EP3074984B1 - Hochspannungskabel - Google Patents

Hochspannungskabel Download PDF

Info

Publication number
EP3074984B1
EP3074984B1 EP15700086.0A EP15700086A EP3074984B1 EP 3074984 B1 EP3074984 B1 EP 3074984B1 EP 15700086 A EP15700086 A EP 15700086A EP 3074984 B1 EP3074984 B1 EP 3074984B1
Authority
EP
European Patent Office
Prior art keywords
cable
voltage cable
cable core
voltage
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15700086.0A
Other languages
English (en)
French (fr)
Other versions
EP3074984A1 (de
Inventor
Siegfried Poppe
Heiko Kamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Priority to PL15700086T priority Critical patent/PL3074984T3/pl
Publication of EP3074984A1 publication Critical patent/EP3074984A1/de
Application granted granted Critical
Publication of EP3074984B1 publication Critical patent/EP3074984B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0054Cables with incorporated electric resistances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/006Constructional features relating to the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the invention relates to a high-voltage cable, in particular for electrostatic coating agent charging in a coating system.
  • FIG. 1 1 shows a conventional high-voltage cable 1 with a cable core 2 made of a copper strand or copper wires, a field straightener 3 made of electrically conductive polyolefin surrounding the cable core 2, an insulating jacket 4 of electrically insulating polyolefin surrounding the field straightener 3 in the manner of a shell, and an outer jacket 5 made of polyurethane (PU), wherein the outer jacket 5, in addition to an additional electrical insulation for sufficient abrasion resistance and chemical resistance of the high voltage cable 1 provides.
  • PU polyurethane
  • a disadvantage of the known high-voltage cable 1 described above is the very low electrical resistance, which is due to the fact that the cable core 2 consists of copper, which has a very low electrical resistivity.
  • the low electrical resistance of the high-voltage cable 1 can namely lead to strong current oscillations when used in an electrostatic coating system during a discharge, which is undesirable.
  • FIG. 2 shows a correspondingly improved high voltage cable 1, as in EP 0 829 883 A2 is described.
  • This high voltage cable 1 is partly true with that described above and in FIG. 1 shown high voltage cable 1 to avoid repetition, reference is made to the above description, wherein like reference numerals are used for corresponding details.
  • a special feature of this high-voltage cable 1 is that the insulation jacket 4 consists of two coaxial and superimposed in the radial direction layers 4.1, 4.2.
  • the cable core 2 consists of an electrically insulating plastic (eg polyester) and therefore does not conduct electricity.
  • the thread-like and electrically insulating cable core 2 serves as a mechanical support for a conductor layer 6, which may consist for example of filled with soot particles polyethylene (PE).
  • PE polyethylene
  • the conductor layer 6 has a much greater electrical resistance than the conductive cable core 2 of copper according to FIG. 1 , This is advantageous because the high voltage cable 1 according to FIG. 2 Thus, having a greater electrical resistance, which are attenuated when used in an electrostatic coating system, the unwanted current oscillations during discharge operations.
  • a disadvantage of the high voltage cable 1 according to FIG. 2 is the fact that on contact with Vaseline or insulating oils (eg transformer oil), the electrical conductivity can be lost.
  • Vaseline or insulating oils eg transformer oil
  • This vaseline can penetrate from the cable ends of the high-voltage cable 1, starting in the high-voltage cable 1, wherein the high-voltage cable 1 due to the capillary effect from the cable end starting with vaseline can soak.
  • the penetrating vaseline has the consequence that the conductive layer 6 becomes electrically insulating due to the vaseline which diffuses in, the high-voltage cable 1 becoming inoperative.
  • the invention is therefore based on the object to provide a correspondingly improved high-voltage cable, which is particularly suitable for use in an electrostatic coating system.
  • the high-voltage cable according to the invention is intended to damp the unwanted current oscillations which occur when the known high-voltage cable is used FIG. 1 occur during loading and unloading operations.
  • the high-voltage cable according to the invention should also prevent the electrical conductivity from being influenced or even lost by the contact with petroleum jelly or insulating oils (for example transformer oil).
  • petroleum jelly or insulating oils for example transformer oil.
  • the invention initially provides a correspondence with the prior art that the high-voltage cable has a centrally arranged cable core, which is surrounded by an electrically insulating insulating jacket.
  • the invention differs from the conventional ones described above High voltage cables in that the cable core has a medium electrical resistance.
  • the cable core is therefore not highly electrically conductive, whereby unwanted current oscillations during charging and discharging operations are avoided.
  • the high voltage cable according to the invention is insensitive to vaseline or insulating oils and barely changes its electrical resistance.
  • an average electrical resistance used in the invention is to be distinguished from an electrical conductor (eg copper) on the one hand and an electrical insulator on the other hand and preferably has the meaning that the electrical resistance in the range of 1k ⁇ / m relative to the length of the high voltage cable -1m ⁇ / m, 2k ⁇ / m-500k ⁇ / m, 5k ⁇ / m-200k ⁇ / m or 10k ⁇ / m-50k ⁇ / m.
  • the electrical resistance of the conductive cable core is therefore preferably in a range which is suitable for use in an electrostatic coating system for electrostatic coating agent charging.
  • the cable core consists of twisted nonwoven strips, which in turn are composed of several filaments and are themselves electrically conductive or made electrically conductive.
  • a single nonwoven strip can be twisted and then form the cable core.
  • several nonwoven strips are twisted in several strands and then form the cable core.
  • the individual fibers or filaments of the nonwoven strips consist of an electrically conductive plastic, for example polyethylene (PE), the filled with soot particles, as is made EP 0 829 883 A2 is described.
  • PE polyethylene
  • the individual fibers of the nonwoven strip consist of an electrically insulating plastic which is rendered electrically conductive by a surface coating with an electrically conductive material.
  • the invention can prevent vaseline from ever penetrating into the high voltage cable due to the capillary effect.
  • the invention can also prevent the penetrated petroleum jelly or insulating oils from influencing or even resulting in a loss of electrical conductivity, this effect resulting from the design of the high-voltage cable according to the invention.
  • the cable core can be so coarse-grained that the spaces between the individual fibers of the cable core are so large that the capillary force is insufficient to suck petroleum jelly into the intermediate spaces. In this way, it is thus prevented that Vaseline ever penetrates into the high-voltage cable according to the invention.
  • the electrically conductive cable core in the high-voltage cable according to the invention can be surrounded by a so-called field smoothing device, as is already known from the prior art.
