EP3075041B1 - Überspannungsschutz mit einer funkenstrecke - Google Patents

Überspannungsschutz mit einer funkenstrecke Download PDF

Info

Publication number
EP3075041B1
EP3075041B1 EP15700975.4A EP15700975A EP3075041B1 EP 3075041 B1 EP3075041 B1 EP 3075041B1 EP 15700975 A EP15700975 A EP 15700975A EP 3075041 B1 EP3075041 B1 EP 3075041B1
Authority
EP
European Patent Office
Prior art keywords
laser
spark gap
overvoltage protection
compressor element
laser pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15700975.4A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3075041A1 (de
Inventor
Michael Hofstetter
Dennie Lange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3075041A1 publication Critical patent/EP3075041A1/de
Application granted granted Critical
Publication of EP3075041B1 publication Critical patent/EP3075041B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/20Means for starting arc or facilitating ignition of spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means

Definitions

  • the invention relates to an overvoltage protection with a spark gap and with a laser for igniting the spark gap.
  • Such overvoltage protection is known from the published patent application DE 10 2004 002 582 A1 known.
  • a spark gap is arranged on an electrically insulated platform, wherein this platform is at a high voltage potential.
  • a laser pulse is guided by means of an optical waveguide to the spark gap.
  • the high-energy laser pulses which are necessary for igniting the spark gap
  • an energetically highly resilient and therefore expensive optical waveguide must be used in the known overvoltage protection.
  • the invention has for its object to provide a surge protector of the type mentioned above and a method for igniting a spark gap, which can be realized inexpensively.
  • a surge arrester having a spark gap (having opposing electrodes) and a laser for igniting the spark gap, the laser being connected to an input of an optical extender is, which serves for temporally stretching the laser pulses generated by the laser, the output of the stretching element is connected to one end of an optical transmission fiber, in particular to one end of an optical waveguide, a second end of the transmission fiber is connected to an input of an optical compressor element, which serves for temporal compression of the laser pulses, and the output of the compressor element (optically) is connected to the spark gap. It is particularly advantageous that the optical transmission fiber only needs to transmit the time-stretched laser pulses.
  • the maximum occurring local energy density in the optical transmission fiber is significantly reduced (compared to a transmission of non-stretched laser pulses).
  • damage to the optical transmission fiber is avoided or the service life of the transmission period is extended.
  • the optical compressor element is arranged, which upsets the laser pulses in time.
  • laser pulses are present at the output of the compressor element, which again have a greater maximum energy density.
  • the spark gap can be reliably ignited with the aid of these laser pulses.
  • the overvoltage protection can be designed such that the (optical) output of the compressor element is directed in the direction of at least one electrode of the spark gap or in the direction of the gap between two electrodes of the spark gap.
  • the overvoltage protection can be realized in such a way that the laser is a pulse laser, in particular a femtosecond laser.
  • the pulse laser in particular by means of the femtosecond laser, very short laser pulses can be generated, so that the temporal stretching of the laser pulses and the subsequent temporal upsetting of the laser pulses can be effectively applied.
  • the overvoltage protection can also be realized in such a way that the transmission fiber is free from laser-active media.
  • a simple and inexpensive transmission fiber in particular a simple and inexpensive optical waveguide, can be used.
  • the overvoltage protection can also be implemented such that the spark gap and the compressor element are arranged on an electrically isolated platform which is at a (high) electrical potential (and which is intended to carry at least one electrical component to protect against overvoltage is), and the laser is connected to ground potential.
  • the located at ground potential laser can be easily and inexpensively supplied with electrical energy.
  • this laser can be connected to a conventional AC power supply network and be supplied in this way with electrical energy.
  • the laser pulses are then transmitted to the platform via the transmission fiber, in particular the optical fiber. Due to the galvanic isolation realized by the transmission fiber / optical waveguides, there is no undesirable influence between the laser connected to earth potential and the platform connected to high voltage potential.
  • the overvoltage protection can also be designed such that the stretching element is arranged outside the platform and the transmission fiber connects the stretching element to the platform, in particular to the compressor element.
  • the transmission fiber connects the stretching element to the platform, in particular to the compressor element.
  • the overvoltage protection can also be realized in such a way that optics for focusing the compressed laser pulses are arranged between the compressor element and the spark gap. By means of this optics, the laser pulses / the laser radiation can be focused on the spark gap, so that the spark gap can be ignited even safer and more reliable.
