EP0815552B1 - Method for addressing a flat screen using pixel precharging, driver for carrying out the method, and use thereof in large screens - Google Patents

Method for addressing a flat screen using pixel precharging, driver for carrying out the method, and use thereof in large screens Download PDF

Info

Publication number
EP0815552B1
EP0815552B1 EP97900254A EP97900254A EP0815552B1 EP 0815552 B1 EP0815552 B1 EP 0815552B1 EP 97900254 A EP97900254 A EP 97900254A EP 97900254 A EP97900254 A EP 97900254A EP 0815552 B1 EP0815552 B1 EP 0815552B1
Authority
EP
European Patent Office
Prior art keywords
voltage
ven
lines
transistors
exp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97900254A
Other languages
German (de)
French (fr)
Other versions
EP0815552A1 (en
Inventor
François Maurice
Eric Sanson
Bruno Mourey
Hugues Lebrun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics LCD SA
Original Assignee
Thales Avionics LCD SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics LCD SA filed Critical Thales Avionics LCD SA
Publication of EP0815552A1 publication Critical patent/EP0815552A1/en
Application granted granted Critical
Publication of EP0815552B1 publication Critical patent/EP0815552B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0205Simultaneous scanning of several lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels

Definitions

  • the present invention relates to a method for addressing a flat screen, more particularly a liquid crystal screen using a pixel preload.
  • the present invention also relates to a circuit for control of the columns of such a screen allowing the implementation of the process as well as applying the process to large screens dimensions.
  • Liquid crystal displays with direct vision or projection usually consist of rows (selection rows) and columns (data lines) at the intersections of which the pixel electrodes connected through transistors to these lines.
  • the grids of these transistors form the selection lines and are controlled by peripheral control circuits, generally called “drivers” which scan the lines and make passing the transistors of each line allowing, by the lines of data connected to the other peripheral control circuits, charge the pixel electrodes and modify the optical properties of the liquid crystal between these electrodes and the counter electrode (or reference electrode) thus allowing the formation of images on the screen.
  • Figure 1 shows the equivalent electrical diagram of a flat screen pixel addressed by line control circuits and columns.
  • the electrode and counter electrode surrounding the liquid crystal form a capacity 1 whose charge (most often constituted by video data) is transmitted by column 2 through the transistor 3 controlled by the selection line 4.
  • Figure 2 as to it represents the chronograms of operation of this pixel, Vs being the signal sent by the selection line of a row of pixels, Vc the video signal sampled on the selected row of pixels and Vp the effective charge of one of these pixels.
  • Vs being the signal sent by the selection line of a row of pixels
  • Vc the video signal sampled on the selected row of pixels
  • Vp the effective charge of one of these pixels.
  • the pixel voltage Vp across the crystal liquid should be equal to the column voltage Vc, i.e. +/- V.
  • each transistor 3 when it is in the on state, has a resistance Ron which is not zero, so the charge of the pixel exhibits an exponential characteristic (as shown in FIG. 2) a time constant which is not zero since it is equal to the product Ron x C, C being the value of the capacity 1 of the pixel.
  • the residual convergence error is equal to Ven + in positive frame (negative value) or Ven- in negative frame (positive value), different from the +/- V values of the charging voltage Vc.
  • FIG. 3 Another known solution is shown in Figure 3.
  • a screen 5 made up of pixels 6 is addressed by a circuit control line 7 and a column control circuit 8 formed by samplers controlled by a shift register.
  • the charge of a sampler is none other than the distributed capacity of the column ordered 9.
  • This column must be loaded for a very long time short, with the above-mentioned convergence problems compounded by the the charging time is only a fraction of the time address a line 9. Indeed, during this time line, it is necessary successively sample the video on all columns of the screen. For this reason, the creation of screens with integrated drivers has need to date the use of high semiconductor mobility, such as mono or polycrystalline silicon.
  • the present invention provides a new process addressing to overcome the drawbacks mentioned above.
  • the subject of the present invention is a method for addressing a flat screen composed of rows and columns to intersections of which pixels are located, characterized in that, at the start of each sampling of the video signal to be displayed on the screen, a voltage (Vr) greater than the useful voltage range (V) is applied on the selected pixel for a time tr, then the useful voltage is sampled for a time ts.
  • the present invention also relates to a circuit for control of the columns of a flat screen of the type comprising samplers controlled by the outputs of a shift register, characterized in that each sampler consists of three MIS type transistors connected in parallel so that their first electrode is connected to the video signal and their second electrode at the controlled column, which gate of the first transistor being connected to one of the outputs of the shift register and the gates of the second and third transistors being connected to two clocks chosen so that both transistors are activated, one for perform the preload of the even lines, the other of the odd lines.
  • the voltage of the clocks applied to the second and third transistors is chosen from so that when a transistor is not used for preloading, it receives on its grid a negative voltage allowing later compensate for capacitive couplings when this voltage returns to zero.
  • the three transistors are identical and are transistors produced in a thin layer or TFT.
  • This solution allows compensate for large capacitive couplings because the transistors used to make samplers are big. It allows more equally distribute the "stress" or fatigue on the three transistors which are of the same size which increases the lifetime of the transistors.
  • the present invention also relates to the application of the method above for large screens.
  • the present invention therefore relates to a method for addressing a flat screen with rows and columns to intersections of which pixels are located, in which X circuits of lines are each connected to Y lines, characterized in that, for a time tr, the preload of the pixels located is carried out on the lines connected to the first line control circuit, to a voltage (Vr) greater than the useful voltage range (V), then we successively sample the Y lines and start the operation again above for the remaining X-1 control circuits.
  • the present invention also relates to a method for addressing a flat screen with rows and columns to intersections of which pixels are located in which X circuits of control lines are each connected to Y lines, characterized in that we simultaneously preload the first line of the X circuits line control at a voltage Vr greater than the voltage range useful (V) and we then successively sample said line of X control circuits lines and we start again the above operation for the Y-1 other lines of each of the X line control circuits.
  • a-Si amorphous silicon
  • FIG. 5 represents an exemplary embodiment of a circuit for column control of a screen allowing the implementation of the process according to the invention.
  • This control circuit is formed by transistors made of amorphous silicon.
  • This control circuit 11 is, from preferably made up of several video inputs operating in parallel to reduce the frequency of demultiplexing accordingly.
  • the column control circuit has five video inputs DB1 to DB5 and six signal inputs from demultiplexing DW1 to DW6, which allows thirty columns to be loaded 12.
  • Each column 12 is controlled by a single transistor 13 which serves successively at the preload to reach the voltage Vr during the time tr, and at convergence to the video voltage value which appropriate.
  • FIG. 6 represents the chronogram of operation of the screen of FIG. 5 when it is used according to the method of the invention.
  • a voltage Vr greater than the voltage useful is applied to all columns via signals DW1 to DW6.
  • the entries DW1 to DW6 are selected successively, as represented by DW1 to DW6, for each signal DB1 to DB5, the useful voltage is sampled during ts.
  • FIG. 7 represents a preferred embodiment of a circuit column control implementing the present invention.
  • each sampler consists of three transistors 16, 17 and 18 which are preferably identical and mounted in parallel.
  • the first electrodes or drains of the three transistors 16, 17 and 18 receive the input video signal 14 while their second electrode or source charges column 15 at order.
  • the gate of transistor 16 is connected at output of a shift register and receives a demultiplexing signal 19 while the gates 20 and 21 of the other two transistors 17 and 18 are connected to two clocks which are described in more detail below.
  • the use of the three transistors makes it possible to compensate for the couplings capacitive which are important with a single large transistor and distribute stress on the transistors, which extends the service life.
  • FIG. 8 represents the timing diagram of a circuit of command lines of the type of that of figure 7.
  • the clock signals applied to transistors 17 and 18 are such that one of the transistors performs the preload of the odd lines while the other performs the preload of even lines.
  • the other transistor 18 receives on its gate 21 a negative pulse of for example -22V until the end of time lines, so that at the end of line time, we can compensate for the coupling of the convergence transistor by means of a positive pulse on the control electrode 21.
  • the gate of transistor 16 will receive a pulse of duration Ts so as to achieve convergence. Preload takes approximately twice as long (2 ⁇ sec) as the convergence (0.9 ⁇ sec), so that the duty cycle of operation of the three transistors is equivalent, which distributes equitably stress.
  • the transistor In the case of a screen with a very large number of lines or with a very large number of elementary pixels, the transistor is undersized to avoid having too large coupling capacities.
  • the basic diagram can be of the type of that of figure 1.
  • Figure 9 which relates to a screen whose column control circuit is identical to the circuit of FIG. 5 and where the lines are grouped by five, each group being controlled by a register lines R1, R2, R3 ... for packets of five lines, we do first a simultaneous preload on lines L1 to L5, then we sequentially samples these same lines L1 to L5. Then we simultaneously preloads lines L6 to L10, etc.
  • This mode of operation is not compatible with control circuits usual (order of five lines at a time). It therefore requires a special electronics.
  • the preload is carried out using a voltage Vr greater than the useful voltage V + / V-.
  • the present invention applies in particular to flat screens with liquid crystals controlled by an active matrix of transistors (AMLCD) in thin layers, and in general for any application requiring a sampler whose relative precision is more important than absolute precision.
  • AMLCD active matrix of transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