  • a field straightener may for example consist of electrically conductive plastic, such as polyolefin, as it is made EP 0 829 863 A2 is known.
  • the field smoother also preferably has an average electrical resistance, the meaning of this term having already been explained above.
  • the electrical resistance of the field trowel is preferably greater than the electrical resistance of the cable core in order to effect a field smoothing can.
  • the electric resistance of the field trowel is preferably smaller than the electrical resistance of the insulation jacket.
  • the field smoother is arranged between the cable core and the insulating jacket, as it is already known from the prior art. It should be mentioned that the field straightener rests preferably without an intermediate layer directly on the cable core or on the conductive coating of the cable core.
  • the high-voltage cable according to the invention preferably has a shielding jacket in accordance with the prior art in order to electrically shield the high-voltage cable, wherein the shielding jacket is preferably of low resistance.
  • the shielding jacket made of a copper braid or a combination of a copper braid with a plastic.
  • the resistance of the Ablemantels is preferably smaller than the resistance of the cable core and the Feldglätters.
  • the dielectric strength of the high-voltage cable depends, inter alia, on the field distribution within the high-voltage cable.
  • the field strength should therefore be as small as possible at the conductor layer.
  • the field strength depends on the ratio of the diameter dA of the shielding shell to the diameter dS of the cable core, wherein the diameter ratio dA / dS should be in the range of 1.5-5, 2-4 or 2-3.4.
  • the high-voltage cable according to the invention in accordance with the prior art may still have an electrically insulating outer jacket, wherein the outer shell may for example consist of plastic, in particular of polyurethane (PU).
  • the outer jacket preferably has a greater mechanical abrasion resistance compared to the insulating jacket, is less flammable and / or acid-resistant.
  • the high-voltage cable according to the invention preferably has sufficient dielectric strength for use in an electrostatic coating system.
  • the dielectric strength of the high voltage cable is therefore preferably at least 1kV, 2kV, 5kV, 10kV, 20kV, 50kV, 100kV or even 150kV.
  • the high-voltage cable preferably has an electrical capacitance which allows use in an electrostatic coating system.
  • the electrical capacity of the high voltage cable is therefore preferably in the range of 1pF / m-1000pF / m, 10pF / m-500pF / m, 20pF / m-250pF / m, 50pF / m-100pF / m or 70pF / m-100pF / m ,
  • the electrically moderately conductive cable core can be electrically surrounded with field straightener at connection points along the high-voltage cable.
  • these connection points do not extend over the entire length of the high-voltage cable, but are only punctiform.
  • the electrical contacting of the high voltage cable to the cable ends can be done for example by a metallic connecting pin which is axially inserted or screwed into the end face of the cable core to electrically contact the high voltage cable.
  • a metallic connecting pin which is axially inserted or screwed into the end face of the cable core to electrically contact the high voltage cable.
  • Other connection techniques such as Cutting and clamping technology are also applicable.
  • the invention not only comprises the high-voltage cable described above as a single component. Rather, the invention also includes the novel use of such a high voltage cable for electrostatic Coating agent charging in a coating plant, in particular in a paint shop for painting automotive body components and in the parts painting in the general or supplier industry.
  • the invention also encompasses an electrostatic coating agent charge which can be used, for example, in a painting installation in order to electrostatically charge the coating agent to be applied (for example paint, powder paint).
  • an electrostatic coating agent charge which can be used, for example, in a painting installation in order to electrostatically charge the coating agent to be applied (for example paint, powder paint).
  • the coating agent charging according to the invention initially has a high voltage generator which generates the required high voltage for charging the coating agent. Furthermore, the coating agent charging according to the invention comprises a high-voltage electrode in order to electrostatically charge the coating agent to be applied.
  • Such high voltage electrodes are known per se from the prior art and may be formed, for example, as external electrodes of a rotary atomizer. However, within the scope of the invention, there is also the possibility of direct charging within a rotary atomizer.
  • the electrical connection between the high-voltage generator and the high-voltage electrode takes place at least over part of the connection length through the high-voltage cable according to the invention, as described above.
  • FIG. 3 shows a preferred embodiment of a high voltage cable 1 according to the invention, which partially with the above described and in FIG. 2 shown high voltage cable 1, so reference is made to avoid repetition of the above description, wherein the same reference numerals are used for corresponding details.
  • a special feature of this embodiment according to the invention consists in the design and construction of the cable core 2.
  • the cable core 2 consists here of twisted nonwoven strips, each consisting of several filaments (fibers) and are made electrically conductive.
  • the cable core 2 thus consists of plastic as a carrier material, which is made electrically conductive, for example by filling or coating with Rußteilchen.
  • the cable core 2 therefore has a mean electrical resistance in the range of 10k ⁇ / m-100k ⁇ / m.
  • the design of the cable core 2 of twisted nonwoven strips prevents in comparison to the conventional high voltage cable 1 according to FIG. 2 advantageous that penetrating vaseline affects the electrical conductivity of the high voltage cable 1.
  • the average electrical resistance of the cable core 2 in comparison to the conventional high-voltage cable 1 according to FIG. 1, ensures that no excessive current oscillations occur during discharging operations in an electrostatic coating system.
  • FIG. 4 shows a modification of FIG. 3
  • a special feature of this embodiment is that between the outer sheath 5 and the outer layer 4.2 of the insulation sheath 4, a shielding shell 7 is additionally arranged, which may consist of a copper braid.
  • FIG. 5 shows a coating agent charging according to the invention with a high voltage generator 8, which is connected via the high-voltage cable 1 according to the invention with an electrostatic atomizer 9, as it is known per se from the prior art.
  • the electrostatic atomizer 9 is a spray 10 of an electrostatically charged coating agent (eg Paint) on an electrically grounded motor vehicle body component 11 from.
  • an electrostatically charged coating agent eg Paint
  • the average electrical resistance of the high-voltage cable 1 advantageously ensures that no excessive current oscillations occur during discharging operations.
  • the above-described structural design of the high-voltage cable 1 has the advantage that penetrating vaseline does not lead to a change or even to a loss of electrical conductivity of the high-voltage cable 1.