  • the overvoltage protection may also be implemented such that the compressor element is rigidly coupled (i.e., in particular immovable) to the spark gap.
  • This rigid coupling between the compressor element and the spark gap has the advantage that even in harsh everyday operation (in which, for example, vibration or vibration can occur), the laser radiation / laser pulses are always safely coupled into the spark gap.
  • the rigid coupling between the compressor element and the spark gap furthermore ensures that the laser radiation always enters the space between the electrodes of the spark gap at the same angle or strikes the electrodes.
  • Such a rigid coupling between the compressor element and the spark gap may also be referred to as a "quasi-monolithic" coupling.
  • the overvoltage protection can also be realized in such a way that the spark gap is part of an ignition circuit for igniting a main spark gap. As a result, it is advantageously possible to first ignite a spark gap of low power by means of the laser, whereupon this spark gap is then used to ignite a main spark gap of greater power.
  • a method for igniting a spark gap of an overvoltage protection (which has opposing electrodes) by means of a laser, wherein in the method the laser pulses generated by a laser are temporally stretched, the time-stretched laser pulses by means of an optical transmission fiber, in particular by means of an optical waveguide , be transmitted after the transmission the time-stretched laser pulses are compressed in time, and the temporally compressed laser pulses are coupled into the spark gap.
  • This method may be configured to transmit the time-extended laser pulses by means of the optical transmission fiber to an electrically isolated platform that is at a high voltage potential (and provided for supporting at least one electrical component to be protected from overvoltage ).
  • the method can also be configured such that the spark gap and the compressor element are arranged on the platform, and the laser is connected to ground potential.
  • FIG. 1 is from the published patent application DE 10 2004 002 582 A1 known overvoltage protection 1 shown.
  • This overvoltage protection 1 has a main spark gap 2 with two main electrodes 3.
  • the overvoltage protection 1 is arranged on an electrically isolated platform 4, which is supported by columnar (not shown figuratively) insulators at a ground potential environment.
  • the lower main electrode 3 is electrically connected to the potential of the platform 4, for example with a high voltage potential of the platform 4.
  • the upper main electrode 3 is at a different electrical potential, for example at a high voltage potential of a high voltage three-phase system. Between the main electrodes 3, a voltage of the order of, for example, a few hundred kV may be applied, for example 160 kV.
  • an ignition circuit 5 with an ignition electrode 6 is provided, the ignition circuit 5 having a capacitive voltage divider with a first capacitor 7 and a second capacitor 8 (ignition capacitor 8).
  • the second capacitor 8 can be bridged by a parallel branch.
  • a spark gap 9 tripping spark gap 9
  • an ohmic resistor 10 is arranged in the parallel branch.
  • a fiber laser 17 is provided, the laser pulses of which are transmitted by means of an optical waveguide 15 to the tripping spark gap 9.
  • a protective device 13 and a pump laser 14 are arranged.
  • the pump laser 14 serves to pump the fiber laser 17.
  • the protection device (protection device) 13 is not shown figuratively with sensors / sensors, such. As voltage meters, so that measured values of the voltage drop across the component to be monitored voltage can be supplied to the protective device 13 and overvoltages can be detected by the protective device 13.
  • the laser pulses of the fiber laser 17 are called Züriumt.
  • the laser pulses are guided via the optical waveguide 15 to the tripping spark gap 9. These laser pulses are so intense that an optical breakthrough in the tripping spark gap 9 is generated and thus the tripping spark gap 9 is ignited.
  • the optical waveguide 15 must be designed to be robust and energy-resistant, whereby the optical waveguide 15 is costly.
  • FIG. 2 an embodiment of the overvoltage protection 200 according to the invention is shown.
  • This overvoltage protection 200 is in accordance with FIG. 1 a main spark gap 2, an upper and a lower main electrode 3, a platform 4 (high-voltage platform 4), an ignition circuit 5, an ignition electrode 6, a first capacitor 7, a second capacitor 8, a spark gap 9 (tripping spark gap 9), an ohmic resistor 10 and a protection device 13.
  • the overvoltage protection 200 has a laser 210, which is arranged at earth potential 260 including the (not individually shown) pump source.
  • the laser 210 is a pulsed laser, in particular a femtosecond laser (this is a laser which emits laser pulses whose duration is in the femtosecond range).
  • the laser 210 is connected to ground potential 260 and is located outside the platform 4.
  • the pump source of the laser 210 may be configured as a conventional pump source, which may be e.g. B. generated by laser diodes pump light.
  • the laser pulses generated by the laser 210 are temporally stretched by means of an optical stretching element 218.
  • an output 222 of the laser 210 is optically connected to an input 226 of the stretching element 218.
  • An output 230 of the stretching element 218 is connected to one end of an optical transmission fiber 15 '.
  • a second end of the optical transmission fiber 15 ' is connected to an input 234 of an optical compressor element 238.
  • the stretched laser pulses are compressed in time, so that the laser pulses (ideally) again get their original shape.
