EP3077394A1 - Imidazo[1,2-a]pyridine-3-carboxamides aryl et hétéroaryl substitués et leur utilisation - Google Patents

Imidazo[1,2-a]pyridine-3-carboxamides aryl et hétéroaryl substitués et leur utilisation

Info

Publication number
EP3077394A1
EP3077394A1 EP14805306.9A EP14805306A EP3077394A1 EP 3077394 A1 EP3077394 A1 EP 3077394A1 EP 14805306 A EP14805306 A EP 14805306A EP 3077394 A1 EP3077394 A1 EP 3077394A1
Authority
EP
European Patent Office
Prior art keywords
pyridine
alkyl
mmol
group
oxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14805306.9A
Other languages
German (de)
English (en)
Inventor
Alexandros Vakalopoulos
Ingo Hartung
Niels Lindner
Rolf Jautelat
Jorma Hassfeld
Dirk Schneider
Frank Wunder
Johannes-Peter Stasch
Gorden Redlich
Volkhart Min-Jian Li
Eva Maria Becker-Pelster
Andreas Knorr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Bayer Pharma AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Pharma AG filed Critical Bayer Pharma AG
Priority to EP14805306.9A priority Critical patent/EP3077394A1/fr
Publication of EP3077394A1 publication Critical patent/EP3077394A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/502Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with carbocyclic ring systems, e.g. cinnoline, phthalazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/5381,4-Oxazines, e.g. morpholine ortho- or peri-condensed with carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Definitions