La présente invention concerne un procédé d'adressage d'un écran plat, plus particulièrement un écran à cristaux liquides utilisant une précharge des pixels. La présente invention concerne aussi un circuit de commande des colonnes d'un tel écran permettant la mise en oeuvre du procédé ainsi que l'application du procédé aux écrans de grandes dimensions.The present invention relates to a method for addressing a flat screen, more particularly a liquid crystal screen using a pixel preload. The present invention also relates to a circuit for control of the columns of such a screen allowing the implementation of the process as well as applying the process to large screens dimensions.

Les écrans à cristaux liquides à vision directe ou à projection sont en général composés de lignes (lignes de sélection) et de colonnes (lignes de données) aux intersections desquelles sont situées les électrodes de pixels connectées au travers de transistors à ces lignes. Les grilles de ces transistors forment les lignes de sélection et sont commandées par les circuits de commandés périphériques, généralement appelés "drivers" (en langue anglaise) qui balayent les lignes et rendent passant les transistors de chaque ligne en permettant, par les lignes de données connectées aux autres circuits de commandes périphériques, de charger les électrodes des pixels et modifier les propriétés optiques du cristal liquide compris entre ces électrodes et la contre-électrode (ou électrode de référence) permettant ainsi la formation d'images sur l'écran.Liquid crystal displays with direct vision or projection usually consist of rows (selection rows) and columns (data lines) at the intersections of which the pixel electrodes connected through transistors to these lines. The grids of these transistors form the selection lines and are controlled by peripheral control circuits, generally called "drivers" which scan the lines and make passing the transistors of each line allowing, by the lines of data connected to the other peripheral control circuits, charge the pixel electrodes and modify the optical properties of the liquid crystal between these electrodes and the counter electrode (or reference electrode) thus allowing the formation of images on the screen.

La figure 1 représente le schéma électrique équivalent d'un pixel d'écran plat adressé par des circuits de commande lignes et colonnes. L'électrode et la contre-électrode encadrant le cristal liquide forment une capacité 1 dont la charge (constituée le plus souvent par des données vidéo) est transmise par la colonne 2 au travers du transistor 3 commandé par la ligne de sélection 4. La figure 2 quant à elle représente les chronogrammes de fonctionnement de ce pixel, Vs étant le signal adressé par la ligne de sélection d'une rangée de pixels, Vc le signal vidéo échantillonné sur la rangée de pixels sélectionnée et Vp la charge effective d'un de ces pixels. Théoriquement, à la fin d'une impulsion d'échantillonnage, la tension pixel Vp aux bornes du cristal liquide, devrait être égale à la tension colonne Vc, c'est à dire +/- V.Figure 1 shows the equivalent electrical diagram of a flat screen pixel addressed by line control circuits and columns. The electrode and counter electrode surrounding the liquid crystal form a capacity 1 whose charge (most often constituted by video data) is transmitted by column 2 through the transistor 3 controlled by the selection line 4. Figure 2 as to it represents the chronograms of operation of this pixel, Vs being the signal sent by the selection line of a row of pixels, Vc the video signal sampled on the selected row of pixels and Vp the effective charge of one of these pixels. Theoretically, at the end of a sampling pulse, the pixel voltage Vp across the crystal liquid, should be equal to the column voltage Vc, i.e. +/- V.

Le problème de ce type d'adressage est qu'en pratique, la tension Vp est différente de la tension de charge Vc de la colonne. En effet, chaque transistor 3, lorsqu'il est dans l'état passant, a une résistance Ron qui n'est pas nulle, de sorte que la charge du pixel présente une caractéristique exponentielle (comme cela est représenté sur la figure 2) de constante de temps qui n'est pas nulle puisque égale au produit Ron x C, C étant la valeur de la capacité 1 du pixel. Lorsque le temps de charge est écoulé, l'erreur résiduelle de convergence est égale à Ven+ en trame positive (valeur négative) ou Ven- en trame négative (valeur positive), différentes des valeurs +/-V de la tension de charge Vc.The problem with this type of addressing is that in practice, the voltage Vp is different from the load voltage Vc of the column. In Indeed, each transistor 3, when it is in the on state, has a resistance Ron which is not zero, so the charge of the pixel exhibits an exponential characteristic (as shown in FIG. 2) a time constant which is not zero since it is equal to the product Ron x C, C being the value of the capacity 1 of the pixel. When the charging time has elapsed, the residual convergence error is equal to Ven + in positive frame (negative value) or Ven- in negative frame (positive value), different from the +/- V values of the charging voltage Vc.