  • An output 242 of the compressor element 238 is connected to the spark gap 9, in particular the output 242 of the compressor element 238 is optically coupled to the spark gap 9.
  • the compressor element 238 is arranged directly on the spark gap 9, so that the compressed laser pulses leaving the compressor element 238 directly reach the spark gap 9.
  • the compressor element 238 is coupled to the spark gap 9.
  • the compressor element 238 is rigidly coupled (ie immobile) to the spark gap 9, so that the laser radiation always invades the spark gap under the same conditions (same angle of incidence, etc.).
  • the compressor element 238 may even be considered as part of the spark gap 9.
  • the rigid (quasi-monolithic) attachment of the compressor element 238 to the spark gap 9 ensures the greatest possible freedom from external disturbances (such as, for example, vibrations) on the location of the laser focus in the spark gap.
  • the spark gap 9 is an encapsulated spark gap, which is arranged in a housing.
  • the spark gap 9 has a first electrode 246 and a second electrode 248; the electrodes 246 and 248 face each other. An arc is ignitable between the first electrode 246 and the second electrode 248.
  • the Compressor element 238 is rigidly connected to the housing of the spark gap 9.
  • the optical output 242 of the compressor element 238 is directed in the direction of the first electrode 246 and / or in the direction of the second electrode 248; the optical output 242 of the compressor element 238 may also be directed in the direction of the gap between the electrodes 246 and 248 of the spark gap 9.
  • the laser radiation (compressed laser pulses) radiated from the compressor element 238 can reach the electrodes 246 and / or 248 or enter into the gap between the electrodes 246 and 248.
  • the transmission fiber 15 ' is an optical waveguide 15'.
  • the optical waveguide 15 'does not have to transmit the extremely short laser pulses of the laser 210, which have a high energy density. Rather, advantageously only the time-stretched laser pulses are transmitted to the platform with the optical waveguide 15 ', which have a comparatively lower energy density. Therefore, the optical waveguide 15 'is relatively less energetically loaded, so that a cost-effective optical waveguide can be used here.
  • the optical waveguide 15 'as such has no laser-active medium, it is free of laser-active media. Also, therefore, a cost-effective optical fiber can be used here.
  • the local intensity of the laser pulses in the optical waveguide 15 ' is significantly reduced compared to the local intensity in the optical waveguide 15 in the transmission of the laser radiation according to the FIG. 1 , As a result, a less expensive optical waveguide can be used and / or extended due to the lower wear the life of the fibers of the optical fiber.
  • the independent of the optical waveguide 15 'laser 210 and the expression of the compressor element 238 as a separate component at the end of the optical waveguide 15' also allows better adjustability and maintenance and facilitates the replacement or repair of the compressor element or the laser.
  • a partially redundant design of the components of the overvoltage protection is easy to implement.
  • two redundant optical waveguide 15 'could be laid from the stretching element 218 to the platform 4, wherein only one compressor element 238 is present on the platform 4.
  • the optical waveguide 15 ' (eg by means of another laser of different wavelengths) can be monitored for the presence of interruptions. This monitoring is particularly simple, since the optical waveguide 15 'is free of laser-active media.
  • an optic 252 (which contains, for example, one or more focusing lenses) for focusing the laser pulses / laser radiation may be provided on the compressor element 238 so that this laser radiation can be introduced even more accurately into the spark gap 9. But it can also be dispensed with the look. Also optionally also known as such so-called self-focusing of the laser can be used.
  • the electrically isolated platform 4 which is at high voltage electrical potential 256, carries the spark gap 9 and the compressor element 238.
  • this platform 4 carries the electrical or electronic component or components, which are to be protected by means of overvoltage protection against overvoltage.
  • the overvoltage protection 200 or the method for igniting the spark gap 9 functions as follows: As soon as the protective device 13 detects an overvoltage on the component to be protected, it sends a signal to the laser 210, whereupon the laser 210 generates short laser pulses with high energy density. Such a short laser pulse is shown schematically in FIG FIG. 3 shown. These laser pulses are transmitted to the stretching element 218 and stretched in this time. At the output 230 of the stretching element 218, the time-stretched laser pulses then have a shape which is schematically illustrated in FIG FIG. 4 is shown. These stretched laser pulses are then fed into the optical waveguide 15 'and transmitted to the platform 4. The stretched laser pulses then pass to the compressor element 238.
  • the compressor element 238 upsets the laser pulses in time, so that the laser pulses at the output 242 of the compressor element have a shape which is schematically shown in FIG FIG. 5 is shown.
  • the laser pulses at the output 242 of the compressor element 238 again have the same shape as at the input 226 of the stretching element 218.
  • the laser pulses can optionally be focused by means of the optics 252.
