EP3074631A1 - Zylinderkopf für einen luftverdichter - Google Patents

Zylinderkopf für einen luftverdichter

Info

Publication number
EP3074631A1
EP3074631A1 EP14789795.3A EP14789795A EP3074631A1 EP 3074631 A1 EP3074631 A1 EP 3074631A1 EP 14789795 A EP14789795 A EP 14789795A EP 3074631 A1 EP3074631 A1 EP 3074631A1
Authority
EP
European Patent Office
Prior art keywords
cylinder head
annular groove
groove
lamella
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14789795.3A
Other languages
English (en)
French (fr)
Other versions
EP3074631B1 (de
Inventor
Wilhelm Haak
Uwe Oppermann
Oliver Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF CV Systems Hannover GmbH
Original Assignee
Wabco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wabco GmbH filed Critical Wabco GmbH
Publication of EP3074631A1 publication Critical patent/EP3074631A1/de
Application granted granted Critical
Publication of EP3074631B1 publication Critical patent/EP3074631B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/064Cooling by a cooling jacket in the pump casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/125Cylinder heads

Definitions

  • the invention relates to a cylinder head for an air compressor with at least one intake passage for sucking uncompressed air from the environment and at least one pressure channel for discharging the compressed air, and with a cooling water passage, wherein the at least one intake passage by means of at least one arranged on an underside of the cylinder head suction plate is sealed pressure-tight relative to a compression space.
  • Compressors for generating compressed air are used inter alia for the operation of pneumatic brake systems in motor vehicles and rail vehicles.
  • the ambient air sucked in by the compressor should, as far as possible, heat up only slightly before reaching a compression space in the compressor.
  • the heat input into the cylinder head of a compressor is mainly caused by the compression heat released in the compression chamber.
  • the highly heated cylinder head inevitably gives off its heat to the intake air, which is usually conducted in at least one intake passage within the cylinder head to the compression chamber.
  • a particularly intensive heat input into the intake air takes place here in the region of the openings of the intake duct to the suction plate.
  • a reduction of the intake air temperature also brings about a considerable reduction of the compression end temperature with all its advantages sufficiently well known to the person skilled in the art.
  • DE 698 26 381 T2 relates to a piston compressor with a water-cooled cylinder head for the compression of gases or gas mixtures, such as air.
  • the compressor includes a cylinder head having an intake air intake port and an exhaust air exhaust port and partitions.
  • the cylinder head of the gas compressor is made of aluminum, which has a high thermal conductivity.
  • air cooling fins are formed on the inside of the cylinder head and adjacent to these flow galleries in order to release the released compression dissipate heat from the cylinder head into the environment.
  • a plurality of water cooling channels are admitted to the white ⁇ direct optimization of the cooling, and integrally formed fins are disposed within the flow path of the outlet air.
  • the invention has for its object to present a cylinder head for a pneumatic compressor, in which a temperature increase of the intake air when passing an intake passage is largely avoided.
  • the invention is based on the recognition that the undesired heating of the intake air in the region of an intake duct of a cylinder head can be reduced in a passive manner by providing thermal insulation.
  • the invention therefore relates to a cylinder head for an air compressor with at least one intake passage for sucking uncompressed air from the environment and at least one pressure channel for discharging the compressed air, and with a cooling water passage, wherein the at least one intake passage arranged by at least one on an underside of the cylinder head Suction lamella against a compression chamber is closed pressure-tight.
  • the at least one intake channel is surrounded in sections by a substantially lamellar, substantially concentric annular groove.
  • this design ensures that a temperature rise of the outside air flowing into the intake duct is kept low. Due to the poor heat transfer value of the suction plate, there is also a thermal insulation of the intake channel with respect to the compression space.
  • the thermally insulating annular groove leads in comparison to a conventional cylinder head to a marked reduction of the compression end temperature or the temperature of the compressed air discharged via the pressure channel of the air compressor, and consequently to a much lower oil consumption and to a reduced coking tendency of a equipped with the cylinder head according to the invention air compressor. Due to the resulting lower air volume, Lumenstrom can also reduce the necessary mechanical drive power of the compressor with unchanged compression power.
  • the annular groove is at least partially filled with a thermally insulating medium.
  • a thermally insulating medium may be, for example, air, or a porous, preferably closed-cell plastic.
  • the annular groove has two substantially mutually parallel groove walls. Due to the substantially rectangular cross-sectional geometry of the annular groove, the manufacturing process thereof is simplified.
  • the annular groove can be introduced, for example by milling in a cylinder head produced in advance in a casting process.
  • the groove bottom of the annular groove has a substantially semicircular cross-sectional geometry.
  • the annular groove has an opening which faces away from the at least one suction lamella.
  • the opening of the annular groove is oriented against the flow direction of the intake air via the intake channel, thereby resulting in a faster exchange of air in the annular groove.
  • the air in the annular groove always has a comparatively low temperature.
  • the groove bottom of the annular groove has at least one opening in the direction of the at least one suction lamella.
  • the annular groove has an opening which faces the at least one suction lamella.
  • the temperature of an existing between the annular groove and a cooling water channel (thin) material web corresponds approximately to the temperature of the cooling water in the adjacent cooling water channel.
  • the distance can be reduced to a few millimeters, as long as sufficient mechanical strength of the cylinder head is still given.
  • the annular groove has at least two openings which are alternately directed away from the at least one suction lamella or facing the at least one suction lamella. Due to the alternately oppositely oriented openings of the annular groove, the flow of oil and / or condensate is supported. Thus, oil and / or condensate, which has accumulated in a portion of the annular groove, the opening of the suction lamella away or upwardly against the flow direction of the sucked air, in an adjacent portion of the annular groove with an oppositely oriented, that is one after down, be discharged in the flow direction oriented opening.
  • At least one control channel is at least partially coverable by means of at least one sliding lamella for power regulation of the air compressor, and that the annular groove has an opening facing the at least one suction lamella and the at least one sliding lamella, wherein the annular groove at least in sections runs in the region of at least one control channel.
  • the cylinder head is preferably formed of aluminum or an aluminum alloy.
  • the cylinder head has excellent thermal properties, in particular via a good thermal conductivity, for optimum support of the direct or active effect of integrated into the cylinder head water cooling.
  • the direct or active cooling system is hereby supported by the indirect or passive cooling acting thermal insulation effect of the annular groove in the region of the intake port.
  • FIG. 1 is a schematic longitudinal sectional view of a first embodiment of a cylinder head
  • FIG. 2 is a schematic longitudinal sectional view of a second embodiment of a cylinder head
  • FIG. 3 is a schematic longitudinal sectional view of a third embodiment of a cylinder head
  • Fig. 4 is a schematic longitudinal sectional view of a fourth embodiment of a cylinder head.
  • Fig. 5 is a schematic representation of the operation of the invention. 1 therefore shows a greatly simplified longitudinal section through a first embodiment of a cylinder head 10 according to the invention.
  • This has inter alia an approximately hollow cylindrical intake passage 12 for sucking the air to be compressed from the environment or another gas or gas mixture, two cooling water channels 14, 16 and a pressure channel, not shown in the drawings, through which the compressed air led out of the cylinder head 10 becomes.