Il en résulte une erreur sur la tension RMS qui oriente le cristal liquide de l'ordre de (Ven+-Ven-)/2. Or, les spécifications électro-optiques de l'écran imposent une valeur maximale pour cette erreur de l'ordre de 5 à 10 mV pour un effet nématique en hélice à 90°. Le produit RC (résistance par capacité) doit donc être typiquement 7 à 8 fois plus faible que le temps d'adressage pour atteindre un taux de convergence compatible avec une application de qualité. Il en résulte des limites sur le nombre de lignes adressables ainsi que sur la taille des pixels. Dans ce cas, il faut diminuer R, c'est à dire élargir le transistor. Cela n'est pas réaliste au delà d'un rapport entre largeur et longueur du canal qui excède quelques unités. D'autre part, lorsque l'impulsion Vs appliquée sur la ligne de sélection revient à l'état bas (voir figure 2), le couplage parasite entre la ligne et le pixel devient excessif dans le cas où la largeur du transistor excède une certaine valeur.This results in an error on the RMS voltage which directs the crystal liquid of the order of (Ven + -Ven -) / 2. However, the electro-optical specifications of the screen impose a maximum value for this error of around 5 to 10 mV for a nematic effect in a 90 ° helix. The product RC (resistance by capacity) must therefore typically be 7 to 8 times more low than the addressing time to reach a convergence rate compatible with a quality application. This results in limits on the number of addressable lines and the size of the pixels. In this case, it is necessary to decrease R, ie to widen the transistor. It is not realistic beyond a relationship between width and length of the channel which exceeds a few units. On the other hand, when the pulse Vs applied on the selection line returns to the low state (see figure 2), the coupling noise between the line and the pixel becomes excessive in the event that the width of the transistor exceeds a certain value.

Une autre solution connue est représentée à la figure 3. Dans ce cas, un écran 5 constitué de pixels 6 est adressé par un circuit de commande ligne 7 et un circuit de commande colonne 8 formé par des échantillonneurs commandés par un registre à décalage. La charge d'un échantillonneur n'est autre que la capacité répartie de la colonne commandée 9. Cette colonne doit être chargée pendant un temps très court, avec les problèmes de convergence cités plus haut aggravés par le fait que le temps de charge n'est plus qu'une fraction du temps où l'on adresse une ligne 9. En effet, pendant ce temps ligne, il faut successivement échantillonner la vidéo sur toutes les colonnes de l'écran. Pour cette raison, la réalisation d'écrans à drivers intégrés a nécessité jusqu'à ce jour l'utilisation de semi-conducteur à haute mobilité, comme le silicium mono ou polycristallin.Another known solution is shown in Figure 3. In in this case, a screen 5 made up of pixels 6 is addressed by a circuit control line 7 and a column control circuit 8 formed by samplers controlled by a shift register. The charge of a sampler is none other than the distributed capacity of the column ordered 9. This column must be loaded for a very long time short, with the above-mentioned convergence problems compounded by the the charging time is only a fraction of the time address a line 9. Indeed, during this time line, it is necessary successively sample the video on all columns of the screen. For this reason, the creation of screens with integrated drivers has need to date the use of high semiconductor mobility, such as mono or polycrystalline silicon.

Pour remédier aux inconvénients ci-dessus et permettre l'utilisation de transistors en couche mince réalisés en silicium, il est proposé notamment dans la demande PCT/FR94/16428, de réaliser une précharge des pixels à une tension inférieure à la tension utile. L'utilisation d'une telle tension présente un certain nombre d'inconvénients. Elle ne résout pas, en particulier, le problème de la convergenceTo remedy the above drawbacks and allow the use of thin film transistors made of silicon, it is proposed in particular in PCT / FR94 / 16428, to carry out a pixel preload at a voltage lower than the useful voltage. The use of such a voltage presents a number disadvantages. In particular, it does not resolve the problem of convergence

La présente invention propose un nouveau procédé d'adressage permettant de remédier aux inconvénients mentionnés ci-dessus.The present invention provides a new process addressing to overcome the drawbacks mentioned above.

En conséquence, la présente invention a pour objet un procédé d'adressage d'un écran plat composé de lignes et de colonnes aux intersections desquelles sont situés des pixels, caractérisé en ce que, au début de chaque échantillonnage du signal vidéo à afficher sur l'écran, une tension (Vr) supérieure à la gamme de tension utile (V) est appliquée sur le pixel sélectionné pendant un temps tr, puis la tension utile est échantillonnée pendant un temps ts.Consequently, the subject of the present invention is a method for addressing a flat screen composed of rows and columns to intersections of which pixels are located, characterized in that, at the start of each sampling of the video signal to be displayed on the screen, a voltage (Vr) greater than the useful voltage range (V) is applied on the selected pixel for a time tr, then the useful voltage is sampled for a time ts.

De préférence, la tension de précharge (Vr) est choisie telle que Ven+ = Ven- où Ven+ et Ven- représentent l'erreur résiduelle respectivement en trame positive et en trame négative. Dans ce cas, la tension de précharge est obtenue par les formules suivantes : Ven + = (Vr-V+)exp - ts τ(Vg - Vt - V+) et Ven-=(Vr-V-)exp- ts τ(Vg - Vt - V-)    où Vg est la tension sur la grille du transistor pendant l'échantillonnage, et Vt sa tension de seuil.Preferably, the precharge voltage (Vr) is chosen such that Ven + = Ven- where Ven + and Ven- represent the residual error respectively in positive frame and in negative frame. In this case, the precharge voltage is obtained by the following formulas: Fri + = ( Vr - V +) exp - ts τ ( vg - vt - V +) and Fri - = ( Vr-V- ) EXP- ts τ ( vg - vt - V -) where Vg is the voltage on the gate of the transistor during sampling, and Vt its threshold voltage.

La condition Ven + = Ven- s'écrit : (Vr-Vt)=(Vr-V-)exp-ts(1τ(Vg-Vt-V-) - 1τ(Vg-Vt-V+) ) ou τ(Vg-Vt-V-) = Ron(Vg-Vt-V-)xC et Ron = 1µCox W L (Vg-Vt-V-) donc τ(V) est de la forme Cte / V
d'où: (Vr-V+)=(Vr-V-)exp- ts τ(V+-V-) soit : Vr=V+(V+-V-)exp- ts τ(V+-V-) 1-exp- ts τ(V+-V-)
The condition Ven + = Ven- is written: ( Vr - vt ) = ( Vr - V -) EXP- ts ( 1 τ ( vg - vt - V -) - 1 τ ( vg - vt - V +) ) or τ ( vg - vt - V -) = Ron ( vg - vt - V -) xC and Ron = 1 μ Cox W The ( vg - vt - V -) therefore τ ( V ) is of the form Cte / V
hence : ( Vr - V +) = ( Vr - V -) EXP- ts τ ( V + - V -) either : Vr = V + ( V + - V -) EXP- ts τ ( V + - V -) 1-EXP- ts τ ( V + - V -)

La présente invention a aussi pour objet un circuit de commande des colonnes d'un écran plat du type comprenant des échantillonneurs commandés par les sorties d'un registre à décalage, caractérisé en ce que chaque échantillonneur est constitué par trois transistors de type MIS montés en parallèle de telle sorte que leur première électrode soit connectée au signal vidéo et leur seconde électrode à la colonne commandée, laquelle grille du premier transistor étant connectée à une des sorties du registre à décalage et les grilles du second et troisième transistors étant connectées à deux horloges choisies de telle sorte que les deux transistors sont activés, l'un pour réaliser la précharge des lignes paires, l'autre des lignes impaires.The present invention also relates to a circuit for control of the columns of a flat screen of the type comprising samplers controlled by the outputs of a shift register, characterized in that each sampler consists of three MIS type transistors connected in parallel so that their first electrode is connected to the video signal and their second electrode at the controlled column, which gate of the first transistor being connected to one of the outputs of the shift register and the gates of the second and third transistors being connected to two clocks chosen so that both transistors are activated, one for perform the preload of the even lines, the other of the odd lines.

