EP3077751B1 - Échangeur de chaleur et procédé de fabrication d'un échangeur de chaleur - Google Patents

Échangeur de chaleur et procédé de fabrication d'un échangeur de chaleur Download PDF

Info

Publication number
EP3077751B1
EP3077751B1 EP14808991.5A EP14808991A EP3077751B1 EP 3077751 B1 EP3077751 B1 EP 3077751B1 EP 14808991 A EP14808991 A EP 14808991A EP 3077751 B1 EP3077751 B1 EP 3077751B1
Authority
EP
European Patent Office
Prior art keywords
rib
segment
ribs
heat exchanger
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14808991.5A
Other languages
German (de)
English (en)
Other versions
EP3077751A1 (fr
Inventor
Peter Neidenberger
Tobias PFANNENSTIEL
Björn SMIGIEL
Achim HOLZWARTH
Florian LARISCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Webasto SE
Original Assignee
Webasto SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Webasto SE filed Critical Webasto SE
Publication of EP3077751A1 publication Critical patent/EP3077751A1/fr
Application granted granted Critical
Publication of EP3077751B1 publication Critical patent/EP3077751B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/145Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding

Definitions

  • the invention relates to a heat exchanger having an inner guide for guiding a fluid and having a planteabfattician for dissipating heat of the fluid, wherein the ab211 manipulate has a longitudinally extending cavity within which extends at least one end of the inner guide, wherein the tail has an orifice comprising, facing a bottom surface of the cavity for introducing the fluid into a bottom region of the cavity, wherein between a outer surface of the inner guide and an inner surface of the abgraditiess a longitudinally extending flow space for guiding the fluid away from the bottom region is formed wherein the flow space extends in the longitudinal direction, wherein the inner circumferential surface of the abconomindustries a first portion having at least two ribs which are transversely offset relative to each other; and a second portion adjoining the first portion having at least two ribs transversely offset relative to each other, wherein at least one rib of the second portion is transversely offset relative to each rib of the first portion or at least one rib of
  • Such a heat exchanger is from the FR 575 978 A known.
  • the invention also relates to a method for producing a heat exchanger.
  • the heat exchanger is used in an exhaust system of a motor vehicle in order to dissipate as much of the heat as possible of the hot exhaust gas generated in the engine of the motor vehicle, for example by transfer to a heat transfer fluid. A possible overheating of the exhaust system can be avoided.
  • the heat taken from the exhaust gas can be used for heating purposes, for example for heating a passenger compartment of the vehicle.
  • the heat exchanger is part of a heater or it is connected to a heater, for example in a vehicle.
  • the possible uses of the heat exchanger described in this application are not limited to the vehicle sector. Rather, the heat exchanger is in principle suitable for any application in which a fluid, that is, a liquid or gaseous medium, heat withdrawn or supplied.
  • the heat exchanger according to the invention builds on the prior art in that the ribs (22) of the first portion (20) and the ribs (22 ') of the second portion (20') each extend in the longitudinal direction (36).
  • each rib of the first section is transversely offset relative to each rib of the second section.
  • a rib of a heat exchanger is arranged in the flow region of the heat exchanger component, which increases the effective area of the heat exchanger and thus improves the efficiency of the heat exchanger.
  • Each section may, for example, be wavy or rippled. In this case, each wave crest or each elevation of the corrugation forms a rib.
  • the ribs of any section may extend parallel to each other and be equidistant.
  • the ribs can be elongated.
  • the length of each rib may be more than three times or even more than ten times the maximum dimension of the rib across the flowpath.
  • a direction transverse to the longitudinal direction is also referred to as a transverse direction.
  • the ribs of the two sections are transversely offset relative to one another.
  • the inner lateral surface of the heat dissipation body is thus discontinuous at the boundary between the two sections. This promotes the formation of turbulence at the boundary between the sections and thus promotes a mixing of near-surface parts of the fluid with surface remote portions of the fluid at the junction between the first portion and the second portion.
  • Each rib of the first section may have an end face facing the second section.
  • Each rib of the second section may have an end face facing the first section.
  • a rib of the first portion is considered transversely offset to a rib of the second portion (second rib) just when the projection of the end face of the first rib on a transverse plane (first projection) and the projection of the end face of the second rib on the same transverse plane (second projection) are offset in the sense that neither of the two projections completely covers the other.
  • a transversal plane or transversal plane is a plane perpendicular to the longitudinal direction, ie a plane with a normal vector which is parallel to the longitudinal direction.
  • a projection is an orthogonal projection. For example, it may be provided that the first projection covers less than 70 percent, less than 20 percent, or even less than 10 percent of the area of the second projection.
  • the second projection covers less than 70 percent, less than 20 percent, or even less than 10 percent of the area of the first projection.
  • the two projections do not overlap. The least possible overlap of the two projections is considered advantageous for the generation of turbulence.
  • the ribs may each be aligned substantially parallel to the longitudinal direction. Such a rib structure can be particularly easy to manufacture.
  • each of the ribs may have a substantially constant transverse cross section. This means that the transverse cross-section of the rib is substantially constant at least on a portion along the longitudinal direction. This section is referred to as a "constant section ribbed section".
  • the length of the constant section rib section may be greater than 50 percent, greater than 80 percent, or even greater than 90 percent of the length of the rib.
  • a "length" is always to be understood as a dimension in the longitudinal direction, unless otherwise specified in the specific context.
  • a transverse cross section is one to the longitudinal direction vertical cross section.