  • suction lamella 20 of the intake passage 12 against a compression chamber 22 pressure-tight shut off.
  • the suction of the air to be compressed from the environment via the intake channel 12 takes place here in a flow direction 24 illustrated by an arrow.
  • the suction channel 12 has a suction lamella near and concentrically surrounding this annular groove 26 which is filled with a thermally insulating medium as best possible, which is here merely exemplary of air from the environment.
  • the annular groove 26 has two substantially mutually parallel groove walls 28, 30, which merge into a groove bottom 32 with an approximately semicircular longitudinal section geometry.
  • An annular opening 34 in the annular groove 26 faces away from the suction lamella 20 or is directed opposite to the flow direction 24.
  • At least one optional opening 36 is embedded in the groove bottom 32.
  • the spatial position of the opening 36 is selected so that the suction lamella 20, regardless of its position, the opening 36 always seals against the compression space 22.
  • the annular groove 26 completely concentrically surrounds the intake duct 12 on an end section 38 facing the suction lamella 20, the intake duct 12 is effectively thermally insulated in the region of this end section 38 of the intake duct 12 with respect to the cylinder head 10, so that an undesirable heat input from the home Cylinder head 10 is severely limited in the over the intake passage 12 into the compression chamber 22 reaching air. Due to the approximately hollow cylindrical geometry of the annular groove 26, there are virtually no relevant thermal bridges between the end portion 38 of the intake passage 12 and the cylinder head 10th
  • the cylinder head 10 is preferably formed from a good thermal conductivity aluminum alloy or pure aluminum, to effectively support the heat dissipation from the cylinder head 10 into the environment and to reduce the risk of thermal stress.
  • cylinder heads made of aluminum alloys or pure aluminum manufacturing technology comparatively easy to manufacture and edit, have a low weight and still achieve sufficient mechanical strength.
  • the thermal insulation between the compression chamber 22 and the intake passage 12 is effected by the suction lamella 20, which has a comparatively poor thermal conductivity or a high thermal insulation capacity, so that the thermal insulation effect of the annular groove 26 is effectively supported or supplemented on the underside.
  • FIG. 2 shows a highly schematic longitudinal sectional view of a second embodiment of a cylinder head 50 according to the invention.
  • the cylinder head 50 has a hollow cylindrical intake passage 52 and two cooling water passages 54, 56.
  • An underside 58 of the cylinder head 50 has a movable suction lamella 60 which closes off the intake passage 52 in a pressure-tight manner against a compression space 62.
  • the ambient air is sucked into the compression space 62 in a flow direction 64 via the intake channel 52 when the suction lamella 60 is opened sufficiently wide.
  • a suction channel near the suction channel 52 approximately sauglamellennahe annular groove 66 has two groove walls 68, 70 and a groove bottom 72 with a semicircular longitudinal section geometry.
  • an opening 74 of the circumferential annular groove 66 of the suction blade 60 is arranged facing, whereby the drainage of the annular groove 66 is facilitated, since therein any accumulating condensate and / or oil residues due to the action of gravity easily can drain away. Due to the preferably completely air-filled annular groove 66, the thermal insulation of an end portion 76 of the intake passage 52 relative to the cylinder head 50, whereby heating of the sucked air from the environment is largely prevented.
  • FIG. 3 shows a schematic longitudinal section of a third embodiment of a cylinder head 90 according to the invention, which represents a combination of the two embodiments of FIGS. 1 and 3.
  • the cylinder head 90 has an intake passage 92 and two cooling water passages 94, 96.
  • a movable suction lamella 100 is arranged, which carries a pressure dense completion of the intake passage 92 with respect to a compression space 102 of the cylinder head 90 in a corresponding position allows.
  • annular groove 106 which concentrically surrounds the intake channel 92 at its lamella-side end section 1 18 effects the thermal insulation of the intake channel 92.
  • the annular groove 106 likewise has two groove walls 108, 110 passing approximately parallel to one another and via a first groove base 112 and a second groove base 1 13 each with a semicircular longitudinal section geometry, which are aligned opposite to each other and with respect to the flow direction 104.
  • the annular groove 106 has two oppositely oriented openings 1 14, 1 16 on.
  • the first opening 1 14 is arranged facing away from the suction plate 100, while the second opening 1 16 of the suction plate 100 is arranged facing away.
  • the orientation of the first opening 14 thus corresponds to the first embodiment of the cylinder head 10 according to FIG. 1, while the second opening 16 is aligned according to the second embodiment of the cylinder head 50 according to FIG.
  • the alternately opposite orientation of the two openings 1 14, 1 16 may be deposited condensate and / or oil from a portion of the circulating
  • Ring groove 106 whose opening 1 14 is directed away from the suction plate 100, in an adjacent portion of the annular groove 106, whose opening 1 16 of the suction plate 100 faces, are derived. As a result, an accumulation of such residues in sections of the annular groove 106 is prevented with an upwardly directed away from the suction louver 100 opening 1 14.
  • the combination of the two first embodiments shown here enables, among other things, a more flexible adaptation of the annular groove 106 to special geometries and space requirements within the cylinder head 90.
  • FIG. 4 shows a fourth embodiment of a cylinder head 130 according to the invention.
  • the cylinder head 130 has an intake passage 132 for sucking in ambient air, a control passage 134 for power regulating an air compressor equipped with the cylinder head 130, and a cooling water passage 136.
  • a suction plate 140 is movably positioned on a lower side 138 of the cylinder head 130. With the help of the suction plate 140, a compression chamber 142 against the suction passage 132 is pressure-tight manner closed.
  • the control channel 134 is at least partially closed by means of a likewise movably arranged on the underside 138 of the cylinder head 130 Schiebelamelle 144, in particular to allow a low-loss power regulation of a provided with the cylinder head 130 air compressor in conjunction with a dead volume or volume not shown here.
  • the suction lamella 140 overlaps at least partially the sliding lamella 144, that is to say the sliding lamella 144 is arranged at least in sections between the underside 138 of the cylinder head 130 and the suction lamella 140.
  • the air drawn in from the surroundings reaches the compression channel 132 with a flow direction 145 and, with a corresponding position of the suction lamella 140, into the compression chamber 142.
  • a circumferential annular groove 146 has two approximately mutually parallel groove walls 148, 150 and a groove bottom 152 with a substantially semicircular longitudinal section geometry.
  • An opening 154 of the annular groove 146 faces the suction lamella 140 or the sliding lamella 144.
  • the annular groove 146 in turn causes the thermal insulation of an end portion 156 of the intake passage 132 relative to the solid cylinder head 130 and with respect to the control channel 134 which extends laterally spaced parallel to the intake passage 132 within the cylinder head 130.
  • annular groove 146 thus follows, with the exception of the trough-shaped recess 160 for the sliding lamella 144 of the control channel 134, essentially Chen the shape of the annular groove 66 in the second embodiment of the cylinder head 50 of FIG. 2nd
  • FIG. 5 shows a schematic representation of the mode of operation of the subject matter with reference to the partial representation of the cylinder head 50 of FIG. 2, which is used here merely by way of example for all other embodiments.
  • the thermally insulating annular groove 66 results in a significant increase in temperature in the intake channel 52 with all undesired side effects.
  • Another, parasitic heat flow 182 emanating from the compression chamber 62 is largely kept away by the suction lamella 60 from the intake passage 52 and the groove wall 70 of the annular groove 66, since the suction lamella 60 compared to the cylinder head 50 has an excellent thermal insulation capacity, which is up to eight times higher as the heat insulating capacity of the cylinder head 50 may be.