Landscapes

  • Insulated Conductors (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Description

  • Die Erfindung betrifft ein Hochspannungskabel, insbesondere zur elektrostatischen Beschichtungsmittelaufladung in einer Beschichtungsanlage.
  • Figur 1 zeigt ein herkömmliches Hochspannungskabel 1 mit einer Kabelseele 2 aus einer Kupferlitze bzw. aus Kupferdrähten, einem die Kabelseele 2 mantelförmig umgebenden Feldglätter 3 aus elektrisch leitfähig gemachtem Polyolefin, einem den Feldglätter 3 mantelförmig umgebenden Isolationsmantel 4 aus elektrisch isolierendem Polyolefin sowie einem Außenmantel 5 aus Polyurethan (PU), wobei der Außenmantel 5 neben einer zusätzlichen elektrischen Isolierung für eine ausreichende Abriebfestigkeit und Chemikalienbeständigkeit des Hochspannungskabels 1 sorgt.
  • Nachteilig an dem vorstehend beschriebenen bekannten Hochspannungskabel 1 ist der sehr geringe elektrische Widerstand, was daher rührt, dass die Kabelseele 2 aus Kupfer besteht, was einen sehr geringen spezifischen elektrischen Widerstand aufweist. Der geringe elektrische Widerstand des Hochspannungskabels 1 kann nämlich beim Einsatz in einer elektrostatischen Beschichtungsanlage bei einer Entladung zu starken Stromschwingungen führen, was unerwünscht ist.
  • Figur 2 zeigt ein entsprechend verbessertes Hochspannungskabel 1, wie es in EP 0 829 883 A2 beschrieben ist. Dieses Hochspannungskabel 1 stimmt teilweise mit dem vorstehend beschriebenen und in Figur 1 gezeigten Hochspannungskabel 1 überein, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten dieselben Bezugszeichen verwendet werden.
  • Eine Besonderheit dieses Hochspannungskabels 1 besteht darin, dass der Isolationsmantel 4 aus zwei koaxialen und in radialer Richtung übereinander liegenden Schichten 4.1, 4.2 besteht.
  • Eine weitere Besonderheit dieses bekannten Hochspannungskabels 1 besteht darin, dass die Kabelseele 2 aus einem elektrisch isolierenden Kunststoff (z.B. Polyester) besteht und deshalb keinen Strom leitet. Die fadenförmige und elektrisch isolierende Kabelseele 2 dient hierbei als mechanischer Träger für eine Leiterschicht 6, die beispielsweise aus mit Rußteilchen gefülltem Polyethylen (PE) bestehen kann. Die Leiterschicht 6 weist jedoch einen wesentlich größeren elektrischen Widerstand auf als die leitfähige Kabelseele 2 aus Kupfer gemäß Figur 1. Dies ist vorteilhaft, weil das Hochspannungskabel 1 gemäß Figur 2 somit einen größeren elektrischen Widerstand aufweist, wodurch beim Einsatz in einer elektrostatischen Beschichtungsanlage die unerwünschten Stromschwingungen bei Entladungsvorgängen gedämpft werden.
  • Nachteilig an dem Hochspannungskabel 1 gemäß Figur 2 ist jedoch die Tatsache, dass beim Kontakt mit Vaseline oder Isolationsölen (z.B. Transformatoröl) die elektrische Leitfähigkeit verloren gehen kann. Bei der herkömmlichen Steckertechnik von Hochspannungskabeln ist nämlich ein Verfüllen mit Vaseline vorgesehen. Diese Vaseline kann von den Kabelenden des Hochspannungskabels 1 ausgehend in das Hochspannungskabel 1 eindringen, wobei sich das Hochspannungskabel 1 aufgrund des Kapillareffektes vom Kabelende ausgehend mit Vaseline vollsaugen kann. Die eindringende Vaseline hat zur Folge, dass die Leiterschicht 6 aufgrund der eindiffundierenden Vaseline elektrisch isolierend wird, wobei das Hochspannungskabel 1 funktionsunfähig wird.
  • Aus US 3 792 409 A ist ein Hochspannungskabel gemäß dem Oberbegriff des Anspruchs 1 bekannt.
  • Dieses bekannte Hochspannungskabel ist jedoch ebenfalls nicht optimal.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, ein entsprechend verbessertes Hochspannungskabel zu schaffen, das sich insbesondere für den Einsatz in einer elektrostatischen Beschichtungsanlage eignet.
  • Zum einen soll das erfindungsgemäße Hochspannungskabel beim Einsatz in einer elektrostatischen Beschichtungsanlage die unerwünschten Stromschwingungen dämpfen, die beim Einsatz des bekannten Hochspannungskabels gemäß Figur 1 bei Lade- und Entladevorgängen auftreten können.
  • Zum anderen soll das erfindungsgemäße Hochspannungskabel aber auch verhindern, dass die elektrische Leitfähigkeit durch den Kontakt mit Vaseline oder Isolierölen (z.B. Transformatoröl) beeinflusst wird oder gar verloren geht.
  • Diese Aufgabe wird durch ein erfindungsgemäßes Hochspannungskabel gemäß dem Hauptanspruch gelöst.