  • the present application relates to novel aryl- and hetaryl-substituted imidazo [l, 2-a] pyridine-3-carboxamides, processes for their preparation, their use alone or in combinations for the treatment and / or prophylaxis of diseases and their use for the production of Medicaments for the treatment and / or prophylaxis of diseases, in particular for the treatment and / or prophylaxis of cardiovascular diseases.
  • cGMP cyclic guanosine monophosphate
  • NO nitric oxide
  • GTP guanosine triphosphate
  • the soluble guanylate cyclases consist of two subunits and most likely contain one heme per heterodimer, which is part of the regulatory center. This is central to the activation mechanism. NO can bind to the iron atom of the heme and thus significantly increase the activity of the enzyme. On the other hand, heme-free preparations can not be stimulated by NO. Carbon monoxide (CO) is also able to bind to the central iron atom of the heme, with stimulation by CO being markedly lower than by NO.
  • CO Carbon monoxide
  • guanylate cyclase plays a crucial role in various physiological processes, in particular in the relaxation and proliferation of smooth muscle cells, platelet aggregation and adhesion, neuronal signaling and diseases based on a disturbance of the above operations.
  • the NO / cGMP system may be suppressed, which may, for example, lead to hypertension, platelet activation, increased cell proliferation, endothelial dysfunction, atherosclerosis, angina pectoris, heart failure, myocardial infarction, thrombosis, stroke and sexual dysfunction.
  • a NO-independent treatment option for such diseases which is aimed at influencing the cGMP pathway in organisms, is a promising approach on account of the expected high efficiency and low side effects.
  • soluble guanylate cyclase only compounds such as organic nitrates have been used, whose action is based on NO. This is formed by bioconversion and activates the soluble guanylate cyclase by attack on the central iron atom of the heme.
  • the development of tolerance is one of the decisive disadvantages of this type of treatment.
  • the object of the present invention was to provide new substances which act as stimulators of soluble guanylate cyclase, and as such are suitable for the treatment and / or prophylaxis of diseases.
  • the present invention relates to compounds of the general formula (I)
  • phenyl, naphthyl or 5- to 10-membered heteroaryl where phenyl, naphthyl and 5- to 10-membered heteroaryl having 1 to 4 substituents independently of one another are selected from the group consisting of halogen, cyano, difluoromethyl, trifluoromethyl, (C 1 -C 6 ) -alkyl, (C 3 -C 7 ) -cycloalkyl, (C 1 -C 4 ) -alkylsulfonyl, (C 3 -C 6 ) -cycloalkylsulfonyl, (C 1 -C 4 ) -alkylsulfonylamino, (C 3 -C 6 ) -cycloalkylsulfonylamino, (C 3 -C 6 ) -cycloalkylsulfonylamino, hydroxy, difluoromethoxy, trifluoromethoxy, (C 1 -C 4
  • R 6 represents hydrogen, (C 1 -C 4 ) -alkyl or (C 3 -C 7 ) -cycloalkyl, in which (C 1 -C 4 ) -alkyl in turn contains 1 or 2 substituents independently of one another selected from the group consisting of fluorine, trifluoromethyl, ( C 3 -C 7 ) -cycloalkyl, hydroxy, (C 1 -C 4 ) -alkoxy, amino, mono- (C 1 -C 4 ) -alkylamino and di- (C 1 -C 4 ) -alkylamino may be substituted,
  • R 7 is hydrogen or (C 1 -C 4 ) -alkyl, or in which R 6 and R 7 together with the nitrogen atom to which they are attached form a 4- to 7-membered heterocycle in which the 4- to 7- in turn, a heterocycle having 1 to 3 substituents selected independently from the group consisting of fluorine, (C 1 -C 4 ) -alkyl, (C 3 -C 7 ) -cycloalkyl, hydroxy, hydroxymethyl, oxo, (C 1 -C 4 ) -alkoxy , Amino, mono- (C 1 -C 4) -alkylamino and di- (C 1 -C 4) -alkylamino, and wherein phenyl, benzyl, 4- to 7-membered heterocyclyl and 5-membered heteroaryl having 1 to 3 substituents independently selected from the group halogen, difluoromethyl, trifluoromethyl, (Ci-C alkyl,
  • Rifluormethyl wherein (C3-Cv) -cycloalkyl having 1 to 4 substituents independently selected from the group of fluorine, trifluoromethyl and (Ci-C alkyl may be substituted, and wherein phenyl having 1 to 4 substituents independently selected from the group halogen, cyano, monofluoromethyl, difluoromethyl, trifluoromethyl, (Ci-C alkyl, (Ci-C alkoxy, difluoromethoxy and trifluoromethoxy may be substituted, for hydrogen, halogen, cyano, difluoromethyl, trifluoromethyl, (Ci-C alkyl , Ethynyl, (C 3 -C 4) -cycloalkyl, (C 1 -C 4 -alkoxy or 4- to 7-membered heterocyclyl, their oxides, salts, solvates, salts of the oxides and solvates of the oxides and salts.
  • the present invention relates to compounds of the general formula (I) is CH 2 , CD 2 or CH (CH 3 ), is phenyl, naphthyl or 5- to 10-membered heteroaryl, wherein phenyl, naphthyl and 5- to 10-membered heteroaryl having 1 to 4 substituents independently selected from Halogen, cyano, difluoromethyl, trifluoromethyl, (C 1 -C 4) -alkyl, (C 3 -C 4) -cycloalkyl, hydroxy, difluoromethoxy, trifluoromethoxy, (C 1 -C 4 -alkoxy, (C 1 -C 4) -alkylcarbonylamino, amino, Mono- (C 1 -C 4) -alkylamino, di- (C 1 -C 4) -alkylamino, mono (C 1 -C 4) -alkylaminocarbonyl, di- (C 1 -C 4) -alkylamin
  • R 6 represents hydrogen, (C 1 -C 4 ) -alkyl or (C 3 -C 7 ) -cycloalkyl, in which (C 1 -C 4 ) -alkyl in turn contains 1 or 2 substituents independently of one another selected from the group consisting of fluorine, trifluoromethyl, ( C 3 -C 7 ) -cycloalkyl, hydroxy, (GC 4 ) alkoxy, amino, mono- (Ci-C4) -alkylamino and di- (Ci-C4) -alkylamino may be substituted for hydrogen or (Ci-C4 ) -Alkyl, or in which R 6 and R 7 together with the nitrogen atom to which they are attached form a 4- to 7-membered heterocycle, in which the 4- to 7-membered heterocycle in turn has 1 to 3 substituents independently of one another selected from the group consisting of fluorine, (C 1 -C 4 ) -alkyl, (C 3
  • Compounds according to the invention are the compounds of the formula (I) and their salts, solvates and solvates of the salts comprising the compounds of the formulas below and their salts, solvates and solvates of the salts and of the formula (I) encompassed by formula (I), hereinafter referred to as exemplary compounds and their salts, solvates and solvates of the salts, as far as the compounds of formula (I), the compounds mentioned below are not already salts, solvates and solvates of the salts.
  • Salts used in the context of the present invention are physiologically acceptable salts of the compounds according to the invention. Also included are salts which are themselves unsuitable for pharmaceutical applications but can be used, for example, for the isolation or purification of the compounds of the invention.
  • Physiologically acceptable salts of the compounds of the invention include acid addition salts of mineral acids, carboxylic acids and sulfonic acids, e.g. Salts of hydrochloric, hydrobromic, sulfuric, phosphoric, methanesulfonic, ethanesulfonic, toluenesulfonic, benzenesulfonic, naphthalenedisulfonic, formic, acetic, trifluoroacetic, propionic, lactic, tartaric, malic, citric, fumaric, maleic and benzoic acids.
  • Salts of hydrochloric, hydrobromic, sulfuric, phosphoric, methanesulfonic, ethanesulfonic, toluenesulfonic, benzenesulfonic, naphthalenedisulfonic formic, acetic, trifluoroacetic, propionic, lactic, tartaric, malic, citric, fumaric, maleic and benzoic
  • Physiologically acceptable salts of the compounds according to the invention also include salts of customary bases, such as, by way of example and by way of preference, alkali metal salts (for example sodium and potassium salts), alkaline earth salts (for example calcium and magnesium salts) and ammonium salts derived from ammonia or organic amines having 1 to 16 carbon atoms, such as, by way of example and by way of illustration, ethylamine, diethylamine, triethylamine, ethyldiisopropylamine, monoethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, dimethylaminoethanol, procaine, dibenzylamine, N-methylmorpholine, arginine, lysine, ethylenediamine and N-methylpiperidine.
  • customary bases such as, by way of example and by way of preference, alkali metal salts (for example sodium and potassium salts), alkaline earth salts (for example calcium and magnesium salts
  • Solvates in the context of the invention are those forms of the compounds according to the invention which form a complex in the solid or liquid state by coordination with solvent molecules. Hydrates are a special form of solvates that coordinate with water. As solvates, hydrates are preferred in the context of the present invention.
  • the compounds according to the invention may exist in different stereoisomeric forms, ie in the form of configurational isomers or optionally also as conformational isomers (enantiomers and / or diastereomers, including those in the case of atropisomers). The present invention therefore encompasses the enantiomers and diastereoisomers and their respective mixtures.
  • the stereoisomerically uniform components can be isolated in a known manner; Preferably, chromatographic methods are used for this, in particular HPLC chromatography on achiral or chiral phase.
  • the present invention encompasses all tautomeric forms.
  • the present invention also includes all suitable isotopic variants of the compounds of the invention.
  • An isotopic variant of a compound according to the invention is understood to mean a compound in which at least one atom within the compound according to the invention is exchanged for another atom of the same atomic number but with a different atomic mass than the atomic mass that usually or predominantly occurs in nature.
  • isotopes which can be incorporated into a compound of the invention are those of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, chlorine, bromine and iodine, such as 2 H (deuterium), 3 H (tritium), 13 C, 14 C, 15 N, 17 0, 18 0, 32 P, 33 P, 33 S, 34 S, 35 S, 36 S, 18 F, 36 C1, 82 Br, 123 I, 124 I, 129 I and 131 I.
  • isotopic variants of a compound of the invention such as, in particular, those in which one or more radioactive isotopes are incorporated, may be useful, for example, for the study of the mechanism of action or drug distribution in the body; Due to the comparatively easy production and detectability, compounds labeled with 3 H or 14 C isotopes are particularly suitable for this purpose.
  • isotopes such as deuterium may result in certain therapeutic benefits as a result of greater metabolic stability of the compound, such as prolonging the body's half-life or reducing the required effective dose;
  • Such modifications of the compounds of the invention may therefore optionally also constitute a preferred embodiment of the present invention.
  • Isotopic variants of the compounds according to the invention can be prepared by the processes known to the person skilled in the art, for example by the methods described below and the rules given in the exemplary embodiments, by using appropriate isotopic modifications of the respective reagents and / or starting compounds.
  • prodrugs of the compounds according to the invention.
  • prodrugs denotes compounds which themselves are biologically active or may be inactive, but during their residence time in the body to be converted into compounds of the invention (for example, metabolically or hydrolytically).
  • alkyl is a linear or branched alkyl radical having 1 to 6 carbon atoms. Examples which may be mentioned are: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, 1-methylpropyl, tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, iso -Pentyl, n-hexyl, 1-methylpentyl, 1-ethylbutyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, 4-methylpentyl.
  • Cycloalkyl in the context of the invention is a monocyclic, saturated alkyl radical having 3 to 7 carbon atoms. Examples which may be mentioned by way of example include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
  • Alkylcarbonyl in the context of the invention is a linear or branched alkyl radical having 1 to 4 carbon atoms and a carbonyl group attached in position 1.
  • Alkylcarbonylamino in the context of the invention represents an amino group having a linear or branched alkylcarbonyl substituent which has 1 to 4 carbon atoms in the alkyl chain and is linked via the carbonyl group to the nitrogen atom.
  • alkylcarbonylamino represents an amino group having a linear or branched alkylcarbonyl substituent which has 1 to 4 carbon atoms in the alkyl chain and is linked via the carbonyl group to the nitrogen atom.
  • Alkoxy in the context of the invention is a linear or branched alkoxy radical having 1 to 4 carbon atoms. Examples which may be mentioned are: methoxy, ethoxy, n-propoxy, isopropoxy, 1-methylpropoxy, n-butoxy, isobutoxy and tert-butoxy.
  • Mono-alkylamino in the context of the invention represents an amino group having a linear or branched alkyl substituent which has 1 to 4 carbon atoms. Examples which may be mentioned are: methylamino, ethylamino, n-propylamino, isopropylamino and tert-butylamino.
  • Di-alkylamino in the context of the invention represents an amino group having two identical or different linear or branched alkyl substituents, each having 1 to 4 carbon atoms.
  • Mono-alkylaminocarbonyl in the context of the invention represents an amino group which is linked via a carbonyl group and which has a linear or branched alkyl substituent having 1 to 4 carbon atoms.
  • Di-alkylaminocarbonyl is in the context of the invention an amino group which is linked via a carbonyl group and which has two identical or different linear or branched alkyl substituents each having 1 to 4 carbon atoms.
  • Examples which may be mentioned by way of example and by way of preference are: -dimethylaminocarbonyl, A 1'-diethylaminocarbonyl, -ethyl-methylaminocarbonyl, -methyl-n-propylaminocarbonyl, -n-butylmethylaminocarbonyl, tert-butylmethylaminocarbonyl, -n-butyl Pentyl-methylaminocarbonyl and n-hexyl-methylaminocarbonyl.