Abstract

Die Erfindung betrifft einen Zylinderkopf (10, 50, 90, 130) für einen Luftverdichter mit mindestens einem Ansaugkanal (12, 52, 92, 132) zum Ansaugen von unkomprimierter Luft aus der Umgebung und wenigstens einem Druckkanal zur Abgabe der komprimierten Luft, sowie mit einem Kühlwasserkanal (14, 16, 54, 56, 94, 96, 136), wobei der mindestens eine Ansaugkanal (12, 52, 92, 132) mittels wenigstens einer an einer Unterseite (18, 58, 98, 138) des Zylinderkopfes angeordneten Sauglamelle (20, 60, 100, 140) gegenüber einem Kompressionsraum (22, 62, 102, 142) druckdicht verschließbar ist. Gemäß der Erfindung ist vorgesehen, dass der mindestens eine Ansaugkanal (12, 52, 92, 132) abschnittsweise von einer sauglamellennahen, im Wesentlichen konzentrischen Ringnut (26, 66, 106, 146) umgeben ist. Hierdurch wird eine Erwärmung der aus der Umgebung über den mindestens einen Ansaugkanal (12, 52, 92, 132) in den Zylinderkopf (10, 50, 90, 130) einströmenden Luft vorteilhaft verringert.

Description

Zylinderkopf für einen Luftverdichter
Die Erfindung betrifft einen Zylinderkopf für einen Luftverdichter mit mindestens einem Ansaugkanal zum Ansaugen von unkomprimierter Luft aus der Umgebung und wenigstens einem Druckkanal zur Abgabe der komprimierten Luft, sowie mit einem Kühlwasserkanal, wobei der mindestens eine Ansaugkanal mittels wenigstens einer an einer Unterseite des Zylinderkopfes angeordneten Sauglamelle gegenüber einem Kompressionsraum druckdicht verschließbar ist.
Kompressoren zur Erzeugung von Druckluft werden unter anderem zum Betrieb von pneumatischen Bremssystemen in Kraftfahrzeugen und Schienenfahrzeugen eingesetzt. Um eine hohe Effektivität zu erreichen, sollte sich die vom Kompressor angesaugte Umgebungsluft vor Erreichen eines Kompressionsraumes im Kompressor möglichst nur gering erwärmen. Der Wärmeeintrag in den Zylinderkopf eines Kompressors wird hauptsächlich durch die im Kompressionsraum frei werdende Kompressionswärme verursacht. Der stark erwärmte Zylinderkopf gibt seine Wärme dabei zwangsläufig an die Ansaugluft ab, die in der Regel in mindestens einem Ansaugkanal innerhalb des Zylinderkopfes zum Kompressionsraum geleitet wird. Ein besonders intensiver Wärmeeintrag in die Ansaugluft erfolgt hierbei im Bereich der Öffnungen des Ansaugkanals zur Sauglamelle. Eine Reduzierung der Ansauglufttemperatur bewirkt zugleich auch eine erhebliche Absenkung der Verdichtungsendtemperatur mit all ihren dem Fachmann hinlänglich bekannten Vorteilen.
Die DE 698 26 381 T2 betrifft einen Kolbenkompressor mit einem wassergekühlten Zylinderkopf zur Verdichtung von Gasen oder Gasgemischen, wie beispielsweise von Luft. Der Kompressor weist einen Zylinderkopf auf, welcher über eine Ansaugluft- Einlassöffnung sowie eine Auslassluft-Auslassöffnung und Trennwände verfügt. Der Zylinderkopf des Gaskompressors besteht aus Aluminium, das über eine hohe Wärmeleitfähigkeit verfügt. Ferner sind am Zylinderkopf innenseitig Luftkühlrippen und benachbart zu diesen Strömungsgalerien ausgebildet, um die freigesetzte Kompressions- wärme vom Zylinderkopf in die Umgebung abzuführen. In den Zylinderkopf sind zur wei¬ teren Optimierung der Kühlung mehrere Wasserkühlkanäle eingelassen, und einstückig ausgebildete Kühlrippen sind innerhalb des Strömungswegs der Auslassluft angeordnet. Eine Vorrichtung zur weitgehenden Vermeidung eines Temperaturanstiegs der über die Ansaugluft-Einlassöffnung einströmenden Umgebungsluft ist nicht vorgesehen.
Der Erfindung liegt die Aufgabe zugrunde, einen Zylinderkopf für einen Druckluftkompressor vorzustellen, bei dem eine Temperaturerhöhung der Ansaugluft beim Passieren eines Ansaugkanals weitestgehend vermieden wird. Die Erfindung geht von der Erkenntnis aus, dass sich die unerwünschte Erwärmung der Ansaugluft im Bereich eines Ansaugkanals eines Zylinderkopfes durch das Vorsehen einer thermischen Isolierung auf passive Weise reduzieren lässt.
Die Erfindung betrifft daher einen Zylinderkopf für einen Luftverdichter mit mindestens einem Ansaugkanal zum Ansaugen von unkomprimierter Luft aus der Umgebung und wenigstens einem Druckkanal zur Abgabe der komprimierten Luft, sowie mit einem Kühlwasserkanal, wobei der mindestens eine Ansaugkanal mittels wenigstens einer an einer Unterseite des Zylinderkopfes angeordneten Sauglamelle gegenüber einem Kompressionsraum druckdicht verschließbar ist. Zur Lösung der Aufgabe ist vorgesehen, dass der mindestens eine Ansaugkanal abschnittsweise von einer sauglamel- lennahen, im Wesentlichen konzentrischen Ringnut umgeben ist.
Durch diesen Aufbau wird unter anderem erreicht, dass ein Temperaturanstieg der in den Ansaugkanal einströmenden Außenluft gering gehalten wird. Durch den schlechten Wärmeübergangswert der Sauglamelle erfolgt zudem eine thermische Isolierung des Ansaugkanals gegenüber dem Kompressionsraum. Die thermisch isolierend wirkende Ringnut führt im Vergleich zu einem konventionellen Zylinderkopf zu einer merklichen Reduzierung der Verdichtungsendtemperatur beziehungsweise der Temperatur der über den Druckkanal des Luftverdichters abgegebenen komprimierten Luft, und damit einhergehend zu einem deutlich geringeren Ölverbrauch sowie zu einer verminderten Verkokungsneigung eines mit dem erfindungsgemäßen Zylinderkopf ausgerüsteten Luftverdichters. Durch den sich darüber hinaus ergebenden geringeren Luftvo- lumenstrom kann sich auch die notwendige mechanische Antriebsleistung des Kompressors bei unveränderter Kompressionsleistung reduzieren.
Gemäß einer vorteilhaften Ausgestaltung ist vorgesehen, dass die Ringnut zumindest teilweise mit einem thermisch isolierenden Medium, angefüllt ist. Ein solches Medium kann beispielsweise Luft sein, oder ein poriger, vorzugsweise geschlossenporiger Kunststoff. Durch diesen Aufbau ist eine gute thermische Isolierwirkung auch bei einem vergleichsweise kleinen Volumen der Ringnut realisierbar.
Entsprechend einer anderen Weiterbildung weist die Ringnut zwei im Wesentlichen parallel zueinander verlaufende Nutwände auf. Infolge der im Wesentlichen recht- eckförmigen Querschnittsgeometrie der Ringnut wird der Fertigungsprozess derselben vereinfacht. So kann die Ringnut beispielsweise durch Fräsen in einen vorab in einem Gießverfahren hergestellten Zylinderkopf eingebracht werden.
Gemäß einer anderen Ausgestaltung der Erfindung weist der Nutgrund der Ringnut eine im Wesentlichen halbkreisförmige Querschnittsgeometrie auf. Hierdurch wird die Ausbildung von Spannungsrissen im Zylinderkopf vorteilhaft verhindert.
