EP3079142B1 - Method for displaying images on a matrix screen - Google Patents

Method for displaying images on a matrix screen Download PDF

Info

Publication number
EP3079142B1
EP3079142B1 EP16164462.0A EP16164462A EP3079142B1 EP 3079142 B1 EP3079142 B1 EP 3079142B1 EP 16164462 A EP16164462 A EP 16164462A EP 3079142 B1 EP3079142 B1 EP 3079142B1
Authority
EP
European Patent Office
Prior art keywords
rows
memory
bit
bits
duration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16164462.0A
Other languages
German (de)
French (fr)
Other versions
EP3079142A1 (en
Inventor
Josep Segura Puchades
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3079142A1 publication Critical patent/EP3079142A1/en
Application granted granted Critical
Publication of EP3079142B1 publication Critical patent/EP3079142B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0857Static memory circuit, e.g. flip-flop
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0224Details of interlacing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed

Definitions

  • the invention relates to a method for displaying images on an active matrix screen.
  • This type of screen has been widely developed in recent years, in particular for screens of the liquid crystal type known by their Anglo-Saxon abbreviation: LCD. More recently other types of screens using light-emitting diodes have been developed, in particular using organic diodes or micro diodes, known by their English abbreviation: OLED, respectively ⁇ LED.
  • Each of the pixels of an active matrix screen contains at least one transistor which acts as a switch connected to a storage component which makes it possible to store a useful signal for the duration of a frame. In the case of a liquid crystal display, these two elements are sufficient to excite the crystal. In the case of a diode screen, each pixel contains a second transistor which makes it possible to control the supply of the light-emitting diode as a function of the useful signal stored in the storage component.
  • each pixel receives, via its transistor, a voltage representative of the brightness that the pixel must display.
  • This voltage is stored in the storage component, for example a capacitor.
  • the voltage is directly applied to the electrodes surrounding the liquid crystal.
  • the voltage is applied to the second transistor configured as a follower to supply the diode in proportion to the stored voltage.
  • Analog control has several drawbacks: Voltage leaks at the capacitor may occur during the frame time. This results in a flickering phenomenon (known in the Anglo-Saxon literature under the name of "flickering") which is amplified under the influence of the temperature during the duration of the frame.
  • the voltages pass through conductors of the matrix, generally column conductors.
  • the voltage variations occurring on the column conductors can disturb the pixels of the other unaddressed lines, by capacitive coupling between the column conductors and the unaddressed storage capacitors. This results in artifacts in the displayed image.
  • the light-emitting diodes may require a high bias voltage.
  • the entire pixel must be compatible with this voltage.
  • the voltage stored in the capacitor must then be equal to the bias voltage of the diode to which the gate-source voltage of the second transistor is added.
  • Current CMOS technologies being limited to around 5V, the voltage applied to the light-emitting diode is then capped at less than 4V, which can represent a limitation of the achievable performance in terms of screen brightness.
  • the diode supply follower transistors may have non-uniform characteristics which causes a phenomenon of spatial noise in the display, because for the same control voltage for separate pixels, the polarization of the diode can then vary from one pixel to another.
  • the follower transistor works in saturated mode and it must absorb a voltage difference inversely proportional to the illumination of the light-emitting diode.
  • the power dissipated in this transistor causes significant heating, which can cause heat dissipation problems, especially when this transistor is implanted in an internal layer of the screen.
  • the control of the diodes of each of the pixels is ensured, for digital control, in all or nothing, that is to say, the diode is either connected at its maximum voltage, therefore on, or disconnected, therefore extinct.
  • the brightness of the diode is controlled by modulating the width of the pulse applied between its terminals.
  • the visual perception, because of the inertia of the eye, is the average of the sum of all the times of lighting of the diode.
  • the command is binary. It applies two possible voltage levels to the gate of the second transistor, which works in switch mode. The amplitude between these two levels must be sufficient to block or not block the second transistor, which can be achieved with relatively low voltage values.
  • the main drawback of digital control is the high operating frequency of the matrix. Indeed, to modulate the pulse width on the light-emitting diode of each pixel, it is necessary to address each pixel and therefore each line several times per frame.
  • the brightness of a pixel is coded in the form of a binary word.
  • Each bit of the binary word controls the diode for a duration proportional to the weight of the bit.
  • the light-emitting diode is controlled for a time proportional to the weight of the bit of the value to be displayed.
  • the most significant bit (MSB) drives the diode for half the duration of the frame (for example 10 ms for a frequency of 50 images / second).
  • the next bit (MSB-1) represents a quarter of this duration, and so on up to the least significant bit (LSB).
  • the diode is lit when the value of a bit is 1 and is off when the value of a bit is 0.
  • the opposite convention is of course possible.
  • the frequency F pix at which one must write in each of the pixels of a line is the frequency F line multiplied by the number of pixels per line which corresponds to the number of columns N col of the matrix:
  • F pix F line * NOT collar
  • the frequency F pix is then greater than 15GHz and for a format of 1920 columns by 1200 lines, format known as WUXGA, still for 10-bit coding, the frequency F pix is then 118GHz.
  • WUXGA format of 1920 columns by 1200 lines
  • the invention aims to overcome all or part of the problems mentioned above by proposing a digital control method making it possible to reduce the frequency of addressing of the pixels.
  • the invention relates to an image display method as defined by claim 1.
  • the dependent claims define other embodiments of the display method.
  • i represents a line pointer which increments with each write and the complete sequence of writes is carried out after 2 P -1 writes.
  • the entries made on lines i + 2 j occupy a period T i .
  • the 2 P -1 periods T i have equal durations.
  • the duration of a period T i is equal to the duration of an image frame divided by 2 P -1.
  • each of the pixels further comprises a switch making it possible to control the display component as a function of a state of the bit written in the memory.
  • the switch is actuated to control the display component as a function of the bit written in the memory for a period extending between two successive writes.
  • the method can also consist, for each of the pixels, in activating the display component after writing to the corresponding memory.
  • the writes to lines i + 2 j made from the current line i are made during a period.
  • the display component is activated for a duration extending from the end of the period during which the bit of brightness was written until the end of the next period during which a new writing is carried out in the pixel concerned.
  • each pixel is called the first memory.
  • Each pixel advantageously includes a second binary memory making it possible to transmit the bit written in the first memory to the display component to activate it.
  • the addressing means control the first memory by means of a first signal allowing the writing and control the second memory by means of a second signal distinct from the first signal and allowing the activation of the display component.
  • the matrix is divided into zones controlled separately, each of the zones having a number of lines less than or equal to 2 S -1.
  • the binary word contains only value bits corresponding to an extinction of the display component.
  • the figure 1 represents a matrix screen 10 comprising a display area 11 formed of pixels 12 organized in rows and columns, a line addressing circuit 13 and a horizontal register 14. Each pixel 12 lights up as a function of a luminosity datum expressed in the form of a binary word.
  • the line addressing circuit 13 selects the lines of the matrix one by one and for each pixel 12 of a selected line, the binary word stored in the horizontal register 14 and representing the brightness is transferred bit by bit to the pixel 12 corresponding.
  • the Figures 2a, 2b and 2c represent three examples of 12 pixel schemes that can be implemented in the screen of the figure 1 . These three examples of pixels can be implemented in a monochrome or color screen. For a color screen, we sometimes use the name "color pixel" which is actually formed by juxtaposition of several pixels each associated with a color filter. Each group of pixels receives separate brightness controls for each color.
  • the method of the invention is illustrated from pixels implemented in a monochrome screen and can be transposed to the control of a color screen by replicating the command of each of the elementary pixels forming the color pixel.
  • the figure 2a schematically represents the main components of a pixel 12a with liquid crystals.
  • the pixel 12a comprises a switch 20, a storage capacitor 21 and a liquid crystal cell 22.
  • the pixel 12a is connected to a column conductor 23 carrying the brightness data coming from the horizontal register 14.
  • the switch 20, for example formed by a transistor, makes it possible to transfer the brightness data from the column conductor 23 to the capacitor 21.
  • the pixel 12a is also connected to a line conductor 24 connected to the line addressing circuit 13.
  • the switch 20 is controlled by the line conductor 24.
  • the data stored in the capacitor 21 forms a voltage directly applied to one of the electrodes of the cell 22.
  • the data stored in the capacitor 21 is binary. One of the binary states makes cell 22 transparent and the other state makes cell 22 opaque. In the case of a backlit screen 10, the cell 22 therefore lets light pass as a function of the binary state of the data stored in the capacitor 21.
  • the cell operates in all or nothing mode as a function of the binary state of the
  • FIG 2b schematically represents the main components of a pixel 12b with light-emitting diode.
  • pixel 12b includes a light-emitting diode 25 and a second switch 26 allowing supply the diode 25 by means of a supply voltage V DD .
  • the switch 26 can also be a transistor. The switch 26 is controlled by the data stored in the capacitor 21.
  • the figure 2c represents a pixel 12c forming a variant of pixel 12b.
  • the capacitor 21 is replaced by a binary memory 27.
  • This memory makes it possible to store binary information.
  • the binary memory can be formed by a flip-flop connected to its input to the column conductor 23 and to its output to the control terminal of the switch 26.
  • the memory 27 is controlled by the line conductor 24. The modification of the information stored in memory 27 occurs during a command carried on the line conductor 24.
  • Such a memory can also be implemented for a liquid crystal pixel in replacement of the capacitor 21 of the pixel 12a.
  • the implementation of a memory can be advantageous for a matrix comprising pixels produced using CMOS technology.
  • the switches 20 and 26 as well as the memory 27 then all use the same technology.
  • the term memory will be used as well for a capacitor as for any other component or block of component making it possible to memorize binary information.
  • the capacitor 21 is assimilated to a memory.
  • the invention can be implemented for any type of pixel making it possible to emit light such as those comprising a light-emitting diode, to control the light passing through it such as those comprising a liquid crystal cell or to control the reflection of light like those implemented in a screen or a projector based on micro-mirrors. Subsequently the component of the pixel used to emit or control the light will be called the display component.
  • the brightness control of a pixel is done by means of a binary word representing a fraction of the maximum brightness of the pixel.
  • each pixel is assigned a brightness value coded in the form of a binary word.
  • the different bits of the binary word are written in the memory of the pixel and used by the display component operating all or nothing during a fraction of the duration of the image. This fraction of time depends on the weight of the bit in the binary word.
  • the most significant bit is used by the display component for substantially half of the duration of an image, the next bit for the quarter of the duration of the image and so on by dividing the fraction by two up to 'to the least significant bit.
  • Screen 10 allows for example to display 50 images per second.
  • the retinal persistence of a user makes it possible to average these fractions of duration to reconstitute the average brightness of the pixel.
  • the method of the invention consists in writing line by line the different bits of the binary words in the different memories of the corresponding pixels so as to reduce the writing frequency necessary to scan the whole matrix.
  • the invention is concerned with the sequence of writing periods in the different pixels of the matrix.
  • the entries made on lines i + 2 j occupy a period T i .
  • each of the repetitions occupies a period T i .
  • 2 P -1 periods T i are linked.
  • the different periods have the same duration. This makes it possible to respect the agreement on a frame between the value of the binary word and the sum of the activation times of the display component.
  • the different periods occupy the entire frame.
  • the duration of a period T i is equal to the duration (T frame ) of an image frame divided by 2 P -1.
  • the figure 3 visually represents on a frame the durations usable for each of the bits of the binary word coding the brightness of each of the pixels.
  • Each row of the matrix being scanned during a frame the durations between each rewrite can be expressed in number of lines representing fractions of the total duration of the frame.
  • half the rows in the matrix contain MSB-1 most significant bits
  • a quarter of the rows contain MSB-1 weight bits
  • the eighth of the rows contain MSB-2 weight bits and so on up to one line, the lowest line on the figure 3 , containing least significant bits.
  • the frequency is lowered in a ratio close to: N line / P.
  • the figures 4a to 4p represent an example of a sequence of writing periods in the memories of the different pixels of the matrix. More specifically, in the example illustrated with the figures 4a to 4p , the brightness is coded on 4 bits. It is understood that the brightness can be coded on a larger (or smaller) number of bits. So that a user perceives practically no difference in brightness between two successive levels of coding the brightness of a pixel, coding on 8 to 10 bits may be suitable.
  • the binary words coding the brightness include bits identified D0, D1, D2 and D3, ordered from the least significant bit D0 also called LSB for its English abbreviation: “Low Significant Bit” to the most significant bit D3 also called MSB for its Anglo-Saxon abbreviation: "Most Significant Bit”.
  • the most significant bit D3 is written on the first line of the matrix
  • the bit of least significant D0 is written on the second line
  • bit D1 is written on the fourth line of the matrix
  • bit D2 is written on the eighth line of the matrix.
  • Periods 3 to 15 are then linked in the same way by shifting the current line at each period by one line.
  • bit D2 is written on the eighth line.
  • the shifts made for the ninth period are done in a rotating fashion, that is to say that the shifts are incremented by one unit modulo the number of rows in the matrix. In other words, it is considered that the fifteenth line of the matrix is followed by the first line and during the ninth period the bit D2 is written on the first line of the matrix.
  • the current line is line 14.
  • the current line is line 14.
  • all the lines of the matrix were written with all the bits of the binary words representing the brightness of the different pixels of the matrix.
  • the figure 4p represents a period 16 for a new image or frame. This period 16 is similar to period 1 with new values of the binary words corresponding to the new image.
  • the figure 5 represents an example of shift register which can be used in line addressing circuit 13 to generate the line selection signals Li, signals conveyed on the line conductors 24.
  • the signal Li is formed using P flip-flops D: Di-1 to Di-P connected in series.
  • the output of the Di-P flip-flop forms the signal Li of line i and is connected to the input of the Di + 1-1 flip-flop.
  • a clock signal CLK is common to all the flip-flops D.
  • Tokens J are introduced at the input of flip-flop D1-1 with a time difference of 2 j times the duration of a period.
  • This embodiment of the line addressing circuit 13 has a drawback due to the large number of flip-flops which have to switch simultaneously. This implies significant and significant consumption peaks. The congestion on the surface of this type of register is also penalizing.
  • the figure 6 represents an alternative allowing to realize the line addressing circuit 13. This alternative is more compact and less energy consuming.
  • the counter 34 receives a clock CLK operating at the frequency of each period.
  • the shift register 33 receives a clock P times faster than the clock of the counter 34 and a Start start token at the start of each period.
  • the shift register 33 shifts the start signal to the rhythm of its clock, which allows a binary number equal to 2 P to be sent to the adder 32.
  • the adder 32 also receives the output of the counter 34.
  • the adder 32 performs the addition of the binary number and the output of the counter 34.
  • the result of the addition is transmitted to the decoder P to N, here a decoder 4 to 16 of which only 15 outputs are connected, each to a line conductor 24 of the matrix 11.
  • the rows of rank 2 j + k are addressed successively, k representing an integer incremented by one by the counter 34 to each new period.
  • the figure 7 shows an exemplary embodiment of the horizontal register 14 which comprises two shift registers 41 and 42 having as many bits as there are lines in the matrix.
  • Register 41 is used as a buffer for recording the brightness data.
  • the register 42 is used for the sequential writing of the lines addressed by the line addressing circuit 13.
  • the figures 8a and 8b represent in writing form the writing periods described above. These timing diagrams can be easily implemented using the line addressing circuits described on the figures 5 and 6 .
  • the figures 8a and 8b allow to illustrate a first embodiment of succession of the different writings within the periods.
  • a regular CLK clock makes it possible to clock the different entries of the different periods.
  • the CLK clock are represented, line by line, the writings of the different bits of the words representing the brightness of the different pixels.
  • This first embodiment has the advantage of a regular clock and of writing in the order of the bit weights.
  • the duration for each bit is not exactly a multiple of the duration of a period because of the division of the period into four phases.
  • the least significant bit D0 can be used by the display component for a period of 3 ⁇ 4 period and the bit D1 for 1 + 3 ⁇ 4 period.
  • This quantization error is due to the choice of the sequence of the different bits. This error may be acceptable for coding binary words on a larger number of bits.
  • the figure 9 represents a timing diagram of a second embodiment of the sequence of entries making it possible to reduce the error previously described.
  • the first periods are shown in this figure.
  • the bit D0 of the second line is written.
  • the bit D3 of the first line is written.
  • the bit D2 of the sixth line is written and in the fourth top t 4 , the bit D1 of the eighth line is written.
  • the least significant bit D0 can be used by the display component for a duration of 1 + 1 ⁇ 4 of period, the bit D1 for 1 + 3 ⁇ 4 of period, the bit D2 for 3 + 1 ⁇ 2 of period , bit D3 for 8 + 1 ⁇ 4 period.
  • the error on the duration remains this time less than half the duration expected for the least significant bit D0.
  • This error is typically of the same order of magnitude as that of a digital-analog converter often used in a horizontal register implemented in an analog control. It is possible to empirically test different schedules of the brightness bits in order to minimize the quantization error.
  • the figure 10 represents a timing diagram of a third embodiment of the sequence of writes also making it possible to reduce the error on the durations of use of the different bits.
  • the four phases of a period are this time generated for a duration less than that of the period whose duration is equal to the duration of an image frame divided by the number of lines written 2 P -1.
  • the four phases are for example generated during half of the period. This is achieved by doubling the clock frequency. The error is then halved.
  • the figure 11a represents a pixel 12d making it possible to implement this activation duration offset from the writing.
  • the switch 20 the storage capacitor 21, both connected to the conductors 23 and 24, the light-emitting diode 25 and the switch 26 enabling the diode 25 to be supplied by means of the supply voltage V DD .
  • the capacitor 21 does not directly control the switch 26.
  • a new switch 41 is interposed between the capacitor 21 and the control grid of the switch 26.
  • the switch 41 is controlled by a specific signal conveyed on an additional line conductor 42 distinct from the conductor 24.
  • a parasitic capacitance 43 present at the common point of the switches 26 and 41 acts as a second memory controlled by the specific signal. If necessary, it is of course possible to add a capacitor in addition to the stray capacitance.
  • the specific signal makes it possible to transmit the charges stored in the capacitor 21 to the stray capacitance 43 at the desired time.
  • the figure 11b represents a pixel 12e forming a variant to pixel 12d also making it possible to implement the offset of the activation time with respect to writing.
  • the binary memory 27 receiving information to be stored by the column conductor 23 and controlled by the row conductor 24.
  • the binary memory 27 does not directly control the switch 26.
  • a second binary memory 45 is interposed between the binary memory 27 and the control grid for the switch 26. The memory 45 is driven by the signal specific carried on the additional line conductor 42.
  • the figure 12 represents in the form of a timing diagram the signals conveyed on the line conductors 24 and 42.
  • the time axis carries the different writing periods of the matrix.
  • the chronogram of the figure 12 resumes the natural scheduling of the writing of the different brightness bits, scheduling presented on figures 8a and 8b .
  • For each of the 15 rows of the matrix two signals S1 and S2 are represented, the signal S1 conveyed by the conductor 24 and the signal S2 by the conductor 42.
  • the signals S1 conveyed by the various conductors 24 are identical to those described in l help from figure 8a .
  • the bit D3 of the first line is written.
  • This bit is conveyed by the column conductor 23 and the top t 1 forms the signal S1 conveyed by the conductor 24 of the first line.
  • the signal S2 conveyed by the conductor 42 a rising edge allows the content of the memory 27, or the voltage present in the capacitor 21 to control the switch 26.
  • the state, passing or blocked, of the switch 26 is maintained as long as a new rising edge does not appear on the conductor 42.
  • a falling edge appears on the signal S2 at the start of the first period shortly before the appearance of the bit D3 at the top t 1 .
  • bit D0 is written to top t 2 of the first period and bit D3 is written to top t 1 of the second period.
  • bit D0 is written to top t 2 of the first period and bit D3 is written to top t 1 of the second period.
  • bit D0 is written to top t 2 of the first period and bit D3 is written to top t 1 of the second period.
  • bit D0 is written to top t 2 of the first period and bit D3 is written to top t 1 of the second period.
  • bit D0 is written to top t 2 of the first period
  • bit D3 is written to top t 1 of the second period.
  • the signals S1 and S2 of the third line are temporally offset by a period with respect to the signals of the second line.
  • the bit D1 is written at the top t 3 of the first period and the bit D0 is written at the top t 2 of the third period.
  • a first rising edge occurs at the end of the first period authorizing the activation of the diode 25 by the value of the bit D1.
  • a second rising edge occurs at the end of the third period authorizing the activation of the diode 25 by the value of the bit D3.
  • the diode 25 was activated by the bit D1 during exactly two periods separating the two rising edges occurring at the end of the first period and at the end of the third period. And so on for the different bits D0 which activate the diode 25 during one period, the bits D1 during two periods, the bits D2 during four periods and the D3 bits for eight periods. More generally, the weight bits j activate the display component for 2 j periods.
  • Pixels 11d and 11e as well as the associated timing diagram shown on the figure 12 refer to a diode 25. It is understood that these variants can be implemented for any other type of display component, such as for example a liquid crystal cell or a micro mirror.
  • N 2 P - 1.
  • N 2 P - 1.
  • an eight-bit resolution requires a 255-line matrix and a 10-bit resolution requires a 1023-line matrix.
  • a first solution consists in artificially increasing the number of bits by one by systematically assigning a 0 to the new least significant bit LSB. This solution can also be implemented if one wishes to multiply the number of lines by any power of two. For example, to quadruple the number of lines, two additional bits can be added.
  • the figure 13 offers an alternative to adding a least significant bit. More specifically, the line addressing circuit is duplicated and each circuit operates separately. On the figure 13 , two line addressing circuits 13a and 13b are shown, each addressing one half of the matrix 11. More generally, the matrix 11 is divided into zones, 11a and 11b in the example shown, each of the zones having a number of lines less than or equal to 2 P -1. Here again, it is possible to multiply the number of line addressing circuits by any integer.
  • the figure 14 describes the implementation of such virtual lines.
  • Several periods are represented there in a similar way to the representation of figures 3 or 4 .
  • the total number of lines addressed 2 P - 1 is represented along a vertical axis.
  • the number of real lines U of the matrix is equal to (2 P - 1) - V, V representing the number of virtual lines remaining addressed and whose luminosity value is advantageously zero.