  • Die Erfindung sieht zunächst eine Übereinstimmung mit dem Stand der Technik vor, dass das Hochspannungskabel eine mittig angeordnete Kabelseele aufweist, die von einem elektrisch isolierenden Isolationsmantel umgeben ist. Die Erfindung unterscheidet sich von den eingangs beschriebenen herkömmlichen Hochspannungskabeln dadurch, dass die Kabelseele einen mittleren elektrischen Widerstand aufweist.
  • Im Gegensatz zu dem bekannten Hochspannungskabel gemäß Figur 1 ist die Kabelseele also nicht elektrisch hochleitfähig, wodurch unerwünschte Stromschwingungen bei Lade- und Entladevorgängen vermieden werden.
  • Im Gegensatz zu dem herkömmlichen Hochspannungskabel gemäß Figur 2 ist das erfindungsgemäße Hochspannungskabel gegenüber Vaseline oder Isolierölen unempfindlich und ändert seinen elektrischen Widerstand dadurch kaum.
  • Der im Rahmen der Erfindung verwendete Begriff eines mittleren elektrischen Widerstands ist zu unterscheiden von einem elektrischen Leiter (z.B. Kupfer) einerseits und einem elektrischen Isolator andererseits und hat vorzugsweise die Bedeutung, dass der elektrische Widerstand bezogen auf die Länge des Hochspannungskabels im Bereich von 1kΩ/m-1MΩ/m, 2kΩ/m-500kΩ/m, 5kΩ/m-200kΩ/m oder 10kΩ/m-50kΩ/m liegt. Der elektrische Widerstand der leitfähigen Kabelseele liegt also vorzugsweise in einem Bereich, der für einen Einsatz in einer elektrostatischen Beschichtungsanlage zur elektrostatischen Beschichtungsmittelaufladung geeignet ist.
  • Gemäß der Erfindung besteht die Kabelseele aus verdrillten Vliesstreifen, die sich wiederum aus mehreren Filamenten zusammensetzen und selbst elektrisch leitfähig sind oder elektrisch leitfähig gemacht werden. Hierbei kann ein einziger Vliesstreifen verdrillt werden und dann die Kabelseele bilden. Es ist jedoch im Rahmen der Erfindung auch möglich, dass mehrere Vliesstreifen in mehreren Strängen verdrillt werden und dann die Kabelseele bilden.
  • In einer Variante der Erfindung bestehen die einzelnen Fasern bzw. Filamente der Vliesstreifen aus einem elektrisch leitfähigen Kunststoff, beispielsweise aus Polyethylen (PE), das mit Rußteilchen gefüllt ist, wie es aus EP 0 829 883 A2 beschrieben ist.
  • In einer anderen Variante der Erfindung bestehen die einzelnen Fasern des Vliesstreifens dagegen aus einem elektrisch isolierenden Kunststoff, der durch eine Oberflächenbeschichtung mit einem elektrisch leitfähigen Material elektrisch leitfähig gemacht ist.
  • Es wurde bereits vorstehend erwähnt, dass bei den herkömmlichen Hochspannungskabeln die eindringende Vaseline dazu führen kann, dass die elektrische Leitfähigkeit verloren geht. Diesem störenden Effekt kann die Erfindung auf zwei verschiedene Arten entgegenwirken.
  • Zum einen kann die Erfindung verhindern, dass Vaseline überhaupt aufgrund des Kapillareffektes in das Hochspannungskabel eindringt.
  • Zum anderen kann die Erfindung aber auch verhindern, dass die eingedrungene Vaseline oder Isolationsöle zu einer Beeinflussung oder gar zu einem Verlust der elektrischen Leitfähigkeit führen, wobei dieser Effekt aus der Konstruktion des erfindungsgemäßen Hochspannungskabels resultiert.
  • Das Eindringen der Vaseline in das Hochspannungskabel kann im Rahmen der Erfindung wiederum auf zwei verschiedene Arten verhindert werden.
  • Zum einen kann die Kabelseele so grobfaserig sein, dass die Zwischenräume zwischen den einzelnen Fasern der Kabelseele so groß sind, dass die Kapillarkraft nicht ausreicht, um Vaseline in die Zwischenräume zu saugen. Auf diese Weise wird also verhindert, dass Vaseline überhaupt in das erfindungsgemäße Hochspannungskabel eindringt.
  • Zum anderen kann das Eindringen von Vaseline in das Hochspannungskabel aber auch dadurch verhindert werden, dass die Zwischenräume zwischen den Fasern der Kabelseele entfallen, so dass die Kabelseele überhaupt keine Vaseline aufsaugen kann. Beispielsweise können die Vliesstreifen der Kabelseele so stark verdrillt werden, dass die Zwischenräume zwischen den einzelnen Fasern nahezu vollständig entfallen. Es besteht jedoch alternativ auch die Möglichkeit, dass die Zwischenräume zwischen den Fasern der Kabelseele aufgefüllt werden, um zu verhindern, dass Vaseline in die Zwischenräume eindringen kann.