Bei einer ersten Ausführungsform des Zylinderkopfes weist die Ringnut eine Öffnung auf, die von der mindestens einen Sauglamelle weg weist. Hierdurch ist die Öffnung der Ringnut gegen die Strömungsrichtung der über den Ansaugkanal angesaugten Luft orientiert, so dass sich dadurch ein schnellerer Luftaustausch in der Ringnut ergibt. Durch diesen Luftaustausch weist die Luft in der Ringnut immer eine vergleichsweise niedrige Temperatur auf.
Bei einer günstigen Ausgestaltung weist der Nutgrund der Ringnut mindestens eine Durchbrechung in Richtung zur mindestens einen Sauglamelle auf. Hierdurch kann eventuell in der Ringnut angesammeltes Kondensat und/oder Öl aus der ansonsten lediglich nach oben hin offenen, das heißt von der Sauglamelle weg weisenden Ringnut, abgeleitet werden. Gemäß einer zweiten Ausführungsform des Zylinderkopfes weist die Ringnut eine Öffnung auf, die der mindestens einen Sauglamelle zugewandt ist. Hierdurch können etwaiges Kondensat und/oder Öl allein aufgrund der Wirkung der Schwerkraft selbsttätig aus der somit sich selbst reinigenden Ringnut abfließen.
Bei einer weiteren Fortbildung besteht zwischen dem Nutgrund der Ringnut und dem mindestens einen Kühlwasserkanal ein geringer Abstand. Hierdurch entspricht die Temperatur eines zwischen der Ringnut und einem Kühlwasserkanal bestehenden (dünnen) Materialsteges näherungsweise der Temperatur des Kühlwassers im angrenzenden Kühlwasserkanal. Der Abstand kann hierbei bis auf wenige Millimeter reduziert werden, solange noch eine ausreichende mechanische Belastbarkeit des Zylinderkopfes gegeben ist.
Bei einer dritten Ausführungsform des Zylinderkopfes gemäß der Erfindung weist die Ringnut mindestens zwei Öffnungen auf, die jeweils abwechselnd von der mindestens einen Sauglamelle weggerichtet oder der mindestens einen Sauglamelle zugewandt sind. Infolge der abwechselnd entgegengesetzt orientierten Öffnungen der Ringnut wird das Abfließen von Öl und/oder Kondensat unterstützt. So kann Öl und/oder Kondensat, das sich in einem Abschnitt der Ringnut angesammelt hat, dessen Öffnung von der Sauglamelle weg beziehungsweise nach oben entgegen der Strömungsrichtung der angesaugten Luft weist, in einen angrenzenden Abschnitt der Ringnut mit einer entgegengesetzt orientierten, das heißt einer nach unten, in Strömungsrichtung orientierten Öffnung abgeführt werden.
Gemäß einer vierten Ausführungsform des Zylinderkopfes ist vorgesehen, dass mindestens ein Steuerkanal mittels mindestens einer Schiebelamelle zur Leistungsregulierung des Luftverdichters zumindest teilweise abdeckbar ist, und dass die Ringnut eine Öffnung aufweist, die der mindestens einen Sauglamelle und der mindestens einen Schiebelamelle zugewandt ist, wobei die Ringnut zumindest abschnittweise im Bereich des mindestens einen Steuerkanals verläuft. Hierdurch kann speziellen konstruktiven Gegebenheiten eines Zylinderkopfes leichter Rechnung getragen und beispielsweise ein vom Steuerkanal ausgehender sowie ein ansonsten in den Einlasskanal einfallender Wärmeeintrag aufgrund der thermischen Isolationswirkung der Ringnut wirkungsvoll abgeschirmt werden. Über ein mit dem Steuerkanal in Verbindung stehendes Todvolu¬ men oder Schadvolumen wird der Kompressionsraum in Abhängigkeit von der Position der Schiebelamelle vergrößert oder verkleinert. Hierdurch ist eine verlustarme Leistungsregulierung eines mit dem erfindungsgemäßen Zylinderkopf bestückten Luftverdichters möglich.
Der Zylinderkopf ist bevorzugt aus Aluminium oder aus einer Aluminiumlegierung gebildet. Hierdurch verfügt der Zylinderkopf über ausgezeichnete thermische Eigenschaften, insbesondere über eine gute thermische Leitfähigkeit, zur optimalen Unterstützung der direkten beziehungsweise aktiven Wirkung der in den Zylinderkopf integrierten Wasserkühlung. Das direkte beziehungsweise aktive Kühlsystem wird hierbei durch den indirekt oder passiv kühlend wirkenden thermischen Isolationseffekt der Ringnut im Bereich des Ansaugkanals unterstützt.
Zur weiteren Erläuterung der Erfindung ist der Beschreibung eine Zeichnung beigefügt. In dieser zeigt
Fig. 1 eine schematische Längsschnittdarstellung einer ersten Ausführungsform eines Zylinderkopfes,
Fig. 2 eine schematische Längsschnittdarstellung einer zweiten Ausführungsform eines Zylinderkopfes,
Fig. 3 eine schematische Längsschnittdarstellung einer dritten Ausführungsform eines Zylinderkopfes,
Fig. 4 eine schematische Längsschnittdarstellung einer vierten Ausführungsform eines Zylinderkopfes, und
Fig. 5 eine prinzipielle Darstellung der Wirkungsweise der Erfindung. Fig. 1 zeigt demnach eine stark vereinfachte Längsschnittdarstellung durch eine erste Ausführungsform eines Zylinderkopfes 10 gemäß der Erfindung. Dieser verfügt unter anderem über einen ungefähr hohlzylindrischen Ansaugkanal 12 zum Ansaugen der zu verdichtenden Luft aus der Umgebung beziehungsweise eines anderen Gases oder Gasgemisches, zwei Kühlwasserkanäle 14, 16 sowie einen in den Zeichnungen nicht dargestellten Druckkanal, über den die komprimierte Luft aus dem Zylinderkopf 10 herausgeführt wird. Mittels einer an einer Unterseite 18 des Zylinderkopfes 10 beweglich angeordneten Sauglamelle 20 ist der Ansaugkanal 12 gegenüber einem Kompressionsraum 22 druckdicht absperrbar. Das Ansaugen der zu komprimierenden Luft aus der Umgebung über den Ansaugkanal 12 erfolgt hierbei in einer durch einen Pfeil veranschaulichten Strömungsrichtung 24.
Gemäß der Erfindung verfügt der Ansaugkanal 12 über eine sauglamellennahe sowie diesen konzentrisch umgebende Ringnut 26, die mit einem thermisch möglichst gut isolierenden Medium angefüllt ist, bei dem es sich hier lediglich exemplarisch um Luft aus der Umgebung handelt. Die Ringnut 26 verfügt über zwei im Wesentlichen parallel zueinander verlaufende Nutwände 28, 30, die in einen Nutgrund 32 mit einer näherungsweise halbkreisförmigen Längsschnittgeometrie übergehen. Eine ringförmige Öffnung 34 in der Ringnut 26 ist der Sauglamelle 20 abgewandt beziehungsweise der Strömungsrichtung 24 entgegengerichtet.
Um das Abfließen von etwaigem Kondensat und/oder sich gegebenenfalls ablagernden Ölrückständen aus der Ringnut 26 im Bereich ihres Nutgrundes 32 zu ermöglichen, ist mindestens eine optionale Durchbrechung 36 in den Nutgrund 32 eingelassen. Die räumliche Lage der Durchbrechung 36 ist so gewählt, dass die Sauglamelle 20 unabhängig von ihrer Position die Durchbrechung 36 gegenüber dem Kompressionsraum 22 stets abdichtet.