Description

L'invention concerne un procédé d'affichage d'images sur un écran à matrice active. Ce type d'écran s'est largement développé ces dernières années notamment pour des écrans de type à cristaux liquides connus par leur abréviation anglo-saxonne : LCD. Plus récemment d'autres types d'écrans mettant en œuvre des diodes électroluminescentes ont été développés, notamment utilisant des diodes organiques ou des micro diodes, connus par leur abréviation anglo-saxonne : OLED, respectivement µLED.The invention relates to a method for displaying images on an active matrix screen. This type of screen has been widely developed in recent years, in particular for screens of the liquid crystal type known by their Anglo-Saxon abbreviation: LCD. More recently other types of screens using light-emitting diodes have been developed, in particular using organic diodes or micro diodes, known by their English abbreviation: OLED, respectively µLED.

Chacun des pixels d'un écran à matrice active contient au moins un transistor qui fait office d'interrupteur connecté à un composant de mémorisation lequel permet de stocker un signal utile pendant la durée d'une trame. Dans le cas d'un écran à cristaux liquides, ces deux éléments suffisent pour exciter le cristal. Dans le cas d'un écran à diodes, chaque pixel contient un second transistor qui permet de piloter l'alimentation de la diode électroluminescente en fonction du signal utile stocké dans le composant de mémorisation.Each of the pixels of an active matrix screen contains at least one transistor which acts as a switch connected to a storage component which makes it possible to store a useful signal for the duration of a frame. In the case of a liquid crystal display, these two elements are sufficient to excite the crystal. In the case of a diode screen, each pixel contains a second transistor which makes it possible to control the supply of the light-emitting diode as a function of the useful signal stored in the storage component.

Il est connu de piloter l'affichage de façon analogique. Plus précisément, une fois par trame, chaque pixel reçoit, par l'intermédiaire de son transistor, une tension représentative de la luminosité que le pixel doit afficher. Cette tension est stockée dans le composant de mémorisation, par exemple un condensateur. Pour un pixel LCD, la tension est directement appliquée aux électrodes entourant le cristal liquide. Pour un pixel à diode, la tension est appliquée au second transistor configuré en suiveur pour alimenter la diode proportionnellement à la tension mémorisée.It is known to control the display analogically. More precisely, once per frame, each pixel receives, via its transistor, a voltage representative of the brightness that the pixel must display. This voltage is stored in the storage component, for example a capacitor. For an LCD pixel, the voltage is directly applied to the electrodes surrounding the liquid crystal. For a diode pixel, the voltage is applied to the second transistor configured as a follower to supply the diode in proportion to the stored voltage.

Le pilotage analogique présente plusieurs inconvénients :
Des fuites de tension au niveau du condensateur peuvent se produire pendant la durée de trame. Cela se traduit par un phénomène de scintillement (connu dans la littérature anglo-saxonne sous le nom de « flickering ») qui est amplifié sous influence de la température pendant la durée de la trame.
Analog control has several drawbacks:
Voltage leaks at the capacitor may occur during the frame time. This results in a flickering phenomenon (known in the Anglo-Saxon literature under the name of "flickering") which is amplified under the influence of the temperature during the duration of the frame.

En amont du premier transistor, les tensions transitent par des conducteurs de la matrice, généralement des conducteurs de colonne. Lors de l'adressage d'une ligne de pixel, les variations de tension intervenant sur les conducteurs de colonne peuvent perturber les pixels des autres lignes non adressées, par couplage capacitif entre les conducteurs de colonne et les condensateurs de stockage non adressés. Cela se traduit par des artéfacts dans l'image affichée.Upstream of the first transistor, the voltages pass through conductors of the matrix, generally column conductors. When addressing a pixel line, the voltage variations occurring on the column conductors can disturb the pixels of the other unaddressed lines, by capacitive coupling between the column conductors and the unaddressed storage capacitors. This results in artifacts in the displayed image.