  • the transversal cross section of the rib may be substantially constant in the sense that on the constant sectioned rib section all changes in the transverse section are small compared to the dimensions of the section, for example compared to the width and / or height of the section ,
  • the constant-section rib portion has substantially the shape of a finite portion of a geometric body which is invariant under infinitesimal translations in the longitudinal direction.
  • a set of geometric points is invariant under infinitesimal translations when an infinitesimal translation translates each of the points to a different point of the same set.
  • the rib portion with constant cross section or even the entire rib may have the shape of a cylinder.
  • the cross-sectional area of the cylinder may have any shape, for example, substantially the shape of a rectangle.
  • the heat dissipation body may comprise a molded or extruded first segment having the first portion and a cast or extruded second segment having the second portion.
  • the heat dissipation body can thus be produced in a straightforward manner, by first producing the first segment and the second segment separately and then joining them together. The abrupt transition from the first section to the second section described above can thus be realized in a straightforward manner.
  • the two individual segments can be manufactured, for example, with the help of already designed or existing machines.
  • the first segment and the second segment may be identical. In this case eliminates the need to produce different segments and there is a particularly inexpensive manufacturing process.
  • the padsab Novembertage may have more than two identical segments.
  • the first and second portions may be arranged such that each rib of the first portion extends to a channel extending between two adjacent ribs of the second portion. In this case, each rib of the first section then merges into a channel of the second section. At the transition from the rib to the channel, vortices may form in the fluid. It can be provided that the rib completely or partially obscures the channel to which it extends. That is, a channel facing end surface of the rib and a transverse cross-sectional area of the channel overlap at its abutting the rib channel beginning or end of the channel completely or partially. For example, the rib may obscure the cross-sectional area of the channel it extends to more than 20 percent, more than 50 percent, more than 80 percent, or even 100 percent.
  • a respective channel extending to a rib of the second section is provided between each two adjacent ribs of the first section.
  • the channel formed between the adjacent ribs of the first section thus merges into a rib of the second section at the boundary between the two sections.
  • the abrupt transition from the channel to the rib favors the mixing of the fluid.
  • the rib completely or partially obscures the channel that extends to it. That is, a channel facing end surface of the rib and a transverse cross-sectional area of the channel at its abutting the rib channel beginning or channel end completely or partially overlap.
  • the rib obscures the cross-sectional area of the channel that extends to it to more than 20 percent, more than 50 percent, more than 80 percent, or even 100 percent.
  • the heat dissipation body or at least its inner circumferential surface may have a rotational symmetry axis. This means that the heat dissipation body or at least its inner circumferential surface are converted into themselves in a hypothetical rotation about the rotational axis of symmetry, that is, are invariant under the rotation in question. Such symmetry can bring a high degree of efficiency and also facilitate the production of the cherriesabloom stressess.
  • the inner circumferential surface or even the entire heat dissipation body can be symmetrical with rotations of 180 ° /
  • the position of the jth rib of the kth section (20 ') to have an azimuthal angle of 360 ° / N * (j + k / M).
  • the ribs of the first section and the ribs of the second section can extend in the longitudinal direction over the entire relevant section.
  • Such a heat dissipation body can be comparatively easy to manufacture.
  • the inner guide may contain a combustion chamber or communicate with a combustion chamber. A portion of the heat generated during combustion can thus be dissipated via the heat dissipation body and fed to a destination, for example a passenger compartment of a motor vehicle.
  • the inner jacket surface of the heat dissipation body has a third section adjoining the second section with at least two mutually transversely offset ribs, wherein at least one rib of the third section is offset transversely relative to each rib of the second section or at least a rib of the second portion is transversely offset relative to each rib of the third portion.
  • Transversal as explained above, means "transverse to the longitudinal direction”.
  • a further swirling zone is created, namely at the boundary between the second and the third section.
  • the inner circumferential surface of the heat dissipation body has further sections with the features described with respect to the first and the second section.
  • the heat exchanger may be manufactured in a process comprising the steps of: preparing a first segment having the first portion; Producing a second segment having the second portion; and joining the first segment and the second segment.
  • This method can be particularly uncomplicated to carry out, since the inner lateral surfaces of the two individual segments are structured simpler than the composite inner circumferential surface.
  • the heat sink is made in one piece, for example, by a salt core method.
  • first and second segments may be manufactured separately by casting or extrusion molding.
  • the segments can also be composed of individual components, for example by welding.
  • the two segments are identical, they can be successively manufactured using a common manufacturing device. If a casting process is chosen, it can be poured successively in the same casting mold. The mold can thus be used twice.
  • the first segment and the second segment can be joined together by welding, for example. This is a cohesive connection. In this way, at the same time succeed in sealing the cavity at the junction between the two segments.
  • a connection of the two segments by mechanical fasteners, for example, rivets or screws into consideration. In this case, it may be necessary to seal the joint between the two segments by means of sealants.