Da die Ringnut 26 den Ansaugkanal 12 an einem der Sauglamelle 20 zugewandten Endabschnitt 38 vollständig konzentrisch umschließt, ist der Ansaugkanal 12 im Bereich dieses Endabschnittes 38 des Ansaugkanals 12 gegenüber dem Zylinderkopf 10 wirkungsvoll thermisch isoliert, so dass ein unerwünschter Wärmeeintrag aus dem hei- ßen Zylinderkopf 10 in die über den Ansaugkanal 12 in den Kompressionsraum 22 gelangende Luft stark eingeschränkt wird. Aufgrund der näherungsweise hohlzylindrischen Geometrie der Ringnut 26 bestehen zudem praktisch keine relevanten Wärmebrücken zwischen dem Endabschnitt 38 des Ansaugkanals 12 und dem Zylinderkopf 10.
Der Zylinderkopf 10 ist bevorzugt aus einer gut wärmeleitfähigen Aluminiumlegierung oder aus reinem Aluminium gebildet, um die Wärmeableitung aus dem Zylinderkopf 10 in die Umgebung effektiv zu unterstützen und die Gefahr von Wärmespannungen zu reduzieren. Darüber hinaus lassen sich Zylinderköpfe aus Aluminiumlegierungen oder Reinaluminium fertigungstechnisch vergleichsweise einfach herstellen sowie bearbeiten, verfügen über ein geringes Gewicht und erreichen dennoch eine ausreichende mechanische Belastbarkeit.
Die thermische Isolation zwischen dem Kompressionsraum 22 und dem Ansaugkanal 12 erfolgt durch die Sauglamelle 20, die über eine vergleichsweise schlechte Wärmeleitfähigkeit beziehungsweise ein hohes Wärmeisolationsvermögen verfügt, so dass die thermische Isolationswirkung der Ringnut 26 wirkungsvoll unterstützt beziehungsweise unterseitig ergänzt wird.
Aufgrund der ausgezeichneten thermischen Isolationswirkung der den Ansaugkanal 12 konzentrisch umschließenden Ringnut 26 wird die unerwünschte Erwärmung der angesaugten Luft weitestgehend verhindert und die Verdichtungsendtemperatur der komprimierten Luft beträchtlich abgesenkt. Dies führt unter anderem zu einem verminderten Ölverbrauch sowie zu einer geringeren Verkokungsneigung eines mit dem erfindungsgemäßen Zylinderkopf 10 ausgerüsteten Druckluftkompressors beziehungsweise eines Verdichters zur Erzeugung von Druckluft oder anderen verdichteten Gasen und/oder Gasgemischen. Abweichend von der hier lediglich exemplarisch gezeigten konzentrischen Anordnung der Ringnut 26 kann in Abhängigkeit von den jeweiligen konstruktiven Gegebenheiten des Zylinderkopfes 10 in Bezug zum Ansaugkanal 12 auch eine geringfügig exzentrische Anordnung gewählt werden. Fig. 2 zeigt eine stark schematisierte Längsschnittdarstellung einer zweiten Ausführungsform eines Zylinderkopfes 50 gemäß der Erfindung. Der Zylinderkopf 50 verfügt über einen hohlzylindrischen Ansaugkanal 52 und zwei Kühlwasserkanäle 54, 56. An einer Unterseite 58 des Zylinderkopfes 50 ist wiederum eine in Bezug zu diesem bewegliche Sauglamelle 60 angeordnet, die den Ansaugkanal 52 druckdicht gegenüber einem Kompressionsraum 62 abschließt. Die Umgebungsluft wird in einer Strömungsrichtung 64 über den Ansaugkanal 52 bei hinreichend weit geöffneter Sauglamelle 60 in den Kompressionsraum 62 eingesaugt. Eine den Ansaugkanal 52 ungefähr konzentrisch umgebende, sauglamellennahe Ringnut 66 verfügt über zwei Nutwände 68, 70 sowie einen Nutgrund 72 mit einer halbkreisförmigen Längsschnittgeometrie.
Im Unterschied zu der in Fig. 1 dargestellten ersten Ausführungsform ist eine Öffnung 74 der umlaufenden Ringnut 66 der Sauglamelle 60 zugewandt angeordnet, wodurch die Drainage der Ringnut 66 erleichtert wird, da sich darin etwaig ansammelndes Kondensat und/oder Ölrückstände aufgrund der Wirkung der Schwerkraft leicht abfließen können. Durch die bevorzugt vollständig luftgefüllte Ringnut 66 erfolgt die thermische Isolation eines Endabschnittes 76 des Ansaugkanals 52 gegenüber dem Zylinderkopf 50, wodurch eine Erwärmung der angesaugten Luft aus der Umgebung weitestgehend unterbunden wird.
Zwischen dem Nutgrund 72 und dem einen Kühlwasserkanal 54 besteht lediglich ein kleiner Abstand 78 beziehungsweise eine sehr geringe Wandstärke, so dass die Temperatur eines zwischen der Ringnut 66 und dem ersten Kühlwasserkanal 54 bestehenden Materialsteges 80 näherungsweise der Temperatur des Kühlwassers im angrenzenden Kühlwasserkanal 54 entspricht. Dasselbe gilt für den zweiten Kühlkanal 56 in Bezug zur Ringnut 66.
Fig. 3 zeigt eine schematische Längsschnittdarstellung einer dritten Ausführungsform eines Zylinderkopfes 90 gemäß der Erfindung, die eine Kombination aus den beiden Ausführungsformen der Figuren 1 und 3 darstellt. Der Zylinderkopf 90 verfügt über einen Ansaugkanal 92 und zwei Kühlwasserkanäle 94, 96. An einer Unterseite 98 des Zylinderkopfes 90 ist eine bewegliche Sauglamelle 100 angeordnet, die einen druck- dichten Abschluss des Ansaugkanals 92 gegenüber einem Kompressionsraum 102 des Zylinderkopfes 90 in einer entsprechenden Stellung ermöglicht. Die Luft aus der Umge¬ bung wird wiederum in einer Strömungsrichtung 104 in den Kompressionsraum 102 eingesaugt. Eine den Ansaugkanal 92 an dessen lamellenseitigen Endabschnitt 1 18 konzentrisch umgebende Ringnut 106 bewirkt die thermische Isolation des Ansaugkanals 92. Die Ringnut 106 verfügt ebenfalls über zwei annähernd parallel zueinander verlaufende Nutwände 108, 1 10 sowie über einen ersten Nutgrund 1 12 und einen zweiten Nutgrund 1 13 mit jeweils halbkreisförmiger Längsschnittgeometrie, die zueinander sowie in Bezug zur Strömungsrichtung 104 entgegengesetzt ausgerichtet sind.
Als ein wesentlicher Unterschied zu den beiden ersten Ausführungsformen weist die Ringnut 106 zwei entgegengesetzt zueinander orientierte Öffnungen 1 14, 1 16 auf. Die erste Öffnung 1 14 ist hierbei von der Sauglamelle 100 abgewandt angeordnet, während die zweite Öffnung 1 16 der Sauglamelle 100 zugewandt angeordnet ist. Die Orientierung der ersten Öffnung 1 14 entspricht somit der ersten Ausführungsform des Zylinderkopfs 10 gemäß Fig. 1 , während die zweite Öffnung 1 16 entsprechend der zweiten Ausführungsform des Zylinderkopfs 50 gemäß Fig. 2 ausgerichtet ist. Infolge der abwechselnd entgegengesetzten Orientierung der beiden Öffnungen 1 14, 1 16 kann etwaig ablagerndes Kondensat und/oder Öl aus einem Abschnitt der umlaufenden
Ringnut 106, dessen Öffnung 1 14 von der Sauglamelle 100 weggerichtet ist, in einen benachbarten Abschnitt der Ringnut 106, dessen Öffnung 1 16 der Sauglamelle 100 zugewandt ist, abgeleitet werden. Hierdurch wird eine Ansammlung von solchen Rückständen in Abschnitten der Ringnut 106 mit einer nach oben, von der Sauglamelle 100 weggerichteten Öffnung 1 14 verhindert. Die hier gezeigte Kombination aus den beiden ersten Ausführungsformen ermöglicht unter anderem eine flexiblere Anpassung der Ringnut 106 an spezielle Geometrien und Bauraumerfordernisse innerhalb des Zylinderkopfes 90.