  • Alkylsulfonyl in the context of the invention is a linear or branched alkyl radical having 1 to 4 carbon atoms, which is bonded via a sulfonyl group.
  • a sulfonyl group By way of example and preferably its name: methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, iso-propylsulfonyl, n-butylsulfonyl and tert-butylsulfonyl.
  • (C 1 -C 4 ) -alkylsulfonylamino in the context of the invention is an amino group having a linear or branched alkylsulfonyl substituent which has 1 to 4 carbon atoms in the alkyl chain and is linked via the sulfonyl group to the N-atom.
  • alkylsulfonyl substituent which has 1 to 4 carbon atoms in the alkyl chain and is linked via the sulfonyl group to the N-atom.
  • methylsulfonylamino, ethylsulfonylamino, propylsulfonylamino, n-butylsulfonylamino, isobutylsulfonylamino and tert-butylsulfonylamino By way of example and preferably mention may be made of: methylsulfonylamino, ethylsulfonylamino, prop
  • Heterocyclyl or heterocycle is in the context of the invention for a monocyclic, saturated or partially unsaturated heterocycle having a total of 4 to 7 ring atoms containing one to three ring heteroatoms from the series N, O and / or S and via a ring carbon atom or optionally a ring nitrogen atom is linked.
  • azetidinyl oxetanyl, pyrrolidinyl, pyrazolidinyl, tetrahydrofuranyl, thiolanyl, piperidinyl, piperazinyl, tetrahydropyranyl, morpholinyl, thiomorpholinyl, azepanyl, diazepanyl, dihydropyrrolyl, tetrahydropyridinyl, dihydrooxazinyl or dihydropyrazinyl.
  • azetidinyl oxetanyl, Pyrrolidinyl, pyrazolidinyl, tetrahydrofuranyl, piperidinyl, piperazinyl, tetrahydropyranyl, morpholinyl and thiomorpholinyl.
  • Heteroaryl is in the context of the invention for a mono- or optionally bicyclic aromatic heterocycle (heteroaromatic) having a total of 5 to 10 ring atoms containing up to three identical or different ring heteroatoms from the series N, O and / or S and via a ring -Coryl atom or optionally via a ring nitrogen atom is linked.
  • heterocycle aromatic heterocycle
  • Examples which may be mentioned are: furyl, pyrrolyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, Benzotriazolyl, indolyl, indazolyl, quinolinyl, isoquinolinyl, naphthyridinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pyrrolo [2,3-b] pyridine, pyrazolo [l, 5-a] pyridine,
  • Halogen in the context of the invention includes fluorine, chlorine, bromine and iodine. Preference is given to chlorine or fluorine.
  • An oxo group in the context of the invention represents an oxygen atom which is bonded via a double bond to a carbon or sulfur atom.
  • radicals are substituted in the compounds according to the invention, the radicals can, unless otherwise specified, be monosubstituted or polysubstituted. In the context of the present invention, the meaning is independent of each other for all radicals which occur repeatedly. Substitution with one, two or three identical or different substituents is preferred.
  • A is CH 2 , phenyl, naphthyl, pyrazolyl, imidazolyl, isoxazolyl, l, 3,4-thiadiazol-2-yl, 1,3-thiazol-2-yl, l, 3-oxazol-2-yl, pyridyl , Pyrimidin-2-yl, indolyl, pyrrolo [2,3-b] pyridine, indazolyl, pyrazolo [l, 5-a] pyridine, quinolinyl, isoquinolinyl or cinnolinyl, wherein phenyl, naphthyl, pyrazolyl, isoxazolyl, l, 3 , 4-thiadiazol-2-yl, 1,3-thiazol-2-yl, 1,3-oxazol-2-yl, pyridyl, pyrimidin-2-yl, indolyl, pyrrolo [2,3-b] pyridine,
  • R 6 represents hydrogen, (C 1 -C 4 -alkyl, cyclopropyl or cyclobutyl, in which (C 1 -C 4 -alkyl in turn substituted by 1 or 2 substituents independently of one another from the group of fluorine, trifluoromethyl, cyclopropyl, cyclobutyl, hydroxy, methoxy and ethoxy can be,
  • R 7 is hydrogen or (C 1 -C 4 ) -alkyl, or in which R 6 and R 7 together with the nitrogen atom to which they are attached form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl ring, wherein the azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl ring may in turn be substituted with 1 to 3 substituents independently selected from the group of fluoro, methyl, ethyl, cyclopropyl, cyclobutyl, hydroxy, hydroxymethyl, oxo, methoxy and ethoxy .
  • R 2 is hydrogen
  • R 3 is methyl
  • R 4 is phenyl, wherein phenyl having 1 to 4 substituents independently of one another is selected from the group consisting of fluorine or chlorine,
  • R 5 is hydrogen, fluorine, chlorine or methyl, and their salts, solvates and solvates of the salts.
  • Preferred in the context of the present invention are compounds of the formula (I) in which A is CH 2 ,
  • R 1 is phenyl, naphthyl, pyrazolyl, imidazolyl, isoxazolyl, l, 3,4-thiadiazol-2-yl, 1,3-thiazol-2-yl, l, 3-oxazol-2-yl, pyridyl, pyrimidine-2 -yl, indolyl, pyrrolo [2,3-b] pyridine, indazolyl, pyrazolo [l, 5-a] pyridine, quinolinyl, isoquinoneyl or cinnolinyl, wherein phenyl, naphthyl, pyrazolyl, isoxazolyl, l, 3,4-thiadiazole -2-yl, l, 3-thiazol-2-yl, l, 3-oxazol-2-yl, pyridyl, pyrimidin-2-yl, indolyl, pyrrolo [2,3-b] pyridine, ind
  • R 6 represents hydrogen, (C 1 -C 4 -alkyl, cyclopropyl or cyclobutyl, in which (C 1 -C 4 -alkyl in turn substituted by 1 or 2 substituents independently of one another from the group of fluorine, trifluoromethyl, cyclopropyl, cyclobutyl, hydroxy, methoxy and ethoxy can be,
  • R 7 is hydrogen or (C 1 -C 4 ) -alkyl, or in which R 6 and R 7 together with the nitrogen atom to which they are attached form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl ring, wherein the azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl ring may in turn be substituted with 1 to 3 substituents independently selected from the group of fluoro, methyl, ethyl, cyclopropyl, cyclobutyl, hydroxy, hydroxymethyl, oxo, methoxy and ethoxy , or wherein two adjacent radicals on the phenyl together with the carbon atoms to which they are attached form a dihydropyrrolyl, tetrahydropyridinyl, dihydrooxazinyl or dihydropyrazinyl ring where
  • R 2 is hydrogen
  • R 3 is methyl
  • R 4 is phenyl, wherein phenyl having 1 to 4 substituents independently of one another is selected from the group consisting of fluorine or chlorine,
  • R 5 is hydrogen, fluorine, chlorine or methyl, and their salts, solvates and solvates of the salts.
  • A is CH 2 ,
  • R 1 is indolyl, pyrrolo [2,3-b] pyridine, indazolyl, pyrazolo [l, 5-a] pyridine, quinolinyl or isoquinolinyl, wherein pyrrolo [2,3-b] pyridine, indolyl, indazolyl, pyrazolo [l, 5-a] pyridine, quinolinyl and isoquinolinyl having 1 to 3 substituents independently selected from the group of fluorine, chlorine, trifluoromethyl, (Ci-C alkyl, methoxy and ethoxy may be substituted, wherein (Ci-C alkyl with 1 to 3 substituents independently of one another selected from the group fluorine, trifluoromethyl, cyclopropyl, hydroxy, methoxy, ethoxy and methylsulfonyl may be substituted,
  • R 2 is hydrogen
  • R 3 is methyl
  • R 4 is phenyl, where phenyl having 1 to 3 substituents independently of one another is selected from the group consisting of fluorine or chlorine,
  • R 5 is hydrogen, fluorine, chlorine or methyl, and their salts, solvates and solvates of the salts.
  • A is CH 2 ,
  • R 1 is pyrazol-4-yl, wherein pyrazol-4-yl can be substituted with 1 to 3 substituents independently selected from the group trifluoromethyl, (Ci-C alkyl and cyclopropyl, wherein (Ci-C alkyl with 1 to 3 substituents independently selected from the group fluorine, trifluoromethyl, cyclopropyl, hydroxy, methoxy, ethoxy, 2,2,2-trifluoroethoxy, methylsulfonyl and a group -NR 6 R 7 may be substituted, wherein
  • R 6 is hydrogen or (GC 4 ) -alkyl, in which (C 1 -C 4 -alkyl in turn may be substituted by 1 or 2 substituents independently of one another selected from the group of fluorine, trifluoromethyl, cyclopropyl, hydroxy, methoxy and ethoxy,
  • R 7 is hydrogen or (C 1 -C 4 ) -alkyl, or wherein R 6 and R 7 together with the nitrogen atom to which they are attached form an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl ring . wherein the azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl ring may in turn be substituted with 1 to 3 substituents independently selected from the group of fluoro, methyl, ethyl, hydroxy, oxo, methoxy and ethoxy, R 2 is hydrogen stands,
  • R 3 is methyl
  • R 4 is phenyl, wherein phenyl having 1 to 3 substituents independently of one another is selected from the group consisting of fluorine or chlorine, R 5 is hydrogen, fluorine, chlorine or methyl, and their salts, solvates and solvates of the salts.
  • A is CH 2 , and their oxides, salts, solvates, salts of the oxides and solvates of the oxides and salts.
  • R 1 is indolyl, pyrrolo [2,3-b] pyridine, indazolyl, pyrazolo [l, 5-a] pyridine, quinolinyl or isoquinolinyl, wherein pyrrolo [2,3-b] pyridine, indolyl, indazolyl, pyrazolo [l, 5-a] pyridine, quinolinyl and
  • R 1 is pyrazol-4-yl, wherein pyrazol-4-yl having 1 to 3 substituents independently selected from
  • Group trifluoromethyl (Ci-C alkyl and cyclopropyl may be substituted, wherein (Ci-C alkyl having 1 to 3 substituents independently selected from the group fluorine, trifluoromethyl, cyclopropyl, hydroxy, methoxy, ethoxy, 2,2,2 Trifluoroethoxy, methylsulfonyl and a group -NR 6 R 7 may be substituted, wherein
  • R 6 is hydrogen or (GC 4 ) -alkyl, in which (C 1 -C 4 -alkyl in turn may be substituted by 1 or 2 substituents independently of one another selected from the group of fluorine, trifluoromethyl, cyclopropyl, hydroxy, methoxy and ethoxy,
  • R 7 is hydrogen or (Ci-C 4 ) -alkyl, or wherein R 6 and R 7 together with the nitrogen atom to which they are attached, an azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl or
  • Morpholinyl ring in which the azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl ring in turn may be substituted with 1 to 3 substituents independently selected from the group fluorine, methyl, ethyl, hydroxy, oxo, methoxy and ethoxy , and their oxides, salts, solvates, salts of oxides and solvates of the oxides and salts.
  • R 4 is phenyl, wherein phenyl having 1 to 3 substituents independently selected from
  • Group is substituted fluorine or chlorine, and their oxides, salts, solvates, salts of oxides and solvates of the oxides and salts.
  • R 5 is hydrogen, and their oxides, salts, solvates, salts of the oxides and solvates of the oxides and salts.
  • R 5 is chlorine, and their oxides, salts, solvates, salts of the oxides and solvates of the oxides and salts.
  • R 5 is methyl, and their -oxides, salts, solvates, salts of -oxides and solvates of -oxides and salts.
  • the invention further provides a process for the preparation of the compounds of the formula (I) according to the invention which comprises reacting a compound of the formula (II)
  • T 1 is (C 1 -C 4 ) -alkyl or benzyl, in an inert solvent in the presence of a suitable base or acid to a
  • a and R 4 has the abovementioned meaning and represents a suitable leaving group, in particular chlorine, bromine, iodine, mesylate or tosylate, if appropriate, the resulting compounds of the formula (I) are converted with the appropriate (i) solvents and / or (ii) acids or bases into their solvates, salts and / or solvates of the salts.
  • the compounds of the formula (I-B) form a subset of the compounds of the formula (I) according to the invention.
  • Inert solvents for process steps (III) + (IV) -> (I) and ( ⁇ - ⁇ ) + (IV) -> (IB) are, for example, ethers, such as diethyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether or diethylene glycol dimethyl ether, hydrocarbons, such as benzene, Toluene, xylene, hexane, cyclohexane or petroleum fractions, halogenated hydrocarbons such as dichloromethane, trichloromethane, tetrachloromethane, 1,2-dichloroethane, trichlorethylene or chlorobenzene, or other solvents such as acetone, ethyl acetate, acetonitrile, pyridine, dimethyl sulfoxide, A 1 -dimethylformamide, Diethylpropyleneurea (DMPU) or methylpyrrolidone (NMP).
  • the condensations (III) + (IV) - (I) and ( ⁇ - ⁇ ) + (IV) - (TB) is generally in a temperature range of -20 ° C to + 100 ° C, preferably at 0 ° C to + 60 ° C performed.
  • the reaction may be carried out at normal, elevated or reduced pressure (e.g., from 0.5 to 5 bar). Generally, one works at normal pressure.
  • the carboxylic acid of the formula (II) can also first be converted into the corresponding carboxylic acid chloride and this can then be reacted directly or in a separate reaction with an amine of the formula (IV) to give the compounds according to the invention.
  • carboxylic acid chlorides from carboxylic acids is carried out by the methods known in the art, for example by treatment with thionyl chloride, sulfuryl chloride or oxalyl chloride in the presence of a suitable base, for example in the presence of pyridine, and optionally with the addition of dimethylformamide, optionally in a suitable inert solvent.
  • the hydrolysis of the ester group T 1 of the compounds of formula ( ⁇ ) is carried out by conventional methods by treating the esters in inert solvents with acids or bases, wherein in the latter, the salts initially formed are converted by treatment with acid in the free carboxylic acids ,
  • the ester cleavage is preferably carried out with acids.
  • the ester cleavage is preferably carried out hydrolytically with palladium on activated carbon or Raney nickel.
  • Suitable inert solvents for this reaction are water or the organic solvents customary for ester cleavage.
  • These preferably include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol, or ethers such as diethyl ether, tetrahydrofuran, dioxane or glycol dimethyl ether, or other solvents such as acetone, dichloromethane, dimethylformamide or dimethyl sulfoxide. It is likewise possible to use mixtures of the solvents mentioned. In the case of basic ester hydrolysis, preference is given to using mixtures of water with dioxane, tetrahydrofuran, methanol and / or ethanol.