  • a plan view is a representation in which the longitudinal direction is perpendicular to the plane of the drawing, unless the context otherwise dictates.
  • like reference characters designate like or similar components.
  • FIG. 1 shows schematically an example of a heat exchanger 10 with an inner guide 32 for guiding a fluid and with a heat dissipation body 12, 12 'for dissipating heat of the fluid.
  • the inner guide 32 may be a waveguide, for example a tube. It can in principle have any cross section, for example a circular or square cross section.
  • an interior 38 of the inner guide 32 serves as a combustion chamber.
  • the inner guide 32 can therefore also be referred to as a flame tube.
  • fuel (not shown) is combusted in a combustion region 40. This produces hot exhaust gas.
  • the inner guide 32 has an opening 42 through which the hot exhaust gas leaves the inner guide 32.
  • the heat dissipation body 12, 12 ' has a cavity 14, 14' extending in a longitudinal direction 36.
  • the heat dissipation body 12, 12 'and / or the inner guide 32 may have a rotational symmetry axis 16.
  • the longitudinal direction 36 is parallel to the rotational symmetry axis 16.
  • the tail 34 has the mouth 42.
  • the mouth 42 is a bottom surface 44 of the Cavity 14, 14 'facing.
  • fluid in the example hot exhaust, flows from the inner guide 32 via the orifice 42 into a bottom portion 46 of the cavity 14, 14 (the flow is indicated by arrows in the drawing).
  • a flow space for guiding the fluid away from the bottom region 46 is formed between an outer lateral surface 48 of the inner guide 32 and an inner lateral surface 20, 20 'of the heat dissipation body 12, 12'.
  • the flow space extends in the longitudinal direction 36.
  • the inner lateral surface 20, 20 'of the heat dissipation body 12, 12' has a first section 20 and a second section 20 'adjoining the first section 20.
  • the sauce abloomisme 12, 12 'on a side outlet for discharging the fluid.
  • the first portion 20 has at least two ribs 22 (see Figure 2 to 9 ) which are offset transversely relative to each other. Transversal means perpendicular to the longitudinal direction 36.
  • the second section 20 ' has at least two ribs 22', which are transversely offset relative to each other. In addition, each rib 22 'of the second portion 20' is transversely offset relative to each rib 22 of the first portion.
  • the cherriesabriosterrorism 12, 12 'on a first segment 12 and an adjoining second segment 12' may be pot-shaped.
  • the second segment 12 ' may be annular.
  • the cup-like first segment has a bottom portion whose inner surface forms the bottom surface 44 of the cavity.
  • the second segment 12 ' is associated with the second section 20' of the inner lateral surface 20, 20 'of the heat dissipation body and a first section 14 of the cavity 14, 14'.
  • FIG. 2 schematically shows a first segment 12 and a second segment 12 'of a dressingabloomworkss.
  • the segment 12 consists essentially of an annular or tubular segment body 24, which is traversed by a cavity 14.
  • the segment body 24 has a square outline, but other shapes are possible. According to a preferred embodiment (not shown) the outline of the segment body 24 is circular.
  • the segment body 24 and the ribs 22 may be formed in one piece.
  • the segment body 24 and the ribs 22 are preferably made of a material with high thermal conductivity, for example of a metal or a metal alloy.
  • the segment 12 has an inner lateral surface 20 which defines the cavity 14 and forms the aforementioned first section in the heat exchanger.
  • the four ribs 22 are mutually offset by 90 ° with respect to a rotational symmetry axis 16.
  • the example of a segment 12 shown here is thus symmetrical with rotations of 90 ° about the rotational symmetry axis 16.
  • the fluid for example hot exhaust gas
  • each of the ribs 22 extends along the longitudinal direction, in this case parallel to the axis of symmetry 16, over the entire inner circumferential surface from the inlet region to the outlet region of the segment body 24.
  • one or more ribs are shorter than the section in question does not extend over the entire section.
  • the ribs 22 'in the transverse direction are shorter than the ribs 22.
  • FIG. 3 shows a schematic oblique view of the segment 12, in which the sake of clarity, the segment 12 is shown in abbreviated form.
  • the ribs are elongated along the longitudinal direction (see the unabridged representation in FIG. 4 ). This makes it possible to provide a comparatively long heat transfer path with a comparatively small number of segments.
  • FIG. 5 schematically shows two segments 12 and 12 '(see FIG. 2 ) of a dressingabloomianus a heat exchanger 10.
  • the heat dissipation body additionally has a the segment 12 in FIG. 1 corresponding floor segment (not shown).
  • the heat dissipation body 12, 12 ' serves to transfer heat from the fluid to the heat dissipation body 12, 12' or from the heat dissipation body 12, 12 'to the fluid.
  • the heat dissipation body 12, 12 ' has a cavity 14, 14' composed of the cavities 14 and 14 ', through which the fluid can flow through along a longitudinal direction.
  • the flow path runs in FIG. 4 perpendicular to the drawing plane.
  • the inner circumferential surface 20 of the first segment 12 forms a first section of the inner surface 20, 20 'of the heat dissipation body 12, 12'.
  • the inner circumferential surface 20 'of the second segment 12' forms a second section adjoining the first section 20 the inner circumferential surface of the sauabcountry Economicss 12, 12 '.
  • the first section 20 thus has at least two ribs 22, in the example shown exactly four ribs 22.
  • the second section 20 ' at least two ribs 22', in the example shown exactly four ribs 22 '.
  • each rib 22 'of the second portion 20' is transversely offset relative to each rib 22 of the first portion.
  • the part of the cavity 14 located between two adjacent ribs 22 is also referred to as channel 26 in this application (see FIG. 2 ).
  • the segments 12 and 12 'thus each have at least two channels 26 and 26' on.
  • each channel 26 strikes a rib 22 'while each rib 22 encounters a channel 26'.
  • This arrangement favors a mixing within the fluid, which flows through the heat dissipation body 12, 12 '.
  • an additional seal between the segments 12 and 12 'in the unfinished areas 28 and 28' may be required.
  • the segments 12 and 12 ' are designed so that no potential leaks occur between them (see FIG. 6 ).
  • FIG. 7 schematically shows an example of a segment 12 with exactly eight ribs 22 and octagonal outline. In other examples (not shown), the segment 12 has more than eight ribs.