Fig. 4 zeigt eine vierte Ausführungsform eines Zylinderkopfes 130 gemäß der Erfindung. Der Zylinderkopf 130 verfügt über einen Ansaugkanal 132 zum Ansaugen von Luft aus der Umgebung, einen Steuerkanal 134 zur Leistungsregulierung eines mit dem Zylinderkopf 130 ausgestatteten Luftverdichters sowie einen Kühlwasserkanal 136. An einer Unterseite 138 des Zylinderkopfes 130 ist eine Sauglamelle 140 beweglich positioniert. Mit Hilfe der Sauglamelle 140 ist ein Kompressionsraum 142 gegenüber dem Ansaugkanal 132 druckdicht verschließbar. Der Steuerkanal 134 ist mittels einer gleichfalls beweglich an der Unterseite 138 des Zylinderkopfes 130 angeordneten Schiebelamelle 144 zumindest teilweise verschließbar, um insbesondere eine verlustarme Leistungsregulierung eines mit dem Zylinderkopf 130 versehenen Luftverdichters in Verbindung mit einem hier nicht dargestellten Todvolumen beziehungsweise Schadvolumen zu ermöglichen. Die Sauglamelle 140 überlappt dabei zumindest bereichsweise die Schiebelamelle 144, das heißt die Schiebelamelle 144 ist zumindest abschnittweise zwischen der Unterseite 138 des Zylinderkopfes 130 und der Sauglamelle 140 angeordnet. Die aus der Umgebung angesaugte Luft gelangt mit einer Strömungsrichtung 145 durch den Ansaugkanal 132 und bei einer entsprechenden Stellung der Sauglamelle 140 bis in den Kompressionsraum 142 hinein.
Eine umlaufende Ringnut 146 weist zwei annähernd parallel zueinander verlaufende Nutwände 148, 150 sowie einen Nutgrund 152 mit einer im Wesentlichen halbkreisförmigen Längsschnittgeometrie auf. Eine Öffnung 154 der Ringnut 146 ist der Sauglamelle 140 beziehungsweise der Schiebelamelle 144 zugewandt. Die Ringnut 146 bewirkt wiederum die thermische Isolierung eines Endabschnittes 156 des Ansaugkanals 132 gegenüber dem massiven Zylinderkopf 130 sowie gegenüber dem Steuerkanal 134, der seitlich beabstandet parallel zum Ansaugkanal 132 innerhalb des Zylinderkopfes 130 verläuft.
Um einen bündigen Abschluss der Schiebelamelle 144 mit der Unterseite 138 des Zylinderkopfes 130 zu erreichen, ist in die Unterseite 138 des Zylinderkopfes 130 im Bereich des Steuerkanals 134 und einer Trennwand 158 zwischen der Ringnut 146 und dem Steuerkanal 134 sowie der Ringnut 146 eine wannenförmige Vertiefung 160 eingelassen, deren Tiefe ungefähr einer Materialstärke der Schiebelamelle 144 entspricht.
Die Ausgestaltung der Ringnut 146 folgt damit, abgesehen von der wannenför- migen Vertiefung 160 für die Schiebelamelle 144 des Steuerkanals 134, im Wesentli- chen der Form der Ringnut 66 bei der zweiten Ausführungsform des Zylinderkopfes 50 gemäß Fig. 2.
Fig. 5 zeigt in einer schematischen Darstellung die Funktionsweise des Erfindungsgegenstandes anhand der hier lediglich exemplarisch für alle übrigen Ausführungsformen herangezogenen Teildarstellung des Zylinderkopfes 50 der Fig. 2.
Vom Kompressionsraum 62 des Zylinderkopfes 50 geht ein starker, primärer Wärmestrom 170 aus. Dieser primäre Wärmestrom 170 teilt sich in einen Hauptwärmestrom 172 und einen deutlich kleineren Restwärmestrom 174 auf. Aufgrund der guten thermischen Isolierwirkung der Ringnut 66 wird praktisch der gesamte primäre Wärmestrom 170 als Hauptwärmestrom 172 in Richtung des hier mit Kühlwasser 176 als ein mögliches Kühlmittel angefüllten Kühlwasserkanals 54 abgelenkt, der eine starke Wärmesenke darstellt. Lediglich der vernachlässigbar kleine Restwärmestrom 174 vermag noch die thermisch stark isolierende Ringnut 66 zu umfließen und gelangt bis an den Ansaugkanal 52 heran, so dass er diesen allenfalls noch geringfügig erwärmen kann. Aufgrund der thermischen Barrierewirkung der Ringnut 66 wird ein Temperaturanstieg der Luft im Ansaugkanal 52 nahezu vollständig unterbunden, wie das dreieckförmige und punktiert ausgefüllte Temperaturprofil 178 im Ansaugkanal 52 zeigt.
Demgegenüber ergibt sich ohne die erfindungsgemäße Abschirmwirkung der thermisch isolierenden Ringnut 66, wie durch das dreieckförmige und horizontal schraffierte Temperaturprofil 180 angedeutet ist, ein signifikanter Temperaturanstieg im Ansaugkanal 52 mit allen unerwünschten Nebeneffekten. Ein weiterer, vom Kompressionsraum 62 ausgehender, parasitärer Wärmestrom 182 wird weitgehend durch die Sauglamelle 60 vom Ansaugkanal 52 beziehungsweise von der Nutwand 70 der Ringnut 66 ferngehalten, da die Sauglamelle 60 im Vergleich zum Zylinderkopf 50 über ein hervorragendes Wärmeisolationsvermögen verfügt, das bis zu achtmal höher als das Wärmeisolationsvermögen des Zylinderkopfes 50 sein kann. Bezugszeichenliste (Bestandteil der Beschreibung) Zylinderkopf (1 . Ausführungsform)
Ansaugkanal
Kühlwasserkanal
Kühlwasserkanal
Unterseite des Zylinderkopfs
Sauglamelle
Kompressionsraum
Strömungsrichtung der angesaugten Luft
Ringnut (thermisch isolierend)
Nutwand der Ringnut
Nutwand der Ringnut
Nutgrund
Öffnung der Ringnut
Durchbrechung im Nutgrund
Endabschnitt des Ansaugkanals
Zylinderkopf (2. Ausführungsform)
Ansaugkanal
Kühlwasserkanal
Kühlwasserkanal
Unterseite des Zylinderkopfs
Sauglamelle
Kompressionsraum
Strömungsrichtung der angesaugten Luft
Ringnut (thermisch isolierend)
Nutwand der Ringnut
Nutwand der Ringnut
Nutgrund
Öffnung in der Ringnut
Endabschnitt des Ansaugkanals
Abstand 80 Materialsteg
90 Zylinderkopf (3. Ausführungsform)
92 Ansaugkanal
94 Kühlwasserkanal
96 Kühlwasserkanal
98 Unterseite des Zylinderkopfs
100 Sauglamelle
102 Kompressionsraum
104 Strömungsrichtung der angesaugten Luft
106 Ringnut (thermisch isolierend)
108 Nutwand der Ringnut
10 Nutwand der Ringnut
1 12 Erster Nutgrund der Ringnut 106
1 13 Zweiter Nutgrund der Ringnut 106
1 14 Erste Öffnung in der Ringnut 106
1 16 Zweite Öffnung in der Ringnut 106
1 18 Endabschnitt des Ansaugkanals 92
130 Zylinderkopf (4. Ausführungsform)
132 Ansaugkanal
134 Steuerkanal
136 Kühlwasserkanal
138 Unterseite des Zylinderkopfs
140 Sauglamelle
142 Kompressionsraum
144 Schiebelamelle
145 Strömungsrichtung der angesaugten Luft
146 Ringnut (thermisch isolierend)
148 Nutwand der Ringnut
150 Nutwand der Ringnut
152 Nutgrund
154 Öffnung in der Ringnut
56 Endabschnitt des Ansaugkanals 158 Trennwand zwischen Ringnut und Steuerkanal
160 Vertiefung in der Unterseite des Zylinderkopfs
170 Wärmestrom (in Fig. 5)
172 Hauptwärmestrom
174 Restwärmestrom
176 Kühlwasser
178 Temperaturprofil der angesaugten Luft im Endabschnitt des Ansaugkanals 52
180 Temperaturprofil beim Stand der Technik
182 Parasitärer Wärmestrom vom Kompressionsraum 62