Dans le cas d'un écran à diodes, les diodes électroluminescentes peuvent requérir une tension de polarisation élevée. L'ensemble du pixel doit être compatible avec cette tension. La tension stockée dans le condensateur doit alors être égale à la tension de polarisation de la diode à laquelle on ajoute la tension grille-source du second transistor. Les technologies CMOS actuelles étant limitées à environ 5V, la tension appliquée à la diode électroluminescente est alors plafonnée à moins de 4V, ce qui peut représenter une limitation des performances atteignables au niveau de la luminosité de l'écran.In the case of a diode screen, the light-emitting diodes may require a high bias voltage. The entire pixel must be compatible with this voltage. The voltage stored in the capacitor must then be equal to the bias voltage of the diode to which the gate-source voltage of the second transistor is added. Current CMOS technologies being limited to around 5V, the voltage applied to the light-emitting diode is then capped at less than 4V, which can represent a limitation of the achievable performance in terms of screen brightness.

Toujours dans le cas d'un écran à diodes, les transistors suiveurs d'alimentation des diodes peuvent avoir des caractéristiques non uniformes ce qui provoque un phénomène de bruit spatial dans l'affichage, car pour une même tension de commande pour des pixels distincts, la polarisation de la diode peut alors varier d'un pixel à l'autre.Still in the case of a diode screen, the diode supply follower transistors may have non-uniform characteristics which causes a phenomenon of spatial noise in the display, because for the same control voltage for separate pixels, the polarization of the diode can then vary from one pixel to another.

De plus, le transistor suiveur travaille en régime saturé et il doit absorber une différence de tension inversement proportionnelle à l'éclairement de la diode électroluminescente. La puissance dissipée dans ce transistor entraine un échauffement important, ce qui peut poser des problèmes de dissipation thermique, notamment lorsque ce transistor est implanté dans une couche interne de l'écran.In addition, the follower transistor works in saturated mode and it must absorb a voltage difference inversely proportional to the illumination of the light-emitting diode. The power dissipated in this transistor causes significant heating, which can cause heat dissipation problems, especially when this transistor is implanted in an internal layer of the screen.

Il est également connu de piloter l'affichage de façon digital. Ce type de pilotage a été notamment mis en œuvre pour les écrans à diodes électroluminescentes et aussi pour des écrans à base de micro-miroirs pour projecteurs mettant en œuvre des composants connus dans la littérature anglo-saxonne sous le nom de DLP pour l'abréviation de « Digital Light Processing ». Pour les pixels à diodes, les composants de chacun des pixels sont agencés de la même manière que pour un pixel à diode piloté de façon analogique. On retrouve un premier transistor permettant de stocker une information dans un condensateur et un second transistor pilotant l'allumage de la diode en fonction de l'information stockée dans le condensateur. A la différence du pilotage analogique, le pilotage des diodes de chacun des pixels est assuré, pour le pilotage digital, en tout ou rien c'est-à-dire, la diode est soit connectée à sa tension maximum, donc allumée, soit déconnectée, donc éteinte. Le contrôle de la luminosité de la diode est réalisé par la modulation de la largeur de l'impulsion appliquée entre ses bornes. La perception visuelle, à cause de l'inertie de l'œil, est la moyenne de la somme de toutes les durées d'allumage de la diode.It is also known to control the display digitally. This type of control has been implemented in particular for light-emitting diode screens and also for screens based on micro-mirrors for projectors using components known in Anglo-Saxon literature under the name of DLP for the abbreviation of "Digital Light Processing". For the diode pixels, the components of each of the pixels are arranged in the same way as for an analog-controlled diode pixel. There is a first transistor for storing information in a capacitor and a second transistor controlling the ignition of the diode according to the information stored in the capacitor. To the unlike analog control, the control of the diodes of each of the pixels is ensured, for digital control, in all or nothing, that is to say, the diode is either connected at its maximum voltage, therefore on, or disconnected, therefore extinct. The brightness of the diode is controlled by modulating the width of the pulse applied between its terminals. The visual perception, because of the inertia of the eye, is the average of the sum of all the times of lighting of the diode.

La commande est binaire. Elle applique deux niveaux possibles de tension sur la grille du second transistor, lequel travaille en mode interrupteur. L'amplitude entre ces deux niveaux doit être suffisante pour bloquer ou non le second transistor, ce qui peut être réalisé avec des valeurs de tension relativement faibles.The command is binary. It applies two possible voltage levels to the gate of the second transistor, which works in switch mode. The amplitude between these two levels must be sufficient to block or not block the second transistor, which can be achieved with relatively low voltage values.

Le pilotage digital présente plusieurs avantages par rapport au contrôle analogique :

  • Réduction de la dissipation sur le second transistor qui fonctionne en mode interrupteur. La tension entre son drain et sa source est très faible lorsqu'il est passant.
  • Tension de commande binaire et de faible amplitude.
  • Immunité aux différents couplages et fuites, car les pixels fonctionnent en mode binaire.
  • Pas d'impact des dispersions des caractéristiques des composants du pixel du fait de leur utilisation en tout ou rien.
  • Pas de limitation de luminosité liée à la tension présente aux bornes du condensateur, puisque le second transistor ne travaille pas en mode saturé mais en mode interrupteur.
Digital control has several advantages over analog control:
  • Reduction of dissipation on the second transistor which operates in switch mode. The voltage between its drain and its source is very low when it is on.
  • Binary and low amplitude control voltage.
  • Immunity to different couplings and leaks, because the pixels operate in binary mode.
  • No impact of dispersions of the characteristics of the pixel components due to their use in all or nothing.
  • No brightness limitation linked to the voltage present across the capacitor, since the second transistor does not work in saturated mode but in switch mode.

L'inconvénient principal du pilotage digital est la fréquence élevée de fonctionnement de la matrice. En effet, pour moduler la largeur d'impulsion sur la diode électroluminescente de chaque pixel, il faut adresser chaque pixel et donc chaque ligne plusieurs fois par trame.The main drawback of digital control is the high operating frequency of the matrix. Indeed, to modulate the pulse width on the light-emitting diode of each pixel, it is necessary to address each pixel and therefore each line several times per frame.

Cet inconvénient apparait notamment avec un procédé de pilotage de modulation de code binaire bien connu dans la littérature anglo-saxonne sous l'acronyme BCM pour « Binary Code Modulation » Ce procédé est également connu sous le nom de « Time Gray Scale Method ».This drawback appears in particular with a binary code modulation control method well known in the English literature under the acronym BCM for "Binary Code Modulation". This method is also known under the name of "Time Gray Scale Method".

Dans cette famille de procédé de pilotage, la luminosité d'un pixel est codée sous forme d'un mot binaire. Chaque bit du mot binaire pilote la diode pendant une durée proportionnelle au poids du bit.In this family of control methods, the brightness of a pixel is coded in the form of a binary word. Each bit of the binary word controls the diode for a duration proportional to the weight of the bit.

La diode électroluminescente est pilotée pendant un temps proportionnel au poids du bit de la valeur à afficher. Par exemple, le bit de poids fort (MSB) pilote la diode la moitié de la durée de la trame (par exemple 10ms pour une fréquence de 50 images/seconde). Le bit suivant (MSB-1) représente le quart de cette durée, et ainsi de suite jusqu'au bit de poids faible (LSB). Par Convention, la diode est allumée lorsque la valeur d'un bit est 1 et est éteinte lorsque la valeur d'un bit est 0. La convention inverse est bien entendue possible.The light-emitting diode is controlled for a time proportional to the weight of the bit of the value to be displayed. For example, the most significant bit (MSB) drives the diode for half the duration of the frame (for example 10 ms for a frequency of 50 images / second). The next bit (MSB-1) represents a quarter of this duration, and so on up to the least significant bit (LSB). By Convention, the diode is lit when the value of a bit is 1 and is off when the value of a bit is 0. The opposite convention is of course possible.

Par exemple, si la luminosité d'un pixel est codée sur 8 bits, une valeur du mot binaire de 01010101 (=85) donnera une luminosité du pixel dans un rapport de 85/256 par rapport au maximum de luminosité du pixel.For example, if the brightness of a pixel is coded on 8 bits, a value of the binary word of 01010101 (= 85) will give a brightness of the pixel in a ratio of 85/256 compared to the maximum brightness of the pixel.

Pour un tel pilotage, il est nécessaire d'accéder au pixel 8 fois par trame, définissant ainsi 8 sous trames. Pendant l'écriture séquentielle de la matrice il est souvent nécessaire d'éteindre les diodes électroluminescentes afin de permettre l'adressage complet de la matrice et de respecter la proportion entre les différentes durées des sous-trames. Cette durée d'extinction peut être estimée à la durée de pilotage du bit de poids faible. La réduction de la luminosité vaut P/2P, avec P égal au nombre de bits de luminosité. La perte est par exemple, de l'ordre de 3% pour P=8 et 1% pour P=10 bits. Ces pertes de luminosité peuvent être parfois acceptables, mais les fréquences de fonctionnement nécessaires peuvent être prohibitives pour des matrices de grande dimension.For such control, it is necessary to access the pixel 8 times per frame, thus defining 8 subframes. During the sequential writing of the matrix it is often necessary to extinguish the light-emitting diodes in order to allow the complete addressing of the matrix and to respect the proportion between the different durations of the sub-frames. This extinction duration can be estimated at the duration of control of the least significant bit. The reduction in brightness is P / 2 P , with P equal to the number of brightness bits. The loss is, for example, of the order of 3% for P = 8 and 1% for P = 10 bits. These losses of luminosity can be sometimes acceptable, but the necessary operating frequencies can be prohibitive for large matrices.

Pour un adressage rapide, par exemple basé sur la durée du bit de poids faible, la fréquence Fligne à laquelle on doit adresser chaque ligne de la matrice est égal à : F ligne = fps * N ligne * 2 P

Figure imgb0001
fps définissant le nombre d'images par seconde et Nligne le nombre de lignes de la matrice.For fast addressing, for example based on the duration of the least significant bit, the frequency F line to which each line of the matrix must be addressed is equal to: F line = fps * NOT line * 2 P
Figure imgb0001
fps defining the number of images per second and N line the number of lines of the matrix.

La fréquence Fpix à laquelle on doit écrire dans chacun des pixels d'une ligne est la fréquence Fligne multipliée par le nombre de pixels par ligne qui correspond au nombre de colonnes Ncol de la matrice : F pix = F ligne * N col

Figure imgb0002
The frequency F pix at which one must write in each of the pixels of a line is the frequency F line multiplied by the number of pixels per line which corresponds to the number of columns N col of the matrix: F pix = F line * NOT collar
Figure imgb0002

Pour un format de matrice de 640 colonnes par 480 lignes, format connu sous l'appellation VGA, pour un codage de la luminosité sur 10 bits, la fréquence Fpix est alors supérieure à 15GHz et pour un format de 1920 colonnes par 1200 lignes, format connu sous l'appellation WUXGA, toujours pour un codage sur 10 bits, la fréquence Fpix est alors 118GHz. Ces fréquences sont en pratique difficilement atteignable par des technologies à bas coût. Elles impliquent également des consommations importantes.For a matrix format of 640 columns by 480 lines, format known as VGA, for a coding of the brightness on 10 bits, the frequency F pix is then greater than 15GHz and for a format of 1920 columns by 1200 lines, format known as WUXGA, still for 10-bit coding, the frequency F pix is then 118GHz. These frequencies are in practice difficult to achieve by low-cost technologies. They also involve significant consumption.

Il serait possible de paralléliser les entrées afin de réduire les fréquences en jeu, mais ce serait au détriment de la simplicité et du nombre d'entrées supplémentaires à mettre en œuvre.It would be possible to parallelize the inputs in order to reduce the frequencies involved, but this would be to the detriment of the simplicity and the number of additional inputs to be implemented.

En admettant une perte de luminosité, il est possible d'augmenter la durée d'écriture. Par exemple, pour une luminosité codée sur 10 bits, avec une réduction de luminosité de 10%, les fréquences en jeu seraient réduites d'un facteur 10. Même avec cette concession sur la luminosité maximum de l'écran, les fréquences pour des grands formats restent encore très élevées.By admitting a loss of brightness, it is possible to increase the writing time. For example, for a brightness coded on 10 bits, with a reduction of brightness of 10%, the frequencies in play would be reduced by a factor 10. Even with this concession on the maximum brightness of the screen, the frequencies for large formats still remain very high.

Le document US2003/011314 décrit un exemple d'écran OLED à matrice active.The document US2003 / 011314 describes an example of an active matrix OLED screen.

L'invention vise à pallier tout ou partie des problèmes cités plus haut en proposant un procédé de pilotage digital permettant de réduire la fréquence d'adressage des pixels.The invention aims to overcome all or part of the problems mentioned above by proposing a digital control method making it possible to reduce the frequency of addressing of the pixels.

A cet effet, l'invention a pour objet un procédé d'affichage d'image comme défini par la revendication 1.
Les revendications dépendantes définissent d'autres modes de réalisation du procédé d'affichage.
To this end, the invention relates to an image display method as defined by claim 1.
The dependent claims define other embodiments of the display method.

Le choix de la première ligne courante à partir de laquelle les répétitions sont effectuées est complètement arbitraire. i représente un pointeur de ligne qui s'incrémente à chaque écriture et l'enchainement complet des écritures est réalisé à l'issue de 2P-1 périodes d'écritures.The choice of the first current line from which repetitions are performed is completely arbitrary. i represents a line pointer which increments with each write and the complete sequence of writes is carried out after 2 P -1 writes.

