EP3071910A2 - Procédé et appareil de séparation à température cryogénique - Google Patents

Procédé et appareil de séparation à température cryogénique

Info

Publication number
EP3071910A2
EP3071910A2 EP14784278.5A EP14784278A EP3071910A2 EP 3071910 A2 EP3071910 A2 EP 3071910A2 EP 14784278 A EP14784278 A EP 14784278A EP 3071910 A2 EP3071910 A2 EP 3071910A2
Authority
EP
European Patent Office
Prior art keywords
column
heat
heat pump
separation
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14784278.5A
Other languages
German (de)
English (en)
Inventor
Guillaume CARDON
Antony CORREIA ANACLETO
Benoît DAVIDIAN
Clement Lix
Bernard Saulnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1358666A external-priority patent/FR3010509A1/fr
Priority claimed from FR1358668A external-priority patent/FR3010511B1/fr
Priority claimed from FR1358667A external-priority patent/FR3010510B1/fr
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP3071910A2 publication Critical patent/EP3071910A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04636Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a hybrid air separation unit, e.g. combined process by cryogenic separation and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/0466Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a cryogenic temperature separation method and apparatus.
  • the separation may be separation by distillation and / or dephlegmation and / or absorption.
  • the equipment used for this separation will be called "column".
  • a column may for example be a distillation or absorption column. Reduced to its simplest expression, it can be a phase separator. Otherwise a column can also be a device where a dephlegmation takes place.
  • Magnetic refrigeration is based on the use of magnetic materials having a magnetocaloric effect. Reversible, this effect results in a variation of their temperature when they are subjected to the application of an external magnetic field.
  • the optimal ranges of use of these materials are in the vicinity of their Curie temperature (Te).
  • Te Curie temperature
  • the magnetocaloric effect is said to be direct when the temperature of the material increases when it is put in a magnetic field, indirect when it cools when it is put in a magnetic field.
  • the rest of the description will be made for the direct case, but the transposition to the indirect case is obvious to those skilled in the art. There are several thermodynamic cycles based on this principle.
  • a typical magnetic refrigeration cycle consists of i) magnetizing the material to increase its temperature, ii) cooling the constant magnetic field material to reject heat, iii) demagnetizing the material to cool it, and iv) heating the material. constant magnetic field material (usually zero) to capture heat.
  • a magnetic refrigeration device uses elements of magnetocaloric material, which generate heat when magnetized and absorb heat when demagnetized. It can implement a magnetocaloric material regenerator to amplify the temperature difference between the "hot source” and the “cold source”: this is called active regenerative refrigeration.
  • US-A-6502404 describes the use of the magnetocaloric effect (instead of the conventional use of an expansion turbine) to provide cold (necessary to ensure the cooling of the process) to a cryogenic separation process of the air, the separation energy being conventionally provided by the pressurized air which makes it possible to operate the vaporizer-condenser of the double column (the low pressure column can be reduced to a simple vaporizer in the case of a nitrogen generator).
  • the separation (distillation) is partly under pressure, typically between 5 and 6 bara in the medium pressure column.
  • the present invention addresses the problem of how to carry out a separation entirely in very low pressure, the fluid to be separated does not convey the energy (in the form of pressure) used for the separation and the cold behavior of the process.
  • the energy for the separation and the energy for the cold resistance are provided by heat pumps, independently of the fluid to be separated and its pressure.
  • a heat pump is a thermodynamic device for transferring a quantity of heat from a medium considered as “transmitter” said “cold source” from which the heat is extracted to a medium considered as “receiver” said "hot source Where the heat is supplied, the cold source being at a colder temperature than the hot source.
  • the conventional cycle used in the state of the art for this type of application is a thermodynamic cycle of compression - cooling (condensation) - relaxation - heating (vaporization) of a refrigerant.
  • Figure 12 of the document "ENGINEERING TECHNIQUES - Magnetic Refrigeration 2005” shows a gain of a factor 2 on the coefficient of performance of a refrigeration system using a magnetic cycle compared to the conventional cycle.
  • the low-pressure or even quasi-atmospheric separation makes it possible to simplify the design and the mechanical strength of the equipment of the separating apparatus, thus reducing its cost.
  • An ambient temperature is the temperature of the ambient air in which the process is located, or a temperature of a cooling water circuit related to the air temperature.
  • a subambient temperature is at least 10 ° C below room temperature.
  • a cryogenic temperature is below -50 ° C.
  • At. at least one first heat pump said heat pump separation, heat exchange directly or indirectly between a first cryogenic temperature cold source and a first hot source cryogenic temperature thereby providing at least partly the separation energy