Claims

Patentansprüche
1 . Zylinderkopf (10, 50, 90, 130) für einen Luftverdichter mit mindestens einem Ansaugkanal (12, 52, 92, 132) zum Ansaugen von unkomprimierter Luft aus der Umgebung und wenigstens einem Druckkanal zur Abgabe der komprimierten Luft, sowie mit einem Kühlwasserkanal (14, 16, 54, 56, 94, 96, 136), wobei der mindestens eine Ansaugkanal (12, 52, 92, 132) mittels wenigstens einer an einer Unterseite (18, 58, 98, 138) des Zylinderkopfes angeordneten Sauglamelle (20, 60, 100, 140) gegenüber einem Kompressionsraum (22, 62, 102, 142) druckdicht verschließbar ist, dadurch gekennzeichnet, dass der mindestens eine Ansaugkanal (12, 52, 92, 132) abschnittsweise von einer sauglamellennahen, im Wesentlichen konzentrischen Ringnut (26, 66, 106, 146) umgeben ist.
2. Zylinderkopf (10, 50, 90, 130) nach Anspruch 1 , dadurch gekennzeichnet, dass die Ringnut (26, 66, 106, 146) zumindest teilweise mit einem thermisch isolierendem Medium (176) angefüllt ist.
3. Zylinderkopf (10, 50, 90, 130) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Ringnut (26, 66, 106, 146) zwei im Wesentlichen parallel zueinander verlaufende Nutwände (28, 30, 68, 70, 108, 1 10, 148, 150) aufweist.
4. Zylinderkopf (10, 50, 90, 130) nach Anspruch 3, dadurch gekennzeichnet, dass ein Nutgrund (32, 72, 1 12, 152) der Ringnut (26, 66, 106, 146) eine im Wesentlichen halbkreisförmige Querschnittsgeometrie aufweist.
5. Zylinderkopf (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Ringnut (26) eine Öffnung (34) aufweist, die von der mindestens einen Sauglamelle (20) weg weist.
6. Zylinderkopf (10) nach Anspruch 5, dadurch gekennzeichnet, dass der Nutgrund (32) der Ringnut (26) mindestens eine Durchbrechung (36) in Richtung zur mindestens einen Sauglamelle (20) aufweist.
7. Zylinderkopf (50) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Ringnut (66) eine Öffnung (74) aufweist, die der mindestens einen Sauglamelle (60) zugewandt ist.
8. Zylinderkopf (50) nach Anspruch 7, dadurch gekennzeichnet, dass zwischen dem Nutgrund (72) der Ringnut (66) und dem mindestens einen Kühlwasserkanal (54, 56) ein geringer Abstand (78) besteht.
9. Zylinderkopf (90) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Ringnut (106) mindestens zwei Öffnungen (1 14, 1 16) aufweist, die jeweils abwechselnd von der mindestens einen Sauglamelle (100) weggerichtet oder der mindestens einen Sauglamelle (100) zugewandt sind.
10. Zylinderkopf (130) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mindestens ein Steuerkanal (134) mittels mindestens einer Schiebelamelle (144) zur Leistungsregulierung des Luftverdichters zumindest teilweise abdeckbar ist, und dass die Ringnut (146) eine Öffnung (154) aufweist, die der mindestens einen Sauglamelle (140) und der mindestens einen Schiebelamelle (144) zugewandt ist, wobei die Ringnut (146) zumindest abschnittsweise im Bereich des mindestens einen Steuerkanals (134) verläuft.
1 1 . Zylinderkopf (10, 50, 90, 130) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Zylinderkopf (10, 50, 90, 130) aus Aluminium oder aus einer Aluminiumlegierung gebildet ist.
EP14789795.3A 2013-11-26 2014-10-23 Zylinderkopf für einen luftverdichter Active EP3074631B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013019812.7A DE102013019812A1 (de) 2013-11-26 2013-11-26 Zylinderkopf für einen Luftverdichter
PCT/EP2014/002867 WO2015078545A1 (de) 2013-11-26 2014-10-23 Zylinderkopf für einen luftverdichter