  • the usual inorganic bases are suitable. These include preferably alkali or alkaline earth hydroxides such as sodium, lithium, potassium or barium hydroxide, or alkali or alkaline earth metal carbonates such as sodium, potassium or calcium carbonate. Particularly preferred are sodium or lithium hydroxide.
  • Suitable acids for ester cleavage are generally sulfuric acid, hydrochloric acid / hydrochloric acid, hydrobromic / hydrobromic acid, phosphoric acid, acetic acid, trifluoroacetic acid, toluenesulfonic acid, methanesulfonic acid or trifluoromethanesulfonic acid or mixtures thereof, if appropriate with the addition of water.
  • Hydrogen chloride or trifluoroacetic acid are preferred in the case of the tert-butyl esters and hydrochloric acid in the case of the methyl esters.
  • the ester cleavage is generally carried out in a temperature range from 0 ° C to + 100 ° C, preferably at + 0 ° C to + 50 ° C.
  • the reactions mentioned can be carried out at normal, elevated or reduced pressure (for example from 0.5 to 5 bar). In general, one works at normal pressure.
  • Inert solvents for process step (V) + (VI) - (I) are, for example, halogenated hydrocarbons, such as dichloromethane, trichloromethane, tetrachloromethane, trichlorethylene or chlorobenzene, ethers, such as diethyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether or diethylene glycol dimethyl ether, hydrocarbons, such as benzene, toluene, Xylene, hexane, cyclohexane or petroleum fractions, or other solvents such as acetone, methyl ethyl ketone, ethyl acetate, acetonitrile, / V, / V-dimethylformamide, dimethyl sulfoxide, ⁇ , ⁇ '-dimethylpropyleneurea (DMPU), / V-methylpyrrolidone (NMP) or pyridine.
  • Suitable bases for process step (V) + (VI) - (I) are the customary inorganic or organic bases. These include preferably alkali metal hydroxides such as lithium, sodium or potassium hydroxide, alkali metal or alkaline earth metal carbonates such as lithium, sodium, potassium, calcium or cesium carbonate, optionally with the addition of an alkali metal iodide such as Sodium iodide or potassium iodide, alkali alcohol ate such as sodium or potassium methoxide, sodium or potassium ethoxide or sodium or potassium tert-butoxide, alkali metal hydrides such as sodium or potassium hydride, amides such as sodium amide, lithium or potassium bis (trimethylsilyl) amide or lithium diisopropylamide, or organic amines such as triethylamine, / V-methylmorpholine, / V
  • the reaction is generally carried out in a temperature range from 0 ° C to + 120 ° C, preferably at + 20 ° C to + 80 ° C, optionally in a microwave.
  • the reaction may be carried out at normal, elevated or reduced pressure (e.g., from 0.5 to 5 bar).
  • reaction steps (IB) - (V) The removal of the benzyl group in reaction steps (IB) - (V) is carried out here by customary methods known from protective group chemistry, preferably by hydrogenolysis in the presence of a palladium catalyst such as palladium on activated carbon in an inert solvent such as, for example, ethanol or ethyl acetate [ see also eg T.W. Greene and P.G.M. Wuts, Protective Croups in Organic Synthesis, Wiley, New York,
  • Inert solvents for ring closure to the imidazo [l, 2-a] pyridine backbone are the usual organic solvents. These preferably include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol, or ethers such as diethyl ether, tetrahydrofuran, dioxane or glycol dimethyl ether, or other solvents such as acetone, dichloromethane, dimethylformamide or dimethyl sulfoxide. It is likewise possible to use mixtures of the solvents mentioned. Preferably, ethanol is used.
  • the ring closure is generally carried out in a temperature range from + 50 ° C to + 150 ° C, preferably at + 50 ° C to + 100 ° C, optionally in a microwave.
  • the ring closure (VIII) + (IX) -> (II) or (VII) + ( ⁇ ) -> (X) is optionally carried out in the presence of water-withdrawing reaction additives, for example in the presence of molecular sieve (4 ⁇ pore size).
  • the reaction (VHT) + (IX) -> (II) or (VII) + ( ⁇ ) -> (X) is carried out using an excess of the reagent of the formula (IX), for example with 1 to 20 equivalents of the reagent ( ⁇ ), whereby the addition of this reagent can be carried out once or in several portions.
  • Typical reaction conditions for such Mitsunobu condensations of phenols with alcohols can be found in the literature, e.g. Hughes, D.L. Org. Read. 1992, 42, 335; Dembinski, R. Eur. J. Org. Chem. 2004, 2763.
  • an activating reagent e.g. Diethyl azodicarboxylate (DEAD) or diisopropyl azodicarboxylate (DIAD)
  • a phosphine reagent e.g. Triphenylphosphine or tributylphosphine
  • an inert solvent e.g. THF, DCM, toluene or DMF
  • the compounds according to the invention have valuable pharmacological properties and can be used for the prevention and treatment of diseases in humans and animals.
  • the compounds according to the invention open up a further treatment alternative and thus represent an enrichment of pharmacy.
  • the compounds of the invention cause vasorelaxation and inhibition of platelet aggregation and lead to a reduction in blood pressure and to an increase in coronary blood flow. These effects are mediated by direct stimulation of soluble guanylate cyclase and intracellular cGMP increase.
  • the compounds of the invention potentiate the action of cGMP level enhancing substances such as endothelium-derived relaxing factor (EDRF), NO donors, protoporphyrin ⁇ , arachidonic acid or phenylhydrazine derivatives.
  • the compounds according to the invention are suitable for the treatment and / or prophylaxis of cardiovascular, pulmonary, thromboembolic and fibrotic disorders.
  • the compounds according to the invention can therefore be used in medicaments for the treatment and / or prophylaxis of cardiovascular diseases such as hypertension, resistant hypertension, acute and chronic heart failure, coronary heart disease, stable and unstable angina pectoris, peripheral and cardiac vascular diseases, arrhythmias, atrial arrhythmias and ventricular disorders such as atrio-ventricular blockades grade I-III (AB block ⁇ - ⁇ ), supraventricular tachyarrhythmia, atrial fibrillation, atrial flutter, ventricular fibrillation, ventricular tachyarrhythmia, torsades de pointes tachycardia, atrial and ventricular extrasystoles , AV-junctional extrasystoles, sick sinus syndrome, syncope, AV nodal reentry tachycardia, Wolff-Parkinson-White syndrome, acute coronary syndrome (ACS), autoimmune heart disease (pericarditis, endocarditis, valvolitis, aortitis, cardio
  • cardiac failure includes both acute and chronic manifestations of cardiac insufficiency, as well as more specific or related forms of disease such as acute decompensated heart failure, right heart failure, left heart failure, global insufficiency, ischemic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, idiopathic cardiomyopathy, congenital heart defects.
  • heart failure heart valve defects mitral valve stenosis, mitral valve insufficiency, aortic valve stenosis, aortic regurgitation, tricuspid stenosis, tricuspid insufficiency, pulmonary valve stenosis, pulmonary valve, combined heart valve defects, heart muscle inflammation (myocarditis), chronic myocarditis, acute myocarditis, viral myocarditis, diabetic cardiac insufficiency, alcohol-toxic cardiomyopathy, cardiac storage diseases, diastolic cardiac insufficiency and systolic Heart failure and acute phases of Worsening of an existing chronic heart failure.
  • myocarditis myocarditis
  • chronic myocarditis chronic myocarditis
  • acute myocarditis viral myocarditis
  • diabetic cardiac insufficiency diabetic cardiac insufficiency
  • alcohol-toxic cardiomyopathy cardiac storage diseases
  • the compounds according to the invention may also be used for the treatment and / or prophylaxis of arteriosclerosis, lipid metabolism disorders, hypolipoproteinemias, dyslipidaemias, hypertriglyceridemias, hyperlipidemias, hypercholesterolemias, abetelipoproteinemia, sitosterolemia, xanthomatosis, Tangier's disease, obesity (obesity) and obesity combined hyperlipidaemias and the metabolic syndrome.
  • the compounds of the invention may be used for the treatment and / or prophylaxis of primary and secondary Raynaud's phenomenon, microcirculatory disorders, claudication, peripheral and autonomic neuropathies, diabetic microangiopathies, diabetic retinopathy, diabetic ulcers on the extremities, gangrenous, CREST syndrome, erythematosis, onychomycosis , rheumatic diseases and to promote wound healing.
  • the compounds according to the invention are suitable for the treatment of urological diseases such as benign prostatic syndrome (BPS), benign prostatic hyperplasia (BPH), benign prostate enlargement (BPE), bladder emptying disorder (BOO), lower urinary tract syndromes (LUTS, including Feiine's urological syndrome ( FUS)), diseases urogenital system including neurogenic overactive bladder (OAB) and (IC), incontinence (UI) such as mixed, urgency, stress, or overflow incontinence (MUI, UUI, SUI, OUI), pelvic pain, benign and malignant Diseases of the organs of the male and female urogenital system.
  • BPS benign prostatic syndrome
  • BPH benign prostatic hyperplasia
  • BPE benign prostate enlargement
  • BOO bladder emptying disorder
  • LUTS lower urinary tract syndromes
  • FUS Feiine's urological syndrome
  • UI incontinence
  • MUI UUI, SUI, OUI
  • pelvic pain benign and malignant Diseases of the organ
  • kidney diseases in particular of acute and chronic renal insufficiency, as well as of acute and chronic renal failure.
  • renal insufficiency includes both acute and chronic manifestations of renal insufficiency, as well as underlying or related renal diseases such as renal hypoperfusion, intradialytic hypotension, obstructive uropathy, glomerulopathies, glomerulonephritis, acute glomerulonephritis, glomerulosclerosis, tubulointerstitial disorders, nephropathic disorders such as primary and congenital kidney disease, nephritis, immunological kidney diseases such as renal transplant rejection, immune complex-induced kidney disease, nephropathy induced by toxic substances, contrast agent-induced nephropathy, diabetic and nondiabetic nephropathy, pyelonephritis, renal cysts, nephrosclerosis, hypertensive
  • the present invention also encompasses the use of the compounds of the invention for the treatment and / or prophylaxis of sequelae of renal insufficiency, such as pulmonary edema, heart failure, uremia, anemia, electrolyte imbalances (eg, hyperkalemia, hyponatremia) and disorders in bone and carbohydrate metabolism.
  • sequelae of renal insufficiency such as pulmonary edema, heart failure, uremia, anemia, electrolyte imbalances (eg, hyperkalemia, hyponatremia) and disorders in bone and carbohydrate metabolism.
  • the compounds according to the invention are also suitable for the treatment and / or prophylaxis of asthmatic diseases, pulmonary arterial hypertension (PAH) and other forms of pulmonary hypertension (PH), including left heart disease, HIV, sickle cell anemia, thromboembolism (CTEPH), sarcoidosis, COPD or Pulmonary fibrosis-associated pulmonary hypertension, chronic obstructive pulmonary disease (COPD), acute respiratory tract syndrome (ARDS), acute lung injury (ALI), alpha-1-anti-trypsin deficiency (AATD), pulmonary fibrosis, pulmonary emphysema (eg, cigarette smoke induced pulmonary emphysema) and cystic fibrosis (CF).
  • PAH pulmonary arterial hypertension
  • PH pulmonary hypertension
  • COPD chronic obstructive pulmonary disease
  • ARDS acute respiratory tract syndrome
  • ALI acute lung injury
  • AATD alpha-1-anti-trypsin deficiency
  • the compounds described in the present invention are also agents for controlling diseases in the central nervous system, which are characterized by disorders of the NO / cGMP system.
  • they are suitable for improving the perception, concentration performance, learning performance or memory performance after cognitive disorders such as occur in situations / diseases / syndromes such as mild cognitive impairment, age-associated learning and memory disorders, age-associated memory loss, vascular dementia, cranial brain -Trauma, stroke, post-stroke dementia, post-traumatic traumatic brain injury, general attention deficit disorder, impaired concentration in children with learning and memory problems, Alzheimer's disease, dementia with Lewy Corpuscles, dementia with degeneration of the frontal lobes including Pick's syndrome, Parkinson's disease, progressive nuclear palsy, dementia with corticobasal degeneration, amyolateral sclerosis (ALS), Huntington's disease, demyelinization, multiple sclerosis, thalamic degeneration, Creutzfeld-Jacob disease dementia , HIV dementia, schizophrenia with dementia or Korsakoff's psychosis. They are also
  • the compounds according to the invention are also suitable for regulating cerebral perfusion and are effective agents for combating migraine. They are also suitable for the prophylaxis and control of the consequences of cerebral infarct events (Apoplexia cerebri) such as stroke, cerebral ischaemias and craniocerebral trauma , Likewise, the compounds of the invention can be used to combat pain and tinnitus.
  • the compounds according to the invention have antiinflammatory activity and can therefore be used as antiinflammatory agents for the treatment and / or prophylaxis of sepsis (SIRS), multiple organ failure (MODS, MOF), inflammatory diseases of the kidney, chronic intestinal inflammation (IBD, Crohn's Disease, UC). , Pancreatitis, peritonitis, rheumatoid diseases, inflammatory skin diseases as well as inflammatory eye diseases.
  • the compounds of the invention can also be used for the treatment and / or prophylaxis of autoimmune diseases.
  • fibrotic disorders encompasses in particular the following terms: liver fibrosis, cirrhosis of the liver, pulmonary fibrosis, endomyocardial fibrosis, nephropathy, glomerulonephritis, interstitial renal fibrosis, fibrotic damage as a result of diabetes, bone marrow fibrosis and similar fibrotic disorders, scleroderma, morphea, keloids, hypertrophic scarring (also after surgical procedures), nevi, diabetic retinopathy, proliferative vitroretinopathy and connective tissue disorders (eg sarcoidosis).