Pour chaque ligne courante i, les écritures réalisées sur les lignes i+2j occupent une période Ti, Avantageusement, les 2P-1 périodes Ti ont des durées égales.For each current line i, the entries made on lines i + 2 j occupy a period T i . Advantageously, the 2 P -1 periods T i have equal durations.

Avantageusement, la durée d'une période Ti est égale à la durée d'une trame d'image divisée par 2P-1.Advantageously, the duration of a period T i is equal to the duration of an image frame divided by 2 P -1.

Dans un mode de réalisation particulier de la matrice, chacun des pixels comprend en outre un interrupteur permettant de commander le composant d'affichage en fonction d'un état du bit écrit dans la mémoire. Pour chacun des pixels, l'interrupteur est actionné pour piloter le composant d'affichage en fonction du bit écrit dans la mémoire pendant une durée s'étendant entre deux écritures successives.In a particular embodiment of the matrix, each of the pixels further comprises a switch making it possible to control the display component as a function of a state of the bit written in the memory. For each of the pixels, the switch is actuated to control the display component as a function of the bit written in the memory for a period extending between two successive writes.

Dans un autre mode de réalisation particulier de la matrice, le procédé peut consister en outre, pour chacun des pixels, à activer le composant d'affichage après écriture dans la mémoire correspondante. Les écritures sur les lignes i+2j réalisées à partir de la ligne courante i sont réalisées durant une période. Le composant d'affichage est activé pendant une durée s'étendant depuis la fin de la période pendant laquelle le bit de luminosité a été écrit jusqu'à la fin de la période suivante pendant laquelle une nouvelle écriture est effectuée dans le pixel concerné.In another particular embodiment of the matrix, the method can also consist, for each of the pixels, in activating the display component after writing to the corresponding memory. The writes to lines i + 2 j made from the current line i are made during a period. The display component is activated for a duration extending from the end of the period during which the bit of brightness was written until the end of the next period during which a new writing is carried out in the pixel concerned.

Dans cet autre mode de réalisation, la mémoire de chaque pixel est appelée première mémoire. Chaque pixel comprend avantageusement une seconde mémoire binaire permettant de faire transiter le bit écrit dans la première mémoire vers le composant d'affichage pour l'activer. Les moyens d'adressage pilotent la première mémoire au moyen d'un premier signal permettant l'écriture et pilotent la seconde mémoire au moyen d'un second signal distinct du premier signal et permettant l'activation du composant d'affichage.In this other embodiment, the memory of each pixel is called the first memory. Each pixel advantageously includes a second binary memory making it possible to transmit the bit written in the first memory to the display component to activate it. The addressing means control the first memory by means of a first signal allowing the writing and control the second memory by means of a second signal distinct from the first signal and allowing the activation of the display component.

Si la luminosité est exprimée en un nombre de R bits utiles et que le nombre de lignes N est supérieur à 2R-1 alors on peut ajouter au mot binaire un nombre T de bits dont les valeurs sont égales à zéro, correspondant à une extinction des composants d'affichage de façon à ce que N soit inférieur ou égal à 2P-1 avec P = R+T.If the brightness is expressed in a number of R useful bits and the number of lines N is greater than 2 R -1 then we can add to the binary word a number T of bits whose values are equal to zero, corresponding to an extinction display components so that N is less than or equal to 2 P -1 with P = R + T.

Alternativement, si la luminosité est exprimée en un nombre de S bits utiles et que le nombre de lignes N est supérieur à 2S-1, on divise la matrice en zones pilotées séparément, chacune des zones ayant un nombre de ligne inférieur ou égal à 2S-1.Alternatively, if the brightness is expressed in a number of S useful bits and the number of lines N is greater than 2 S -1, the matrix is divided into zones controlled separately, each of the zones having a number of lines less than or equal to 2 S -1.

Si la matrice comprend un nombre de lignes utiles U inférieur à 2P-1 alors la répartition des écritures est configurés pour enchainer les écritures sur N lignes avec N = 2P-1 dont U lignes utiles et V lignes virtuelles avec U+V = N. Pour les lignes virtuelles le mot binaire ne contient que des bits de valeur correspondant à une extinction du composant d'affichage.If the matrix includes a number of useful lines U less than 2 P -1 then the distribution of the writes is configured to chain the writes on N lines with N = 2 P -1 including U useful lines and V virtual lines with U + V = N. For virtual lines, the binary word contains only value bits corresponding to an extinction of the display component.

Pour chaque ligne courante i donnée, les écritures sur les lignes i+2j, de j=1 à j=P des différents bits sont avantageusement ordonnées de façon à minimiser une erreur sur une durée souhaitée séparant deux écritures successives d'un même pixel.For each current line i given, the writes on the lines i + 2 j , from j = 1 to j = P of the different bits are advantageously ordered so as to minimize an error over a desired duration separating two successive writes of the same pixel .

Pour chaque ligne courante i donnée, les écritures sur les lignes i+2j, de j=1 à j=P des différents bits peuvent être réalisées pendant une durée inférieure à la durée d'une période égale à la durée d'une trame divisée par le nombre de lignes écrites.For each current line i given, the writes to the lines i + 2 j , from j = 1 to j = P of the different bits can be carried out for a duration less than the duration of a period equal to the duration of a frame divided by the number of lines written.

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel :

  • la figure 1 représente schématiquement un écran matriciel destiner à fonctionner avec un procédé conforme à l'invention ;
  • les figures 2a, 2b et 2c représentent trois exemples de schémas de pixels pouvant être implantés dans l'écran matriciel de la figure 1 ;
  • la figure 3 illustre une étape d'écriture de données de luminosité dans les pixels de l'écran de la figure 1 ;
  • les figures 4a à 4p représentent un enchainement de périodes d'écriture dans des mémoires des pixels de la matrice ;
  • les figures 5, 6 et 7 représentent des exemples de registres permettant de piloter la matrice ;
  • les figures 8a et 8b représentent sous forme de chronogramme un premier mode d'enchainement des périodes d'écriture décrites précédemment ;
  • les figures 9 et 10 représentent des variantes du chronogramme des figures 8a et 8b ;
  • les figures 11a et 11b représentent deux variantes de schéma de pixels pouvant être implantés dans l'écran matriciel de la figure 1 ;
  • la figure 12 représente une variante de chronogramme adaptée aux pixels des figures 11a et 11b ;
  • les figures 13 et 14 illustrent la mise en œuvre du procédé de l'invention à tout format de matrice.
The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment given by way of example, description illustrated by the attached drawing in which:
  • the figure 1 schematically represents a matrix screen intended to operate with a method according to the invention;
  • the Figures 2a, 2b and 2c represent three examples of pixel diagrams that can be implanted in the matrix screen of the figure 1 ;
  • the figure 3 illustrates a step of writing brightness data in the pixels of the screen of the figure 1 ;
  • the figures 4a to 4p represent a sequence of writing periods in the memories of the pixels of the matrix;
  • the figures 5 , 6 and 7 represent examples of registers making it possible to control the matrix;
  • the figures 8a and 8b represent in the form of a chronogram a first method of linking the writing periods described above;
  • the figures 9 and 10 represent variants of the chronogram of figures 8a and 8b ;
  • the Figures 11a and 11b represent two variants of pixel diagram that can be implanted in the matrix screen of the figure 1 ;
  • the figure 12 represents a variation of chronogram adapted to the pixels of Figures 11a and 11b ;
  • the Figures 13 and 14 illustrate the implementation of the method of the invention in any matrix format.

Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.For the sake of clarity, the same elements will have the same references in the different figures.

La figure 1 représente un écran matriciel 10 comprenant une zone d'affichage 11 formées de pixels 12 organisés en lignes et en colonnes, un circuit d'adressage de ligne 13 et un registre horizontal 14. Chaque pixel 12 éclaire en fonction d'une donnée de luminosité exprimée sous forme d'un mot binaire. Le circuit d'adressage de ligne 13 sélectionne les lignes de la matrice une par une et pour chaque pixel 12 d'une ligne sélectionnée, le mot binaire stockée dans le registre horizontal 14 et représentant la luminosité est transféré bit par bit vers le pixel 12 correspondant.The figure 1 represents a matrix screen 10 comprising a display area 11 formed of pixels 12 organized in rows and columns, a line addressing circuit 13 and a horizontal register 14. Each pixel 12 lights up as a function of a luminosity datum expressed in the form of a binary word. The line addressing circuit 13 selects the lines of the matrix one by one and for each pixel 12 of a selected line, the binary word stored in the horizontal register 14 and representing the brightness is transferred bit by bit to the pixel 12 corresponding.

Les figures 2a, 2b et 2c représentent trois exemples de schémas de pixels 12 pouvant être mis en œuvre dans l'écran de la figure 1. Ces trois exemples de pixels peuvent être mis en œuvre dans un écran monochrome ou couleur. Pour un écran couleur, on utilise parfois l'appellation de « pixel couleur » qui est en réalité formé par juxtaposition de plusieurs pixels associés chacun à un filtre coloré. Chaque groupe de pixels reçoit des commandes de luminosité distinctes pour chacune des couleurs. Le procédé de l'invention est illustré à partir de pixels mis en œuvre dans un écran monochrome et peut être transposé au pilotage d'un écran couleur en répliquant la commande de chacun des pixels élémentaires formant le pixel couleur.The Figures 2a, 2b and 2c represent three examples of 12 pixel schemes that can be implemented in the screen of the figure 1 . These three examples of pixels can be implemented in a monochrome or color screen. For a color screen, we sometimes use the name "color pixel" which is actually formed by juxtaposition of several pixels each associated with a color filter. Each group of pixels receives separate brightness controls for each color. The method of the invention is illustrated from pixels implemented in a monochrome screen and can be transposed to the control of a color screen by replicating the command of each of the elementary pixels forming the color pixel.

La figure 2a représente schématiquement les principaux composants d'un pixel 12a à cristaux liquides. Le pixel 12a comprend un interrupteur 20, un condensateur 21 de stockage et une cellule à cristaux liquide 22. Le pixel 12a est raccordé à un conducteur de colonne 23 véhiculant les données de luminosité provenant du registre horizontal 14. L'interrupteur 20, par exemple formé par un transistor, permet de transférer les données de luminosité du conducteur de colonne 23 vers le condensateur 21. Le pixel 12a est également raccordé à un conducteur de ligne 24 raccordé au circuit d'adressage de ligne 13. L'interrupteur 20 est piloté par le conducteur de ligne 24. La donnée stockée dans le condensateur 21 forme une tension directement appliquée à l'une des électrodes de la cellule 22. La donnée stockée dans le condensateur 21 est binaire. L'un des états binaires rend la cellule 22 transparente et l'autre état rend la cellule 22 opaque. Dans le cas d'un écran 10 rétro éclairé, la cellule 22 laisse donc passer la lumière en fonction de l'état binaire de la donnée stockée dans le condensateur 21. La cellule fonctionne en tout ou rien en fonction de l'état binaire de la donnée stockée dans le condensateur 21.The figure 2a schematically represents the main components of a pixel 12a with liquid crystals. The pixel 12a comprises a switch 20, a storage capacitor 21 and a liquid crystal cell 22. The pixel 12a is connected to a column conductor 23 carrying the brightness data coming from the horizontal register 14. The switch 20, for example formed by a transistor, makes it possible to transfer the brightness data from the column conductor 23 to the capacitor 21. The pixel 12a is also connected to a line conductor 24 connected to the line addressing circuit 13. The switch 20 is controlled by the line conductor 24. The data stored in the capacitor 21 forms a voltage directly applied to one of the electrodes of the cell 22. The data stored in the capacitor 21 is binary. One of the binary states makes cell 22 transparent and the other state makes cell 22 opaque. In the case of a backlit screen 10, the cell 22 therefore lets light pass as a function of the binary state of the data stored in the capacitor 21. The cell operates in all or nothing mode as a function of the binary state of the data stored in the capacitor 21.

La figure 2b représente schématiquement les principaux composants d'un pixel 12b à diode électroluminescente. On retrouve dans le pixel 12b l'interrupteur 20 et le condensateur 21 de stockage, tous deux raccordés aux conducteurs 23 et 24. A la place de la cellule 22, le pixel 12b comprend une diode électroluminescente 25 et un second interrupteur 26 permettant d'alimenter la diode 25 au moyen d'une tension d'alimentation VDD. L'interrupteur 26 peut également être un transistor. L'interrupteur 26 est piloté par la donnée stockée dans le condensateur 21.The figure 2b schematically represents the main components of a pixel 12b with light-emitting diode. We find in pixel 12b the switch 20 and the storage capacitor 21, both connected to conductors 23 and 24. In place of cell 22, pixel 12b includes a light-emitting diode 25 and a second switch 26 allowing supply the diode 25 by means of a supply voltage V DD . The switch 26 can also be a transistor. The switch 26 is controlled by the data stored in the capacitor 21.