  • the laser pulses are then fed into the spark gap 9. Because of these laser pulses / laser radiation 255, the spark gap 9 is ignited, ie an arc begins to burn between the first electrode 246 and the second electrode 248 of the spark gap.
  • the second capacitor 8 of the ignition circuit 5 is bridged.
  • the ignition electrode 6 is brought almost to the electrical potential of the platform 4. Since the distance between the ignition electrode 6 and the upper main electrode 3 is smaller than the distance between the two main electrodes 3, an arc between the upper main electrode 3 and the ignition electrode 6 starts to burn. Due to this arc, the first capacitor 7 bridged, whereby the second capacitor 8 can recharge.
  • the second capacitor 8 has a sufficiently high capacitor voltage, an arc begins to burn between the ignition electrode 6 and the lower main electrode 3, so that now the main spark gap 2 is completely ignited.
  • a parallel to the main spark gap 2 switched to be protected component (which in the FIG. 2 not shown) protected against overvoltage.
  • the laser pulse generated by the laser 210 is thus stretched in time prior to coupling into the transmission fiber 15 '. This reduces the maximum occurring local energy density of the laser pulse in the transmission fiber 15 ', so that damage to the transmission fiber can be avoided.
  • a known as such method for temporal stretching of the laser pulse is the so-called “chirping”:
  • a short laser pulse consists of a wide color spectrum.
  • “Chirping” uses the different transit times of the individual colors when passing through different media.
  • the passage of the short laser pulse through certain grating arrangements or prism arrangements or by means of special multilayer mirrors ("chirp mirrors") results in a so-called “negatively chirped” pulse whose long-wave (red) frequency components follow the short-wave (blue) frequency components.
  • Such a "negatively chirped” pulse is temporally stretched, cf.
  • FIG. 4 Such grid arrangements, prism arrangements or multilayer mirrors are thus examples of the stretching element 218.
  • the stretching element 218 is shown as a prismatic arrangement.
  • a thin quartz block is an example of a compressor element 238.
  • a simple optical component which may be e.g. contains a thin quartz block, are arranged at the end of the optical transmission fiber.
  • a focusing lens can be arranged on the quartz block.
  • acoustooptic dispersion filters can also be used as the compressor element and / or stretch element, for example.
  • FIG. 3 a schematic representation of an exemplary laser pulse 310 at the output 222 of the laser 210 is shown.
  • the intensity I ie the energy per time and area
  • the intensity I is shown.
  • FIG. 4 shows an exemplary representation of a time-stretched laser pulse 410, as occurs at the output 230 of the stretching element 218. It can be seen clearly the temporal extension of the laser pulse 410. This temporal extension of the laser pulse 410 results in the maximum intensity I being significantly reduced in comparison to the unstretched laser pulse 310 of FIG. 3 ,
  • FIG. 5 11 shows a representation of the exemplary time-compressed laser pulse 255 that occurs at the output 242 of the compressor element 238. It is clear the temporal compression of the laser pulse 255 in comparison to the laser pulse 410 of FIG. 4 to recognize. This temporal compression of the laser pulse 255 causes the maximum intensity I compared to the stretched laser pulse 410 of the FIG. 4 is enlarged again. This temporally compressed laser pulse 255 corresponds in this embodiment again to the original laser pulse 310.
  • the main spark gap 2 can also be ignited directly by means of the laser 210.
  • the main spark gap 2 higher energies occur than in the case of the spark gap 9 (in particular, larger currents flow and higher temperatures occur), in which case the compressor element 238 is correspondingly protected from heat.
  • overvoltage protection components / components can be protected, which are arranged parallel to the main spark gap 2.
  • overvoltage protection with spark gaps can be used to protect the capacitor banks and / or Ableiterbänke.
  • the series compensation system and the spark gaps are located on the isolated against the ground potential high-voltage platform 4.
  • a control room with the monitoring electronics is not on the platform 4, but on the ground 258, ie at ground potential 260th
  • the laser 210 is also disposed on the ground 258, that is at ground potential 260.
  • the laser pulse is stretched in time in a controlled manner with the aid of the stretching element 218 before being coupled into the transmission fiber 15 '.
  • the maximum local energy density occurring in the optical waveguide 15 'by the laser pulse is reduced, as a result of which irreversible damage to the optical waveguide is avoided or the service life of the optical waveguide 15' is extended.
  • the laser pulse is again compressed / compressed in the compressor element 238. This is enough occurring by this temporally compressed laser pulse local energy density again to ignite the spark gap 9.
  • the compressor element 238 and optics 252 optionally arranged thereon can be realized at the end of the transmission fiber in the form of an end piece which is arranged rigidly (ie in particular immovably) on the spark gap 9.
  • the local intensity or the local energy density of the laser pulse in the optical waveguide / transmission fiber 15 ' is considerably reduced in the transmission of the elongated laser pulses 410 compared to the transmission of the unstretched laser pulses 310, d. H. to the transmission of the original laser pulses 310 of the laser 210.