  • the compounds of the invention are useful for controlling postoperative scarring, e.g. as a result of glaucoma surgery.
  • the compounds according to the invention can likewise be used cosmetically for aging and keratinizing skin.
  • the compounds according to the invention are suitable for the treatment and / or prophylaxis of hepatitis, neoplasm, osteoporosis, glaucoma and gastroparesis.
  • Another object of the present invention is the use of the compounds of the invention for the treatment and / or prophylaxis of diseases, in particular the aforementioned diseases.
  • the present invention further relates to the use of the compounds according to the invention for the treatment and / or prophylaxis of cardiac insufficiency, angina pectoris, hypertension, pulmonary hypertension, ischaemias, vascular disorders, renal insufficiency, thromboembolic disorders, fibrotic disorders and atherosclerosis.
  • the present invention furthermore relates to the compounds according to the invention for use in a method for the treatment and / or prophylaxis of cardiac insufficiency, angina pectoris, hypertension, pulmonary hypertension, ischaemias, vascular disorders, renal insufficiency, thromboembolic disorders, fibrotic disorders and atherosclerosis.
  • Another object of the present invention is the use of the compounds of the invention for the manufacture of a medicament for the treatment and / or prophylaxis of diseases, in particular the aforementioned diseases.
  • Another object of the present invention is the use of the compounds of the invention for the manufacture of a medicament for the treatment and / or prophylaxis of heart failure, angina pectoris, hypertension, pulmonary hypertension, ischemia, vascular diseases, Renal insufficiency, thromboembolic disorders, fibrotic diseases and arteriosclerosis.
  • Another object of the present invention is a method for the treatment and / or prophylaxis of diseases, in particular the aforementioned diseases, using an effective amount of at least one of the compounds of the invention.
  • the present invention further provides a method for the treatment and / or prophylaxis of cardiac insufficiency, angina pectoris, hypertension, pulmonary hypertension, ischaemias, vascular diseases, renal insufficiency, thromboembolic disorders, fibrotic diseases and atherosclerosis, using an effective amount of at least one of the compounds according to the invention ,
  • the compounds of the invention may be used alone or as needed in combination with other agents.
  • Another object of the present invention are pharmaceutical compositions containing at least one of the compounds of the invention and one or more other active ingredients, in particular for the treatment and / or prophylaxis of the aforementioned disorders.
  • suitable combination active ingredients may be mentioned by way of example and preferably:
  • organic nitrates and NO donors such as sodium nitroprusside, nitroglycerin, isosorbide mononitrate, isosorbide dinitrate, molsidomine or SIN-1, and inhaled NO;
  • cGMP cyclic guanosine monophosphate
  • PDE phosphodiesterases
  • Antithrombotic agents by way of example and preferably from the group of platelet aggregation inhibitors, anticoagulants or profibrinolytic substances;
  • Antihypertensive agents by way of example and preferably from the group of calcium antagonists, angiotensin AII antagonists, ACE inhibitors, endothelin antagonists, renin inhibitors, alpha-receptor blockers, beta-receptor blockers, mineralocorticides co-receptor antagonists and diuretics; and or
  • Lipid metabolizing agents by way of example and preferably from the group of thyroid receptor agonists, cholesterol synthesis inhibitors such as by way of example and preferably HMG-CoA reductase or squalene synthesis inhibitors, ACAT inhibitors, CETP inhibitors, MTP inhibitors, PPAR inhibitors alpha, PPAR gamma and / or PPAR delta agonists, Cholesterol absorption inhibitors, lipase inhibitors, polymeric bile acid adsorbers, bile acid reabsorption inhibitors, and lipoprotein (a) antagonists.
  • cholesterol synthesis inhibitors such as by way of example and preferably HMG-CoA reductase or squalene synthesis inhibitors, ACAT inhibitors, CETP inhibitors, MTP inhibitors, PPAR inhibitors alpha, PPAR gamma and / or PPAR delta agonists, Cholesterol absorption inhibitors, lipase inhibitors, polymeric bile acid adsorbers,
  • Antithrombotic agents are preferably understood as meaning compounds from the group of platelet aggregation inhibitors, anticoagulants or profibrinolytic substances.
  • the compounds according to the invention are administered in combination with a platelet aggregation inhibitor, such as, by way of example and by way of preference, aspirin, clopidogrel, ticlopidine or dipyridamole.
  • a platelet aggregation inhibitor such as, by way of example and by way of preference, aspirin, clopidogrel, ticlopidine or dipyridamole.
  • the compounds according to the invention are administered in combination with a thrombin inhibitor, such as, by way of example and by way of preference, ximelagatran, dabigatran, melagatran, bivalirudin or Clexane.
  • a thrombin inhibitor such as, by way of example and by way of preference, ximelagatran, dabigatran, melagatran, bivalirudin or Clexane.
  • the compounds according to the invention are administered in combination with a GPIIb / nia antagonist, such as, by way of example and by way of preference, tirofiban or abciximab.
  • a GPIIb / nia antagonist such as, by way of example and by way of preference, tirofiban or abciximab.
  • the compounds according to the invention are used in combination with a factor Xa inhibitor, such as by way of example and preferably rivaroxaban (BAY 59-7939), DU-176b, apixaban, otamixaban, fidexaban, razaxaban, fondaparinux, idraparinux, PMD No.
  • the compounds according to the invention are administered in combination with heparin or a low molecular weight (LMW) heparin derivative.
  • LMW low molecular weight
  • the compounds according to the invention are administered in combination with a vitamin K antagonist, such as by way of example and preferably coumarin.
  • antihypertensive agents are preferably compounds from the group of calcium antagonists, angiotensin AII antagonists, ACE inhibitors, endothelin antagonists, renin inhibitors, alpha-receptor blocker, beta-receptor blocker, mineralocorticoid receptor Antagonists and diuretics understood.
  • the compounds according to the invention are administered in combination with a calcium antagonist, such as, by way of example and by way of preference, nifedipine, amlodipine, verapamil or diltiazem.
  • the compounds according to the invention are administered in combination with an alpha-1-receptor blocker, such as by way of example and preferably prazosin.
  • the compounds according to the invention are used in combination with a beta-receptor blocker, such as by way of example and preferably propranolol, atenolol, timolol, pindolol, alprenolol, oxprenolol, penbutolol, bupranolol, metipropanol, nadolol, mepindolol, carazalol, Sotalol, metoprolol, betaxolol, celiprolol, bisoprolol, Carteolol, esmolol, labetalol, carvedilol, adaprolol, landiolol, nebivolol, epanolol or bucine dolol administered.
  • a beta-receptor blocker such as by way of example and preferably propranolol, atenolol, timolol
  • the compounds according to the invention are administered in combination with an angiotensin AII antagonist, such as by way of example and preferably losartan, candesartan, valsartan, telmisartan or embursatan.
  • an angiotensin AII antagonist such as by way of example and preferably losartan, candesartan, valsartan, telmisartan or embursatan.
  • the compounds according to the invention are administered in combination with an ACE inhibitor such as, by way of example and by way of preference, enalapril, captopril, lisinopril, ramipril, delapril, fosinopril, quinopril, perindopril or trandopril.
  • an ACE inhibitor such as, by way of example and by way of preference, enalapril, captopril, lisinopril, ramipril, delapril, fosinopril, quinopril, perindopril or trandopril.
  • an endothelin antagonist such as, by way of example and by way of preference, bosentan, darusentan, ambrisentan or sitaxsentan.
  • the compounds of the invention are administered in combination with a renin inhibitor, such as by way of example and preferably aliskiren, SPP-600 or SPP-800.
  • a renin inhibitor such as by way of example and preferably aliskiren, SPP-600 or SPP-800.
  • the compounds according to the invention are administered in combination with a mineralocorticoid receptor antagonist, such as by way of example and preferably spironolactone or eplerenone.
  • a mineralocorticoid receptor antagonist such as by way of example and preferably spironolactone or eplerenone.
  • the compounds of the invention are used in combination with a loop diuretic such as furosemide, torasemide, bumetanide and piretanide with potassium sparing diuretics such as amiloride and triamterene with aldosterone antagonists such as spironolactone, potassium canrenoate and eplerenone, and thiazide diuretics such as hydrochlorothiazide, chlorthalidone, xipamide, and indapamide.
  • a loop diuretic such as furosemide, torasemide, bumetanide and piretanide
  • potassium sparing diuretics such as amiloride and triamterene with aldosterone antagonists such as spironolactone, potassium canrenoate and eplerenone
  • thiazide diuretics such as hydrochlorothiazide, chlorthalidone, xipamide, and indapamide.
  • lipid metabolizing agents are preferably compounds from the group of CETP inhibitors, thyroid receptor agonists, cholesterol synthesis inhibitors such as HMG-CoA reductase or squalene synthesis inhibitors, the ACAT inhibitors, MTP inhibitors, PPAR alpha- , PPAR gamma and / or PPAR delta agonists, cholesterol absorption inhibitors, polymeric bile acid adsorbers, bile acid reabsorption inhibitors, lipase inhibitors and the lipoprotein (a) antagonists understood.
  • CETP inhibitors such as HMG-CoA reductase or squalene synthesis inhibitors
  • ACAT inhibitors such as HMG-CoA reductase or squalene synthesis inhibitors
  • MTP inhibitors MTP inhibitors
  • PPAR alpha- , PPAR gamma and / or PPAR delta agonists cholesterol absorption inhibitors
  • polymeric bile acid adsorbers bile acid rea
  • the compounds according to the invention are administered in combination with a CETP inhibitor, such as, for example and preferably, dalcetrapib, BAY 60-5521, anacetrapib or CETP vaccine (CETi-1).
  • a CETP inhibitor such as, for example and preferably, dalcetrapib, BAY 60-5521, anacetrapib or CETP vaccine (CETi-1).
  • the compounds of the invention are administered in combination with a thyroid receptor agonist such as, by way of example and by way of preference, D-thyroxine, 3,5,3'-triiodothyronine (T3), CGS 23425 or axitirome (CGS 26214).
  • a thyroid receptor agonist such as, by way of example and by way of preference, D-thyroxine, 3,5,3'-triiodothyronine (T3), CGS 23425 or axitirome (CGS 26214).
  • T3 3,5,3'-triiodothyronine
  • CGS 23425 CGS 23425
  • axitirome CGS 26214
  • the compounds according to the invention are administered in combination with an HMG-CoA reductase inhibitor from the class of statins, such as by way of example and preferably lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, rosuvastat
  • the compounds according to the invention are administered in combination with a squalene synthesis inhibitor, such as by way of example and preferably BMS-188494 or TAK-475.
  • a squalene synthesis inhibitor such as by way of example and preferably BMS-188494 or TAK-475.
  • the compounds according to the invention are administered in combination with an ACAT inhibitor, such as by way of example and preferably avasimibe, melinamide, pactimibe, eflucimibe or SMP-797.
  • an MTP inhibitor such as, for example and preferably, implitapide, BMS-201038, R-103757 or JTT-130.
  • the compounds of the invention are administered in combination with a PPAR-gamma agonist such as, by way of example and by way of preference, pioglitazone or rosiglitazone.
  • a PPAR delta agonist such as by way of example and preferably GW 501516 or BAY 68-5042.
  • the compounds according to the invention are administered in combination with a cholesterol absorption inhibitor such as, for example and preferably, ezetimibe, tiqueside or pamaqueside.
  • a cholesterol absorption inhibitor such as, for example and preferably, ezetimibe, tiqueside or pamaqueside.
  • the compounds according to the invention are administered in combination with a lipase inhibitor, such as, for example and preferably, orlistat.
  • a lipase inhibitor such as, for example and preferably, orlistat.
  • the compounds of the invention are administered in combination with a polymeric bile acid adsorbent such as, by way of example and by way of preference, cholestyramine, colestipol, colesolvam, cholesta gel or colestimide.
  • ASBT IB AT
  • the compounds of the invention are administered in combination with a lipoprotein (a) antagonist such as, by way of example and by way of preference, gemcabene calcium (CI-1027) or nicotinic acid.
  • a lipoprotein (a) antagonist such as, by way of example and by way of preference, gemcabene calcium (CI-1027) or nicotinic acid.
  • Another object of the present invention are pharmaceutical compositions containing at least one compound of the invention, usually together with one or more inert, non-toxic, pharmaceutically suitable excipients, and their use for the purposes mentioned above.
  • the compounds according to the invention can act systemically and / or locally.
  • they may be applied in a suitable manner, e.g. oral, parenteral, pulmonary, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival, otic or as an implant or stent.