  • FIG. 8 and FIG. 9 show an example of an embodiment in which the banksab fossil economist a first and a structurally identical second segment having the first and the second portion, wherein the first segment and the second segment are arranged relative to each other rotated by 180 ° about an axis perpendicular to the longitudinal axis.
  • the two segments may be formed, for example, as substantially rectangular frames, wherein on two opposite inner surfaces of the Frame are each formed a plurality of parallel equidistant ribs.
  • the segment body 24 or 24 'of the segment 12 or 12' has a substantially rectangular cross-section.
  • the orientation of the second segment 12 ' is shown to be that of the first segment 12, in which the segment 12 is rotated through 180 ° about an axis 30 perpendicular to the main flow direction.
  • FIG. 10 1 schematically shows an example of an embodiment in which the inner jacket surface of the heat removal body has at least three successive sections, for example a first section with ribs 22, a second section with ribs 22 'adjoining thereto and a third section with ribs 22 adjoining the second section
  • the third section may represent a repetition of the first section, that is to say geometrically, the third portion may be translatable into the first portion by a displacement in the longitudinal direction
  • each rib 22 of the first portion and each rib 22 "of the third Ab offset transversely to each rib 22 'of the second section.
  • each rib 22 of the first portion is aligned with each rib 22 "of the second portion.
  • the inner circumferential surface may have an alternating sequence of N sections.
  • the number N of the sections may be, for example, 3, 4, 5, 6 or more.
  • the sections may be numbered 1 to N.
  • Such an embodiment leads to a high heat transfer.
  • Each section can be realized by a module or segment, allowing for efficient production.
  • a manufacturing process is illustrated by the flowchart in FIG FIG. 11 illustrated.
  • a first step S1 individual segments are produced.
  • at least two segments are identical in order to keep the cost of the manufacturing process as low as possible.
  • the segments are joined together, so that the individual cavities of the segments into a single unite continuous cavity.
  • the segments are welded directly to each other, that is without the use of intermediate elements and in particular without the use of seals.
  • immediately successive segments are aligned with each other such that the ribs of the subsequent segment are offset transversely relative to the ribs of the preceding segment.
  • FIG. 12 schematically shows an example of an embodiment in which each rib 22 of the first portion 20, a channel 26 'of the second portion completely or partially hidden.
  • the cross-sectional area of the channel 26 ' projects in its longitudinal direction completely towards the end face of the rib 22 facing the second section 20' at its channel beginning or channel end facing the first section 20.
  • the end face of a rib 22 of the first section 20 facing the second section 20 ' is larger than the cross-sectional area of the channel 26' covered by the rib 22 at its channel beginning or channel end facing the first section 20.
  • the end face of the rib 22 facing the second section 20 ' completely overlaps the cross-sectional area of the channel 26' at its channel beginning or channel end facing the first section 20, while the channel 26 'has its cross-sectional area at its channel end or channel end facing the first section 20 Section 20 'facing end face of the rib 22 overlaps only incompletely.
  • a channel 26 'of the second portion 20' and a rib 22 of the first portion 20 overlap each other transversely completely.
  • the end face of the rib 22 facing the second section 20 ' completely overlaps the cross-sectional area of the channel 26' at its channel beginning or channel end facing the first section 20 and the cross-sectional area of the channel 26 'at its channel end or channel beginning facing the first section 20 the end face of the rib 22 facing the second section 20 'also completely overlaps.
  • good heat transfer can be achieved with as little material as possible for the ribs.
  • At least one of the ribs 22 of the first portion 20 is higher than each of the ribs 22 'of the adjoining second portion 20'.
  • the height of a rib is to be understood as meaning its transverse dimension starting from the inner guide 32, that is, from the ribbed projection.
  • at least one of the ribs 22 of the first section 20 extends further in the transverse direction into the cavity 14 (see FIG FIG. 1 ) as the ribs 22 'of the adjoining second portion 20'.
  • the height of a rib can be defined as its radial dimension.
  • the first portion 20 may include at least one rib 22 that is at least 10 percent, at least 20 percent, at least 50 percent, or even at least 100 percent higher than each rib 22 'of the second portion 20'.
  • each section are in the example according to FIG. 12 packed tight.
  • the spacings of adjacent ribs of a section are small compared to a thickness or thickness of the ribs measured across the longitudinal direction.
  • the combined cross-sectional area of all the ribs defined at the point is greater than the combined cross-sectional area of the channels formed between the ribs.
  • the combined cross-sectional area of the ribs or channels is the sum of the cross-sectional areas of the individual ribs or channels at the relevant location, that is, in the relevant transverse plane.
  • FIG. 12 explained features can be analogously to each of the embodiments according to the FIGS. 1 to 10 transfer.
  • a concentric design according to FIG. 7 be advantageous for the turbulence generation, that the ribs 22 of the first portion 20 of a greater height, that is have a larger radial dimension than the ribs 22 'of the second portion 20'.
  • the distance from the rotational symmetry axis 16 to a rib 22 of the first section is less than the distance from the rotational symmetry axis 16 'to a rib 22'.
  • the ribs extend transversely within the cavity 14, 14 'but not necessarily to an opposite surface of the cavity.
  • each of the ribs 22 or 22 'in the transverse direction into the cavity 14, 14' protrudes, without hitting another solid structural element.
  • Each of the ribs thus has only one continuous surface, not a plurality, which can flow around the fluid.
  • the ribs can therefore also be referred to as fins.
  • the entire cavity 14, 14 ' is a coherent space area. This allows the formation of relatively large-scale turbulence patterns and good heat transfer within the flowing fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Valve Housings (AREA)
  • Tires In General (AREA)

