014-12-11 Procédé pour réduire les émissions de co2, lors du fonctionnement d'une usine siderurgique Withdrawn EP3080305A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013113942.6A DE102013113942A1 (de) 2013-12-12 2013-12-12 Verfahren zur Reduzierung von CO2-Emissionen beim Betrieb eines Hüttenwerks
PCT/EP2014/003314 WO2015086148A1 (fr) 2013-12-12 2014-12-11 Procédé pour réduire les émissions de co2 lors du fonctionnement d'une usine sidérurgique

Publications (1)

Publication Number Publication Date
EP3080305A1 true EP3080305A1 (fr) 2016-10-19

Family

ID=52134102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14815577.3A Withdrawn EP3080305A1 (fr) 2013-12-12 2014-12-11 Procédé pour réduire les émissions de co2, lors du fonctionnement d'une usine siderurgique

Country Status (13)

Country Link
US (1) US20160319381A1 (fr)
EP (1) EP3080305A1 (fr)
KR (3) KR20220054444A (fr)
CN (1) CN105960470A (fr)
AU (1) AU2014361203B2 (fr)
BR (1) BR112016012587B1 (fr)
CA (1) CA2930342A1 (fr)
DE (1) DE102013113942A1 (fr)
MX (1) MX2016006971A (fr)
RU (1) RU2693980C2 (fr)
TW (1) TWI660072B (fr)
UA (1) UA119337C2 (fr)
WO (1) WO2015086148A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113913A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113958A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113933A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
DE102013113921A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113950A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
CA3069817A1 (fr) 2017-07-25 2019-01-31 Haldor Topsoe A/S Procede de preparation de gaz de synthese d'ammoniac
LU100453B1 (en) * 2017-09-25 2019-03-29 Wurth Paul Sa Method for Producing a Synthesis Gas, in particular for use in Blast Furnace Operation
DE102018211104A1 (de) * 2018-07-05 2020-01-09 Thyssenkrupp Ag Verfahren und Einrichtung zum Betrieb einer Produktionsanlage
EP3670705B1 (fr) 2018-12-21 2022-02-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de conversion de dioxyde de carbone
RU2734215C1 (ru) * 2020-04-16 2020-10-13 Автономная некоммерческая организация «Научно-исследовательский институт проблем экологии» Способ выплавки чугуна в доменной печи
CN112662824A (zh) * 2020-12-18 2021-04-16 昆明理工大学 一种高效利用冶金废气的高炉富氢冶炼工艺
CN114657317B (zh) * 2022-03-24 2023-03-28 鞍山市恒成设备制造有限公司 一种低碳冶金方法
WO2023217703A1 (fr) 2022-05-11 2023-11-16 Topsoe A/S Procédé et installation de production de combustibles renouvelables
KR20240058008A (ko) 2022-10-25 2024-05-03 한국화학연구원 제철 부생가스를 이용하여 플라스틱 원료를 제조하는 방법
CN115807143B (zh) * 2022-12-20 2024-06-11 中冶赛迪工程技术股份有限公司 一种高炉煤气动态调控方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454853A (en) * 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel
WO2011018124A1 (fr) * 2009-08-13 2011-02-17 Silicon Fire Ag Procédé et installation de production d'une ressource énergétique à base d'hydrocarbure en utilisant une fraction de méthanol produit par régénération et une fraction de méthanol qui est produit par oxydation directe ou par oxydation partielle ou par reformage
WO2013037444A1 (fr) * 2011-09-15 2013-03-21 Linde Aktiengesellschaft Procédé de récupération d'oléfines à partir de gaz de fourneaux d'aciéries