  • At least one second heat pump called a cooling balance heat pump, exchanging heat directly or indirectly between a second cold source at a first cryogenic temperature and a second hot source at a temperature above the first temperature, for example at the ambient temperature, thus providing at least a portion of the cold necessary to maintain the refrigeration balance of the process, the separation being effected in a single column or a set of columns, the pressure of the single column or columns of the assembly being less than 2 bara, preferably less than 1.5 bara, preferably at least one pressure which differs from the atmospheric pressure only by the losses of the elements connecting the column or columns with the atmosphere, the first cold source and the first heat source being thermally connected, directly or indirectly, to the single column or to a column of the assembly, characterized in that the first and second heat pumps use the magnetocaloric effect and in that the second heat sink consists of air (7) intended to separate in the single column or set of columns or by a fluid coming from the column single (19) or a column of the set.
  • the first so-called separation heat pump transfers heat directly or indirectly from the top of the column, preferably by condensing gas from the column, to the column vessel, preferably by vaporization of liquid from the single column;
  • the first so-called separation heat pump transfers heat directly or indirectly into a column of the assembly, preferably by condensing gas in a column of the assembly, to a column of the assembly, preferably by vaporization in a column from the whole ;
  • the first and second heat pumps are thermally connected to each other through the single column.
  • the second heat pump condenses directly or indirectly at least partially the air before introduction of air into the single column or into a column of the assembly;
  • the second heat pump totally or directly condenses part of the air before introducing the part of the air that is totally condensed in the single column or in a column of the assembly, preferentially above the feed of the rest of the air;
  • the process produces as final product at least one gas enriched in a component of the mixture
  • the process produces as final product at least one liquid enriched in a component of the mixture
  • cooling balance directly or indirectly cools or condenses a fluid coming from the single column or from a column of the assembly in a heat exchanger by heat exchange with a heat transfer fluid of the second heat pump;
  • the first heat pump has no common heat exchanger with the second heat pump
  • At least one fluid to be separated and / or derived from the separation of the column or column from the assembly is placed in direct contact with the magnetocaloric material of one of the first and second heat pumps;
  • the heat exchange is at least partly carried out between a fluid to be separated and / or resulting from the separation of the column or a column from the assembly and a heat transfer fluid that has been in contact with the magnetocaloric material of one of the first and second heat pumps through an exchanger;
  • the heat exchange is at least partly carried out between a fluid to be separated and / or resulting from the separation of the column or a column from the assembly and a heat transfer fluid having been in contact with the magnetocaloric material of a first and second heat pumps through an intermediate heat transport circuit.
  • an apparatus for separating a mixture, for example air gas, by a subambient or even cryogenic separation process comprising a single column or a set of columns.
  • the subambient or even cryogenic separation is carried out, means for sending a mixture, for example gas from the air, to the column or a set column, means for withdrawing at least one fluid enriched in a component of the mixture of the column or a set column, at least a first heat pump, using the magnetocaloric effect, called the separation heat pump, for exchanging heat directly or indirectly between a first cold source at subambient temperature or even cryogenic and a first hot source at subambient temperature, or even cryogenic thus providing at least part of the separation energy and at least one second heat pump, used the magnetocaloric effect, called the cooling balance heat pump, for exchanging heat directly or indirectly between a second cold source at a first subambient or even cryogenic temperature and a second hot source at a temperature above the first temperature, by example at temperature ambient, thus providing
  • the apparatus comprises means for withdrawing a liquid product at the head or single column vessel or a column of the assembly
  • the apparatus comprises means for withdrawing a gaseous product at the head or in the vat of the single column or of a column of the whole
  • a flow of gaseous air 1 is compressed in a compressor 3 and cooled in a cooler 5 to form compressed and cooled air 7.
  • This cooled air 7 is purified in a purification unit 9 to remove water and carbon dioxide and other impurities.
  • the purified air is then cooled in a plate heat exchanger 11 with fins.
  • the cooled air in the exchanger 11 is divided into two parts 13,15. Part 13 is sent to the middle of a single distillation column where it separates to form nitrogen enriched gas at the top of column 19 and an oxygen enriched liquid in the bottom of column 19.