  • Ferner ist zu erwähnen, dass die elektrisch leitfähige Kabelseele bei dem erfindungsgemäßen Hochspannungskabel von einem sogenannten Feldglätter umgeben sein kann, wie es bereits aus dem Stand der Technik bekannt ist. Ein derartiger Feldglätter kann beispielsweise aus elektrisch leitfähigem Kunststoff bestehen, wie beispielsweise Polyolefin, wie es aus EP 0 829 863 A2 bekannt ist. Hierbei ist zu erwähnen, dass der Feldglätter vorzugsweise ebenfalls einen mittleren elektrischen Widerstand aufweist, wobei die Bedeutung dieses Begriffs bereits vorstehend erläutert wurde. Der elektrische Widerstand des Feldglätters ist jedoch vorzugsweise größer als der elektrische Widerstand der Kabelseele, um eine Feldglättung bewirken zu können. Allerdings ist der elektrische Widerstand des Feldglätters vorzugsweise kleiner als der elektrische Widerstand des Isolationsmantels. Der Feldglätter ist zwischen der Kabelseele und dem Isolationsmantel angeordnet, wie es bereits aus dem Stand der Technik bekannt ist. Hierbei ist zu erwähnen, dass der Feldglätter vorzugsweise ohne eine Zwischenschicht direkt auf der Kabelseele bzw. auf der leitfähigen Beschichtung der Kabelseele aufliegt.
  • Ferner weist das erfindungsgemäße Hochspannungskabel vorzugsweise in Übereinstimmung mit dem Stand der Technik einen Abschirmmantel auf, um das Hochspannungskabel elektrisch abzuschirmen, wobei der Abschirmmantel vorzugsweise niederohmig ist. Beispielsweise kann der Abschirmmantel aus einem Kupferlitzengeflecht oder aus einer Kombination eines Kupferlitzengeflechts mit einem Kunststoff bestehen. Jedenfalls ist der Widerstand des Abschirmmantels vorzugsweise kleiner als der Widerstand der Kabelseele und des Feldglätters.
  • Hierbei ist zu erwähnen, dass die Durchschlagsfestigkeit des Hochspannungskabels unter anderem von der Feldverteilung innerhalb des Hochspannungskabels abhängig ist. Die Feldstärke sollte deshalb an der Leiterschicht möglichst klein sein. Allerdings hängt die Feldstärke vom Verhältnis des Durchmessers dA des Abschirmmantels vom Durchmesser dS der Kabelseele ab, wobei das Durchmesserverhältnis dA/dS im Bereich von 1,5 - 5, 2 - 4 oder 2 - 3,4 liegen sollte.
  • Schließlich kann das erfindungsgemäße Hochspannungskabel in Übereinstimmung mit dem Stand der Technik noch einen elektrisch isolierenden Außenmantel aufweisen, wobei der Außenmantel beispielsweise aus Kunststoff bestehen kann, insbesondere aus Polyurethan (PU). Der Außenmantel hat vorzugsweise im Vergleich zu dem Isolationsmantel eine größere mechanische Abriebfestigkeit, ist schwerer entflammbar und/oder säurebeständiger.
  • Ferner ist zu erwähnen, dass das erfindungsgemäße Hochspannungskabel vorzugsweise eine ausreichende Spannungsfestigkeit für einen Einsatz in einer elektrostatischen Beschichtungsanlage aufweist. Die Spannungsfestigkeit des Hochspannungskabels beträgt deshalb vorzugsweise mindestens 1kV, 2kV, 5kV, 10kV, 20kV, 50kV, 100kV oder sogar 150kV.
  • Ferner ist zu erwähnen, dass das Hochspannungskabel vorzugsweise eine elektrische Kapazität aufweist, die einen Einsatz in einer elektrostatischen Beschichtungsanlage ermöglicht. Die elektrische Kapazität des Hochspannungskabels liegt deshalb vorzugsweise im Bereich von 1pF/m-1000pF/m, 10pF/m-500pF/m, 20pF/m-250pF/m, 50pF/m-100pF/m oder 70pF/m-100pF/m.
  • Darüber hinaus ist zu erwähnen, dass die elektrisch mittelmäßig leitfähige Kabelseele an Verbindungsstellen entlang des Hochspannungskabels elektrisch mit dem Feldglätter umgeben sein kann. Vorzugsweise erstrecken sich diese Verbindungsstellen nicht über die gesamte Länge des Hochspannungskabels, sondern sind nur punktuell.
  • Die elektrische Kontaktierung des Hochspannungskabels an den Kabelenden kann beispielsweise durch einen metallischen Anschlussdorn erfolgen, der axial in die Stirnfläche der Kabelseele eingestochen oder geschraubt wird, um das Hochspannungskabel elektrisch zu kontaktieren. Weitere Anschlusstechniken, wie z.B. Schneid- und Klemmtechnik sind ebenfalls anwendbar.
  • Weiterhin ist zu erwähnen, dass die Erfindung nicht nur das vorstehend beschriebene Hochspannungskabel als einzelnes Bauteil umfasst. Vielmehr umfasst die Erfindung auch die neuartige Verwendung eines solchen Hochspannungskabels zur elektrostatischen Beschichtungsmittelaufladung in einer Beschichtungsanlage, insbesondere in einer Lackieranlage zur Lackierung von Kraftfahrzeugkarosseriebauteilen sowie bei der Teilelackierung in der Allgemein- oder Zulieferindustrie.
  • Schließlich umfasst die Erfindung auch eine elektrostatische Beschichtungsmittelaufladung, die beispielsweise in einer Lackieranlage eingesetzt werden kann, um das zu applizierende Beschichtungsmittel (z.B. Lack, Pulverlack) elektrostatisch aufzuladen.
  • Die erfindungsgemäße Beschichtungsmittelaufladung weist zunächst einen Hochspannungsgenerator auf, der die erforderliche Hochspannung zum Aufladen des Beschichtungsmittels erzeugt. Weiterhin umfasst die erfindungsgemäße Beschichtungsmittelaufladung eine Hochspannungselektrode, um das zu applizierende Beschichtungsmittel elektrostatisch aufzuladen. Derartige Hochspannungselektroden sind an sich aus dem Stand der Technik bekannt und können beispielsweise als Außenelektroden eines Rotationszerstäubers ausgebildet sein. Es besteht jedoch im Rahmen der Erfindung auch die Möglichkeit einer Direktaufladung innerhalb eines Rotationszerstäubers.