  • the compounds according to the invention can be administered in suitable administration forms.
  • the compounds of the invention rapidly and / or modified donating the application forms, which Compounds according to the invention in crystalline and / or amorphised and / or dissolved form, such as tablets (uncoated or coated tablets, for example, with enteric or delayed-dissolving or insoluble coatings, which control the release of the compound of the invention) in the oral cavity quickly disintegrating tablets or films / wafers, films / lyophilisates, capsules (for example hard or soft gelatin capsules), dragées, granules, pellets, powders, emulsions, suspensions, aerosols or solutions.
  • Parenteral administration can be accomplished by bypassing a resorption step (e.g., intravenously, intraarterially, intracardially, intraspinal, or intralumbar) or by resorting to absorption (e.g., intramuscularly, subcutaneously, intracutaneously, percutaneously, or intraperitoneally).
  • a resorption step e.g., intravenously, intraarterially, intracardially, intraspinal, or intralumbar
  • absorption e.g., intramuscularly, subcutaneously, intracutaneously, percutaneously, or intraperitoneally.
  • parenteral administration are suitable as application forms u.a. Injection and infusion preparations in the form of solutions, suspensions, emulsions, lyophilisates or sterile powders.
  • Inhalation medicaments including powder inhalers, nebulizers
  • nasal drops solutions or sprays
  • lingual, sublingual or buccal tablets films / wafers or capsules
  • suppositories ear or ophthalmic preparations
  • vaginal capsules aqueous suspensions (lotions, shake mixtures)
  • lipophilic suspensions ointments
  • creams transdermal therapeutic systems (eg plasters)
  • milk pastes, foams, powdered powders, implants or stents.
  • compositions according to the invention can be converted into the stated administration forms. This can be done in a conventional manner by mixing with inert, non-toxic, pharmaceutically suitable excipients.
  • adjuvants include, among others.
  • Excipients for example microcrystalline cellulose, lactose, mannitol
  • solvents for example liquid polyethylene glycols
  • emulsifiers and dispersants or wetting agents for example sodium dodecyl sulfate, polyoxysorbitanoleate
  • binders for example polyvinylpyrrolidone
  • synthetic and natural polymers for example albumin
  • Stabilizers eg, antioxidants such as ascorbic acid
  • dyes eg, inorganic pigments such as iron oxides
  • flavor and / or odoriferous for example microcrystalline cellulose, lactose, mannitol
  • solvents for example liquid polyethylene glycols
  • emulsifiers and dispersants or wetting agents for example sodium dodecyl sulfate, polyoxysorbitanoleate
  • binders for example polyvinylpyrrolidone
  • synthetic and natural polymers for example albumin
  • Stabilizers eg, antioxidants such as
  • the dosage is about 0.001 to 2 mg kg, preferably about 0.001 to 1 mg kg body weight.
  • Device Type MS Waters Micromass Quattro Micro
  • Device type HPLC Agilent 1100 series
  • Eluent A 1 l of water + 0.5 ml of 50% formic acid
  • eluent B 1 l of acetonitrile + 0.5 ml of 50% formic acid
  • Oven 50 ° C
  • Flow 2 ml / min
  • UV detection 210 nm.
  • Method 4 Device: DSQ ⁇ ; Thermo Fisher-Scientific; DCI with ammonia, flow: 1.1 ml / min; Source temperature: 200 ° C; Ionization energy 70 eV; Heat DCI filament up to 800 ° C; Mass Range 80-900.
  • Method 6 (Preparative LCMS): Instrument MS: Waters, Instrument HPLC: Waters (column Waters X-Bridge C18, 18 mm x 50 mm, 5 ⁇ , eluent A: water + 0.05% triethylamine, eluent B: acetonitrile (ULC) + 0.05% triethylamine, gradient: 0.0 min 95% A - 0.15 min 95% A - 8.0 min 5% A - 9.0 min 5% A, flow: 40 ml / min, UV detection: DAD, 210 - 400 nm).
  • Instrument MS Waters, Instrument HPLC: Waters (column Phenomenex Luna 5 ⁇ C18 (2) 100A, AXIA Tech 50 x 21.2 mm, eluent A: water + 0.05% formic acid, eluent B: acetonitrile (ULC) + 0.05% Formic acid, gradient: 0.0 min 95% A - 0.15 min 95% A - 8.0 min 5% A - 9.0 min 5% A, flow: 40 ml / min, UV detection: DAD, 210 - 400 nm).
  • Device Type MS Waters (Micromass) Quattro Micro
  • Device type HPLC Agilent 1100 series
  • Column Thermo Hypersil GOLD 3 ⁇ 20 x 4 mm
  • Eluent A 1 liter of water + 0.5 ml of 50% formic acid
  • Eluent B 1 liter acetonitrile + 0.5 ml 50% formic acid; Gradient: 0.0 min 100% A -> 3.0 min 10% A -> 4.0 min 10% A; Oven: 50 ° C; Flow: 2 ml / min; UV detection: 210 nm
  • the compounds of the invention may be in salt form, for example as trifluoroacetate, formate or ammonium salt, if the Compounds according to the invention contain a sufficiently basic or acidic functionality.
  • a salt can be converted into the corresponding free base or acid by various methods known to those skilled in the art. Salts may be less than or more than stoichiometric, especially in the presence of an amine or a carboxylic acid.
  • reaction mixture was stirred into 6 L of water, the aqueous solution extracted twice with 2L ethyl acetate, the combined organic phases washed with each IL saturated aqueous sodium bicarbonate solution and water, dried, filtered and concentrated. The residue was stirred with 500 ml of pentane, filtered off with suction and dried under reduced pressure. 130 g (58.3% of theory) were obtained.
  • Example 15A 115.5 mmol, 1 equivalent
  • Example 15B 115.5 mmol, 1 equivalent
  • 550 mL THF and 700 mL methanol treated with 13.8 g lithium hydroxide (dissolved in 150 mL water, 577 mmol, 5 equivalents) and stirred at RT overnight.
  • the mixture was treated with 1N hydrochloric acid and concentrated.
  • the resulting crystals were filtered off with suction and washed with water. There was obtained 34 g of the title compound (84% of theory).
  • Example 48 the examples shown in Table 1A were prepared by reacting the corresponding carboxylic acids with the corresponding, commercially available amines (1-3 equivalents), HATU (1-2.5 equivalents) and / V, / V-diisopropylethylamine (3 to 3 equivalents). 4 equivalents) were reacted at RT. The reaction times were 1-3 days. If appropriate, the purifications were carried out by preparative HPLC (RP18 column, mobile phase: acetonitrile / water gradient with the addition of 0.1% trifluoroacetic acid) or by silica gel chromatography (mobile phase gradient: dichloromethane / methanol).
  • the product-containing fractions were concentrated, the residue dissolved in ethyl acetate or dichloromethane / methanol, washed with a little saturated aqueous sodium bicarbonate solution and then the organic phase was dried over sodium sulfate, filtered and the filtrate was concentrated.
  • reaction mixture was treated with 80 mg (0.23 mmol) of tert-butyl (2-amino-5-fluorobenzyl) carbamate [M. Munson et al. US2004 / 180896] as trifluoroacetate salt and stirred overnight at 60 ° C.
  • reaction mixture was treated with 151 mg (0.68 mmol) of tert.-butyl (2-aminobenzyl) carbamate and stirred overnight at 60.degree. A further 50 mg (0.23 mmol) of tert-butyl (2-aminobenzyl) carbamate were added and the mixture was stirred overnight at 60.degree.
  • the reaction solution was admixed with about 40 ml of water, and the resulting precipitate was stirred for 30 minutes, filtered off with suction and washed well with water.
  • the residue was purified by preparative HPLC (RP18 column, mobile phase: acetonitrile / water gradient with the addition of 0.1% trifluoroacetic acid). 112 mg of the target compound (38% of theory) were obtained.
  • Example 40A the examples shown in Table 2A were prepared by reacting the corresponding carboxylic acids with the corresponding, commercially available amine (1-3 equivalents), HATU (1-2.5 equivalents) and / V, / V-diisopropylethylamine (4 equivalents ) have been implemented. The reaction times were 1-3 days. If appropriate, the purifications were carried out by preparative HPLC (RP18 column, mobile phase: acetonitrile / water gradient with addition of 0.1% trifluoroacetic acid) and / or by silica gel chromatography (mobile phase gradient: dichloromethane / methanol or ethyl acetate / cyclohexane).
  • the product-containing fractions were concentrated, the residue dissolved in ethyl acetate or dichloromethane / methanol, washed with a little saturated aqueous sodium bicarbonate solution and then the organic phase was dried over sodium sulfate, filtered and the filtrate was concentrated.
  • Table 2A Table 2A:
  • Example 28A In analogy to Example 28A, the examples shown in Table 3A were prepared by reacting the corresponding amines with di-feri.-butyl dicarbonate (1.2-2.1 equivalents), and 4-dimethylaminopyridine (0.2 equivalents) at RT. The reaction times were 1-3 h. The purifications were carried out by means of silica gel chromatography (mobile phase gradient: ethyl acetate / cyclohexane).
  • Example 29A In analogy to Example 29A, the examples shown in Table 4A were prepared by reacting the carboyl chlorides with the corresponding amine (1 equivalent) and / V -diisopropylethylamine (4 equivalents) in THF at 60 ° C. The reaction times were 4-6 days. If appropriate, the purifications were carried out by preparative HPLC (RP18 column, mobile phase: acetonitrile / water gradient with the addition of 0.1% trifluoroacetic acid) and / or by silica gel chromatography (mobile phase gradient: dichloromethane / methanol).
  • the product-containing fractions were concentrated, the residue dissolved in ethyl acetate or dichloromethane / methanol, washed with a little saturated aqueous sodium bicarbonate solution and then the organic phase was dried over sodium sulfate, filtered and the filtrate was concentrated.
  • the reaction solution was diluted with dichloromethane and washed with saturated aqueous ammonium chloride solution.
  • the organic phase was dried over sodium sulfate, filtered and concentrated by rotary evaporation.
  • Example 2 In analogy to Example 22, the examples shown in Table 2 were prepared by reacting 8- [(2,6-difluorobenzyl) oxy] -2-methylimidazo [1,2-a] pyridine-3-carboxylic acid (Example 3A) with the corresponding , commercially available amines were reacted under the reaction conditions described in Representative Procedure 2: Table 2:
  • Example 16A 6-chloro-8 - [(2,6-difluorobenzyl) oxy] -2-methylimidazo [1,2-a] pyridine-3-carboxylic acid
  • Example 4 In analogy to Example 48, the examples shown in Table 4 were prepared by reacting the respective carboxylic acid (eg Examples 6A, 21A, 23A, 25A or 26A) respectively with 3,5-dimethyl-lH-pyrazol-4-amine under the were reacted in the representative working procedure 2 reaction conditions: Table 4:
  • reaction mixture was admixed with 153 mg (0.94 mmol) of 6-fluoroquinolin-4-amine and stirred at RT overnight.
  • Another 38 mg (0.24 mmol) of 6-fluoroquinoline-4-amine were added to the reaction mixture and the mixture was stirred overnight at 60.degree.
  • About 100 ml of water were added to the reaction solution and the resulting precipitate was stirred for a further 30 minutes, filtered off with suction and washed well with water.
  • the resulting crude product was stirred with acetonitrile and filtered off. 80 mg of the target compound (37% of theory) were obtained.
  • the reaction mixture was then stirred overnight at 40 ° C and then at 60 ° C overnight.
  • the reaction solution was admixed with about 24 ml of water, the resulting precipitate was stirred for a further 30 min, filtered off with suction, washed well with water and purified by preparative HPLC (RP18 column, eluent: acetonitrile / water gradient with the addition of 0.1% trifluoroacetic acid).
  • the product-containing fractions were concentrated, the residue was dissolved in ethyl acetate and washed twice with a little saturated aqueous sodium bicarbonate solution.
  • the organic phase was concentrated and the residue was dissolved in acetonitrile / aver and lyophilized. Twenty-six mg of the target compound (22% of theory, purity 95%) were obtained.
  • Example 5 In analogy to Example 55, the examples shown in Table 5 were prepared by reacting 8- [(2,6-difluorobenzyl) oxy] -2-methylimidazo [1,2-a] pyridine-3-carboxylic acid (Example 3A) with the corresponding , commercially available amine was reacted under the conditions described in general procedure 1: Table 5:
  • Example 6 In analogy to Example 57, the examples shown in Table 6 were prepared by reacting 8- [(2,6-difluorobenzyl) oxy] -2-methylimidazo [1,2-a] pyridine-3-carboxylic acid (Example 3A) with the corresponding , commercially available amine was reacted under the conditions described in the general working instructions. Optionally, purification was carried out by preparative HPLC (RP18 column, mobile phase: acetonitrile / water gradient with the addition of 0.1% trifluoroacetic acid).
  • the product-containing fractions were concentrated, the residue dissolved in ethyl acetate, washed with a little saturated aqueous sodium bicarbonate solution and then the organic phase was dried over sodium sulfate, filtered and the filtrate was concentrated.
  • Example 7 In analogy to Example 60, the examples shown in Table 7 were prepared by reacting 8- [(2,6-difluorobenzyl) oxy] -2-methylimidazo [1,2-a] pyridine-3-carboxylic acid (Example 3A) with the corresponding , commercially available amines were reacted under the conditions described in general procedure 3.
  • the reaction mixture was concentrated and the residue was purified by preparative HPLC (RP18 column, mobile phase: acetonitrile / water gradient with the addition of 0.1% trifluoroacetic acid).
  • the resulting product was dissolved in ethyl acetate and washed with saturated aqueous sodium bicarbonate solution. The organic phase was dried over sodium sulfate, filtered and the filtrate was concentrated. The product was dissolved in acetonitrile / water and lyophilized. 60 mg of the target compound (82% of theory) were obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Hospice & Palliative Care (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