  • Part 15 of the air is condensed at least partially in a heat exchanger 17 by heat exchange with a fluid flow 23 which cools by means of a second pump. heat using the magnetocaloric effect 21.
  • a cooling fluid 51 hot source of the second heat pump
  • typically ambient air or cooling water is sent to the second heat pump using the magnetocaloric effect 21.
  • the column comprises a bottom reboiler 33 and a top condenser 35.
  • the reboiler (the liquid reboiled in the reboiler is the indirect heat source of the first heat pump) is heated by means of a fluid circuit 37 in connection with a first heat pump using the magnetocaloric effect 31.
  • This first heat pump using the magnetocaloric effect 31 also serves to cool a fluid 39 which cools the overhead condenser 35 (the condensed gas in the condenser is the source indirect cold of the first heat pump).
  • the fluids 37 and 39 may be the same or different.
  • An oxygen-enriched liquid 29 is withdrawn in the vat from the column 19 and a nitrogen-enriched gas 41 warms up in the exchanger 11 and serves, at least in part, subsequently to regenerate the purification unit 9.
  • a gas Oxygen enriched is withdrawn in the bottom of the column 19, is heated in the exchanger 11 and is compressed by a compressor 27.
  • FIG. 2 unlike FIG. 1, fluids 37, 39 are replaced by fluid flow rates from column 19.
  • Column 19 has neither a head condenser nor a bottom reboiler.
  • a portion 29A of the tank liquid (hot source of the first heat pump) vaporizes in the first heat pump using the magnetocaloric effect 31 and is returned to the column in gaseous form.
  • Part 41A of the overhead gas (cold source of the first heat pump) is sent to the first heat pump using the magnetocaloric effect 31 where it condenses.
  • the formed liquid is returned to the top of the column.
  • the fluid 15 (cold source of the second heat pump) is sent directly into the second heat pump using the magnetocaloric effect 21 where it condenses at least partially.
  • FIG. 4 the heat transfer between the bottom reboiler 33 and the top condenser 35 is carried out as in FIG. 1, by a first heat pump using the magnetocaloric effect 31.
  • a part 43 of the nitrogen gas at the top of the column is condensed in the heat exchanger 17 by means of a second heat pump using the magnetocaloric effect 21.
  • the condensed nitrogen is returned to the column, so that a part of Condensation at the top of the column is carried out by means of the second heat pump using the magnetocaloric effect 21.
  • part of the oxygen-enriched gas 26 can be cooled and at least partially condensed in a heat exchanger 17 by means of a fluid circuit 53.
  • the fluid 53 transfers heat to a second heat pump using the magnetocaloric effect 21, itself cooled by means of a cooling fluid 51, typically ambient air or cooling water.
  • column 19 has a top condenser 35 but no bottom reboiler. All the air for the column is cooled by means of a heat exchanger 1 1, then a heat exchanger 17 where it is at least partially condensed, a fluid 23 and a second pump. heat using the magnetocaloric effect 21. As in Fig. 1, only a portion of the air can pass into the heat exchanger 17. The nitrogen 41 heats up and is compressed by a compressor 42. The bottom liquid 29 of the column warms up first. in the heat exchanger 53, where it is at least partially vaporized and then in the exchanger 1 1. A fluid circuit 55 cools in the exchanger 53 and recovers heat at the first heat pump using the magnetocaloric effect 31. The overhead condenser is cooled as in Figure 1.
  • the column has neither condenser nor reboiler. All the air 7 cools in the heat exchanger 1 1, then a heat exchanger 17 where it is at least partially condensed by means of a second heat pump using the magnetocaloric effect 21, as for Figure 3. As in Figure 1, only a portion of the air can pass into the heat exchanger 17. Alternatively, all or part of the air can be directly sent to the second heat pump using the The magnetocaloric effect 21.
  • the tank liquid 37 is entirely sent to a first heat pump using the magnetocaloric effect 31 where it vaporizes at least partially.
  • the vaporized flow 37A then warms up in the heat exchanger 11 and serves at least partially to the regeneration of the purification unit 9.
  • the overhead gas is divided in two, a portion 41 being heated and compressed and the remains 41A being sent to the first heat pump using the magnetocaloric effect 31 where it is at least partially condensed, forming the flow 41 B which is sent at the head of the column.
  • the invention is described herein in the air separation application at cryogenic temperature. It is obvious that the invention also applies to other separations at subambient temperatures for example at the separation of a mixture containing carbon monoxide and / or hydrogen and / or nitrogen and / or methane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Dans un procédé de séparation d'air par séparation à température subambiante, une première pompe à chaleur (31), utilisant l'effet magnétocalorique échange de la chaleur entre une source froide à température subambiante et une source chaude à température subambiante, apportant ainsi au moins en partie l'énergie de séparation et une deuxième pompe à chaleur (21 ), utilisant l'effet magnétocalorique échange de la chaleur entre une source froide (15) à température subambiante et une source chaude à température ambiante apportant ainsi au moins une partie du froid nécessaire au maintien du bilan frigorifique du procédé, la séparation s'effectuant dans une colonne unique (19) à une pression inférieure à 2 bara.