  • Bei der erfindungsgemäßen Beschichtungsmittelaufladung erfolgt die elektrische Verbindung zwischen dem Hochspannungsgenerator und der Hochspannungselektrode mindestens auf einem Teil der Verbindungslänge durch das erfindungsgemäße Hochspannungskabel, wie es vorstehend beschrieben wurde.
  • Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen:
  • Figur 1
    eine Querschnittsansicht eines herkömmlichen Hochspannungskabels mit einer Kabelseele aus Kupfer,
    Figur 2
    eine Querschnittsansicht eines herkömmlichen Hochspannungskabels mit einer elektrisch isolierenden Kabelseele, die elektrisch leitfähig beschichtet ist,
    Figur 3
    eine Querschnittsansicht eines erfindungsgemäßen Hochspannungskabels mit einer elektrisch leitfähigen Kabelseele,
    Figur 4
    eine Abwandlung von Figur 3 mit einem zusätzlichen Abschirmmantel, sowie
    Figur 5
    eine schematische Darstellung einer erfindungsgemäßen Beschichtungsmittelaufladung.
  • Figur 3 zeigt ein bevorzugtes Ausführungsbeispiel eines erfindungsgemäßen Hochspannungskabels 1, das teilweise mit dem vorstehend beschriebenen und in Figur 2 gezeigten Hochspannungskabel 1 übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten dieselben Bezugszeichen verwendet werden.
  • Eine Besonderheit dieses erfindungsgemäßen Ausführungsbeispiels besteht in der Gestaltung und dem Aufbau der Kabelseele 2. So besteht die Kabelseele 2 hier aus verdrillten Vliesstreifen, die jeweils aus mehreren Filamenten (Fasern) bestehen und elektrisch leitfähig gemacht sind. Die Kabelseele 2 besteht also aus Kunststoff als Trägermaterial, das elektrisch leitfähig gemacht ist, beispielsweise durch Befüllung oder Beschichtung mit Rußteilchen. Die Kabelseele 2 weist deshalb einen mittleren elektrischen Widerstand im Bereich von 10kΩ/m-100kΩ/m auf.
  • Die Gestaltung der Kabelseele 2 aus verdrillten Vliesstreifen verhindert im Vergleich zu dem herkömmlichen Hochspannungskabel 1 gemäß Figur 2 vorteilhaft, dass eindringende Vaseline die elektrische Leitfähigkeit des Hochspannungskabels 1 beeinträchtigt.
  • Der mittlere elektrische Widerstand der Kabelseele 2 sorgt im Vergleich zu dem herkömmlichen Hochspannungskabel 1 gemäß Figur 1 dafür, dass bei Entladevorgängen in einer elektrostatischen Beschichtungsanlage keine übermäßigen Stromschwingungen auftreten.
  • Figur 4 zeigt eine Abwandlung von Figur 3, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten dieselben Bezugszeichen verwendet werden.
  • Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass zwischen dem Außenmantel 5 und der äußeren Schicht 4.2 des Isolationsmantels 4 zusätzlich ein Abschirmmantel 7 angeordnet ist, der aus einem Kupferlitzengeflecht bestehen kann.
  • Schließlich zeigt Figur 5 in stark vereinfachter Weise eine erfindungsgemäße Beschichtungsmittelaufladung mit einem Hochspannungsgenerator 8, der über das erfindungsgemäße Hochspannungskabel 1 mit einem elektrostatischen Zerstäuber 9 verbunden ist, wie er an sich aus dem Stand der Technik bekannt ist.
  • Der elektrostatische Zerstäuber 9 gibt einen Sprühstrahl 10 eines elektrostatisch aufgeladenen Beschichtungsmittels (z.B. Lack) auf ein elektrisch geerdetes Kraftfahrzeugkarosseriebauteil 11 ab.
  • Der mittlere elektrische Widerstand des Hochspannungskabels 1 sorgt vorteilhaft dafür, dass bei Entladevorgängen keine übermäßigen Stromschwingungen auftreten.
  • Die vorstehend beschriebene konstruktive Gestaltung des Hochspannungskabels 1 hat dagegen den Vorteil, dass eindringende Vaseline nicht zu einer Änderung oder gar zu einem Verlust der elektrischen Leitfähigkeit des Hochspannungskabels 1 führt.
  • Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen. Insbesondere beansprucht die Erfindung auch Schutz für den Gegenstand und die Merkmale der Unteransprüche unabhängig von den jeweils in Bezug genommenen Ansprüchen.
  • Bezugszeichenliste:
  • 1
    Hochspannungskabel
    2
    Kabelseele
    3
    Polyolefin
    4
    Isolationsmantel
    4.1
    Schicht des Isolationsmantels
    4.2
    Schicht des Isolationsmantels
    5
    Außenmantel
    6
    Leiterschicht
    7
    Abschirmmantel
    8
    Hochspannungsgenerator
    9
    Zerstäuber
    10
    Sprühstrahl
    11
    Kraftfahrzeugkarosseriebauteil