La présente invention concerne de nouveaux imidazo[1,2-a]pyridine-3-carboxamides aryl et hétéroaryl substitués, leur procédé de fabrication, leur utilisation, individuellement ou en combinaison pour le traitement et/ou la prophylaxie de maladies, ainsi que leur utilisation pour la production de médicaments pour le traitement et/ou la prophylaxie de maladies, en particulier pour le traitement et/ou la prophylaxie de maladies cardio-vasculaires.
EP14805306.9A 2013-12-05 2014-12-01 Imidazo[1,2-a]pyridine-3-carboxamides aryl et hétéroaryl substitués et leur utilisation Withdrawn EP3077394A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14805306.9A EP3077394A1 (fr) 2013-12-05 2014-12-01 Imidazo[1,2-a]pyridine-3-carboxamides aryl et hétéroaryl substitués et leur utilisation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13195887 2013-12-05
EP14805306.9A EP3077394A1 (fr) 2013-12-05 2014-12-01 Imidazo[1,2-a]pyridine-3-carboxamides aryl et hétéroaryl substitués et leur utilisation
PCT/EP2014/076124 WO2015082411A1 (fr) 2013-12-05 2014-12-01 Imidazo[1,2-a]pyridine-3-carboxamides aryl et hétéroaryl substitués et leur utilisation