Claims (14)

  1. Échangeur de chaleur (10) comprenant un guidage intérieur (32) pour guider un fluide et comprenant un corps de dissipation de la chaleur (12, 12') pour dissiper la chaleur du fluide, le corps de dissipation de la chaleur (12, 12') présentant une cavité (14, 14') s'étendant dans une direction longitudinale (36), à l'intérieur de laquelle s'étend au moins un embout (34) du guidage intérieur (32), l'embout (34) présentant une embouchure (42) qui est tournée vers une surface de fond (44) de la cavité (14, 14') pour introduire le fluide dans une région de fond (46) de la cavité (14, 14'), un espace d'écoulement pour le guidage du fluide à l'écart de la région de fond (46) étant réalisé entre une surface d'enveloppe extérieure (48) du guidage intérieur (32) et une surface d'enveloppe intérieure (20, 20') du corps de dissipation de la chaleur (12, 12'), l'espace d'écoulement s'étendant dans la direction longitudinale (36), la surface d'enveloppe intérieure (20, 20') du corps de dissipation de la chaleur (12, 12') présentant :
    - une première partie (20) avec au moins deux ailettes (22) qui sont décalées transversalement l'une par rapport à l'autre ; et
    - une deuxième partie (20') se raccordant à la première partie (20) avec au moins deux ailettes (22') qui sont décalées transversalement l'une par rapport à l'autre ;
    au moins une ailette (22') de la deuxième partie (20') étant décalée transversalement par rapport à chaque ailette (22) de la première partie (20) ou au moins une ailette (22) de la première partie (20) étant décalée transversalement par rapport à chaque ailette (22') de la deuxième partie (20') et les ailettes (22) de la première partie (20) et les ailettes (22') de la deuxième partie (20') étant à chaque fois allongées,
    caractérisé en ce que les ailettes (22) de la première partie (20) et les ailettes (22') de la deuxième partie (20') s'étendent à chaque fois dans la direction longitudinale (36).
  2. Échangeur de chaleur selon la revendication 1, caractérisé en ce que le corps de dissipation de la chaleur (12, 12') présente :
    - un premier segment (12) coulé ou extrudé avec la première partie (20) et
    - un deuxième segment (12') coulé ou extrudé avec la deuxième partie (20').
  3. Échangeur de chaleur selon la revendication 2, caractérisé en ce que le premier segment et le deuxième segment ont la même construction.
  4. Échangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel chaque ailette (22) de la première partie (20) s'étend jusqu'à un canal (26') s'étendant entre deux ailettes adjacentes (22') de la deuxième partie (20').
  5. Échangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel à chaque fois un canal s'étend entre deux ailettes adjacentes (22) de la première partie (20), lequel s'étend jusqu'à une ailette (22') de la deuxième partie (20').
  6. Échangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le corps de dissipation de la chaleur (12, 12') ou au moins la surface d'enveloppe intérieure (20, 20') du corps de dissipation de la chaleur présente un axe de symétrie de révolution (16).
  7. Échangeur de chaleur selon la revendication 6, dans lequel la première et la deuxième partie (20, 20') présentent chacune N ailettes et dans lequel la position de la ième ailette de la première partie (20) possède un angle azimutal de 360°/Ni, avec i=0,...,N-1, et dans lequel il est donné une constante α dans un intervalle [0; 1/2], de telle sorte que la position de la jième ailette de la deuxième partie (20') possède un angle azimutal de 360°/N(j+α), avec j=0,..., N-1.
  8. Échangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel les ailettes (22) de la première partie (20) et les ailettes (22') de la deuxième partie (20') s'étendent dans la direction longitudinale à chaque fois au-delà de toute la partie concernée.
  9. Échangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel le tube contient une chambre de combustion ou communique avec une chambre de combustion.
  10. Échangeur de chaleur selon l'une quelconque des revendications précédentes, dans lequel la surface d'enveloppe intérieure (20, 20') du corps de dissipation de la chaleur (12, 12') présente en outre :
    - une troisième partie (20") se raccordant à la deuxième partie (20), avec au moins deux ailettes (22") décalées transversalement l'une par rapport à l'autre, au moins une ailette (22") de la troisième partie (20") étant décalée transversalement par rapport à chaque ailette (22') de la deuxième partie (20') ou au moins une ailette (22') de la deuxième partie (20') étant décalée transversalement par rapport à chaque ailette (22") de la troisième partie (20').
  11. Procédé de fabrication d'un échangeur de chaleur (10) selon l'une quelconque des revendications 1 à 10, comprenant les étapes suivantes :
    - fabrication d'un premier segment (12) qui présente la première partie (20) ;
    - fabrication d'un deuxième segment (12') qui présente la deuxième partie (20') ; et
    - assemblage du premier segment (12) et du deuxième segment (12').
  12. Procédé selon la revendication 11, dans lequel la fabrication du premier et du deuxième segment (12 ; 12') comprend :
    - le moulage du premier et du deuxième segment (12 ; 12').
  13. Procédé selon la revendication 12, dans lequel le moulage du premier et du deuxième segment (12 ; 12') comprend :
    - le moulage du premier ou du deuxième segment (12 ; 12') dans un moule de coulée, suivi
    - du moulage du deuxième ou du premier segment (12' ; 12) dans le même moule de coulée.
  14. Procédé selon l'une quelconque des revendications 11 à 13, dans lequel l'assemblage du premier segment (12) et du deuxième segment (12') comprend :
    - le soudage du premier segment (12) et du deuxième segment (12').
EP14808991.5A 2013-12-06 2014-12-05 Échangeur de chaleur et procédé de fabrication d'un échangeur de chaleur Active EP3077751B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013020469.0A DE102013020469A1 (de) 2013-12-06 2013-12-06 Wärmeübertrager und Verfahren zum Herstellen eines Wärmeübertragers
PCT/EP2014/076723 WO2015082685A1 (fr) 2013-12-06 2014-12-05 Échangeur de chaleur et procédé de fabrication d'un échangeur de chaleur