Claims (12)

  1. Hochspannungskabel (1), insbesondere zur elektrostatischen Beschichtungsmittelaufladung in einer elektrostatischen Beschichtungsanlage, mit
    a) einer mittig angeordneten Kabelseele (2) und
    b) einem elektrisch isolierenden Isolationsmantel (4, 4.1, 4.2), der die Kabelseele (2) mantelförmig umgibt,
    c) wobei die Kabelseele (2) einen mittleren elektrischen Widerstand aufweist und Fasern (2) enthält,
    dadurch gekennzeichnet,
    d) dass die Fasern der Kabelseele (2) ein Vlies bilden,
    e) dass mindestens ein Vliesstreifen des Vlieses verdrillt ist und die Kabelseele (2) bildet, und
    f) dass die Vliesstreifen jeweils aus mehreren Filamenten der Fasern bestehen.
  2. Hochspannungskabel (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Kabelseele (2) mindestens teilweise aus einem elektrisch leitfähigen Kunststoff besteht.
  3. Hochspannungskabel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    a) dass die Kabelseele (2) so grobfaserig ist und die Zwischenräume zwischen den einzelnen Fasern der Kabelseele (2) so groß sind, dass die Kapillarkraft nicht ausreicht, um Vaseline in die Zwischenräume zu saugen, oder
    b) dass die Zwischenräume zwischen den Fasern der Kabelseele (2) vollständig ausgefüllt sind, so dass die Kabelseele (2) keine Vaseline aufsaugen kann.
  4. Hochspannungskabel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    a) dass die elektrisch leitfähige Kabelseele (2) von einem Feldglätter (3) ummantelt ist, und
    b) dass der Feldglätter (3) aus Kunststoff besteht, insbesondere aus Polyolefin, und
    c) dass der Feldglätter (3) einen mittleren elektrischen Widerstand aufweist, und
    d) dass der elektrische Widerstand des Feldglätters (3) größer ist als der elektrische Widerstand der Kabelseele (2), und
    e) dass der elektrische Widerstand des Feldglätters (3) kleiner ist als der elektrische Widerstand des Isolationsmantels (4, 4.1, 4.2), und
    f) dass der Feldglätter zwischen der Kabelseele (2) und dem Isolationsmantel (4, 4.1, 4.2) angeordnet ist, und
    g) dass der Feldglätter (3) ohne eine Zwischenschicht direkt auf der Kabelseele (2) aufliegt.
  5. Hochspannungskabel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    a) dass das Hochspannungskabel (1) zur elektrischen Abschirmung einen Abschirmmantel (7) aufweist, und
    b) dass der Abschirmmantel (7) einen mittleren elektrischen Widerstand aufweist oder niederohmig ist, und
    c) dass der Abschirmmantel (7) den Isolationsmantel (4, 4.1, 4.2) umgibt, und
    d) dass der Widerstand des Abschirmmantels (7) kleiner ist als der Widerstand der Kabelseele (2) und/oder des Feldglätters (3), und
    e) dass der Abschirmmantel (7) einen Durchmesser dA und die Kabelseele (2) einen Durchmesser dS aufweist, wobei das Durchmesserverhältnis dA/dS größer ist als 1,5 oder 2 und/oder kleiner als 5, 4 oder 3,4.
  6. Hochspannungskabel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    a) dass ein elektrisch isolierender Außenmantel (5) die Kabelseele (2), den Feldglätter (3), den Isolationsmantel (4, 4.1, 4.2) und/oder den Abschirmmantel (7) mantelförmig umgibt, und
    b) dass der Außenmantel (5) aus Kunststoff besteht, insbesondere aus Polyurethan, und
    c) dass der Außenmantel (5) gegenüber dem Isolationsmantel (4, 4.1, 4.2)
    - eine größere Abriebfestigkeit aufweist,
    - schwerer entflammbar ist und
    - säurebeständiger ist.
  7. Hochspannungskabel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    a) dass der mittlere elektrische Widerstand des Leiterelements und/oder des Feldglätters (3) bezogen auf die Länge
    - mindestens 1kΩ/m, 2kΩ/m, 5kΩ/m, 10kΩ/m und
    - höchstens 1MΩ/m, 500kΩ/m, 200kΩ/m, 100kΩ/m, 50kΩ/m oder 20kΩ/m beträgt, und
    b) dass das Hochspannungskabel (1) eine Spannungsfestigkeit von mindestens 1kV, 2kV, 5kV, 10kV, 20kV, 50kV, 100kV oder 150kV aufweist, und
    c) dass das Hochspannungskabel (1) einen elektrischen Widerstand aufweist, der bezogen auf die Längen
    - mindestens 1kΩ/m, 2kΩ/m, 5kΩ/m, 10kΩ/m und
    - höchstens 1MΩ/m, 500kΩ/m, 200kΩ/m, 100kΩ/m, 50kΩ/m oder 20kΩ/m beträgt, und
    d) dass das Hochspannungskabel (1) eine elektrische Kapazität aufweist, die bezogen auf die Länge
    - mindestens 1pF/m, 10pF/m, 20pF/m, 50pF/m, 70pF/m und
    - höchstens 1000pF/m, 500pF/m, 250pF/m, 100pF/m beträgt.
  8. Hochspannungskabel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    a) dass der Isolationsmantel (4, 4.1, 4.2) aus Kunststoff besteht, insbesondere aus Polyolefin, und
    b) dass der Isolationsmantel (4, 4.1, 4.2) mehrere koaxiale Schichten (4.1, 4.2) aufweist, und
    c) dass die Schichten (4.1, 4.2) des Isolationsmantels (4, 4.1, 4.2) einen unterschiedlichen elektrischen Widerstand aufweisen.
  9. Hochspannungskabel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    a) dass die Kabelseele (2) an Verbindungsstellen elektrisch mit dem Feldglätter (3) verbunden, und/oder
    b) dass sich die Verbindungsstellen nicht über die gesamte Länge des Hochspannungskabels (1) erstrecken, und/oder
    c) dass die Verbindungsstellen punktuell sind.
  10. Hochspannungskabel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an mindestens einem Ende des Hochspannungskabels (1) ein metallischer Anschlussdorn axial in die Stirnfläche der Kabelseele (2) eingestochen ist, um das Hochspannungskabel (1) elektrisch zu kontaktieren.
  11. Verwendung eines Hochspannungskabels (1) nach einem der vorhergehenden Ansprüche zur elektrostatischen Beschichtungsmittelaufladung in einer Beschichtungsanlage, insbesondere in einer Lackieranlage zur Lackierung von Kraftfahrzeugkarosseriebauteilen.
  12. Einrichtung zur elektrostatischen Beschichtungsmittelaufladung, insbesondere in einer Beschichtungsanlage, mit
    a) einem Hochspannungsgenerator (8) zur Erzeugung einer Hochspannung,
    b) einer Hochspannungselektrode zur elektrostatischen Aufladung des zu applizierenden Beschichtungsmittels, insbesondere an oder einem Zerstäuber (9), und
    c) einem Hochspannungskabel (1) zur elektrischen Verbindung des Hochspannungsgenerators (8) mit der Hochspannungselektrode,
    dadurch gekennzeichnet,
    d) dass das Hochspannungskabel (1) nach einem der Ansprüche 1 bis 10 ausgebildet ist.
EP15700086.0A 2014-01-30 2015-01-09 Hochspannungskabel Active EP3074984B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15700086T PL3074984T3 (pl) 2014-01-30 2015-01-09 Kabel wysokiego napięcia