La figure 2c représente un pixel 12c formant une variante du pixel 12b. Dans le pixel 12c, le condensateur 21 est remplacé par une mémoire binaire 27. Cette mémoire permet de stocker une information binaire. La mémoire binaire peut être formée par une bascule bistable connectée à son entrée au conducteur de colonne 23 et à sa sortie à la borne de pilotage de l'interrupteur 26. La mémoire 27 est pilotée par le conducteur de ligne 24. La modification de l'information stockée dans la mémoire 27 intervient lors d'une commande véhiculée sur le conducteur de ligne 24.The figure 2c represents a pixel 12c forming a variant of pixel 12b. In the pixel 12c, the capacitor 21 is replaced by a binary memory 27. This memory makes it possible to store binary information. The binary memory can be formed by a flip-flop connected to its input to the column conductor 23 and to its output to the control terminal of the switch 26. The memory 27 is controlled by the line conductor 24. The modification of the information stored in memory 27 occurs during a command carried on the line conductor 24.

Une telle mémoire peut également être mise en œuvre pour un pixel à cristaux liquides en remplacement du condensateur 21 du pixel 12a. La mise en œuvre d'une mémoire peut être avantageuse pour une matrice comprenant des pixels réalisés en utilisant une technologie CMOS. Les interrupteurs 20 et 26 ainsi que la mémoire 27 utilisent alors tous la même technologie.Such a memory can also be implemented for a liquid crystal pixel in replacement of the capacitor 21 of the pixel 12a. The implementation of a memory can be advantageous for a matrix comprising pixels produced using CMOS technology. The switches 20 and 26 as well as the memory 27 then all use the same technology.

Par la suite, le terme mémoire sera utilisé aussi bien pour un condensateur que pour tout autre composant ou bloc de composant permettant de mémoriser une information binaire. A ce titre, le condensateur 21 est assimilé à une mémoire.Thereafter, the term memory will be used as well for a capacitor as for any other component or block of component making it possible to memorize binary information. As such, the capacitor 21 is assimilated to a memory.

L'invention peut être mise en œuvre pour tout type de pixel permettant d'émettre de la lumière comme ceux comprenant une diode électroluminescente, de contrôler la lumière qui le traverse comme ceux comprenant une cellule à cristaux liquides ou de contrôler la réflexion de la lumière comme ceux mis en œuvre dans un écran ou un projecteur à base de micro-miroirs. Par la suite le composant du pixel permettant d'émettre ou de contrôler la lumière sera appelé composant d'affichage.The invention can be implemented for any type of pixel making it possible to emit light such as those comprising a light-emitting diode, to control the light passing through it such as those comprising a liquid crystal cell or to control the reflection of light like those implemented in a screen or a projector based on micro-mirrors. Subsequently the component of the pixel used to emit or control the light will be called the display component.

Dans le procédé de pilotage de l'invention, le contrôle de luminosité d'un pixel se fait au moyen d'un mot binaire représentant une fraction de la luminosité maximale du pixel. Pour afficher une image, à chacun des pixels est attribuée une valeur de luminosité codée sous forme d'un mot binaire. Pendant la durée d'une image, les différents bits du mot binaire sont écrits dans la mémoire du pixel et utilisé par le composant d'affichage fonctionnant en tout ou rien durant une fraction de la durée de l'image. Cette fraction de durée est fonction du poids du bit dans le mot binaire. Le bit de poids fort est utilisé par le composant d'affichage sensiblement pendant la moitié de la durée d'une image, le bit suivant, pendant le quart de la durée de l'image et ainsi de suite en divisant la fraction par deux jusqu'au bit de poids faible. L'écran 10 permet par exemple d'afficher 50 images par seconde. La persistance rétinienne d'un utilisateur permet de moyenner ces fractions de durée pour reconstituer la luminosité moyenne du pixel. Le procédé de l'invention consiste à écrire ligne par ligne les différents bits des mots binaires dans les différentes mémoires des pixels correspondants de façon à réduire la fréquence d'écriture nécessaire à balayer toute la matrice.In the piloting method of the invention, the brightness control of a pixel is done by means of a binary word representing a fraction of the maximum brightness of the pixel. To display an image, each pixel is assigned a brightness value coded in the form of a binary word. During the duration of an image, the different bits of the binary word are written in the memory of the pixel and used by the display component operating all or nothing during a fraction of the duration of the image. This fraction of time depends on the weight of the bit in the binary word. The most significant bit is used by the display component for substantially half of the duration of an image, the next bit for the quarter of the duration of the image and so on by dividing the fraction by two up to 'to the least significant bit. Screen 10 allows for example to display 50 images per second. The retinal persistence of a user makes it possible to average these fractions of duration to reconstitute the average brightness of the pixel. The method of the invention consists in writing line by line the different bits of the binary words in the different memories of the corresponding pixels so as to reduce the writing frequency necessary to scan the whole matrix.

Il est possible de désactiver le composant d'affichage pendant un certain temps par le contrôle du rétro éclairage pour un écran à cristaux liquides ou à micro-miroirs ou par la déconnexion de l'alimentation de la diode.It is possible to deactivate the display component for a certain time by controlling the backlight for a liquid crystal or micro-mirror screen or by disconnecting the diode supply.

L'invention s'intéresse à l'enchainement de périodes d'écritures dans les différents pixels de la matrice.The invention is concerned with the sequence of writing periods in the different pixels of the matrix.

Plus précisément, à partir d'une matrice de N lignes, i représentant le pointeur d'une ligne courante, en considérant les bits de chaque mot binaire rangés suivant leur poids de j=1 à j=P, 1 représentant le bit de poids faible et P le bit de poids fort, le procédé consiste à enchainer les écritures suivantes pendant la durée d'une trame d'image :

  • à partir d'une ligne courante i, écrire sur les lignes i+2j, de j=1 à j=P, le bit de poids j de chaque mot binaire associé aux différents pixels des lignes i+2j ;
  • répéter 2P-1 fois les écritures mentionnées plus haut en décalant le pointeur i de la ligne courante d'une unité à chaque répétition ;
le rang du pointeur i d'une ligne étant déterminé modulo 2P-1 de façon à être compris entre 1 et 2P-1.More precisely, from a matrix of N lines, i representing the pointer of a current line, by considering the bits of each binary word arranged according to their weight from j = 1 to j = P, 1 representing the bit of weight weak and P the most significant bit, the method consists in chaining the following writes during the duration of an image frame:
  • from a current line i, write on the lines i + 2 j , from j = 1 to j = P, the bit of weight j of each binary word associated with the different pixels of the lines i + 2 j ;
  • repeat 2 P -1 times the above mentioned writes by shifting the pointer i of the current line by one unit at each repetition;
the rank of the pointer i of a line being determined modulo 2 P -1 so as to be between 1 and 2 P -1.

En considérant une matrice comprenant N lignes avec N=2P-1, pendant une période particulière où i est fixé à N-1, P lignes sont écrites durant cette période. Avec la convention de numérotation des lignes modulo 2P-1, N dans le cas présent :

  • Le bit de poids faible LSB (j=1) est écrit sur la ligne : (N-1) +21 = N+1 = 1.
  • Le bit LSB+1 (j=2) est écrit sur la ligne : (N-1) +22 = N+3 = 3.
  • Le bit LSB+2 (j=3) est écrit sur la ligne : (N-1) +23 = N+7 = 7.
  • Et ainsi de suite jusqu'au bit de poids fort (j=P) qui est écrit sur la ligne : (N-1) + 2P = 2N = N.
By considering a matrix comprising N lines with N = 2 P -1, during a particular period where i is fixed at N-1, P lines are written during this period. With the numbering convention for the modulo 2 P -1, N lines in this case:
  • The least significant bit LSB (j = 1) is written on the line: (N-1) +2 1 = N + 1 = 1.
  • The LSB + 1 bit (j = 2) is written on the line: (N-1) +2 2 = N + 3 = 3.
  • The LSB + 2 bit (j = 3) is written on the line: (N-1) +2 3 = N + 7 = 7.
  • And so on until the most significant bit (j = P) which is written on the line: (N-1) + 2 P = 2N = N.

Pendant une période donnée, on vient d'écrire le bit de poids faible sur une ligne donnée (i+1 avec la convention précédemment utilisée). Cette même ligne sera écrite à nouveau à la période immédiatement suivante. En revanche pour la ligne sur laquelle on vient d'écrire le bit de poids fort, il faudra attendre sensiblement N/2 périodes pour que cette même ligne soit réécrite. Ce procédé permet de maintenir une écriture utilisable par le composant d'affichage pendant une durée variable en fonction du poids du bit écrit. Cette durée est sensiblement égale à (2j./ 2P) x (durée trame / 2).During a given period, we have just written the least significant bit on a given line (i + 1 with the convention previously used). This same line will be written again at the immediately following period. On the other hand, for the line on which the most significant bit has just been written, it will be necessary to wait substantially N / 2 periods for this same line to be rewritten. This method makes it possible to maintain a writing usable by the display component for a variable duration as a function of the weight of the written bit. This duration is substantially equal to (2 d / 2 P ) x (frame duration / 2).

Pour chaque ligne courante i, les écritures réalisées sur les lignes i+2j occupent une période Ti. Autrement dit, chacune des répétitions occupe une période Ti. Pour réaliser une trame complète, 2P-1 périodes Ti s'enchainent. Avantageusement, les différentes périodes ont la même durée. Cela permet de bien respecter la concordance sur une trame entre la valeur du mot binaire et la somme des durées d'activation du composant d'affichage.For each current line i, the entries made on lines i + 2 j occupy a period T i . In other words, each of the repetitions occupies a period T i . To make a complete frame, 2 P -1 periods T i are linked. Advantageously, the different periods have the same duration. This makes it possible to respect the agreement on a frame between the value of the binary word and the sum of the activation times of the display component.

Pour limiter les pertes de luminosité par rapport à une luminosité maximum correspondant à une activation complète du composant d'affichage durant une trame complète, les différentes périodes occupent la totalité de la trame. Autrement dit, la durée d'une période Ti est égale à la durée (Ttrame) d'une trame d'image divisée par 2P-1.To limit the losses of brightness compared to a maximum brightness corresponding to a complete activation of the display component during a complete frame, the different periods occupy the entire frame. In other words, the duration of a period T i is equal to the duration (T frame ) of an image frame divided by 2 P -1.

La figure 3 représente visuellement sur une trame les durées utilisables pour chacun des bits du mot binaire codant la luminosité de chacun des pixels. Chaque ligne de la matrice étant balayée durant une trame, les durées entre chaque réécriture peuvent être exprimées en nombre de lignes représentant des fractions de la durée totale de la trame. Sur la figure 3, la moitié des lignes de la matrice contient des bits de poids fort MSB, le quart des lignes contient des bits de poids MSB-1, le huitième des lignes contient des bits de poids MSB-2 et ainsi de suite jusqu'à une seule ligne, la ligne la plus basse sur la figure 3, contenant des bits de poids faible.The figure 3 visually represents on a frame the durations usable for each of the bits of the binary word coding the brightness of each of the pixels. Each row of the matrix being scanned during a frame, the durations between each rewrite can be expressed in number of lines representing fractions of the total duration of the frame. On the figure 3 , half the rows in the matrix contain MSB-1 most significant bits, a quarter of the rows contain MSB-1 weight bits, the eighth of the rows contain MSB-2 weight bits and so on up to one line, the lowest line on the figure 3 , containing least significant bits.

La mise en œuvre de l'invention permet de réduire de façon importante la fréquence d'adressage et d'écriture des différents bits du mot binaire représentant la luminosité de chacun des pixels de la matrice. Avec un pilotage digital de l'art antérieur, la fréquence ligne est donné par : F ligne = fps * N ligne * 2 P

Figure imgb0003
The implementation of the invention makes it possible to significantly reduce the frequency of addressing and writing of the different bits of the binary word representing the brightness of each of the pixels of the matrix. With digital control of the prior art, the line frequency is given by: F line = fps * NOT line * 2 P
Figure imgb0003

Avec un pilotage digital mettant en œuvre l'invention, la fréquence ligne devient : F ligne = fps * 2 P 1 * P

Figure imgb0004
With digital control implementing the invention, the line frequency becomes: F line = fps * 2 P - 1 * P
Figure imgb0004

La fréquence est abaissée dans un rapport voisin de : Nligne / P.The frequency is lowered in a ratio close to: N line / P.

Les figures 4a à 4p représentent un exemple d'enchainement de périodes d'écriture dans les mémoires des différents pixels de la matrice. Plus précisément, dans l'exemple illustré avec les figures 4a à 4p, la luminosité est codée sur 4 bits. Il est bien entendu que la luminosité peut être codée sur un plus grand (ou plus petit) nombre de bits. Pour qu'un utilisateur ne perçoive pratiquement pas de différence de luminosité entre deux niveaux successifs de codage de la luminosité d'un pixel, un codage sur 8 à 10 bits peut convenir. Dans l'exemple illustré, la matrice comprend N=15 lignes de pixels, ce qui correspond à 2P-1 lignes, P représentant le nombre de bits du codage de la luminosité. L'invention n'est pas limitée à ce nombre de lignes. On verra ultérieurement comment augmenter ou diminuer le nombre de lignes par rapport à 2P-1.The figures 4a to 4p represent an example of a sequence of writing periods in the memories of the different pixels of the matrix. More specifically, in the example illustrated with the figures 4a to 4p , the brightness is coded on 4 bits. It is understood that the brightness can be coded on a larger (or smaller) number of bits. So that a user perceives practically no difference in brightness between two successive levels of coding the brightness of a pixel, coding on 8 to 10 bits may be suitable. In the example illustrated, the matrix comprises N = 15 lines of pixels, which corresponds to 2 P -1 lines, P representing the number of bits of the brightness coding. The invention is not limited to this number of lines. We will see later how to increase or decrease the number of lines compared to 2 P -1.