Publications (2)

Publication Number Publication Date
EP3077751A1 EP3077751A1 (fr) 2016-10-12
EP3077751B1 true EP3077751B1 (fr) 2019-08-14

Family

ID=52014094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14808991.5A Active EP3077751B1 (fr) 2013-12-06 2014-12-05 Échangeur de chaleur et procédé de fabrication d'un échangeur de chaleur

Country Status (8)

Country Link
US (1) US10551087B2 (fr)
EP (1) EP3077751B1 (fr)
JP (1) JP6290415B2 (fr)
KR (1) KR101853220B1 (fr)
CN (3) CN204612562U (fr)
DE (1) DE102013020469A1 (fr)
RU (2) RU2649154C2 (fr)
WO (1) WO2015082685A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014010891A1 (de) * 2014-07-23 2016-01-28 Webasto SE Wärmeübertrager und Baukastensystem zur Herstellung eines Wärmeübertragers
USD837357S1 (en) 2016-09-15 2019-01-01 Ngk Insulators, Ltd. Catalyst carrier for exhaust gas purification
USD837356S1 (en) 2016-09-15 2019-01-01 Ngk Insulators, Ltd. Catalyst carrier for exhaust gas purification
USD835769S1 (en) 2016-09-15 2018-12-11 Ngk Insulators, Ltd. Catalyst carrier for exhaust gas purification
USD835768S1 (en) * 2016-09-15 2018-12-11 Ngk Insulators, Ltd. Catalyst carrier for exhaust gas purification
USD919072S1 (en) * 2018-02-20 2021-05-11 Ngk Insulators, Ltd. Catalyst carrier for exhaust gas purification
USD1004622S1 (en) * 2018-02-20 2023-11-14 Ngk Insulators, Ltd. Catalyst carrier for exhaust gas purification
RU183747U1 (ru) * 2018-03-12 2018-10-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный технический университет", ФГБОУ ВО "АГТУ" Теплообменник
USD982730S1 (en) * 2019-06-18 2023-04-04 Caterpillar Inc. Tube
CN115031556A (zh) * 2022-08-11 2022-09-09 杭州沈氏节能科技股份有限公司 微通道换热器及微通道换热器的加工方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1519673A (en) * 1921-08-01 1924-12-16 Doble Lab Heater
FR575978A (fr) 1923-02-15 1924-08-08 Perfectionnements aux générateurs de vapeur ou aux chaudières pour le chauffage de l'eau
US1961907A (en) * 1931-11-25 1934-06-05 George T Mott Apparatus for heat exchanging
US2359816A (en) * 1942-11-18 1944-10-10 Sears Roebuck & Co Water heater
US2864404A (en) * 1953-09-15 1958-12-16 Griscom Russell Co Heat exchanger construction
US3887004A (en) * 1972-06-19 1975-06-03 Hayden Trans Cooler Inc Heat exchange apparatus
JPS50147957U (fr) * 1974-05-23 1975-12-08
SU851087A1 (ru) * 1979-12-07 1981-07-30 Всесоюзный Научно-Исследовательскийи Конструкторско-Технологическийинститут Компрессорного Машино-Строения Теплообменна труба
JPS58219301A (ja) * 1982-06-14 1983-12-20 松下電器産業株式会社 冷媒加熱熱交換器
DE3338642C1 (de) * 1983-10-25 1984-06-20 Hans Dr.h.c. 3559 Battenberg Vießmann Innenberippter Einsatz für Heizungskessel
DE3416878A1 (de) * 1984-05-08 1985-11-14 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Heizgeraet, insbesondere fahrzeug-zusatzheizgeraet
DE3418921C2 (de) * 1984-05-21 1986-08-14 Hans Dr.h.c. 3559 Battenberg Vießmann Rippenrohrausbildung für einen Heizungskessel für flüssige oder gasförmige Brennstoffe
CN1005211B (zh) * 1985-07-08 1989-09-20 韦巴斯托沃克W·贝勒有限公司 水加热器
JPS6275381U (fr) * 1985-10-25 1987-05-14
JPS62293087A (ja) * 1986-06-10 1987-12-19 Isuzu Motors Ltd 熱交換器
FR2617579B1 (fr) * 1987-07-03 1989-12-08 Airelec Ind Chaudiere de chauffage central pour bruleur a air souffle, comprenant un foyer sec et une resistance chauffante
JP2821583B2 (ja) * 1991-04-12 1998-11-05 株式会社日立製作所 中性粒子入射装置及び核融合装置用真空容器
US5314009A (en) * 1992-10-08 1994-05-24 Gas Research Institute Exhaust gas recuperator
NL194767C (nl) * 1994-08-15 2003-02-04 Famurano Anstalt Verwarmingsinrichting voor water, alsmede warmtewisselaar hiervoor.
DE29707104U1 (de) * 1997-04-19 1997-06-26 J. Eberspächer GmbH & Co., 73730 Esslingen Mit Flüssigbrennstoff betriebenes Fahrzeugheizgerät