Description

Procédé et appareil de séparation à température cryogénique
La présente invention est relative à un procédé et à un appareil de séparation à température cryogénique. La séparation peut être une séparation par distillation et/ou par déflegmation et/ou par absorption. L'équipement utilisé pour cette séparation sera appelé « colonne ». Ainsi une colonne peut par exemple être une colonne de distillation ou d'absorption. Réduite à sa plus simple expression, elle peut être un séparateur de phases. Sinon une colonne peut également être un appareil où s'effectue une déflegmation.
La réfrigération magnétique repose sur l'utilisation de matériaux magnétiques présentant un effet magnétocalorique. Réversible, cet effet se traduit par une variation de leur température lorsqu'ils sont soumis à l'application d'un champ magnétique externe. Les plages optimales d'utilisation de ces matériaux se situent au voisinage de leur température de Curie (Te). En effet, plus les variations d'aimantation, et par conséquent les changements d'entropie magnétique, sont élevés, plus les changements de leur température sont élevés. L'effet magnétocalorique est dit direct lorsque la température du matériau augmente quand il est mis dans un champ magnétique, indirect lorsqu'il se refroidit quand il est mis dans un champ magnétique. La suite de la description sera faite pour le cas direct, mais la transposition au cas indirect est évidente pour l'homme de l'art. Il existe plusieurs cycles thermodynamiques basés sur ce principe. Un cycle classique de réfrigération magnétique consiste i) à magnétiser le matériau pour en augmenter la température, ii) à refroidir le matériau à champ magnétique constant pour rejeter de la chaleur, iii) à démagnétiser le matériau pour le refroidir et iv) à chauffer le matériau à champ magnétique constant (en général, nul) pour capter la chaleur.
Un dispositif de réfrigération magnétique met en œuvre des éléments en matériau magnétocalorique, qui génèrent de la chaleur lorsqu'ils sont magnétisés et absorbent de la chaleur lorsqu'ils sont démagnétisés. Il peut mettre en œuvre un régénérateur à matériau magnétocalorique pour amplifier la différence de température entre la « source chaude » et la «source froide» : on parle alors de réfrigération magnétique à régénération active.
Il est connu d'utiliser l'effet magnétocalorique pour fournir du froid à un procédé de séparation à température subambiante dans EP-A-2551005.
US-A-6502404 décrit l'usage de l'effet magnétocalorique (à la place de l'utilisation classique d'une turbine de détente) pour fournir du froid (nécessaire pour assurer le bilan frigorifique du procédé) à un procédé cryogénique de séparation de gaz de l'air, l'énergie de séparation étant classiquement apportée par l'air sous pression qui permet de faire fonctionner le vaporiseur-condenseur de la double colonne (la colonne basse pression pouvant être réduite à un simple vaporiseur dans le cas d'un générateur d'azote). La séparation (distillation) se fait en partie sous pression, typiquement entre 5 et 6 bara dans la colonne moyenne pression.
La présente invention aborde le problème de la façon d'effectuer une séparation entièrement en très basse pression, le fluide à séparer ne véhiculant pas l'énergie (sous forme de pression) utilisée pour la séparation et pour la tenue en froid du procédé.
L'énergie pour la séparation et l'énergie pour la tenue en froid sont apportées par des pompes à chaleur, indépendamment du fluide à séparer et de sa pression.
Il est connu depuis longtemps d'utiliser un même circuit pour fournir à la fois de la chaleur au rebouilleur d'une colonne de distillation et des frigories au condenseur de cette même colonne. US-A-2916888 montre un exemple pour une distillation d'hydrocarbures.
Une pompe à chaleur est un dispositif thermodynamique permettant de transférer une quantité de chaleur d'un milieu considéré comme « émetteur » dit « source froide » d'où l'on extrait la chaleur vers un milieu considéré comme « récepteur » dit « source chaude » où l'on fournit la chaleur, la source froide étant à une température plus froide que la source chaude.
Le cycle classique utilisé dans l'état de l'art pour ce type d'application est un cycle thermodynamique de compression - refroidissement (condensation) - détente - réchauffement (vaporisation) d'un fluide frigorifique. La figure 12 du document « TECHNIQUES DE L'INGENIEUR - Réfrigération magnétique de 2005 » montre un gain d'un facteur 2 sur le coefficient de performance d'un système frigorifique utilisant un cycle magnétique par rapport au cycle classique.
La séparation à basse pression, voire quasi atmosphérique est plus facile, du fait d'une volatilité plus importante entre les composants à séparer. En combinant cet effet avec la très bonne performance des pompes à chaleur utilisant l'effet magnétocalorique, on obtient un procédé avec une très bonne énergie de séparation.
Par ailleurs, la séparation à basse pression, voire quasi atmosphérique permet une simplification dans la conception et la tenue mécanique des équipements de l'appareil de séparation, réduisant ainsi son coût.
Une température ambiante est la température de l'air ambiant dans lequel se situe le procédé, ou encore une température d'un circuit d'eau de refroidissement en lien avec la température d'air.
Une température subambiante est au moins 10°C inférieure à la température ambiante.
Une température cryogénique est inférieure à -50°C.
Selon un objet de l'invention, il est prévu un procédé de séparation d'air, par séparation à température cryogénique dans lequel :
a. au moins une première pompe à chaleur, dite pompe à chaleur de séparation, échange de la chaleur directement ou indirectement entre une première source froide à température cryogénique et une première source chaude à température cryogénique apportant ainsi au moins en partie l'énergie de séparation, et