Conventionnellement, Les mots binaires codant la luminosité, comprennent des bits identifiés D0, D1, D2 et D3, ordonnés du bit de poids faible D0 également appelé LSB pour son abréviation anglo-saxonne : « Low Significant Bit » au bit de poids fort D3 également appelé MSB pour son abréviation anglo-saxonne : « Most Significant Bit ».Conventionally, the binary words coding the brightness, include bits identified D0, D1, D2 and D3, ordered from the least significant bit D0 also called LSB for its English abbreviation: “Low Significant Bit” to the most significant bit D3 also called MSB for its Anglo-Saxon abbreviation: "Most Significant Bit".

Durant la première période d'écriture, représentée sur la figure 4a, le bit de poids fort D3 est écrit sur la première ligne de la matrice, le bit de poids faible D0 est écrit sur la deuxième ligne, le bit D1 est écrit sur la quatrième ligne de la matrice et le bit D2 est écrit sur la huitième ligne de la matrice. Pour chaque colonne 23 de la matrice, un seul bit peut être écrit simultanément. Les quatre écritures des bits D0 à D3 sont réalisées successivement durant la première période. On considère pour cette première période la dernière ligne comme ligne courante i (i=N).During the first writing period, represented on the figure 4a , the most significant bit D3 is written on the first line of the matrix, the bit of least significant D0 is written on the second line, bit D1 is written on the fourth line of the matrix and bit D2 is written on the eighth line of the matrix. For each column 23 of the matrix, only one bit can be written simultaneously. The four writes of bits D0 to D3 are carried out successively during the first period. For this first period, the last line is considered as the current line i (i = N).

Pour la deuxième période, représentée sur la figure 4b, on décale la ligne courante i d'un rang: i=N+1 modulo 2P-1, c'est-à-dire i=1. Plus précisément, durant la deuxième période, représentée sur la figure 4b, le bit de poids fort D3 est écrit sur la deuxième ligne de la matrice, le bit de poids faible D0 est écrit sur la troisième ligne, le bit D1 est écrit sur la cinquième ligne de la matrice et le bit D2 est écrit sur la neuvième ligne de la matrice.For the second period, represented on the figure 4b , we shift the current line i by one rank: i = N + 1 modulo 2 P -1, that is to say i = 1. More specifically, during the second period, represented on the figure 4b , the most significant bit D3 is written on the second line of the matrix, the least significant bit D0 is written on the third line, the bit D1 is written on the fifth line of the matrix and the bit D2 is written on the ninth row of the matrix.

Les périodes 3 à 15 s'enchainent ensuite de la même façon en décalant la ligne courante à chaque période d'une ligne. Lors de la huitième période, représentée sur la figure 4h, le bit D2 est écrit sur la huitième ligne. Ayant atteint la dernière ligne de la matrice, les décalages réalisés pour la neuvième période se font de façon tournante, c'est-à-dire que les décalages sont incrémentés d'une unité modulo le nombre de ligne de la matrice. Autrement dit, on considère que la quinzième ligne de la matrice est suivie par la première ligne et lors de la neuvième période le bit D2 est écrit sur la première ligne de la matrice.Periods 3 to 15 are then linked in the same way by shifting the current line at each period by one line. During the eighth period, represented on the figure 4h , bit D2 is written on the eighth line. Having reached the last row of the matrix, the shifts made for the ninth period are done in a rotating fashion, that is to say that the shifts are incremented by one unit modulo the number of rows in the matrix. In other words, it is considered that the fifteenth line of the matrix is followed by the first line and during the ninth period the bit D2 is written on the first line of the matrix.

Durant la période 15, représentée sur la figure 4o, la ligne courante est la ligne 14. Durant les périodes 1 à 15 toutes les lignes de la matrice ont été écrites avec tous les bits des mots binaires représentant la luminosité des différents pixels de la matrice. La figure 4p représente une période 16 pour une nouvelle image ou trame. Cette période 16 est semblable à la période 1 avec de nouvelles valeurs des mots binaires correspondant à la nouvelle image.During period 15, represented on the figure 4o , the current line is line 14. During periods 1 to 15 all the lines of the matrix were written with all the bits of the binary words representing the brightness of the different pixels of the matrix. The figure 4p represents a period 16 for a new image or frame. This period 16 is similar to period 1 with new values of the binary words corresponding to the new image.

En pratique il est possible de démarrer l'enchainement des périodes d'écriture à n'importe quelle ligne de la matrice. L'enchainement complet est réalisé à l'issue de 2P-1 périodes d'écritures.In practice it is possible to start the sequence of writing periods at any line of the matrix. The complete sequence is carried out after 2 P -1 writing periods.

La figure 5 représente un exemple de registre à décalage pouvant être utilisé dans circuit d'adressage de ligne 13 pour générer les signaux de sélection des lignes Li, signaux véhiculés sur les conducteurs de ligne 24. Pour chaque ligne i, le signal Li est formé à l'aide de P bascules D : Di-1 à Di-P raccordées en série. La sortie de la bascule Di-P forme le signal Li de la ligne i et est connectée à l'entrée de la bascule Di+1-1. Un signal d'horloge CLK est commun à toutes les bascules D. Des jetons J sont introduits à l'entrée de la bascule D1-1 avec un écart temporel de 2j fois la durée d'une période. Ce mode de réalisation du circuit d'adressage de ligne 13 présente un inconvénient du au fait du grand nombre de bascules qui doivent commuter de façon simultanée. Ceci implique des crêtes de consommation importantes et non négligeables. L'encombrement en surface de ce type de registre est également pénalisant.The figure 5 represents an example of shift register which can be used in line addressing circuit 13 to generate the line selection signals Li, signals conveyed on the line conductors 24. For each line i, the signal Li is formed using P flip-flops D: Di-1 to Di-P connected in series. The output of the Di-P flip-flop forms the signal Li of line i and is connected to the input of the Di + 1-1 flip-flop. A clock signal CLK is common to all the flip-flops D. Tokens J are introduced at the input of flip-flop D1-1 with a time difference of 2 j times the duration of a period. This embodiment of the line addressing circuit 13 has a drawback due to the large number of flip-flops which have to switch simultaneously. This implies significant and significant consumption peaks. The congestion on the surface of this type of register is also penalizing.

La figure 6 représente une alternative permettant de réaliser le circuit d'adressage de ligne 13. Cette alternative est plus compacte et moins consommatrice en énergie. Le circuit d'adressage de ligne 13 comprend un décodeur d'adresses 31, un additionneur 32, un registre à décalage 33 à P bits et un compteur 34 à P bits, P=4 dans l'exemple représenté. Le compteur 34 reçoit une horloge CLK fonctionnant à la fréquence de chaque période. Le registre à décalage 33 reçoit une horloge P fois plus rapide que l'horloge du compteur 34 et un jeton de démarrage Start en début de chaque période. Le registre à décalage 33 décale le signal de démarrage au rythme de son horloge ce qui permet d'émettre vers l'additionneur 32 un nombre binaire égal à 2P. L'additionneur 32 reçoit également la sortie du compteur 34. L'additionneur 32 effectue l'addition du nombre binaire et de la sortie du compteur 34. Le résultat de l'addition est transmis au décodeur P vers N, ici un décodeur 4 vers 16 dont seulement 15 sorties sont raccordées, chacune à un conducteur de ligne 24 de la matrice 11. Par période, les lignes de rang 2j + k sont adressées successivement, k représentant un nombre entier incrémenté d'une unité par le compteur 34 à chaque nouvelle période.The figure 6 represents an alternative allowing to realize the line addressing circuit 13. This alternative is more compact and less energy consuming. The line addressing circuit 13 comprises an address decoder 31, an adder 32, a shift register 33 at P bits and a counter 34 at P bits, P = 4 in the example shown. The counter 34 receives a clock CLK operating at the frequency of each period. The shift register 33 receives a clock P times faster than the clock of the counter 34 and a Start start token at the start of each period. The shift register 33 shifts the start signal to the rhythm of its clock, which allows a binary number equal to 2 P to be sent to the adder 32. The adder 32 also receives the output of the counter 34. The adder 32 performs the addition of the binary number and the output of the counter 34. The result of the addition is transmitted to the decoder P to N, here a decoder 4 to 16 of which only 15 outputs are connected, each to a line conductor 24 of the matrix 11. By period, the rows of rank 2 j + k are addressed successively, k representing an integer incremented by one by the counter 34 to each new period.

La figure 7 représente un exemple de réalisation du registre horizontal 14 qui comprend deux registres à décalage 41 et 42 possédant autant de bits que de lignes dans la matrice. Le registre 41 est utilisé comme tampon pour l'enregistrement des données de luminosité. Le registre 42 est utilisé pour l'écriture séquentielle des lignes adressées par le circuit d'adressage de ligne 13.The figure 7 shows an exemplary embodiment of the horizontal register 14 which comprises two shift registers 41 and 42 having as many bits as there are lines in the matrix. Register 41 is used as a buffer for recording the brightness data. The register 42 is used for the sequential writing of the lines addressed by the line addressing circuit 13.

Les figures 8a et 8b représentent sous forme de chronogramme les périodes d'écriture décrites précédemment. Ces chronogrammes peuvent être facilement mis en œuvre à l'aide des circuits d'adressage de lignes décrit sur les figures 5 et 6. Les figures 8a et 8b permettent d'illustrer un premier mode de réalisation de succession des différentes écritures à l'intérieure des périodes.The figures 8a and 8b represent in writing form the writing periods described above. These timing diagrams can be easily implemented using the line addressing circuits described on the figures 5 and 6 . The figures 8a and 8b allow to illustrate a first embodiment of succession of the different writings within the periods.

En haut du chronogramme, une horloge CLK régulière permet de cadencer les différentes écritures des différentes périodes. Sous la représentation de l'horloge CLK sont représentées, ligne par ligne, les écritures des différents bits des mots représentant la luminosité des différents pixels.At the top of the chronogram, a regular CLK clock makes it possible to clock the different entries of the different periods. Under the representation of the CLK clock are represented, line by line, the writings of the different bits of the words representing the brightness of the different pixels.

Durant la première période, quatre tops d'horloge t1 à t4 se produisent. Au premier top t1, le bit D3 de la première ligne est écrit. Au deuxième top t2, le bit D0 de la deuxième ligne est écrit. Au troisième top t3, le bit D1 de la quatrième ligne est écrit et au quatrième top t4, le bit D2 de la huitième ligne est écrit.During the first period, four clock ticks t 1 to t 4 occur. At the first top t 1 , the bit D3 of the first line is written. At the second top t 2 , the bit D0 of the second line is written. In the third top t 3 , the bit D1 of the fourth line is written and in the fourth top t 4 , the bit D2 of the eighth line is written.

A chaque période, le décalage d'une ligne courante décrit plus haut permet de reconstituer le chronogramme complet des figures 4a et 4b de la première période jusqu'à la période 16 représentée sur la figure 8b.At each period, the offset of a current line described above allows the complete chronogram of the Figures 4a and 4b from the first period to period 16 represented on the figure 8b .

Ce premier mode de réalisation présente l'avantage d'une horloge régulière et d'une écriture dans l'ordre des poids des bits. Néanmoins, la durée pour chaque bit n'est pas exactement un multiple de la durée d'une période à cause de la division de la période en quatre phases. Par exemple, le bit de poids faible D0 peut être utilisé par le composant d'affichage pendant une durée de ¾ de période et le bit D1 pendant 1+¾ de période. Cette erreur de quantification est due au choix de la séquence des différents bits. Cette erreur peut être acceptable pour un codage des mots binaire sur un plus grand nombre de bits.This first embodiment has the advantage of a regular clock and of writing in the order of the bit weights. However, the duration for each bit is not exactly a multiple of the duration of a period because of the division of the period into four phases. For example, the least significant bit D0 can be used by the display component for a period of ¾ period and the bit D1 for 1 + ¾ period. This quantization error is due to the choice of the sequence of the different bits. This error may be acceptable for coding binary words on a larger number of bits.