Selon une autre caractéristique de l'invention, la tension des horloges appliquée sur le deuxième et troisième transistors est choisie de telle sorte que lorsqu'un transistor n'est pas utilisé pour la précharge, il reçoit sur sa grille une tension négative permettant ultérieurement de compenser les couplages capacitifs lorque cette tension reviendra à zéro.According to another characteristic of the invention, the voltage of the clocks applied to the second and third transistors is chosen from so that when a transistor is not used for preloading, it receives on its grid a negative voltage allowing later compensate for capacitive couplings when this voltage returns to zero.

De préférence, les trois transistors sont identiques et sont des transistors réalisés en couche mince ou TFT. Cette solution permet de compenser des couplages capacitifs importants car les transistors utilisés pour réaliser des échantillonneurs sont gros. Elle permet de plus de répartir également le "stress" ou fatigue sur les trois transistors qui sont de même taille ce qui augmente la durée de vie des transistors.Preferably, the three transistors are identical and are transistors produced in a thin layer or TFT. This solution allows compensate for large capacitive couplings because the transistors used to make samplers are big. It allows more equally distribute the "stress" or fatigue on the three transistors which are of the same size which increases the lifetime of the transistors.

La présente invention concerne aussi l'application du procédé d'adressage ci-dessus aux écrans de grande taille.The present invention also relates to the application of the method above for large screens.

La présente invention a donc pour objet un procédé d'adressage d'un écran plat comportant des lignes et des colonnes aux intersections desquelles sont situés des pixels, dans lequel X circuits de commande de lignes sont connectés chacun à Y lignes, caractérisé en ce que, pendant un temps tr, on réalise la précharge des pixels se trouvant sur les lignes reliées au premier circuit de commande lignes, à une tension (Vr) supérieure à la gamme de tension utile (V), puis on échantillonne successivement les Y lignes et on recommence l'opération ci-dessus pour les X-1 circuits de commande restants.The present invention therefore relates to a method for addressing a flat screen with rows and columns to intersections of which pixels are located, in which X circuits of lines are each connected to Y lines, characterized in that, for a time tr, the preload of the pixels located is carried out on the lines connected to the first line control circuit, to a voltage (Vr) greater than the useful voltage range (V), then we successively sample the Y lines and start the operation again above for the remaining X-1 control circuits.

La présente invention a encore pour objet un procédé d'adressage d'un écran plat comportant des lignes et des colonnes aux intersections desquelles sont situés des pixels dans lequel X circuits de commande lignes sont connectés chacun à Y lignes, caractérisé en ce qu'on précharge simultanément la première ligne des X circuits de commande lignes à une tension Vr supérieure à la gamme de tension utile (V) et l'on échantillonne ensuite successivement ladite ligne des X circuits de commande lignes et on recommence l'opération ci-dessus pour les Y-1 autres lignes de chacun des X circuits de commande ligne. The present invention also relates to a method for addressing a flat screen with rows and columns to intersections of which pixels are located in which X circuits of control lines are each connected to Y lines, characterized in that we simultaneously preload the first line of the X circuits line control at a voltage Vr greater than the voltage range useful (V) and we then successively sample said line of X control circuits lines and we start again the above operation for the Y-1 other lines of each of the X line control circuits.

La présente invention sera mieux comprise et des avantages supplémentaires apparaítront à la lecture de la description qui va suivre illustrée par les figures suivantes:

  • la figure 1, déjà décrite, représente le schéma électrique équivalent d'un pixel d'un écran à cristaux liquides,
  • la figure 2, déjà décrite, représente les chronogrammes du fonctionnement du pixel de la figure 1,
  • la figure 3, déjà décrite, représente une structure connue d'un écran commandé par des circuits de commande lignes et colonnes,
  • la figure 4 illustre un procédé d'adressage d'un écran à cristaux liquides selon la présente invention,
  • la figure 5 représente un mode de réalisation d'un circuit de commande colonne connu mettant en oeuvre le procédé d'adressage selon la présente invention,
  • la figure 6 représente le chronogramme d'un circuit de commande colonne selon la figure 5,
  • la figure 7 représente un mode de réalisation préférentiel d'un circuit de commande colonne mettant en oeuvre le procédé selon la présente invention,
  • la figure 8 représente le chronogramme de fonctionnement du circuit de commande colonne de la figure 7, et
  • la figure 9 représente schématiquement une partie d'un écran plat de grandes dimensions connecté à des circuits de commande lignes et colonnes utilisant le procédé de la présente invention.
The present invention will be better understood and additional advantages will appear on reading the description which follows, illustrated by the following figures:
  • FIG. 1, already described, represents the equivalent electrical diagram of a pixel of a liquid crystal screen,
  • FIG. 2, already described, represents the timing diagrams of the operation of the pixel of FIG. 1,
  • FIG. 3, already described, represents a known structure of a screen controlled by row and column control circuits,
  • FIG. 4 illustrates a method for addressing a liquid crystal screen according to the present invention,
  • FIG. 5 represents an embodiment of a known column control circuit implementing the addressing method according to the present invention,
  • FIG. 6 represents the timing diagram of a column control circuit according to FIG. 5,
  • FIG. 7 represents a preferred embodiment of a column control circuit implementing the method according to the present invention,
  • FIG. 8 represents the chronogram of operation of the column control circuit of FIG. 7, and
  • FIG. 9 schematically represents a part of a large flat screen connected to row and column control circuits using the method of the present invention.

Comme cela est représenté sur la figure 4, pendant un temps de remise à zéro tr (ou temps de "reset"), on échantillonne sur la charge une tension Vr supérieure à la tension utile et on échantillonne pendant un temps ts la tension utile (comprise entre +V et -V). Puisque l'on cherche à atteindre la tension utile (entre +V et -V) à partir d'une valeur de tension supérieure, l'erreur résiduelle de convergence est toujours de même signe et égale à (Ven+-Ven-)/2, ce qui minimise l'erreur sur la tension RMS. As shown in Figure 4, for a time reset to zero tr (or "reset" time), we sample on the load a voltage Vr greater than the useful voltage and we sample for a time ts the useful voltage (between + V and -V). Since we seeks to reach the useful voltage (between + V and -V) from a value higher voltage, the residual convergence error is always same sign and equal to (Ven + -Ven -) / 2, which minimizes the error on the RMS voltage.