Landscapes

  • Lasers (AREA)
  • Laser Surgery Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Laser Beam Processing (AREA)
EP15700975.4A 2014-01-31 2015-01-09 Überspannungsschutz mit einer funkenstrecke Active EP3075041B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014201752.1A DE102014201752A1 (de) 2014-01-31 2014-01-31 Überspannungsschutz mit einer Funkenstrecke
PCT/EP2015/050307 WO2015113796A1 (de) 2014-01-31 2015-01-09 Überspannungsschutz mit einer funkenstrecke

Publications (2)

Publication Number Publication Date
EP3075041A1 EP3075041A1 (de) 2016-10-05
EP3075041B1 true EP3075041B1 (de) 2018-06-27

Family

ID=52395046

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15700975.4A Active EP3075041B1 (de) 2014-01-31 2015-01-09 Überspannungsschutz mit einer funkenstrecke

Country Status (6)

Country Link
EP (1) EP3075041B1 (pt)
CN (1) CN105900299B (pt)
BR (1) BR112016017494B8 (pt)
DE (1) DE102014201752A1 (pt)
RU (1) RU2664390C2 (pt)
WO (1) WO2015113796A1 (pt)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735091C1 (ru) * 2020-02-07 2020-10-28 Акционерное общество "НПО "Стример" Разрядник с защитным искровым промежутком

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175664A (en) * 1991-12-05 1992-12-29 Diels Jean Claude Discharge of lightning with ultrashort laser pulses
JP3829175B2 (ja) * 2000-04-20 2006-10-04 独立行政法人産業技術総合研究所 レーザ誘導放電によるスイッチング装置
GB2395353B (en) * 2002-02-18 2004-10-13 Univ Southampton Pulsed light sources
DE102004002582A1 (de) * 2004-01-13 2005-08-04 Siemens Ag Optisch gezündete Funkenstrecke
US7684450B2 (en) * 2004-12-20 2010-03-23 Imra America, Inc. Pulsed laser source with adjustable grating compressor
FR2939974A1 (fr) * 2008-12-17 2010-06-18 Centre Nat Rech Scient Laser impulsionnel a fibre optique pour impulsions sub-picoseconde de haute energie dans la bande l et outil laser pour chirurgie ophtalmique
US8532150B1 (en) * 2011-04-01 2013-09-10 Calmar Optcom, Inc. Generating laser light of high beam quality and high pulse quality in large mode area fiber amplifiers based on suppression of high optical modes by fiber coiling
CN104254952A (zh) * 2012-01-06 2014-12-31 以卡尔马激光名义经营的卡尔马光通信公司 基于两级脉冲处理生成超短激光脉冲
CN102946055B (zh) * 2012-11-05 2013-12-11 清华大学 一种激光触发气体开关