La figure 9 représente un chronogramme d'un deuxième mode de réalisation de l'enchainement des écritures permettant de réduire l'erreur précédemment décrite. On retrouve toujours une horloge régulièrement répartie. Pour simplifier seules les premières périodes sont représentées sur cette figure. Dans ce deuxième mode de réalisation, durant la première période, au premier top t1, le bit D0 de la deuxième ligne est écrit. Au deuxième top t2, le bit D3 de la première ligne est écrit. Au troisième top t3, le bit D2 de la sixième ligne est écrit et au quatrième top t4, le bit D1 de la huitième ligne est écrit. Dans ce mode de réalisation, le bit de poids faible D0 peut être utilisé par le composant d'affichage pendant une durée de 1+¼ de période, le bit D1 pendant 1+¾ de période, le bit D2 pendant 3+½ de période, le bit D3 pendant 8+¼ de période. L'erreur sur la durée reste cette fois inférieure à la moitié de la durée attendue pour le bit de poids faible D0. Cette erreur est typiquement du même ordre de grandeur que celle d'un convertisseur digital-analogique souvent utilisé dans un registre horizontal mis en œuvre dans un pilotage analogique. Il est possible de tester de façon empirique différents ordonnancements des bits de luminosité afin de réduire au maximum l'erreur de quantification.The figure 9 represents a timing diagram of a second embodiment of the sequence of entries making it possible to reduce the error previously described. There is always a regularly distributed clock. To simplify, only the first periods are shown in this figure. In this second embodiment, during the first period, at the first top t 1 , the bit D0 of the second line is written. At the second top t 2 , the bit D3 of the first line is written. In the third top t 3 , the bit D2 of the sixth line is written and in the fourth top t 4 , the bit D1 of the eighth line is written. In this embodiment, the least significant bit D0 can be used by the display component for a duration of 1 + ¼ of period, the bit D1 for 1 + ¾ of period, the bit D2 for 3 + ½ of period , bit D3 for 8 + ¼ period. The error on the duration remains this time less than half the duration expected for the least significant bit D0. This error is typically of the same order of magnitude as that of a digital-analog converter often used in a horizontal register implemented in an analog control. It is possible to empirically test different schedules of the brightness bits in order to minimize the quantization error.

La figure 10 représente un chronogramme d'un troisième mode de réalisation de l'enchainement des écritures permettant également de réduire l'erreur sur les durées d'utilisation des différents bits. Les quatre phases d'une période sont cette fois ci générée pendant une durée inférieure à celle de la période dont la durée est égale à la durée d'une trame d'image divisée par le nombre de lignes écrites 2P-1. Pour illustrer ce mode de réalisation, les quatre phases sont par exemple générées durant la moitié de la période. Ceci est réalisé en doublant la fréquence d'horloge. L'erreur est alors divisée par deux.The figure 10 represents a timing diagram of a third embodiment of the sequence of writes also making it possible to reduce the error on the durations of use of the different bits. The four phases of a period are this time generated for a duration less than that of the period whose duration is equal to the duration of an image frame divided by the number of lines written 2 P -1. To illustrate this embodiment, the four phases are for example generated during half of the period. This is achieved by doubling the clock frequency. The error is then halved.

Il est bien entendu possible de coupler les deuxième et troisième modes de réalisation en proposant un enchainement des bits différent de l'enchainement naturel dans l'ordre des poids des bits et en augmentant la fréquence d'horloge pour concentrer les écritures des différents bits dans une partie seulement de chacune des périodes.It is of course possible to couple the second and third embodiments by proposing a sequence of the bits different from the natural sequence in the order of the weights of the bits and by increasing the clock frequency to concentrate the writes of the different bits in only part of each of the periods.

Il est possible de supprimer complètement l'erreur de quantification quelque soit l'ordonnancement retenu pour l'écriture des différents bits de luminosité en activant le composant d'affichage pendant une durée s'étendant depuis la fin d'une période pendant laquelle le bit de luminosité a été écrit jusqu'à la fin de la période suivante pendant laquelle une nouvelle écriture est effectuée dans le même pixel. Cette durée d'activation peut être obtenue en ajoutant dans le pixel une seconde mémoire pilotée par un signal de ligne spécifique.It is possible to completely eliminate the quantization error whatever the scheduling used for writing the different brightness bits by activating the display component for a period extending from the end of a period during which the bit of brightness was written until the end of the next period during which a new writing is carried out in the same pixel. This duration activation can be obtained by adding in the pixel a second memory controlled by a specific line signal.

La figure 11a représente un pixel 12d permettant de mettre en œuvre cette durée d'activation décalée par rapport à l'écriture. Dans ce pixel, on retrouve comme dans le pixel 12b, l'interrupteur 20, le condensateur 21 de stockage, tous deux raccordés aux conducteurs 23 et 24, la diode électroluminescente 25 et l'interrupteur 26 permettant d'alimenter la diode 25 au moyen de la tension d'alimentation VDD. Dans le pixel 12d, le condensateur 21 ne pilote pas directement l'interrupteur 26. Un nouvel interrupteur 41 est interposé entre le condensateur 21 et la grille de pilotage de l'interrupteur 26. L'interrupteur 41 est piloté par un signal spécifique véhiculé sur un conducteur de ligne supplémentaire 42 distinct du conducteur 24. Une capacité parasite 43 présente au point commun des interrupteurs 26 et 41 fait office de seconde mémoire pilotée par le signal spécifique. Si nécessaire, il est bien entendu possible d'ajouter un condensateur en complément de la capacité parasite. Le signal spécifique permet de faire transiter les charges mémorisées dans le condensateur 21 vers la capacité parasite 43 au moment voulu.The figure 11a represents a pixel 12d making it possible to implement this activation duration offset from the writing. In this pixel, we find, as in pixel 12b, the switch 20, the storage capacitor 21, both connected to the conductors 23 and 24, the light-emitting diode 25 and the switch 26 enabling the diode 25 to be supplied by means of the supply voltage V DD . In pixel 12d, the capacitor 21 does not directly control the switch 26. A new switch 41 is interposed between the capacitor 21 and the control grid of the switch 26. The switch 41 is controlled by a specific signal conveyed on an additional line conductor 42 distinct from the conductor 24. A parasitic capacitance 43 present at the common point of the switches 26 and 41 acts as a second memory controlled by the specific signal. If necessary, it is of course possible to add a capacitor in addition to the stray capacitance. The specific signal makes it possible to transmit the charges stored in the capacitor 21 to the stray capacitance 43 at the desired time.

La figure 11b représente un pixel 12e formant une variante au pixel 12d permettant également de mettre en œuvre le décalage de la durée d'activation par rapport à l'écriture. On retrouve dans le pixel 12e, comme dans le pixel 12c, la mémoire binaire 27 recevant une information à stocker par le conducteur colonne 23 et pilotée par le conducteur de ligne 24. On retrouve aussi la diode électroluminescente 25 et l'interrupteur 26 permettant d'alimenter la diode 25 au moyen d'une tension d'alimentation VDD. Dans le pixel 12e, la mémoire binaire 27 ne pilote pas directement l'interrupteur 26. Une seconde mémoire binaire 45 est interposée entre le la mémoire binaire 27 et la grille du pilotage de l'interrupteur 26. La mémoire 45 est pilotée par le signal spécifique véhiculé sur le conducteur de ligne supplémentaire 42.The figure 11b represents a pixel 12e forming a variant to pixel 12d also making it possible to implement the offset of the activation time with respect to writing. We find in pixel 12e, as in pixel 12c, the binary memory 27 receiving information to be stored by the column conductor 23 and controlled by the row conductor 24. We also find the light-emitting diode 25 and the switch 26 allowing d 'supply the diode 25 by means of a supply voltage V DD . In pixel 12e, the binary memory 27 does not directly control the switch 26. A second binary memory 45 is interposed between the binary memory 27 and the control grid for the switch 26. The memory 45 is driven by the signal specific carried on the additional line conductor 42.

La figure 12 représente sous forme de chronogramme les signaux véhiculés sur les conducteurs de lignes 24 et 42. Comme précédemment sur les figures 8, 9 et 10, l'axe des temps porte les différentes périodes d'écriture de la matrice. Pour simplifier la compréhension on a conservé une résolution de la luminosité sur 4 bits. Le chronogramme de la figure 12 reprend l'ordonnancement naturel de l'écriture des différents bits de luminosité, ordonnancement présenté sur les figures 8a et 8b. Pour chacune des 15 lignes de la matrice, deux signaux S1 et S2 sont représentés, le signal S1 véhiculé par le conducteur 24 et le signal S2 par le conducteur 42. Les signaux S1 véhiculés par les différents conducteurs 24 sont identiques à ceux décrits à l'aide de la figure 8a.The figure 12 represents in the form of a timing diagram the signals conveyed on the line conductors 24 and 42. As previously on the figures 8 , 9 and 10 , the time axis carries the different writing periods of the matrix. To simplify understanding, we have kept a resolution of brightness on 4 bits. The chronogram of the figure 12 resumes the natural scheduling of the writing of the different brightness bits, scheduling presented on figures 8a and 8b . For each of the 15 rows of the matrix, two signals S1 and S2 are represented, the signal S1 conveyed by the conductor 24 and the signal S2 by the conductor 42. The signals S1 conveyed by the various conductors 24 are identical to those described in l help from figure 8a .

Au cours de la première période, et plus précisément au premier top t1, le bit D3 de la première ligne est écrit. Ce bit est véhiculé par le conducteur de colonne 23 et le top t1 forme le signal S1 véhiculé par le conducteur 24 de la première ligne. Pour le signal S2 véhiculé par le conducteur 42, un front montant permet au contenu de la mémoire 27, ou à la tension présente dans le condensateur 21 de piloter l'interrupteur 26. L'état, passant ou bloqué, de l'interrupteur 26 est maintenu tant qu'un nouveau front montant n'apparait pas sur le conducteur 42. Pour éviter que l'écriture dans la mémoire 27 (ou sur le condensateur 21) ne perturbe le pilotage de l'interrupteur 26, un front descendant apparait sur le signal S2 en début de première période peu avant l'apparition du bit D3 au top t1.During the first period, and more precisely at the first top t 1 , the bit D3 of the first line is written. This bit is conveyed by the column conductor 23 and the top t 1 forms the signal S1 conveyed by the conductor 24 of the first line. For the signal S2 conveyed by the conductor 42, a rising edge allows the content of the memory 27, or the voltage present in the capacitor 21 to control the switch 26. The state, passing or blocked, of the switch 26 is maintained as long as a new rising edge does not appear on the conductor 42. To prevent writing in the memory 27 (or on the capacitor 21) disturbing the control of the switch 26, a falling edge appears on the signal S2 at the start of the first period shortly before the appearance of the bit D3 at the top t 1 .

Pour la deuxième ligne, le bit D0 est écrit au top t2 de la première période et le bit D3 est écrit au top t1 de la deuxième période. Pour le signal S2 de cette deuxième ligne, un premier front montant intervient en fin de première période autorisant l'activation de la diode 25 par la valeur du bit D0. Un deuxième front montant intervient en fin de deuxième période autorisant l'activation de la diode 25 par la valeur du bit D3. La diode a été activée par le bit D0 durant exactement une période.For the second line, bit D0 is written to top t 2 of the first period and bit D3 is written to top t 1 of the second period. For the signal S2 of this second line, a first rising edge occurs at the end of the first period authorizing the activation of the diode 25 by the value of the bit D0. A second rising edge occurs at the end of the second period authorizing the activation of the diode 25 by the value of the bit D3. The diode was activated by bit D0 for exactly one period.

Les signaux S1 et S2 de la troisième ligne sont décalés temporellement d'une période par rapport aux signaux de la deuxième ligne.The signals S1 and S2 of the third line are temporally offset by a period with respect to the signals of the second line.

Pour la quatrième ligne, le bit D1 est écrit au top t3 de la première période et le bit D0 est écrit au top t2 de la troisième période. Pour le signal S2 de cette deuxième ligne, un premier front montant intervient en fin de première période autorisant l'activation de la diode 25 par la valeur du bit D1. Un deuxième front montant intervient en fin de troisième période autorisant l'activation de la diode 25 par la valeur du bit D3. La diode 25 a été activée par le bit D1 durant exactement deux périodes séparant les deux fronts montant intervenant en fin de première période et en en fin de troisième période. Et ainsi de suite pour les différents bits D0 qui activent la diode 25 durant une période, les bits D1 durant deux périodes, les bits D2 durant quatre périodes et les bits D3 durant huit périodes. De façon plus générale, les bits de poids j activent le composant d'affichage durant 2j périodes.For the fourth line, the bit D1 is written at the top t 3 of the first period and the bit D0 is written at the top t 2 of the third period. For the signal S2 of this second line, a first rising edge occurs at the end of the first period authorizing the activation of the diode 25 by the value of the bit D1. A second rising edge occurs at the end of the third period authorizing the activation of the diode 25 by the value of the bit D3. The diode 25 was activated by the bit D1 during exactly two periods separating the two rising edges occurring at the end of the first period and at the end of the third period. And so on for the different bits D0 which activate the diode 25 during one period, the bits D1 during two periods, the bits D2 during four periods and the D3 bits for eight periods. More generally, the weight bits j activate the display component for 2 j periods.

Les pixels 11d et 11e ainsi que le chronogramme associé et représenté sur la figure 12, font référence à une diode 25. Il est bien entendu que ces variantes peuvent être mises en œuvre pour tout autre type de composant d'affichage, comme par exemple une cellule à cristaux liquide ou un micro miroir.Pixels 11d and 11e as well as the associated timing diagram shown on the figure 12 , refer to a diode 25. It is understood that these variants can be implemented for any other type of display component, such as for example a liquid crystal cell or a micro mirror.