Dans le cas où les transistors de pixels sont réalisés en silicium amorphe (a-Si) et ont une tension de seuil de quelques volts, il existe une tension de précharge Vr telle que les erreurs de convergence Ven+ et Ven- pour atteindre les deux extrêmes de la gamme de tension utile (+V,-V) sont égales (Ven + =-Ven-). L'erreur sur la tension RMS est alors nulle. Cette tension Vr peut être obtenue en utilisant la formule ci-après : Ven + = (Vr-V+)exp - ts τ(Vg - Vt - V+) et Ven-=(Vr-V-)exp- ts τ(Vg - Vt - V-)    où Vg est la tension sur la grille du transistor pendant l'échantillonnage, et Vt sa tension de seuil.In the case where the pixel transistors are made of amorphous silicon (a-Si) and have a threshold voltage of a few volts, there is a precharge voltage Vr such that the convergence errors Ven + and Ven- to reach the two extremes of the useful voltage range (+ V, -V) are equal (Ven + = -Ven-). The error on the RMS voltage is then zero. This voltage Vr can be obtained using the formula below: Fri + = ( Vr - V +) exp - ts τ ( vg - vt - V +) and Fri - = ( Vr-V- ) EXP- ts τ ( vg - vt - V -) where Vg is the voltage on the gate of the transistor during sampling, and Vt its threshold voltage.

La condition Ven+ = Ven- s'écrit : (Vr-Vt)=(Vr-V-)exp-ts(1τ(Vg-Vt-V-) - 1τ(Vg-Vt-V+) ) ou τ(Vg-Vt-V-) = Ron(Vg-Vt-V-)xC et Ron = 1µCox W L (Vg-Vt-V-) donc τ(V) esi de la forme Cte / V
d'où: (Vr-V+)=(Vr-V-)exp- ts τ(V+-V-) soit : Vr=V+(V+-V-)exp- ts τ(V+-V-) 1-exp- ts τ(V+-V-)
The condition Ven + = Ven- is written: ( Vr - vt ) = ( Vr - V -) EXP- ts ( 1 τ ( vg - vt - V -) - 1 τ ( vg - vt - V +) ) or τ ( vg - vt - V -) = Ron ( vg - vt - V -) xC and Ron = 1 μ Cox W The ( vg - vt - V -) therefore τ ( V ) esi of the form Cte / V
hence : ( Vr - V +) = ( Vr - V -) EXP- ts τ ( V + - V -) either : Vr = V + ( V + - V -) EXP- ts τ ( V + - V -) 1-EXP- ts τ ( V + - V -)

La figure 5 représente un exemple de réalisation d'un circuit de commande colonnes d'un écran permettant la mise en oeuvre du procédé selon l'invention. Ce circuit de commande est formé de transistors réalisés en silicium amorphe. Ce circuit de commande 11 est, de préférence, constitué de plusieurs entrées vidéo fonctionnant en parallèle pour réduire d'autant la fréquence de démultiplexage. Dans l'exemple volontairement simplifié de la figure 5, le circuit de commande colonnes comporte cinq entrées vidéo DB1 à DB5 et six entrées de signaux de démultiplexage DW1 à DW6, ce qui permet de charger trente colonnes 12. Chaque colonne 12 est commandée par un seul transistor 13 qui sert successivement à la précharge pour atteindre la tension Vr pendant le temps tr, et à la convergence vers la valeur de tension vidéo qui convient.FIG. 5 represents an exemplary embodiment of a circuit for column control of a screen allowing the implementation of the process according to the invention. This control circuit is formed by transistors made of amorphous silicon. This control circuit 11 is, from preferably made up of several video inputs operating in parallel to reduce the frequency of demultiplexing accordingly. In the example voluntarily simplified in FIG. 5, the column control circuit has five video inputs DB1 to DB5 and six signal inputs from demultiplexing DW1 to DW6, which allows thirty columns to be loaded 12. Each column 12 is controlled by a single transistor 13 which serves successively at the preload to reach the voltage Vr during the time tr, and at convergence to the video voltage value which appropriate.

La figure 6 représente le chronogramme de fonctionnement de l'écran de la figure 5 lors de son utilisation selon le procédé de l'invention. Pendant le temps tr, une tension Vr supérieure à la tension utile est appliquée sur toutes les colonnes via les signaux DW1 à DW6. Ensuite, les entrées DW1 à DW6 sont sélectionnées successivement, comme représenté par DW1 à DW6, pour chaque signal DB1 à DB5, la tension utile est échantillonnée durant ts.FIG. 6 represents the chronogram of operation of the screen of FIG. 5 when it is used according to the method of the invention. During time tr, a voltage Vr greater than the voltage useful is applied to all columns via signals DW1 to DW6. Then, the entries DW1 to DW6 are selected successively, as represented by DW1 to DW6, for each signal DB1 to DB5, the useful voltage is sampled during ts.

La figure 7 représente une réalisation préférentielle d'un circuit de commande de colonnes mettant en oeuvre le présente invention. Dans ce cas, chaque échantillonneur est constitué par trois transistors 16, 17 et 18 qui sont de préférence identiques et montés en parallèle. Comme représenté clairement sur la figure 7, les premières électrodes ou drains des trois transistors 16, 17 et 18 reçoivent le signal vidéo d'entrée 14 tandis que leur seconde électrode ou source charge la colonne 15 à commander. D'autre part, la grille du transistor 16 est connectée en sortie d'un registre à décalage et reçoit un signal de démultiplexage 19 tandis que les grilles 20 et 21 des deux autres transistors 17 et 18 sont connectées à deux horloges qui sont décrites plus en détail ci-après. L'utilisation des trois transistors permet de compenser les couplages capacitifs qui sont importants avec un seul gros transistor et de répartir le stress sur les transistors, ce qui allonge la durée de vie. FIG. 7 represents a preferred embodiment of a circuit column control implementing the present invention. In in this case, each sampler consists of three transistors 16, 17 and 18 which are preferably identical and mounted in parallel. As clearly shown in Figure 7, the first electrodes or drains of the three transistors 16, 17 and 18 receive the input video signal 14 while their second electrode or source charges column 15 at order. On the other hand, the gate of transistor 16 is connected at output of a shift register and receives a demultiplexing signal 19 while the gates 20 and 21 of the other two transistors 17 and 18 are connected to two clocks which are described in more detail below. The use of the three transistors makes it possible to compensate for the couplings capacitive which are important with a single large transistor and distribute stress on the transistors, which extends the service life.