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014201752A1 (de) 2015-08-06
EP3075041A1 (de) 2016-10-05
BR112016017494B1 (pt) 2022-02-15
RU2016130970A (ru) 2018-03-05
CN105900299A (zh) 2016-08-24
CN105900299B (zh) 2018-08-31
BR112016017494A2 (pt) 2017-08-08
RU2016130970A3 (pt) 2018-03-05
BR112016017494B8 (pt) 2023-04-25
WO2015113796A1 (de) 2015-08-06
RU2664390C2 (ru) 2018-08-17

Similar Documents

Publication Publication Date Title
EP2276136B1 (de) Überspannungsschutz für Wechselrichter mit eingangsseitigem EMV-Filter
DE102011116135A1 (de) Photovoltaikanlage
DE102012022399A1 (de) Zündkreis
WO2005069458A1 (de) Optisch gezündete funkenstrecke
WO2005069459A1 (de) Funkenstrecke mit optisch gezündetem leistungshalbleiterbauelement
DE69121702T2 (de) Elektrische vorrichtung
EP3075041B1 (de) Überspannungsschutz mit einer funkenstrecke
DE102013012578A9 (de) Vorrichtung zum Absichern einer elektrischen Leitung
DE102015113475A1 (de) Spannungswandlerschaltung und Verfahren zur Ionenstrommessung einer Zündkerze
EP3075042B1 (de) Überspannungsschutz mit einer funkenstrecke
DE102013005095A1 (de) Vorrichtung zur Erzeugung von Mikrowellen
DE202008005085U1 (de) Elektrische Schaltung mit einem Mittel zur Signalisierung
EP1889363B1 (de) Verfahren für den kontinuierlichen, getriggerten betrieb eines marx-generators insbesondere von mehreren marx-generatoren zur druckregelung und abbranddetektion in den funkenstrecken
DE4417129B4 (de) Verfahren und Vorrichtung zur Überprüfung von Überspannungsschutzanlagen
DE102014102065B4 (de) Zündelement zur Verwendung bei einem Überspannungsschutzelement, Überspannungsschutzelement und Verfahren zur Herstellung eines Zündelements
DE102013217320A1 (de) Sicherungselement für eine Überspannungsschutzeinrichtung
DE4317191B4 (de) Verfahren zur Erstellung einer Anordnung zum Schutz eines Gerätes vor Überspannungen
EP3245697A1 (de) Verfahren und vorrichtung zum löschen eines lichtbogens in einem mehrphasensystem
DE102016211628A1 (de) Elektronische Folgestromlöschhilfe
DE102013223916A1 (de) Verfahren zur Erhöhung der Standzeit der Kontaktelemente einer Schalteinrichtung mit Trennereigenschaften und entsprechende Schalteinrichtung
DE102021121536A1 (de) Anordnung und Verfahren zur Erhöhung der Funktionssicherheit eines optisch-pyrotechnischen Zünders
DE2003606C3 (de) Schutzeinrichtung für über eine Drahtverbindung gelenkte Flugkörper bei elektrostatischer Aufladung
DE3208542A1 (de) Gas-feuerungsautomat
WO1992005530A1 (de) Verfahren und einrichtung zur verhütung von vogelschlag an flugzeugen
DE102012002962A1 (de) Kurzschließeinrichtung zum Sach- und Personenschutz in elektrischen Systemen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1013133

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004823

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180927

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180627

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015004823

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

26N No opposition filed

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015004823

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1013133

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200109

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220901 AND 20220907

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 10

Ref country code: GB

Payment date: 20240123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240125

Year of fee payment: 10

Ref country code: FR

Payment date: 20240125

Year of fee payment: 10