JPH1172104A (ja) 1997-06-19 1999-03-16 Saito Jidosha Shatai Kogyo:Kk 渦流発生体及びその製造方法
DK79298A (da) * 1998-06-08 1999-12-09 Norsk Hydro As Profil for køling af brændstof, en brændstofledning samt en fremgangsmåde til fremstilling heraf
US20030070793A1 (en) * 2001-10-15 2003-04-17 Dierbeck Robert F. Heat exchanger assembly with dissimilar metal connection capability
CN2406212Y (zh) 1999-12-30 2000-11-15 华南理工大学 一种板棒式换热器
DE10038624C2 (de) * 2000-08-03 2002-11-21 Broekelmann Aluminium F W Wärmeübertragungsrohr mit gedrallten Innenrippen
DE10053000A1 (de) * 2000-10-25 2002-05-08 Eaton Fluid Power Gmbh Klimaanlage mit innerem Wärmetauscher und Wärmetauscherrohr für einen solchen
DE10226081B4 (de) * 2002-06-12 2005-11-03 J. Eberspächer GmbH & Co. KG Wärmetauscheranordnung
DE10248541A1 (de) * 2002-10-17 2004-04-29 Hilti Ag Mischelement
US7360309B2 (en) * 2003-01-28 2008-04-22 Advanced Ceramics Research, Inc. Method of manufacturing microchannel heat exchangers
DE10306483A1 (de) * 2003-02-14 2004-08-26 Loos Deutschland Gmbh Wärmeübertragungsrohr sowie Wärmetauscher
DE102004019554C5 (de) * 2004-04-22 2014-03-27 Pierburg Gmbh Abgasrückführsystem für eine Verbrennungskraftmaschine
DE102004019870A1 (de) * 2004-04-23 2005-11-17 J. Eberspächer GmbH & Co. KG Heizgerät, insbesondere für ein Fahrzeug
JP4680696B2 (ja) * 2005-06-24 2011-05-11 三菱電機株式会社 熱交換器および熱交換器の製造方法
DE102005029321A1 (de) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Wärmeübertrager
US7725011B2 (en) * 2005-07-29 2010-05-25 Calorigen Usa Corp. Temperature exchanging element made by extrusion and incorporating an infrared radiation diffuser
DE102005051709A1 (de) * 2005-10-28 2007-05-03 Albert Handtmann Metallgusswerk Gmbh & Co. Kg Abgaskühler
DE102006011727B3 (de) * 2006-03-14 2007-11-22 Webasto Ag Kombiniertes Heizungs-/Warmwassersystem für mobile Anwendungen
JP5264734B2 (ja) * 2006-09-19 2013-08-14 ベール ゲーエムベーハー ウント コー カーゲー 内燃機関用の熱交換器
DE102007017106A1 (de) * 2007-04-10 2008-10-23 Webasto Ag Wärmeübertrager für ein kombiniertes Heizungs-/Warmwassersystem für mobile Anwendungen und kombiniertes Heizungs-/Warmwassersystem für mobile Anwendungen
EP2201306A1 (fr) * 2007-10-25 2010-06-30 Bekaert Combust. Technol. B.V. Corps poreux métallique incorporé par coulée dans un échangeur de chaleur
DE102008036222B3 (de) * 2008-08-02 2009-08-06 Pierburg Gmbh Wärmeübertragungseinheit für eine Verbrennungskraftmaschine
US8696193B2 (en) * 2009-03-06 2014-04-15 Ehrfeld Mikrotechnik Bts Gmbh Coaxial compact static mixer and use thereof
DE102011079018A1 (de) * 2011-07-12 2013-01-17 J. Eberspächer GmbH & Co. KG Fahrzeugheizgerät
ES2670654T3 (es) * 2011-10-13 2018-05-31 Tinman Inc. Aparato de vaporización
NL2009680C2 (en) * 2012-10-23 2014-04-29 Dejatech Ges B V Heat exchanger and method for manufacturing such.
NL2010442C2 (en) * 2013-03-12 2014-09-16 Dejatech Ges B V Heat exchanger and body therefore, and a method for forming a heat exchanger body.
DE102014214768A1 (de) * 2014-07-28 2016-01-28 Eberspächer Climate Control Systems GmbH & Co. KG Wärmetauscheranordnung, insbesondere für ein Fahrzeugheizgerät
US20170328651A1 (en) * 2016-05-10 2017-11-16 Tom Richards, Inc. Point of dispense heat exchanger for fluids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105814392B (zh) 2018-06-19
RU2649154C2 (ru) 2018-03-30
KR20160071474A (ko) 2016-06-21
RU2018109345A3 (fr) 2019-02-27
RU2018109345A (ru) 2019-02-27
CN109029014A (zh) 2018-12-18
EP3077751A1 (fr) 2016-10-12
JP6290415B2 (ja) 2018-03-07
KR101853220B1 (ko) 2018-04-30
WO2015082685A1 (fr) 2015-06-11
CN109029014B (zh) 2020-06-30
DE102013020469A1 (de) 2015-06-11
JP2016539306A (ja) 2016-12-15
CN204612562U (zh) 2015-09-02
US20160305687A1 (en) 2016-10-20
CN105814392A (zh) 2016-07-27
US10551087B2 (en) 2020-02-04
RU2691219C2 (ru) 2019-06-11