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3515250A1 (de) * 1985-04-27 1986-10-30 Hoesch Ag, 4600 Dortmund Verfahren zur herstellung von chemierohstoffen aus koksofengas und huettengasen
AT385051B (de) * 1986-08-07 1988-02-10 Voest Alpine Ag Huettenwerk und verfahren zur erzeugung von stahl
US6030430A (en) * 1998-07-24 2000-02-29 Material Conversions, Inc. Blast furnace with narrowed top section and method of using
WO2006013455A1 (fr) * 2004-08-03 2006-02-09 Hylsa, S.A. De C.V. Procédé et appareil de production de gaz réducteurs propres à partir de gaz de four à coke
RU2353036C1 (ru) * 2008-05-12 2009-04-20 Юрий Петрович Баталин Способ электроэнергоснабжения потребителя
DE102011077819A1 (de) * 2011-06-20 2012-12-20 Siemens Aktiengesellschaft Kohlendioxidreduktion in Stahlwerken
EP2660547A1 (fr) * 2012-05-03 2013-11-06 Siemens Aktiengesellschaft Installation métallurgique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454853A (en) * 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel
WO2011018124A1 (fr) * 2009-08-13 2011-02-17 Silicon Fire Ag Procédé et installation de production d'une ressource énergétique à base d'hydrocarbure en utilisant une fraction de méthanol produit par régénération et une fraction de méthanol qui est produit par oxydation directe ou par oxydation partielle ou par reformage
WO2013037444A1 (fr) * 2011-09-15 2013-03-21 Linde Aktiengesellschaft Procédé de récupération d'oléfines à partir de gaz de fourneaux d'aciéries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015086148A1 *

Also Published As

Publication number Publication date
DE102013113942A1 (de) 2015-06-18
BR112016012587B1 (pt) 2021-04-20
CA2930342A1 (fr) 2015-06-18
US20160319381A1 (en) 2016-11-03
TWI660072B (zh) 2019-05-21
TW201546331A (zh) 2015-12-16
RU2693980C2 (ru) 2019-07-08
WO2015086148A1 (fr) 2015-06-18
CN105960470A (zh) 2016-09-21
KR20220054444A (ko) 2022-05-02
AU2014361203A1 (en) 2016-06-30
KR20160098339A (ko) 2016-08-18
BR112016012587A2 (pt) 2017-08-08
UA119337C2 (uk) 2019-06-10
AU2014361203B2 (en) 2019-01-31
KR20210038695A (ko) 2021-04-07
MX2016006971A (es) 2017-01-20

Similar Documents

Publication Publication Date Title
WO2015086148A1 (fr) Procédé pour réduire les émissions de co2 lors du fonctionnement d'une usine sidérurgique
EP3080310B1 (fr) Réseau d'installations pour la production d'acier et procédé pour faire fonctionner ce réseau d'installations
EP3080309B1 (fr) Ensemble d'installations permettant la production d'acier et procédé permettant de faire fonctionner l'ensemble d'installations
EP3080307B1 (fr) Procédé de production de gaz de synthèse en liaison avec une usine sidérurgique
EP3080308B1 (fr) Réseau d'installations pour la production d'acier et procédé pour faire fonctionner ce réseau d'installations
EP3080306B1 (fr) Ensemble d'installations permettant la production d'acier et procédé permettant de faire fonctionner l'ensemble d'installations
EP3802889A1 (fr) Réseau d'installations de production d'acier ainsi que procédé de fonctionnement du réseau d'installations
DE102009022510B4 (de) Verfahren zur gleichzeitigen Herstellung von Eisen und eines CO und H2 enthaltenden Rohsynthesegases
DE102020116425A1 (de) Verfahren zur Herstellung von Rohstahl mit niedrigem N-Gehalt
DE102016209027A9 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102016209028A1 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102016209026A1 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102016209037A1 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102016209029A1 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181002

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VON MORSTEIN, OLAF

Inventor name: MEISSNER, CHRISTOPH

Inventor name: KLEINSCHMIDT, RALPH

Inventor name: WAGNER, JENS

Inventor name: ACHATZ, REINHOLD

Inventor name: SCHMOELE, PETER

Inventor name: KROTOV, DENIS

Inventor name: OLES, MARKUS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240416