Publications (2)

Publication Number Publication Date
EP3074631A1 true EP3074631A1 (de) 2016-10-05
EP3074631B1 EP3074631B1 (de) 2019-04-24

Family

ID=51799073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14789795.3A Active EP3074631B1 (de) 2013-11-26 2014-10-23 Zylinderkopf für einen luftverdichter

Country Status (4)

Country Link
EP (1) EP3074631B1 (de)
CN (1) CN105793566B (de)
DE (1) DE102013019812A1 (de)
WO (1) WO2015078545A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017116870B3 (de) * 2017-07-21 2019-01-24 Voith Patent Gmbh Hubkolbenmaschine mit Kühleinrichtung
DE102018120027A1 (de) * 2018-08-17 2020-02-20 Voith Patent Gmbh Zylinderkopf für einen Kompressor
CN110552863A (zh) * 2019-09-11 2019-12-10 西安交通大学 一种隔膜压缩机缸盖冷却结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7422031U (de) * 1976-01-08 Robert Bosch Gmbh, 7000 Stuttgart Zylinderdeckel für einen luftgekühlten Kompressor
DE1711400U (de) * 1955-02-24 1955-11-24 Motoren Werke Mannheim Ag Luftgekuehltes druckventil fuer luftverdichter.
AT345427B (de) * 1975-12-09 1978-09-11 List Hans Wassergekuehlter kompressor
US5860800A (en) * 1994-10-13 1999-01-19 Wabco Vermogensverwaltungs Gmbh Compressor cylinder head having a partition
DE19535079C2 (de) * 1994-10-13 2001-02-22 Wabco Gmbh & Co Ohg Verdichter
US6116874A (en) 1997-07-26 2000-09-12 Knorr-Bremse Systems For Commercial Vehicles Limited Gas compressors
DE102005012202A1 (de) * 2005-03-15 2006-09-28 Itg Kompressoren Gmbh Zylinderkopf für einen mehrstufigen Kolbenverdichter
FR2925623B1 (fr) * 2007-12-21 2013-08-16 Danfoss Commercial Compressors Culasse pour compresseur frigorifique a piston, unite de compression comprenant cette culasse, et compresseur frigorifique a piston comprenant cette unite de compression
DE102010011550A1 (de) * 2010-03-15 2011-09-15 Eduard Hilberer Druckölkühlgeschmierte Drucklufterzeugung für ein Fahrzeug insbesondere für ein Hybridfahrzeug
AT509082B1 (de) * 2010-04-15 2011-06-15 Hoerbiger Kompressortech Hold Zylinderkopf für bremsluftverdichter
SG185858A1 (en) * 2011-06-01 2012-12-28 Panasonic Corp A valve plate for a compressor

Also Published As

Publication number Publication date
CN105793566B (zh) 2018-04-27
WO2015078545A1 (de) 2015-06-04
CN105793566A (zh) 2016-07-20
DE102013019812A1 (de) 2015-05-28
EP3074631B1 (de) 2019-04-24

Similar Documents

Publication Publication Date Title
EP3074631B1 (de) Zylinderkopf für einen luftverdichter
EP3388621B1 (de) Kompressoranlage mit interner luft-wasser-kühlung
EP2867432B1 (de) Türdichtungssystem
DE10143242A1 (de) Kältegerät mit Kühlluftzirkulation
EP2440732B1 (de) Türdichtungssystem
EP0942792B1 (de) Vorrichtung zur abkühlung von strangpressprofilen
EP2882963A1 (de) Verdichterzylinderkopf für einen verdichter, fahrzeug damit und verfahren zum kühlen sowie herstellen eines derartigen verdichterzylinderkopfes
AT509082B1 (de) Zylinderkopf für bremsluftverdichter
WO2019115254A1 (de) Lüftungsvorrichtung und verfahren zum betrieb einer solchen vorrichtung
DE102018205269B4 (de) Schraubenverdichter
DE102014113598A1 (de) Mehrstufiger Kolbenkompressor mit einer äußeren Kühlluftführung
DE60020525T2 (de) Verfahren zur herstellung einer ventilationsvorrichtung sowie ventilationsvorrichtung
DE102005035458A1 (de) Wärmetauscher für Dunstabzugsvorrichtung und Dunstabzugsvorrichtung
DE102009042089A1 (de) Kühl- und/oder Gefriergerät mit Druckausgleichsventil
DE102007047617B3 (de) Spritzgießform zum Einsatz in einer Spritzgießvorrichtung
DE102016115526B4 (de) Zylinderkurbelgehäuse für eine Brennkraftmaschine mit Kunststoffgehäuse und Metall-Insert
WO2016016222A1 (de) Gehäuseoberteil eines labyrinthkolbenkompressors und verfahren zum kühlen desselben sowie labyrinthkolbenkompressor
DE202016003295U1 (de) Gehäuse für den Luftraum einer in einem lnnenraum aufgestellten Wärmepumpe
DE102004061224B4 (de) Kolben-Zylinder-Anordnung, insbesondere für einen Taumelscheibenverdichter
EP0834701A1 (de) Backofen mit innenbelüfteter Türdichtung
EP2368689B1 (de) Extruder und Verfahren zum Schließen eines Verbindungsgangs
DE10341076A1 (de) Gargerät
DE10244567B4 (de) Zylinderkopfanordnung für einen Kolbenverdichter
DE102006013885B4 (de) Ventilkühleinrichtung für eine Verbrennungskraftmaschine und Verbrennungskraftmaschine
WO2021228598A1 (de) Hubkolbenkompressor zur erzeugung ölfreier druckluft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011529

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011529

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1124477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014011529

Country of ref document: DE

Owner name: ZF CV SYSTEMS EUROPE BV, BE

Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014011529

Country of ref document: DE

Owner name: ZF CV SYSTEMS HANNOVER GMBH, DE

Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014011529

Country of ref document: DE

Owner name: ZF CV SYSTEMS EUROPE BV, BE

Free format text: FORMER OWNER: ZF CV SYSTEMS HANNOVER GMBH, 30453 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230911

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 10