La figure 8 représente le chronogramme d'un circuit de commande lignes du type de celui de la figure 7. Les valeurs numériques ne sont données qu'à titre d'exemple. En fait, les signaux d'horloges appliqués sur les transistors 17 et 18 sont tels que l'un des transistors réalise la précharge des lignes impaires tandis que l'autre réalise la précharge des lignes paires. De plus, lorsque l'un des transistors, par exemple le transistor 17, reçoit sur la grille 20 une impulsion de précharge pendant un temps tr, l'autre transistor 18 reçoit sur sa grille 21 une impulsion négative de par exemple -22V jusqu'à la fin du temps lignes, de façon à pouvoir en fin de temps ligne venir compenser le couplage du transistor de convergence grâce à une impulsion positive sur l'électrode de commande 21. La grille du transistor 16 recevra une impulsion de durée Ts de manière à réaliser la convergence. La précharge prend approximativement deux fois plus de temps (2µsec) que la convergence (0,9µsec), de sorte que le rapport cyclique de fonctionnement des trois transistors est équivalent, ce qui répartit équitablement le stress.FIG. 8 represents the timing diagram of a circuit of command lines of the type of that of figure 7. The numerical values are only given as an example. In fact, the clock signals applied to transistors 17 and 18 are such that one of the transistors performs the preload of the odd lines while the other performs the preload of even lines. In addition, when one of the transistors, for example the transistor 17 receives on the gate 20 a pulse of preload for a time tr, the other transistor 18 receives on its gate 21 a negative pulse of for example -22V until the end of time lines, so that at the end of line time, we can compensate for the coupling of the convergence transistor by means of a positive pulse on the control electrode 21. The gate of transistor 16 will receive a pulse of duration Ts so as to achieve convergence. Preload takes approximately twice as long (2µsec) as the convergence (0.9µsec), so that the duty cycle of operation of the three transistors is equivalent, which distributes equitably stress.

Dans le cas d'un écran à très grand nombre de lignes ou à très grand nombre de pixels élémentaires, le transistor est sous-dimensionné pour éviter d'avoir des capacités de couplage trop importantes. Le schéma de base peut être du type de celui de la figure 1. Pour améliorer le fonctionnement d'un tel écran dans lequel, soit le transistor est trop petit pour charger correctement le pixel de façon classique, soit le nombre de lignes est tellement élevé que l'on ne dispose que de très peu de temps pour la charge, on peut aussi utiliser un schéma de fonctionnement avec une précharge du type de la figure 4.In the case of a screen with a very large number of lines or with a very large number of elementary pixels, the transistor is undersized to avoid having too large coupling capacities. The basic diagram can be of the type of that of figure 1. To improve the operation of such a screen in which either the transistor is too small to correctly load the pixel in a conventional way, i.e. number of lines is so high that we have very few time for charging, we can also use a diagram of operation with a preload of the type of FIG. 4.

Dans ce cas, on travaille de préférence par paquets de lignes. Ainsi, comme représenté sur la figure 9, qui concerne un écran dont le circuit de commande colonnes est identique au circuit de la figure 5 et où les lignes sont groupées par cinq, chaque groupe étant commandé par un registre lignes R1, R2, R3 ... pour des paquets de cinq lignes, on fait tout d'abord une précharge simultanée sur les lignes L1 à L5, puis on échantillonne séquentiellement ces mêmes lignes L1 à L5. Ensuite, on fait une précharge simultanée des lignes L6 à L10, etc. Ce mode de fonctionnement n'est pas compatible avec les circuits de commande habituels (commande de cinq lignes à la fois). Il nécessite donc une électronique particulière.In this case, it is preferable to work in bundles of lines. Thus, as shown in Figure 9, which relates to a screen whose column control circuit is identical to the circuit of FIG. 5 and where the lines are grouped by five, each group being controlled by a register lines R1, R2, R3 ... for packets of five lines, we do first a simultaneous preload on lines L1 to L5, then we sequentially samples these same lines L1 to L5. Then we simultaneously preloads lines L6 to L10, etc. This mode of operation is not compatible with control circuits usual (order of five lines at a time). It therefore requires a special electronics.

On peut aussi si l'écran utilise par exemple cinq circuits de commande lignes, tels que R1, R2, R3, ..., pour six cents lignes, charger simultanément ces cinq circuits de commande, et on utilise la fonction souvent présente de "output enable" pour gérer successivement la précharge simultanée pour cinq lignes, telles que les cinq premières lignes L1, L6, I11 dans le mode de réalisation de la figure 9, commandées par ces cinq circuits R1, R2 ..., puis l'adressage successif de ces cinq lignes. Toutefois, cette solution nécessite une mémoire de trame pour pouvoir stocker et donc reconstituer l'image vidéo.We can also if the screen uses for example five circuits of command lines, such as R1, R2, R3, ..., for six hundred lines, load simultaneously these five control circuits, and we use the function often present with "output enable" to successively manage the simultaneous preload for five lines, such as the first five lines L1, L6, I11 in the embodiment of FIG. 9, controlled by these five circuits R1, R2 ..., then the successive addressing of these five lines. However, this solution requires a memory of frame to be able to store and therefore reconstruct the video image.

Dans tous les cas, la précharge est réalisée en utilisant une tension Vr supérieure à la tension utile V+/V-.In all cases, the preload is carried out using a voltage Vr greater than the useful voltage V + / V-.

La présente invention s'applique en particulier aux écrans plats à cristaux liquides commandés par une matrice active de transistors (AMLCD) en couches minces, et en général à toute application nécessitant un échantillonneur dont la précision relative est plus importante que la précision absolue.The present invention applies in particular to flat screens with liquid crystals controlled by an active matrix of transistors (AMLCD) in thin layers, and in general for any application requiring a sampler whose relative precision is more important than absolute precision.

Claims (8)