b. au moins une deuxième pompe à chaleur, dite pompe à chaleur de bilan frigorifique, échange de la chaleur directement ou indirectement entre une deuxième source froide à une première température cryogénique et une deuxième source chaude à une température supérieure à la première température, par exemple à la température ambiante, apportant ainsi au moins une partie du froid nécessaire au maintien du bilan frigorifique du procédé, la séparation s'effectuant dans une colonne unique ou un ensemble de colonnes, la pression de la colonne unique ou des colonnes de l'ensemble étant inférieure à 2 bara, préférentiellement inférieure à 1 ,5 bara, préférentiellement à au moins une pression qui ne diffère de la pression atmosphérique que par les pertes de charges des éléments reliant la ou les colonnes avec l'atmosphère, la première source froide et la première source chaude étant reliées thermiquement, directement ou indirectement, à la colonne unique ou à une colonne de l'ensemble, caractérisé en ce que les première et deuxième pompes à chaleur utilisent l'effet magnétocalorique et en ce que la deuxième source froide est constituée par de l'air (7) destiné à se séparer dans la colonne unique ou l'ensemble de colonnes ou par un fluide issu de la colonne unique (19) ou d'une colonne de l'ensemble.
Selon d'autres caractéristiques facultatives :
la première pompe à chaleur dite de séparation transfère de la chaleur directement ou indirectement de la tête de colonne, préférentiellement par condensation de gaz de la colonne, vers la cuve de colonne, préférentiellement par vaporisation de liquide de la colonne unique ;
la première pompe à chaleur dite de séparation transfère de la chaleur directement ou indirectement dans une colonne de l'ensemble, préférentiellement par condensation de gaz dans une colonne de l'ensemble, vers une colonne de l'ensemble, préférentiellement par vaporisation dans une colonne de l'ensemble ;
les première et deuxième pompes à chaleur sont reliées thermiquement entre elles à travers la colonne unique.
la deuxième pompe à chaleur condense directement ou indirectement au moins partiellement l'air avant introduction de l'air dans la colonne unique ou dans une colonne de l'ensemble ;
la deuxième pompe à chaleur condense totalement directement ou indirectement une partie de l'air avant introduction la partie de l'air totalement condensée dans la colonne unique ou dans une colonne de l'ensemble, préférentiellement au dessus de l'alimentation du reste de l'air ;
le procédé produit comme produit final au moins un gaz enrichi en un composant du mélange ;
le procédé produit comme produit final au moins un liquide enrichi en un composant du mélange ;
- la deuxième pompe à chaleur dite de bilan frigorifique refroidit ou condense directement ou indirectement un fluide issu de la colonne unique ou d'une colonne de l'ensemble dans un échangeur de chaleur par échange de chaleur avec un fluide caloporteur de la deuxième pompe à chaleur ;
la première pompe à chaleur n'a aucun échangeur de chaleur commun avec la deuxième pompe à chaleur
- au moins un fluide à séparer et/ou issu de la séparation de la colonne ou d'une colonne de l'ensemble est mis en contact direct avec le matériau magnétocalorique d'une des première et deuxième pompes à chaleur ;
l'échange thermique est au moins en partie réalisé entre un fluide à séparer et/ou issu de la séparation de la colonne ou d'une colonne de l'ensemble et un fluide caloporteur ayant été en contact avec le matériau magnétocalorique d'une des première et deuxième pompes à chaleur à travers un échangeur ;
l'échange thermique est au moins en partie réalisé entre un fluide à séparer et/ou issu de la séparation de la colonne ou d'une colonne de l'ensemble et un fluide caloporteur ayant été en contact avec le matériau magnétocalorique d'une première et deuxième des pompes à chaleur à travers un circuit caloporteur intermédiaire.
Selon un autre objet de l'invention, il est prévu un appareil de séparation d'un mélange, par exemple de gaz de l'air, par un procédé de séparation à température subambiante, voire cryogénique comprenant une colonne unique ou un ensemble de colonnes où s'effectue la séparation subambiante, voire cryogénique, des moyens pour envoyer un mélange, par exemple de gaz de l'air, vers la colonne ou une colonne de ensemble, des moyens pour soutirer au moins un fluide enrichi en un composant du mélange de la colonne ou une colonne de ensemble, au moins une première pompe à chaleur, utilisant l'effet magnétocalorique, dite pompe à chaleur de séparation, pour échanger de la chaleur directement ou indirectement entre une première source froide à température subambiante, voire cryogénique et une première source chaude à température subambiante, voire cryogénique apportant ainsi au moins en partie l'énergie de séparation et au moins une deuxième pompe à chaleur, utilisant l'effet magnétocalorique, dite pompe à chaleur de bilan frigorifique, pour échanger de la chaleur directement ou indirectement entre une deuxième source froide à une première température subambiante, voire cryogénique et une deuxième source chaude à une température supérieure à la première température, par exemple à la température ambiante, apportant ainsi au moins une partie du froid nécessaire au maintien du bilan frigorifique du procédé, la pression de la colonne unique ou des colonnes de l'ensemble étant inférieure à 2 bara, préférentiellement inférieure à 1.5 bara, de sorte que la colonne est ou les colonnes sont reliée(s) à l'atmosphère par au moins un conduit ne comprenant pas de moyens de détente, la première source froide et la première source chaude étant reliées thermiquement, directement ou indirectement, à la colonne unique ou à une colonne de l'ensemble.
Selon d'autres objets facultatifs :
l'appareil comprend des moyens pour soutirer un produit liquide en tête ou cuve de colonne unique ou d'une colonne de l'ensemble
l'appareil comprend des moyens pour soutirer un produit gazeux en tête ou en cuve de la colonne unique ou d'une colonne de l'ensemble
L'invention sera décrite de manière plus détaillée en se référant aux figures qui illustrent des procédés selon l'invention.
Dans la Figure 1 , un débit d'air gazeux 1 est comprimé dans un compresseur 3 et refroidi dans un refroidisseur 5 pour former de l'air comprimé et refroidi 7. Cet air refroidi 7 est épuré dans une unité d'épuration 9 pour enlever de l'eau et du dioxyde de carbone et d'autres impuretés. L'air épuré est ensuite refroidi dans un échangeur de chaleur 1 1 à plaques et à ailettes. L'air refroidi dans l'échangeur 1 1 est divisé en deux parties 13,15. La partie 13 est envoyée au milieu d'une simple colonne de distillation où elle se sépare pour former du gaz enrichi en azote en haut de la colonne 19 et un liquide enrichi en oxygène en cuve de la colonne 19.