Le procédé décrit plus haut possède une limitation dans l'existence d'un lien entre le nombre N de lignes de la matrice et le nombre P de bits de résolution du mot binaire représentant la luminosité. Plus précisément : N = 2P - 1. Par exemple, une résolution de huit bits impose une matrice de 255 lignes et une une résolution de 10 bits impose une matrice de 1023 lignes.The method described above has a limitation in the existence of a link between the number N of lines of the matrix and the number P of bits of resolution of the binary word representing the luminosity. More precisely: N = 2 P - 1. For example, an eight-bit resolution requires a 255-line matrix and a 10-bit resolution requires a 1023-line matrix.

Il est possible de dépasser cette limitation, par exemple si on souhaite adresser une matrice ayant un nombre de lignes double de ce que le lien précédent impose, par exemple 510 lignes pour une résolution de 8 bits. Une première solution consiste à augmenter artificiellement d'une unité le nombre de bits en attribuant systématiquement un 0 au nouveau bit de poids faible LSB. Cette solution peut également être mise en œuvre si on souhaite multiplier le nombre de lignes par toute puissance de deux. Par exemple pour quadrupler le nombre de lignes, on peut ajouter deux bits supplémentaires.It is possible to overcome this limitation, for example if one wishes to address a matrix having a number of lines double that which the preceding link imposes, for example 510 lines for a resolution of 8 bits. A first solution consists in artificially increasing the number of bits by one by systematically assigning a 0 to the new least significant bit LSB. This solution can also be implemented if one wishes to multiply the number of lines by any power of two. For example, to quadruple the number of lines, two additional bits can be added.

La figure 13 propose une alternative à l'ajout d'un bit de poids faible. Plus précisément, le circuit d'adressage de ligne est dupliqué et chaque circuit fonctionne séparément. Sur la figure 13, deux circuits d'adressage de ligne 13a et 13b sont représentés, chacun adressant une moitié de la matrice 11. De façon plus générale, la matrice 11 est divisée en zones, 11a et 11b dans l'exemple représenté, chacune des zones ayant un nombre de ligne inférieur ou égal à 2P-1. Ici encore, il est possible de multiplier le nombre de circuits d'adressage de ligne par tout nombre entier.The figure 13 offers an alternative to adding a least significant bit. More specifically, the line addressing circuit is duplicated and each circuit operates separately. On the figure 13 , two line addressing circuits 13a and 13b are shown, each addressing one half of the matrix 11. More generally, the matrix 11 is divided into zones, 11a and 11b in the example shown, each of the zones having a number of lines less than or equal to 2 P -1. Here again, it is possible to multiply the number of line addressing circuits by any integer.

Les formats vidéo largement répandus ont rarement des nombres de lignes correspondant à des puissances de deux. Il est néanmoins possible de mettre en œuvre le procédé de l'invention pour tout format. A cet effet, pour se libérer de cette contrainte, il est possible de choisir un nombre de lignes 2P-1, adressées par le procédé de l'invention, supérieur au nombre de lignes réelle de la matrice. Au-delà des lignes réelles, les lignes adressées restantes seront virtuelles en leur attribuant une valeur de luminosité nulle.Widely used video formats rarely have line numbers corresponding to powers of two. It is nevertheless possible to implement the method of the invention for any format. In this Indeed, to free oneself from this constraint, it is possible to choose a number of lines 2 P -1, addressed by the method of the invention, greater than the number of real lines of the matrix. Beyond the actual lines, the remaining addressed lines will be virtual by assigning them a zero brightness value.

La figure 14 décrit la mise en œuvre de telles lignes virtuelles. Plusieurs périodes y sont représentées de façon similaire à la représentation des figures 3 ou 4. Le nombre total de lignes adressées 2P - 1 est représenté selon un axe des ordonnées. Le nombre de lignes réelles U de la matrices est égal à (2P - 1) - V, V représentant le nombre de lignes virtuelles restant adressées et dont la valeur de luminosité est avantageusement nulle.The figure 14 describes the implementation of such virtual lines. Several periods are represented there in a similar way to the representation of figures 3 or 4 . The total number of lines addressed 2 P - 1 is represented along a vertical axis. The number of real lines U of the matrix is equal to (2 P - 1) - V, V representing the number of virtual lines remaining addressed and whose luminosity value is advantageously zero.

Le principe de mise en œuvre de lignes virtuelles peut bien entendu être combiné avec la multiplication du nombre de lignes décrit plus haut. Ceci permet d'utiliser le procédé de l'invention sans aucune limitation sur le nombre de lignes réelles de la matrice, que ce nombre soit inférieur ou supérieur à 2P - 1.The principle of implementing virtual lines can of course be combined with the multiplication of the number of lines described above. This allows the method of the invention to be used without any limitation on the number of real rows of the matrix, whether this number is less than or greater than 2 P - 1.

Claims (11)

  1. Method for displaying images on a matrix screen (10) comprising several rows of pixels (12, 12a, 12b, 12c), the rows being ordered from i=1 to i=N, N representing the number of rows,
    each pixel comprising a display component (22, 25) and a memory (21, 27),
    the matrix screen (10) comprising addressing means (13) for each of the rows and data transfer means (20) to the memory (21, 27) of each of the pixels (12),
    the method consisting in controlling the brightness of each of the pixels (12) of the matrix screen (10) by means of a binary word comprising several bits (D0, D1, D2, D3) written successively through the data transfer means (20), into the memory (21, 27) and by controlling the display component (22, 25) as a function of a state of the bit written into the memory (21, 27), the bits of each binary word being ranked according to their weight from j=1 to j=P,
    the method being characterized in that it consists in sequencing the following writes for the duration (Tframe) of an image frame:
    • from a current row i, writing on the rows i+2j, from j=1 to j=P, the bit of weight j of each binary word associated with the different pixels of the rows i+2j;
    • repeating, 2P-1 times, the writes mentioned above by shifting a pointer of the current row by one unit on each repetition;
    the pointer of a row being determined: i modulo 2P-1 so as to lie between 1 and 2P-1.
  2. Method according to Claim 1, characterized in that, for each current row i, the writes performed on the rows i+2j occupy a period Ti, and in that the 2P-1 periods Ti have equal durations.
  3. Method according to Claim 2, characterized in that the duration of a period Ti is equal to the duration (Tframe) of an image frame divided by 2P-1.
  4. Method according to one of the preceding claims, characterized in that each of the pixels (12b, 12c) further comprises a switch (26) making it possible to control the display component (25) as a function of a state of the bit written into the memory (21, 27) and in that, for each of the pixels, the switch (26) is actuated to drive the display component (25) as a function of the bit written into the memory (21, 27) for a duration extending between two successive writes.
  5. Method according to any one of Claims 1 to 3, characterized in that it consists, for each of the pixels (12d, 12e), in activating the display component (22, 25) after writing in the corresponding memory (21, 27), in that the writes on the rows i+2j performed from the current row i are performed during a period, and in that the display component (22, 25) is activated for a duration extending from the end of the period during which the brightness bit (D0 to D3) was written to the end of the next period during which a new write is performed in the pixel concerned (12d, 12e).
  6. Method according to Claim 5, characterized in that the memory (21, 27) of each pixel (12, 12a to 12e) is called first memory, in that each pixel (12d, 12e) comprises a second binary memory (43, 45) making it possible to pass the bit (D0 to D3) written in the first memory (21, 27) to the display component (22, 25) to activate it, in that the addressing means (13) drive the first memory (21, 27) by means of a write-enabling first signal (S1) and drive the second memory (43, 45) by means of a second signal (S2) distinct from the first signal (S1) and making it possible to activate the display component (22, 25).
  7. Method according to any one of the preceding claims, characterized in that if the brightness is expressed as a number of R bits and the number of rows N is greater than 2R-1, then the binary word has added to it a number T of bits whose values are equal to zero, corresponding to a switching off of the display components so that N is less than or equal to 2P-1 with P = R+T.
  8. Method according to any one of Claims 1 to 6, characterized in that, if the brightness is expressed as a number of S bits and the number of rows N is greater than 2S-1, the matrix is divided into areas (11a, 11b) driven separately, each of the areas (11a, 11b) having a number of rows less than or equal to 2S-1.
  9. Method according to any one of the preceding claims, characterized in that, if the matrix comprises a number of rows U, called number of real rows, less than 2P-1, then the distribution of the writes is configured to sequence the writes on N rows with N = 2P-1 with U real rows and V rows called virtual rows with U+V = N, and in that, for the virtual rows, the binary word contains only bits of a value corresponding to a switching off of the display component.
  10. Method according to any one of the preceding claims, characterized in that, for each given current row i, the writes on the rows i+2j, from j=1 to j=P, of the different bits are ordered so as to minimize an error over a desired duration separating two successive writes of a same pixel (12).
  11. Method according to any one of the preceding claims, characterized in that, for each given current row i, the writes on the rows i+2j, from j=1 to j=P, of the different bits are performed for a duration less than the duration of a period equal to the duration of a frame divided by the number of rows written 2P-1.
EP16164462.0A 2015-04-10 2016-04-08 Method for displaying images on a matrix screen Active EP3079142B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1553140A FR3034902B1 (en) 2015-04-10 2015-04-10 METHOD FOR DISPLAYING IMAGES ON A MATRIX SCREEN

Publications (2)

Publication Number Publication Date
EP3079142A1 EP3079142A1 (en) 2016-10-12
EP3079142B1 true EP3079142B1 (en) 2020-06-24

Family

ID=53274699

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16164462.0A Active EP3079142B1 (en) 2015-04-10 2016-04-08 Method for displaying images on a matrix screen

Country Status (3)

Country Link
US (1) US10223961B2 (en)
EP (1) EP3079142B1 (en)
FR (1) FR3034902B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418405B2 (en) * 2017-09-05 2019-09-17 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
KR102395792B1 (en) 2017-10-18 2022-05-11 삼성디스플레이 주식회사 Display device and driving method thereof
FR3079957B1 (en) 2018-04-05 2021-09-24 Commissariat Energie Atomique DEVICE AND METHOD FOR DISPLAYING IMAGES WITH DATA STORAGE CARRIED OUT IN THE PIXELS
GB201914186D0 (en) * 2019-10-01 2019-11-13 Barco Nv Driver for LED or OLED display
FR3125358A1 (en) 2021-07-16 2023-01-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Interactive display device and method of manufacturing such a device
FR3126261B1 (en) 2021-08-19 2023-07-14 Commissariat Energie Atomique Image capture device and method of manufacturing such a device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009590B2 (en) * 2001-05-15 2006-03-07 Sharp Kabushiki Kaisha Display apparatus and display method
JP2009053576A (en) * 2007-08-29 2009-03-12 Eastman Kodak Co Active matrix type display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3034902A1 (en) 2016-10-14
FR3034902B1 (en) 2017-05-19
EP3079142A1 (en) 2016-10-12
US10223961B2 (en) 2019-03-05
US20160300525A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
EP3079142B1 (en) Method for displaying images on a matrix screen
EP2013863B1 (en) Organic electroluminescent display
JP5733154B2 (en) Liquid crystal display
JP5327824B2 (en) Display with multiple pixels to achieve modulation between saturation voltage and threshold voltage
EP0635819B1 (en) Driving method and apparatus for a microtip display
EP0815552B1 (en) Method for addressing a flat screen using pixel precharging, driver for carrying out the method, and use thereof in large screens
JP6263862B2 (en) Liquid crystal display
FR2925745A1 (en) LIQUID CRYSTAL DISPLAY AND ITS CONTROL METHOD
EP1964093B1 (en) Method of driving a display panel with depolarization
EP3550550A1 (en) Device and method for displaying images with data storage carried out in the pixels
FR2894369A1 (en) IMPROVED ADDRESSING METHOD FOR A LIQUID CRYSTAL MATRIX DISPLAY
EP0641475B1 (en) Method for displaying different levels of gray and system for implementing such method
FR2784489A1 (en) METHOD FOR DISPLAYING DATA ON A MATRIX DISPLAY
FR2776107A1 (en) Display control system for liquid crystal display screens
JP2000227782A (en) Color image generating device, color image generating method and electronic instrument
EP1964094A1 (en) Method for controlling a display panel by capacitive coupling
JPH11501415A (en) Multi-frame rate operation of digital light modulator
WO2007065908A1 (en) Colour sequential liquid crystal matrix display
WO2011095403A1 (en) Method for writing an image in a liquid crystal display
EP2104092B1 (en) Display device capable of operating in partial low-power display mode
EP0793212B1 (en) Control method for a display screen with gradation display and display device for carrying out the same
JP2015161836A (en) liquid crystal display device
CA2536216A1 (en) Liquid crystal microdisplay and control method thereof
FR2674663A1 (en) MATRIX SCREEN WITH IMPROVED DEFINITION AND METHOD FOR ADDRESSING SUCH SCREEN.
FR3024796A1 (en) LCD DISPLAY WITH LINE ADDRESSING BY SAMPLING AND CONVERTING, AND DISPLAY METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170412

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200309

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEGURA PUCHADES, JOSEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20200514

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016038569

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1284673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1284673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016038569

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210408

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210408

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 8

Ref country code: DE

Payment date: 20230418

Year of fee payment: 8