Similar Documents

Publication Publication Date Title
EP3077751B1 (fr) Échangeur de chaleur et procédé de fabrication d'un échangeur de chaleur
EP3062054B1 (fr) Échangeur thermique, en particulier pour un vehicule automobile
DE69402051T2 (de) Wärmetauschelement, verfahren und vorrichtung zu dessen herstellung
DE102004045018B4 (de) Verfahren zur Herstellung eines flachen Rohres für einen Wärmetauscher eines Kraftfahrzeugs, flaches Rohr, Verfahren zur Herstellung eines Wärmetauschers und Wärmetauscher
EP2413080A2 (fr) Dispositif de refroidissement pour un moteur à combustion interne
DE10127084A1 (de) Wärmeübertrager, insbesondere für Kraftfahrzeuge
DE69503972T2 (de) Verstärkte Endplatte für Wärmetauscher
EP1518043B1 (fr) Echangeur thermique pour gaz d'echappement et procede de fabrication associe
EP0772018A2 (fr) Echangeur de chaleur pour le refroidissement de gaz d'échappement
DE60019940T2 (de) Wärmetauscherrohr und verfahren zur herstellung des wärmetauscherrohrs
EP2098813A2 (fr) Procédé de fabrication de dispositifs de transmission de chaleur
EP3056847B1 (fr) Dispositif et procede destines a la thermoregulation d'un corps
DE102006018688B4 (de) Verfahren zum Biegen von Multiportrohren für Wärmeübertrager
DE102014204816A1 (de) Elektrische Maschine mit einem Kühlelement
DE69617598T2 (de) Wärmetauscher, insbesondere Ladeluftkühler für Kraftfahrzeug
WO2005035965A1 (fr) Chambre de combustion comprenant un dispositif de refroidissement, et procede de production de cette chambre de combustion
WO2016146296A1 (fr) Echangeur de chaleur, notamment refroidisseur d'huile pour un moteur a combustion interne
DE2549359A1 (de) Kuehlturm
DE102016103458B4 (de) Wickelwärmeübertrager
EP3062057B1 (fr) Échangeur thermique, en particulier pour un vehicule automobile
EP2161428B1 (fr) Refroidisseur d'air de suralimentation, notamment pour grands moteurs
WO2020025358A1 (fr) Refroidissement d'une machine électrique
EP2333473A2 (fr) Dispositif de transmission de chaleur et agencement de produit semi-fini de transmission de chaleur ainsi que procédé destiné à la fabrication d'un tel dispositif de transmission de chaleur
WO2012097797A2 (fr) Échangeur thermique et moteur à réaction comportant un tel échangeur thermique
DE102012111928A1 (de) Wärmetauscher für eine Verbrennungskraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190312

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1167538

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012428

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012428

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191205

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1167538

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191205

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141205

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10