La partie 15 de l'air (source froide indirecte de la deuxième pompe à chaleur) est condensé au moins partiellement dans un échangeur de chaleur 17 par échange de chaleur avec un débit de fluide 23 qui se refroidit au moyen d'une deuxième pompe à chaleur utilisant l'effet magnétocalorique 21. Un fluide 51 de refroidissement (source chaude de la deuxième pompe à chaleur), typiquement de l'air ambiant ou de l'eau de refroidissement est envoyé à la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21. La colonne comprend un rebouilleur de cuve 33 et un condenseur de tête 35. Le rebouilleur (le liquide rebouilli dans le rebouilleur est la source chaude indirecte de la première pompe à chaleur) est chauffé au moyen d'un circuit de fluide 37 en lien avec une première pompe à chaleur utilisant l'effet magnétocalorique 31. Cette première pompe à chaleur utilisant l'effet magnétocalorique 31 sert également à refroidir un fluide 39 qui refroidit le condenseur de tête 35 (le gaz condensé dans le condenseur est la source froide indirecte de la première pompe à chaleur). Les fluides 37 et 39 peuvent être identiques ou différents. Un liquide 29 enrichi en oxygène est soutiré en cuve de la colonne 19 et un gaz 41 enrichi en azote se réchauffe dans l'échangeur 1 1 et sert, au moins en partie, ensuite à régénérer l'unité d'épuration 9. Un gaz 25 enrichi en oxygène est soutiré en cuve de la colonne 19, se réchauffe dans l'échangeur 1 1 et est comprimé par un compresseur 27.
Dans la Figure 2, à la différence de la Figure 1 , les fluides 37, 39 sont remplacés par des débits de fluides provenant de la colonne 19. La colonne 19 n'a ni condenseur de tête ni rebouilleur de cuve. Une partie 29A du liquide de cuve (source chaude de la première pompe à chaleur) se vaporise dans la première pompe à chaleur utilisant l'effet magnétocalorique 31 et est renvoyée à la colonne sous forme gazeuse. Une partie 41A du gaz de tête (source froide de la première pompe à chaleur) est envoyée à la première pompe à chaleur utilisant l'effet magnétocalorique 31 où il se condense. Le liquide formé est renvoyé en tête de colonne. De même, le fluide 15 (source froide de la deuxième pompe à chaleur) est envoyé directement dans la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 où il se condense au moins partiellement.
Dans la Figure 3, à la différence de la Figure 1 , l'air n'est pas divisé en deux. Le débit entier 7 est refroidi au moyen d'une deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 , les calories étant évacués par l'échangeur de chaleur 17 et le fluide 23 qui se refroidit dans une deuxième pompe à chaleur utilisant l'effet magnétocalorique 21. Du coup l'air se trouve partiellement condensé dans l'échangeur 17 et est envoyé à la colonne 19.
Dans la Figure 4, le transfert de chaleur entre le rebouilleur de cuve 33 et le condenseur de tête 35 s'effectue comme pour la Figure 1 , par une première pompe à chaleur utilisant l'effet magnétocalorique 31. Par contre, une partie 43 de l'azote gazeux de tête de colonne est condensée dans l'échangeur de chaleur 17 au moyen d'une deuxième pompe à chaleur utilisant l'effet magnétocalorique 21. L'azote condensé est renvoyé à la colonne, de sorte d'une partie de la condensation en tête de colonne s'effectue au moyen de la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21.
De même, comme l'on voit à la Figure 5, une partie du gaz enrichi en oxygène 26 peut être refroidie et au moins en partie condensée dans un échangeur de chaleur 17 au moyen d'un circuit de fluide 53. Le fluide 53 transfère de la chaleur vers une deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 , elle-même refroidie au moyen d'un fluide 51 de refroidissement, typiquement de l'air ambiant ou de l'eau de refroidissement.
Dans la Figure 6, la colonne 19 a un condenseur de tête 35 mais pas de rebouilleur de cuve. Tout l'air destiné à la colonne se refroidit au moyen d'un échangeur de chaleur 1 1 , puis d'un échangeur de chaleur 17 où il est au moins en partie condensé, d'un fluide 23 et d'une deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 . Comme dans la figure 1 , seulement une partie de l'air peut passer dans l'échangeur de chaleur 17. L'azote 41 se réchauffe et est comprimé par un compresseur 42. Le liquide de cuve 29 de la colonne se réchauffe d'abord dans l'échangeur de chaleur 53, où il est au moins partiellement vaporisé et ensuite dans l'échangeur 1 1. Un circuit de fluide 55 se refroidit dans l'échangeur 53 et récupère de la chaleur à la première pompe à chaleur utilisant l'effet magnétocalorique 31. Le condenseur de tête est refroidi comme pour la Figure 1.
Dans la Figure 7, la colonne n'a ni condenseur ni rebouilleur. Tout l'air 7 se refroidit dans l'échangeur de chaleur 1 1 , puis d'un échangeur de chaleur 17 où il est au moins en partie condensé au moyen d'une deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 , comme pour la Figure 3. Comme dans la figure 1 , seulement une partie de l'air peut passer dans l'échangeur de chaleur 17. De façon alternative, tout ou partie de l'air peut être directement envoyé à la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21. Le liquide de cuve 37 est entièrement envoyé à une première pompe à chaleur utilisant l'effet magnétocalorique 31 où il se vaporise au moins partiellement. Le débit vaporisé 37A se réchauffe ensuite dans l'échangeur de chaleur 1 1 et sert au moins partiellement à la régénération de l'unité d'épuration 9. Le gaz de tête est divisé en deux, une partie 41 étant réchauffée et comprimée et le reste 41A étant envoyé à la première pompe à chaleur utilisant l'effet magnétocalorique 31 où il est au moins en partie condensé, formant le débit 41 B qui est envoyé en tête de colonne.
L'invention est décrite ici dans l'application de séparation de l'air à température cryogénique. Il est évident que l'invention s'applique également à d'autres séparations à températures subambiante par exemple à la séparation d'un mélange contenant du monoxyde de carbone et/ou d'hydrogène et/ou de l'azote et/ou du méthane.