  1. Method for addressing a flat screen composed of lines and columns, with pixels located at their intersections, which applies to the selected pixel for a time tr, at the start of each sampling of the video signal to be displayed on the screen, a precharge voltage (Vr) and then samples the working voltage for a time ts, characterized in that, the precharge voltage is higher than the working voltage range (V).
  2. Method according to Claim 1, characterized in that the precharge voltage (Vr), chosen such that Ven+ = Ven- where Ven+ and Ven- represent the residual error respectively in positive video and in negative video, is obtained by the following formula: Ven + = (Vr-V+)exp - ts τ(Vg - Vt - V+) and Ven-=(Vr-V-)exp- ts τ(Vg - Vt - V-)    where Vg is the gate voltage of the transistor during the sampling and Vt is its threshold voltage, and the condition Ven+ = Ven minus is written: (Vr-Vt) = (Vr-V-)exp-ts 1τ(Vg-Vt-V-) - 1τ(Vg-Vt-V+) ) or τ (Vg-Vt-V-) = Ron(Vg-Vt-V-)xC and Ron=1µCoxWL (Vg - Vt - V-) , therefore (V) is of the form CTE / V
    whence (Vr-V+)=(Vr-V-)exp- ts τ(V+-V-) i.e. Vr=V+(Vr+-V-)exp- ts τ(V +-V-) 1 - exp- ts τ(V +-V-) .
  3. Column driver for a flat screen, of the type comprising samplers driven by the outputs of a shift register, for implementing the method according to either of claims 1 and 2, in which driver each sampler consists of three MIS-type transistors (16, 17, 18) mounted in parallel so that their first electrode is connected to the video signal (14) and their second electrode is connected to the driven column (15), the gate (19) of the first transistor being connected to one of the outputs of the shift register and the gates (20, 21) of the second and third transistors being connected to two clocks chosen so that one of the two transistors is activated to precharge the even frames and the other is activated to precharge the odd frames.
  4. Driver according to Claim 3, in which the clock voltage applied to the second and third transistors is chosen so that, when a transistor is not being used for the precharging, its gate receives a negative voltage compensating for capacitive coupling when the gate voltage subsequently rises again.
  5. Driver according to either of Claims 3 and 4, in which the three transistors are identical.
  6. Circuit according to any one of Claims 3 to 5, in which the three transistors are produced in thin-film technology.
  7. Method for addressing a flat screen according to Claim 1, in which X line drivers are each connected to Y lines, characterized in that, for a time tr, the pixels located on the lines connected to the first line driver are precharged to a voltage (Vr) higher than the working voltage (V), then the Y lines are sampled successively and the above operation is repeated for the X-1 remaining drivers.
  8. Method for addressing a flat screen according to Claim 1, in which X line drivers are each connected to Y lines, characterized in that, the first line of each of the X line drivers is precharged to a voltage Vr higher than the working voltage range (V) and the said line of the X line drivers is sampled successively and the above operation is repeated for the Y-1 other lines.
EP97900254A 1996-01-11 1997-01-09 Method for addressing a flat screen using pixel precharging, driver for carrying out the method, and use thereof in large screens Expired - Lifetime EP0815552B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9600259 1996-01-11
FR9600259A FR2743658B1 (en) 1996-01-11 1996-01-11 METHOD FOR ADDRESSING A FLAT SCREEN USING A PRECHARGE OF THE PIXELS CONTROL CIRCUIT ALLOWING THE IMPLEMENTATION OF THE METHOD AND ITS APPLICATION TO LARGE DIMENSION SCREENS
PCT/FR1997/000039 WO1997025706A1 (en) 1996-01-11 1997-01-09 Method for addressing a flat screen using pixel precharging, driver for carrying out the method, and use thereof in large screens

Publications (2)

Publication Number Publication Date
EP0815552A1 EP0815552A1 (en) 1998-01-07
EP0815552B1 true EP0815552B1 (en) 2003-05-28

Family

ID=9488036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97900254A Expired - Lifetime EP0815552B1 (en) 1996-01-11 1997-01-09 Method for addressing a flat screen using pixel precharging, driver for carrying out the method, and use thereof in large screens

Country Status (7)

Country Link
US (1) US6359608B1 (en)
EP (1) EP0815552B1 (en)
JP (1) JP4547047B2 (en)
KR (1) KR100445675B1 (en)
DE (1) DE69722309T2 (en)
FR (1) FR2743658B1 (en)
WO (1) WO1997025706A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776107A1 (en) 1998-03-10 1999-09-17 Thomson Lcd Display control system for liquid crystal display screens
KR100295679B1 (en) * 1999-03-30 2001-07-12 김영환 Column driver of thin film transistor(tft) liquid crystal display(lcd) and driving method thereof
TW567363B (en) 1999-05-14 2003-12-21 Seiko Epson Corp Method for driving electrooptical device, drive circuit, electrooptical device, and electronic device
JP3570362B2 (en) * 1999-12-10 2004-09-29 セイコーエプソン株式会社 Driving method of electro-optical device, image processing circuit, electro-optical device, and electronic apparatus
KR20010077740A (en) * 2000-02-08 2001-08-20 박종섭 Power saving circuit of a display panel
FR2805650B1 (en) * 2000-02-25 2005-08-05 Thomson Lcd METHOD FOR COMPENSATION OF A CAPACITIVE CIRCUIT PERTURBE AND APPLICATION TO MATRIX VISUALIZATION SCREENS
JP2001282141A (en) * 2000-03-31 2001-10-12 Sony Corp Photon control device
GB0014074D0 (en) * 2000-06-10 2000-08-02 Koninkl Philips Electronics Nv Active matrix array devices
JP3723747B2 (en) * 2000-06-16 2005-12-07 松下電器産業株式会社 Display device and driving method thereof
KR100685942B1 (en) * 2000-08-30 2007-02-23 엘지.필립스 엘시디 주식회사 Liquid crystal display device and method for driving the same
JP4330059B2 (en) 2000-11-10 2009-09-09 カシオ計算機株式会社 Liquid crystal display device and drive control method thereof
US6850218B2 (en) * 2000-12-18 2005-02-01 Brillian Corporation Frame prewriting in a liquid crystal display
KR100365500B1 (en) * 2000-12-20 2002-12-18 엘지.필립스 엘시디 주식회사 Method of Driving Liquid Crystal Panel in Dot Inversion and Apparatus thereof
CN1302313C (en) * 2001-02-05 2007-02-28 国际商业机器公司 Liquid crystal display device
US20030085856A1 (en) * 2001-11-02 2003-05-08 Klein Terence R System and method for minimizing image degradation in LCD microdisplays
JP4007239B2 (en) * 2003-04-08 2007-11-14 ソニー株式会社 Display device
WO2005004490A2 (en) * 2003-06-13 2005-01-13 Lumexis Corporation Remote interface optical network
KR100578911B1 (en) * 2003-11-26 2006-05-11 삼성에스디아이 주식회사 Current demultiplexing device and current programming display device using the same
KR100589381B1 (en) * 2003-11-27 2006-06-14 삼성에스디아이 주식회사 Display device using demultiplexer and driving method thereof
KR100578913B1 (en) * 2003-11-27 2006-05-11 삼성에스디아이 주식회사 Display device using demultiplexer and driving method thereof
KR100578914B1 (en) * 2003-11-27 2006-05-11 삼성에스디아이 주식회사 Display device using demultiplexer
JP2005195810A (en) * 2004-01-06 2005-07-21 Nec Electronics Corp Capacitive load drive circuit and display panel drive circuit
CN100410995C (en) * 2004-01-17 2008-08-13 奇美电子股份有限公司 Asymmetrical liquid crystal screen driving method
JP4480442B2 (en) * 2004-03-31 2010-06-16 Nec液晶テクノロジー株式会社 Manufacturing method of liquid crystal display device
JP4285314B2 (en) * 2004-04-22 2009-06-24 セイコーエプソン株式会社 Electro-optic device
KR100600350B1 (en) * 2004-05-15 2006-07-14 삼성에스디아이 주식회사 demultiplexer and Organic electroluminescent display using thereof
KR100622217B1 (en) * 2004-05-25 2006-09-08 삼성에스디아이 주식회사 Organic electroluminscent display and demultiplexer
FR2873227B1 (en) * 2004-07-13 2006-09-15 Thales Sa MATRICIAL DISPLAY
WO2006038187A1 (en) * 2004-10-06 2006-04-13 Koninklijke Philips Electronics N.V. Arbitrary addressable row decoder with start/stop resetting of pixels
KR100685817B1 (en) * 2005-02-18 2007-02-22 삼성에스디아이 주식회사 Field Sequential Liquid Crystal Display
FR2889615B1 (en) * 2005-08-02 2008-06-06 Thales Sa ACTIVE MATRIX FOR A LIQUID CRYSTAL DISPLAY DEVICE
FR2889763B1 (en) * 2005-08-12 2007-09-21 Thales Sa MATRIX DISPLAY WITH SEQUENTIAL COLOR DISPLAY AND ADDRESSING METHOD
EP1938484A2 (en) * 2005-09-19 2008-07-02 Lumexis, Inc. Fiber-to-the-seat in-flight entertainment system
FR2894370B1 (en) 2005-12-07 2008-06-06 Thales Sa SEQUENTIAL MATRIX DISPLAY WITH LIQUID CRYSTAL COLOR
FR2894369B1 (en) * 2005-12-07 2008-07-18 Thales Sa IMPROVED ADDRESSING METHOD FOR A LIQUID CRYSTAL MATRIX DISPLAY
FR2900492B1 (en) 2006-04-28 2008-10-31 Thales Sa ORGANIC ELECTROLUMINESCENT SCREEN
WO2008033870A2 (en) * 2006-09-11 2008-03-20 Lumexis Corporation Fiber-to-the-seat (ftts) fiber distribution system
FR2913818B1 (en) * 2007-03-16 2009-04-17 Thales Sa ACTIVE MATRIX OF AN ORGANIC ELECTROLUMINESCENT SCREEN
TWI334126B (en) * 2007-07-17 2010-12-01 Au Optronics Corp Voltage adjusting circuit, method, and display apparatus having the same
FR2934919B1 (en) * 2008-08-08 2012-08-17 Thales Sa FIELD EFFECT TRANSISTOR SHIFT REGISTER
WO2011017233A1 (en) 2009-08-06 2011-02-10 Lumexis Corporation Serial networking fiber-to-the-seat inflight entertainment system
WO2011020071A1 (en) * 2009-08-14 2011-02-17 Lumexis Corp. Video display unit docking assembly for fiber-to-the-screen inflight entertainment system
US8416698B2 (en) 2009-08-20 2013-04-09 Lumexis Corporation Serial networking fiber optic inflight entertainment system network configuration
EP2486728A4 (en) * 2009-10-05 2015-10-21 Lumexis Corp Inflight communication system
JP5664034B2 (en) 2010-09-03 2015-02-04 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
KR102061595B1 (en) 2013-05-28 2020-01-03 삼성디스플레이 주식회사 Liquid crystal display apparatus and driving method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2962338B2 (en) * 1992-03-18 1999-10-12 日本電気株式会社 Data output circuit for realizing driving method of liquid crystal display device
US5426447A (en) * 1992-11-04 1995-06-20 Yuen Foong Yu H.K. Co., Ltd. Data driving circuit for LCD display
US5510807A (en) * 1993-01-05 1996-04-23 Yuen Foong Yu H.K. Co., Ltd. Data driver circuit and associated method for use with scanned LCD video display
DE69411223T2 (en) * 1993-04-30 1999-02-18 Ibm Method and apparatus for eliminating crosstalk in an active matrix liquid crystal display device
JPH06337400A (en) * 1993-05-31 1994-12-06 Sharp Corp Matrix type display device and method for driving it
JP3482683B2 (en) * 1994-04-22 2003-12-22 ソニー株式会社 Active matrix display device and driving method thereof
JP3451717B2 (en) * 1994-04-22 2003-09-29 ソニー株式会社 Active matrix display device and driving method thereof
JPH07319429A (en) * 1994-05-30 1995-12-08 Matsushita Electric Ind Co Ltd Method for driving liquid crystal image display device and liquid crystal image display device
JP3424387B2 (en) * 1995-04-11 2003-07-07 ソニー株式会社 Active matrix display device
JP3110980B2 (en) * 1995-07-18 2000-11-20 インターナショナル・ビジネス・マシーンズ・コーポレ−ション Driving device and method for liquid crystal display device