Publications (1)

Publication Number Publication Date
EP3077394A1 true EP3077394A1 (fr) 2016-10-12

Family

ID=49712990

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14805306.9A Withdrawn EP3077394A1 (fr) 2013-12-05 2014-12-01 Imidazo[1,2-a]pyridine-3-carboxamides aryl et hétéroaryl substitués et leur utilisation

Country Status (6)

Country Link
US (1) US20160362408A1 (fr)
EP (1) EP3077394A1 (fr)
JP (1) JP2016539166A (fr)
CN (1) CN106414440A (fr)
CA (1) CA2932482A1 (fr)
WO (1) WO2015082411A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9624214B2 (en) 2012-11-05 2017-04-18 Bayer Pharma Aktiengesellschaft Amino-substituted imidazo[1,2-a]pyridinecarboxamides and their use
CN106715426A (zh) 2014-03-21 2017-05-24 拜耳医药股份有限公司 氰基取代的咪唑并[1,2‑a]吡啶甲酰胺及其用途
CN107001361A (zh) 2014-12-02 2017-08-01 拜耳医药股份有限公司 杂芳基取代的咪唑并[1,2‑a]吡啶及其用途
US10616219B2 (en) * 2014-12-11 2020-04-07 FlowJo, LLC Single cell data management and analysis systems and methods
WO2016202898A1 (fr) * 2015-06-19 2016-12-22 Bayer Pharma Aktiengesellschaft Inhibiteurs de transport du glucose
MX2018007152A (es) 2015-12-14 2018-08-15 Ironwood Pharmaceuticals Inc Uso de estimuladores de guanilato ciclasa soluble (sgc) para el tratamiento de la disfuncion del esfinter gastrointestinal.
WO2018111795A2 (fr) 2016-12-13 2018-06-21 Ironwood Pharmaceuticals, Inc. Utilisation de stimulateurs de sgc pour le traitement de la motilité œsophagienne
WO2018184976A1 (fr) 2017-04-05 2018-10-11 Bayer Pharma Aktiengesellschaft Imidazo[1,2-a]pyridine-carboxamides substitués et leur utilisation
US11573182B2 (en) 2017-05-25 2023-02-07 FlowJo, LLC Visualization, comparative analysis, and automated difference detection for large multi-parameter data sets
CN112384220A (zh) 2018-07-11 2021-02-19 塞科里昂医疗股份有限公司 sGC刺激剂治疗线粒体障碍的用途
CN109738408B (zh) * 2019-01-07 2021-06-29 温州大学 一种有机mofs包裹荧光素复合材料及其检测汞离子的应用
CN113121568A (zh) * 2019-12-31 2021-07-16 成都倍特药业股份有限公司 一种大环结构化合物的盐及其制备方法
WO2022187612A1 (fr) * 2021-03-04 2022-09-09 The Brigham And Women's Hospital, Inc. Inhibiteurs de la signalisation de ephb3
WO2023044364A1 (fr) 2021-09-15 2023-03-23 Enko Chem, Inc. Inhibiteurs de protoporphyrinogène oxydase
CN116924975A (zh) * 2023-09-13 2023-10-24 中节能万润股份有限公司 一种2-氨基-5-氟吡啶的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716642A1 (fr) * 2011-05-30 2014-04-09 Astellas Pharma Inc. Composé imidazopyridine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199981B2 (en) * 2011-09-01 2015-12-01 Novartis Ag Compounds and compositions as C-kit kinase inhibitors
WO2013033620A1 (fr) * 2011-09-01 2013-03-07 Irm Llc Composés et compositions pouvant être utilisés en tant qu'inhibiteurs des kinases pdgfr
US9126998B2 (en) * 2012-11-05 2015-09-08 Bayer Pharma AG Amino-substituted imidazo[1,2-a]pyridinecarboxamides and their use
US8796305B2 (en) * 2012-11-05 2014-08-05 Bayer Pharma Aktiengesellschaft Carboxy-substituted imidazo[1,2-a]pyridinecarboxamides and their use
CN106715426A (zh) * 2014-03-21 2017-05-24 拜耳医药股份有限公司 氰基取代的咪唑并[1,2‑a]吡啶甲酰胺及其用途
JP2017514899A (ja) * 2014-05-02 2017-06-08 バイエル・ファルマ・アクティエンゲゼルシャフト ヘテロシクリル−およびヘテロアリール−置換イミダゾ[1,2−a]ピリジンおよびその使用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716642A1 (fr) * 2011-05-30 2014-04-09 Astellas Pharma Inc. Composé imidazopyridine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015082411A1 *

Also Published As

Publication number Publication date
CN106414440A (zh) 2017-02-15
WO2015082411A1 (fr) 2015-06-11
JP2016539166A (ja) 2016-12-15
CA2932482A1 (fr) 2015-06-11
US20160362408A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
EP3077394A1 (fr) Imidazo[1,2-a]pyridine-3-carboxamides aryl et hétéroaryl substitués et leur utilisation
EP3107920B1 (fr) 3-(pyrimidin-2-yl)imidazo[1,2-a]pyridines
WO2014068099A1 (fr) Imidazo[1,2-a]pyridincarboxamides amino-substitués et leur utilisation
EP2961755A1 (fr) Pyrimidines annelées à subsitution trifluorométhyle et utilisation correspondante
EP2914595A1 (fr) Imidazo[1,2-a]pyridincarboxamides carboxy-substitués et leur utilistaion comme stimulants de la guanylate cyclase soluble
WO2015140199A1 (fr) Imidazo[1,2-a]pyridine-carboxamides cyano-substitués et leur utilisation
WO2014195333A1 (fr) Imidazo[1,2-a]pyridines à substitution 3-aryle et leur utilisation
WO2012059548A1 (fr) Carbamates substitués par des benzyles et leur utilisation
EP3030562A1 (fr) Pyrazolo[1,5-a]pyridine-3-carboxamides substitués et leur utilisation
WO2015018808A1 (fr) Imidazo[1,2-a]pyrazincarboxamides substitués et leur utilisation
EP3119778A1 (fr) Imidazo[1,2-a]pyridine-carboxamides substitués et leur utilisation
EP3137464A1 (fr) Imidazo[1,2-a]pyridines utilisées en tant que stimulateurs de la guanylate cyclase pour traiter des maladies cardiovasculaires
EP3227286B1 (fr) Pyrazolo[1,5-a]pyridines et imidazo[1,2-a]pyrazines substituées et leur utilisation
WO2012010577A1 (fr) Oxazolidinones et oxazinanones substituées et leur utilisation
WO2015165933A2 (fr) Imidazo[1,2-a]pyridine-carboxamides substitués en 6 et leur utilisation
WO2015165970A1 (fr) Imidazo[1,2-a]pyridine carboxamides substitués par chlore en position 6 et leur utilisation en tant que stimulateurs de la guanylate cyclase soluble
WO2012010576A1 (fr) Diaminopyrimidines substituées par du carbamate et leur utilisation
EP3227287B1 (fr) Imidazo[1,2-a]pyridines à substitution hétéroaryle et leur utilisation
EP3137463A1 (fr) Énantiomères du n-(2-amino-5-fluor-2-méthylpentyl)-8-[(2,6-difluorbenzyl)oxy]-2-méthylimidazo[1,2-a]pyridine-3-carboxamide et de ses dérivés difluorés et trifluorés pour traiter des maladies cardiovasculaires
WO2016023885A1 (fr) Quinoline-4-carboxamides substitués et leur utilisation
EP3186251A1 (fr) Pyrimidines condensées substituées et leur utilisation
WO2017121692A1 (fr) Sulfamides substitués et leur utilisation
WO2018184976A1 (fr) Imidazo[1,2-a]pyridine-carboxamides substitués et leur utilisation
WO2016124565A1 (fr) Pyrazolo[1,5-a]pyridine-3-carboxamides substitués et leur utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170404

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180605