Claims

Revendications 1. Procédé de séparation d'air, par séparation à température cryogénique dans lequel
a) au moins une première pompe à chaleur (31 ), utilisant l'effet magnétocalorique, dite pompe à chaleur de séparation, échange de la chaleur directement ou indirectement entre une première source froide ( 39, 41 A) à température cryogénique et une première source chaude ( 37, 29A, 55) à température cryogénique apportant ainsi au moins en partie l'énergie de séparation et
b) au moins une deuxième pompe à chaleur (21 ), utilisant l'effet magnétocalorique, dite pompe à chaleur de bilan frigorifique, échange de la chaleur directement ou indirectement entre une deuxième source froide (15, 23, 53) à une première température cryogénique et une deuxième source chaude (51 ) à une température supérieure à la première température, par exemple à la température ambiante, apportant ainsi au moins une partie du froid nécessaire au maintien du bilan frigorifique du procédé, la séparation s'effectuant dans une colonne unique (19) ou un ensemble de colonnes, la pression de la colonne unique ou des colonnes de l'ensemble étant inférieure à 2 bara, préférentiellement inférieure à 1 ,5 bara, préférentiellement à au moins une pression qui ne diffère de la pression atmosphérique que par les pertes de charges des éléments reliant la ou les colonnes avec l'atmosphère, la première source froide et la première source chaude étant reliées thermiquement, directement ou indirectement, à la colonne unique ou à une colonne de l'ensemble caractérisé en ce que les première et deuxième pompes à chaleur utilisent l'effet magnétocalorique et en ce que la deuxième source froide est constituée par de l'air destiné à se séparer dans la colonne unique ou l'ensemble de colonnes ou par un fluide issu de la colonne unique (19) ou d'une colonne de l'ensemble.
2. Procédé selon la revendication 1 , dans lequel la première pompe à chaleur (31 ), dite de séparation transfère de la chaleur directement ou indirectement de la tête de la colonne unique (19) ou d'une colonne de l'ensemble, préférentiellement par condensation de gaz de la colonne ou d'une colonne de l'ensemble, vers la cuve de la colonne ou d'une colonne de l'ensemble, préférentiellement par vaporisation de liquide de la colonne unique ou d'une colonne de l'ensemble.
3. Procédé selon l'une des revendications précédentes, dans lequel les première et deuxième pompes à chaleur sont reliées thermiquement entre elles à travers la colonne unique.
4. Procédé selon l'une des revendications 1 à 3, dans lequel la deuxième pompe à chaleur (21 ), condense directement ou indirectement au moins partiellement l'air avant introduction de l'air dans la colonne unique (19) ou dans une colonne de l'ensemble.
5. Procédé selon l'une des revendications 1 à 3, dans lequel la deuxième pompe à chaleur (21 ), condense totalement directement ou indirectement une partie de l'air avant introduction la partie de l'air totalement condensée dans la colonne unique (19) ou dans une colonne de l'ensemble, préférentiellement au dessus de l'alimentation du reste de l'air.
6. Procédé selon l'une des revendications précédentes, dans lequel la deuxième pompe à chaleur (21 ), dite de bilan frigorifique refroidit ou condense directement ou indirectement un fluide issu de la colonne unique (19) ou d'une colonne de l'ensemble dans un échangeur de chaleur (17) permettant un échange de chaleur entre le fluide et un fluide caloporteur de la deuxième pompe à chaleur.
7. Procédé selon l'une des revendications précédentes, dans lequel au moins un fluide à séparer et/ou issu de la séparation de la colonne (19) ou d'une colonne de l'ensemble est mis en contact direct avec un matériau magnétocalorique d'une des première et deuxième pompes à chaleur (31 , 21 ),
8. Procédé selon l'une des revendications précédentes, dans lequel l'échange thermique est au moins en partie réalisé entre un fluide à séparer et/ou issu de la séparation de la colonne (19) ou d'une colonne de l'ensemble et un fluide caloporteur ayant été en contact avec un matériau magnétocalorique d'une des première et deuxième pompes à chaleur (31 ,21 ), à travers un échangeur (17).
9. Procédé selon l'une des revendications précédentes, dans lequel l'échange thermique est au moins en partie réalisé entre un fluide à séparer et/ou issu de la séparation de la colonne (19) ou d'une colonne de l'ensemble et un fluide caloporteur ayant été en contact avec un matériau magnétocalorique d'une première et deuxième des pompes à chaleur (31 , 21 ), à travers un circuit caloporteur intermédiaire.
10. Procédé selon l'une des revendications précédentes dans lequel la deuxième pompe à chaleur comprend un échangeur de chaleur (17) permettant un échange de chaleur entre l'air à distiller et un fluide caloporteur (23) de la pompe à chaleur.
1 1. Procédé selon la revendication 10 dans lequel l'échangeur de chaleur (17) échange de la chaleur uniquement entre l'air et le fluide caloporteur.
12. Procédé selon la revendication 10 ou 1 1 dans lequel l'échangeur de chaleur (17) sert à refroidir tout l'air destiné à la distillation.
13. Procédé selon l'une des revendications précédentes dans lequel les première et deuxième pompes à chaleur n'ont aucun échangeur de chaleur commun.
14. Appareil de séparation d'air par un procédé de séparation à température cryogénique comprenant une colonne unique (19) ou un ensemble de colonnes où s'effectue la séparation cryogénique, des moyens pour envoyer un mélange de gaz de l'air vers la colonne ou une colonne de l'ensemble, des moyens pour soutirer au moins un fluide enrichi en un composant du mélange de la colonne, au moins une première pompe à chaleur (31 ), utilisant l'effet magnétocalorique, dite pompe à chaleur de séparation, pour échanger de la chaleur directement ou indirectement entre une source froide à température cryogénique et une source chaude à température cryogénique apportant ainsi au moins en partie l'énergie de séparation et au moins une deuxième pompe à chaleur (21 ), utilisant l'effet magnétocalorique, dite pompe à chaleur de bilan frigorifique, pour échanger de la chaleur directement ou indirectement entre une source froide à une première température cryogénique constituée par de l'air destiné à se séparer dans la colonne unique ou l'ensemble de colonnes et une source chaude à température supérieure à la première température, par exemple à la température ambiante, apportant ainsi au moins une partie du froid nécessaire au maintien du bilan frigorifique du procédé, la pression de la colonne unique ou des colonnes de l'ensemble étant inférieure à 2 bara, préférentiellement inférieure à 1 ,5 bara, de sorte que la colonne est ou les colonnes sont reliée(s) à l'atmosphère par au moins un conduit (41 ) ne comprenant pas de moyens de détente, la première source froide et la première source chaude étant reliées thermiquement, directement ou indirectement, à la colonne unique ou à une colonne de l'ensemble.
EP14784278.5A 2013-09-10 2014-09-10 Procédé et appareil de séparation à température cryogénique Withdrawn EP3071910A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1358666A FR3010509A1 (fr) 2013-09-10 2013-09-10 Procede et appareil de separation a temperature subambiante
FR1358668A FR3010511B1 (fr) 2013-09-10 2013-09-10 Procede et appareil de separation d'un melange gazeux a temperature subambiante
FR1358667A FR3010510B1 (fr) 2013-09-10 2013-09-10 Procede et appareil de separation a temperature subambiante
PCT/FR2014/052246 WO2015036700A2 (fr) 2013-09-10 2014-09-10 Procédé et appareil de séparation à température cryogénique