Also Published As

Publication number Publication date
JP4547047B2 (en) 2010-09-22
FR2743658B1 (en) 1998-02-13
DE69722309D1 (en) 2003-07-03
KR100445675B1 (en) 2004-12-08
KR19980702958A (en) 1998-09-05
JPH11502325A (en) 1999-02-23
WO1997025706A1 (en) 1997-07-17
FR2743658A1 (en) 1997-07-18
US6359608B1 (en) 2002-03-19
EP0815552A1 (en) 1998-01-07
DE69722309T2 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
EP0815552B1 (en) Method for addressing a flat screen using pixel precharging, driver for carrying out the method, and use thereof in large screens
EP0760149B1 (en) Shift register using mis transistors having the same polarity
EP0815562B1 (en) Improvement to shift registers using mis transistors having the same polarity
EP2311042B1 (en) Shift register based on field-effect transistors
EP1774505B1 (en) Liquid-crystal matrix display
WO2007125095A1 (en) Organic electroluminescent display
FR2863761A1 (en) Liquid crystal display device for displaying image, has data integrated circuit with certain number of data output channels providing pixel data to corresponding number of data lines of display screen as per desired display resolution
EP3079142B1 (en) Method for displaying images on a matrix screen
FR2553218A1 (en) ACTIVE MATRIX DISPLAY SCREEN WITHOUT CROSSING LINES AND ADDRESSING COLUMNS
EP0192784B1 (en) Liquid crystal display device
WO2009030776A1 (en) Shift register for an active-matrix flat screen
EP0972282B1 (en) Device for controlling a matrix display cell
WO2012152836A1 (en) Device for addressing lines of a control circuit for an active detection matrix
EP1156491B1 (en) Improvements in shift registers using single type "MIS" transistors
EP0487389A1 (en) Active matrix flat screen
EP0965224B1 (en) Method for controlling a photosensitive device with low image retention, and photosensitive device implementing same
EP0477100B1 (en) Sample and hold circuit for a liquid crystal display panel
FR2784489A1 (en) METHOD FOR DISPLAYING DATA ON A MATRIX DISPLAY
FR2776107A1 (en) Display control system for liquid crystal display screens
EP1964094A1 (en) Method for controlling a display panel by capacitive coupling
FR2615993A1 (en) METHOD AND DEVICE FOR THE ELIMINATION OF COUPLING IN MATRIX ADDRESSED THIN FILM TRANSISTOR LIQUID CRYSTAL SCREENS
EP0506530A1 (en) Matrix display with improved definition and addressing method of such a display
EP1103979A1 (en) Dynamic random access memory (DRAM) and reading method thereof
FR2681973A1 (en) Matrix screen with electro-optical cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES AVIONICS LCD S.A.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030528

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69722309

Country of ref document: DE

Date of ref document: 20030703

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140122

Year of fee payment: 18

Ref country code: NL

Payment date: 20140110

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140117

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140127

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69722309

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202