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202014100412 2014-01-30
DE102014010777.9A DE102014010777A1 (de) 2014-01-30 2014-07-21 Hochspannungskabel
PCT/EP2015/000030 WO2015113729A1 (de) 2014-01-30 2015-01-09 Hochspannungskabel

Publications (2)

Publication Number Publication Date
EP3074984A1 EP3074984A1 (de) 2016-10-05
EP3074984B1 true EP3074984B1 (de) 2017-08-16

Family

ID=53522746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15700086.0A Active EP3074984B1 (de) 2014-01-30 2015-01-09 Hochspannungskabel

Country Status (11)

Country Link
US (1) US10811167B2 (de)
EP (1) EP3074984B1 (de)
JP (1) JP6526028B2 (de)
KR (1) KR102350742B1 (de)
CN (1) CN105940464B (de)
DE (1) DE102014010777A1 (de)
ES (1) ES2645873T3 (de)
HU (1) HUE035387T2 (de)
MX (1) MX354824B (de)
PL (1) PL3074984T3 (de)
WO (1) WO2015113729A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017118350A1 (de) * 2017-08-11 2019-02-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladesäule für unterschiedliche Parkraumsituationen

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703356A (en) * 1951-02-01 1955-03-01 Gen Motors Corp High ohmic resistance conductor
US2790053A (en) * 1951-12-27 1957-04-23 Thomas F Peterson Shielded ignition cable and resistors
US3792409A (en) * 1973-04-02 1974-02-12 Ransburg Corp Electrostatic hand gun cable
US4185164A (en) * 1978-01-10 1980-01-22 Nasa Voltage feed through apparatus having reduced partial discharge
US4576827A (en) * 1984-04-23 1986-03-18 Nordson Corporation Electrostatic spray coating system
US4739935A (en) * 1986-03-12 1988-04-26 Nordson Corporation Flexible voltage cable for electrostatic spray gun
US4988949A (en) * 1989-05-15 1991-01-29 Westinghouse Electric Corp. Apparatus for detecting excessive chafing of a cable arrangement against an electrically grounded structure
US5171938A (en) * 1990-04-20 1992-12-15 Yazaki Corporation Electromagnetic wave fault prevention cable
DE19637472A1 (de) 1996-09-13 1998-03-26 Schnier Elektrostatik Gmbh Schwingungsfreies bedämpftes Hochspannungskabel
JP3524287B2 (ja) 1996-09-13 2004-05-10 パイオニア株式会社 光学式ピックアップ
JP4103978B2 (ja) * 1999-02-19 2008-06-18 株式会社クラベ 気密電線の製造方法
DE10101641A1 (de) * 2001-01-16 2002-07-18 Nexans France S A Elektrische Leitung
US20020189845A1 (en) * 2001-06-14 2002-12-19 Gorrell Brian E. High voltage cable
US7665451B2 (en) * 2005-04-04 2010-02-23 Joe Luk Mui Lam Ignition apparatus
US7960652B2 (en) * 2008-10-02 2011-06-14 Delphi Technologies, Inc. Sealed cable and terminal crimp
KR20130132754A (ko) * 2010-07-23 2013-12-05 시스콤 어드밴스드 머티어리얼즈, 인코포레이티드 전기 전도성 금속-도금된 섬유, 이의 제조를 위한 연속 공정 및 이의 용도
WO2012142129A1 (en) 2011-04-12 2012-10-18 Daniel Allan Electrical transmission cables with composite cores

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014010777A1 (de) 2015-07-30
KR102350742B1 (ko) 2022-01-14
JP6526028B2 (ja) 2019-06-05
MX354824B (es) 2018-03-21
CN105940464A (zh) 2016-09-14
ES2645873T3 (es) 2017-12-11
PL3074984T3 (pl) 2018-01-31
WO2015113729A1 (de) 2015-08-06
HUE035387T2 (en) 2018-05-02
CN105940464B (zh) 2020-09-29
US10811167B2 (en) 2020-10-20
JP2017510028A (ja) 2017-04-06
US20170011819A1 (en) 2017-01-12
KR20160114659A (ko) 2016-10-05
MX2016009885A (es) 2016-10-28
EP3074984A1 (de) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2007045345A1 (de) Dreileiterkabel
EP1337022A1 (de) Hüllkörper für ein Hochspannungskabel und Kabelelement, welches mit einem solchen Hüllkörper versehen ist
DE102008063086A1 (de) Erdungskabel, insbesondere Bahnerdungskabel zur Erdung von Eisenbahneinrichtungen
DE3929450A1 (de) Elektrofilterkabel
DE102013005901A1 (de) Erdungskabel, insbesondere Bahnerdungskabel zur Erdung von Eisenbahneinrichtungen
EP3639282B1 (de) Steckbare hochspannungsdurchführung und elektrisches gerät mit steckbarer hochspannungsdurchführung
DE102011117085A1 (de) Bordnetzkomponente für ein Datenübertragungssystem in einem Kraftfahrzeug
DE102014223119B4 (de) Datenkabel sowie Verfahren zur Herstellung eines Datenkabels
EP1490881B1 (de) Dreileiterkabel
DE102019112742A1 (de) Koaxialleitung
EP3074984B1 (de) Hochspannungskabel
EP2495733B1 (de) Flexible elektrische Leitung
DE3103210C2 (de) Hochspannungs-Zündkabel
DE102015221906A1 (de) Datenkabel sowie Verwendung des Datenkabels in einem Kraftfahrzeug
AT515598B1 (de) Elektrische Leitung zum Übertragen von Datensignalen
DE69736916T2 (de) Garnitur für Kabelendverschluss und Material für die Bildung der Garnitur
DE102010033441A1 (de) Kabelanordnung
EP3369099B1 (de) Elektrische leitung
DE2126696A1 (de) Kabel
DE102017212977A1 (de) Steckbare Hochspannungsdurchführung und elektrisches Gerät mit der steckbaren Hochspannungsdurchführung
DE102017212026A1 (de) Schirmring und/oder Steigungsausgleich für eine Transformatorspule
DE102017204266A1 (de) Leitung
DE19638603A1 (de) Wanderfeldleitung
DE1465212A1 (de) Isoliertes elektrisches Kabel,insbesondere fuer besonders hohe Spannungen
DE3204761C2 (de) Koaxiales Hochfrequenz-Kabel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170131

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20170418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 919811

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015001692

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2645873

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171211

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170816

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E035387

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015001692

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180109

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 919811

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200109

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231229

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240123

Year of fee payment: 10

Ref country code: DE

Payment date: 20240119

Year of fee payment: 10

Ref country code: CZ

Payment date: 20240103

Year of fee payment: 10

Ref country code: GB

Payment date: 20240123

Year of fee payment: 10

Ref country code: SK

Payment date: 20240104

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240108

Year of fee payment: 10

Ref country code: IT

Payment date: 20240122

Year of fee payment: 10

Ref country code: FR

Payment date: 20240124

Year of fee payment: 10