Publications (1)

Publication Number Publication Date
EP3071910A2 true EP3071910A2 (fr) 2016-09-28

Family

ID=56116152

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14784278.5A Withdrawn EP3071910A2 (fr) 2013-09-10 2014-09-10 Procédé et appareil de séparation à température cryogénique
EP14784274.4A Withdrawn EP3044522A2 (fr) 2013-09-10 2014-09-10 Procédé et appareil de séparation à température subambiante

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14784274.4A Withdrawn EP3044522A2 (fr) 2013-09-10 2014-09-10 Procédé et appareil de séparation à température subambiante

Country Status (3)

Country Link
US (2) US20160216013A1 (fr)
EP (2) EP3071910A2 (fr)
CN (2) CN105705884B (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627731A (en) * 1949-06-18 1953-02-10 Hydrocarbon Research Inc Rectification of gaseous mixtures
US4345925A (en) * 1980-11-26 1982-08-24 Union Carbide Corporation Process for the production of high pressure oxygen gas
US4987744A (en) * 1990-01-26 1991-01-29 Union Carbide Industrial Gases Technology Corporation Cryogenic distillation with unbalanced heat pump
DE19529681C2 (de) * 1995-08-11 1997-05-28 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
US6082135A (en) * 1999-01-29 2000-07-04 The Boc Group, Inc. Air separation method and apparatus to produce an oxygen product
US6336331B1 (en) * 2000-08-01 2002-01-08 Praxair Technology, Inc. System for operating cryogenic liquid tankage
US6502404B1 (en) * 2001-07-31 2003-01-07 Praxair Technology, Inc. Cryogenic rectification system using magnetic refrigeration
US7143606B2 (en) * 2002-11-01 2006-12-05 L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude Combined air separation natural gas liquefaction plant
CH695836A5 (fr) * 2002-12-24 2006-09-15 Ecole D Ingenieurs Du Canton D Procédé et dispositif pour générer en continu du froid et de la chaleur par effet magnetique.
DE102005029274A1 (de) * 2004-08-17 2006-02-23 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
US20080016907A1 (en) * 2006-07-18 2008-01-24 John Arthur Barclay Active gas regenerative liquefier system and method
FR2946417A1 (fr) * 2009-06-03 2010-12-10 Air Liquide Procede et appareil de production d'au moins un fluide enrichi en argon et/ou au moins un fluide enrichi en oxygene a partir d'un fluide residuaire

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015036700A2 *

Also Published As

Publication number Publication date
CN105705884A (zh) 2016-06-22
EP3044522A2 (fr) 2016-07-20
US20160223253A1 (en) 2016-08-04
US20160216013A1 (en) 2016-07-28
CN105705893A (zh) 2016-06-22
CN105705884B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2015036697A2 (fr) Procédé et appareil de séparation à température subambiante
US10317135B2 (en) Separation at sub-ambient temperature of a gaseous mixture containing carbon dioxide and a lighter contaminant
WO2015036700A2 (fr) Procédé et appareil de séparation à température cryogénique
WO2013079856A1 (fr) Procédé et appareil de réchauffage de l'azote destiné à régénérer une unité d'adsorption d'une unité de séparation d'air
WO2015036673A2 (fr) Procédé et appareil de séparation d'un mélange gazeux à température subambiante
WO2015092330A2 (fr) Procédé et appareil de séparation à température subambiante
EP3071910A2 (fr) Procédé et appareil de séparation à température cryogénique
WO2016132082A1 (fr) Procédé et appareil de séparation a température subambiante
FR3032889A1 (fr) Procede et appareil de separation a temperature subambiante
FR3028187A3 (fr) Procede et appareil de separation a temperature subambiante
WO2016139425A1 (fr) Procédé et appareil de séparation à température subambiante
FR3032888A1 (fr) Procede et appareil de separation a temperature subambiante
FR3033260A1 (fr) Procede et appareil de separation a temperature subambiante
WO2016132086A1 (fr) Procede et appareil de separation a temperature subambiante
EP2938414B1 (fr) Procédé et appareil de séparation d'un gaz riche en dioxyde de carbone
WO2016139433A1 (fr) Procédé et appareil de compression d'un gaz
WO2016139432A2 (fr) Procédé et appareil de séparation d'un mélange gazeux à température subambiante
WO2016142606A1 (fr) Procédé de séparation d'un mélange gazeux à température subambiante
WO2015075398A2 (fr) Appareil de séparation d'un mélange gazeux à température subambiante et procédé de maintien en froid d'un tel appareil
FR3033397A1 (fr) Procede de compression et de refroidissement d’un melange gazeux
FR3015014A1 (fr) Appareil et procede de separation a temperature subambiante et procede de rechauffage d’au moins une partie d’un tel appareil
EP4279848A1 (fr) Procédé et appareil de refroidissement d'un débit riche en co2
FR3033396A1 (fr) Procede de refroidissement d'un fluide jusqu'a temperature subambiante
FR2714720A1 (fr) Procédé et appareil de liquéfaction d'un gaz naturel.
FR3020667A1 (fr) Procede et appareil de refroidissement et d’epuration d’un melange gazeux contenant des impuretes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160728

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DAVIDIAN, BENOIT

Inventor name: LIX, CLEMENT

Inventor name: SAULNIER, BERNARD

Inventor name: CORREIA ANACLETO, ANTONY

Inventor name: CARDON, GUILLAUME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180301

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190227