EP3068529A1 - Verfahren und vorrichtung zur dampfreformierung sowie zur dampfspaltung von kohlenwasserstoffen - Google Patents

Verfahren und vorrichtung zur dampfreformierung sowie zur dampfspaltung von kohlenwasserstoffen

Info

Publication number
EP3068529A1
EP3068529A1 EP14795781.5A EP14795781A EP3068529A1 EP 3068529 A1 EP3068529 A1 EP 3068529A1 EP 14795781 A EP14795781 A EP 14795781A EP 3068529 A1 EP3068529 A1 EP 3068529A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
furnace
temperature
reactor tube
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14795781.5A
Other languages
English (en)
French (fr)
Inventor
Michael Nold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3068529A1 publication Critical patent/EP3068529A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/02Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in parallel arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00053Temperature measurement of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/06Details of tube reactors containing solid particles
    • B01J2208/065Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00204Sensing a parameter of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00213Fixed parameter value
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection

Definitions

  • the invention relates to a furnace, in particular for cracking hydrocarbons for the production of olefins, as well as a reformer for hydrogen production by the steam reforming of methane according to claim 1 and a method for tempering a flowing in an oven stream according to claim 9.
  • a warmed material stream is passed through a bundle of reactor tubes, which in a furnace (also
  • Firing room called) of a furnace is located.
  • the stream contains the methane-containing use and water vapor.
  • the introduction of the material flow in such an oven is preferably carried out by the reactor tubes passed through the ceiling of a vertically extending furnace chamber in the furnace and on
  • the vapor cracking of hydrocarbons is also a known method.
  • a warmed material stream is passed through a bundle of reactor tubes located in a furnace hearth.
  • the stream contains the gaseous hydrocarbon-containing use and water vapor.
  • the introduction of the material flow in such an oven is preferably done by the reactor tubes are passed through the ceiling of a vertically extending furnace in the furnace and in an arc just above the opposite floor back up and out of the furnace be slipped out.
  • burners are generally provided on the bottom and / or on the side wall of the combustion chamber, which burners generate locally very high temperatures (for example up to 2000 ° C. in the flame) in the furnace.
  • the reactor tubes of the tube bundle therefore consist of a corresponding
  • the reactor tubes are initially protected from overheating by the comparatively colder material flow.
  • the flow of material heats up so much in the further course that it can no longer sufficiently cool the pipes, so that the temperature of the furnace must be limited in order not to overheat the pipes.
  • the temperature profile in the stream is dependent, inter alia, on the flow rate of the stream, the temperature profile in the furnace and other factors, such as the type and amount of arranged in the tubes catalyst material. Due to these factors, reaction conditions, in particular with regard to the temperature profile in the combustion chamber, can only be varied to a limited extent, among other things because the reactor tubes must not be overheated.
  • the present invention seeks to provide a device and a method that allow a more flexible handling of the reaction dynamics in the flow at the same time high energy efficiency and at the same time ensure adequate protection of the reactor tubes from overheating.
  • the furnace has at least one second combustion chamber, wherein the at least one reactor tube is also guided through the at least one second combustion chamber, wherein the furnace is designed to generate a first temperature which can be generated in the first combustion chamber and one in the first combustion chamber each set separately at least one second combustion chamber second temperature.
  • This multi-chamber principle makes it possible in particular to better adjust the temperature profiles in the material flow, since the ambient temperature in the at least one second combustion chamber can be set separately and thus a temperature difference between a reactor tube and the at least one further combustion chamber can be predetermined. As a result, in particular the protection of the reactor tube before
  • the furnace may have a plurality of reactor tubes for guiding / heating the material flow, which may form a tube bundle.
  • the at least one reactor tube is guided through the combustion chambers such that a material stream flowing therein is first passed through the first and then through the at least one second combustion chamber and possibly further combustion chambers.
  • the furnace has at least one first burner, which is designed to burn a fuel to produce a flame in the first combustion chamber for heating a stream of material flowing in the at least one reactor tube.
  • the furnace may also include a plurality of such first burners in the first combustion chamber.
  • the furnace has at least one second burner, which is designed to oxidize a fuel flamelessly in the at least one second combustion chamber (so-called FLX burner).
  • Such a flameless oxidation (FLX) is characterized for example by the reduction of the formation of nitrogen oxides.
  • FLX flameless oxidation
  • the at least one first burner is arranged in particular on a ceiling or on a bottom of the first combustion chamber, wherein in particular the entry of the at least one reactor tube into the first combustion chamber on that side of the first
  • Combustion takes place, on which also the at least one first burner is arranged, and wherein in particular the at least one reactor tube exits on the side of the first combustion chamber, the at least one first burner
  • the furnace has a combustion chamber, which is divided by at least one wall of the combustion chamber into the first and the at least one second combustion chamber.
  • a combustion chamber which is divided by at least one wall of the combustion chamber into the first and the at least one second combustion chamber.
  • the first and the at least one further combustion chamber in particular share a common wall.
  • the combustors are connected by the reactor tubes that run between the units.
  • the furnace is designed such that the first temperature which can be generated in the first combustion chamber is higher than the second temperature which can be generated in the at least one second combustion chamber.
  • the furnace is further designed so that in the at least one second combustion chamber, a homogeneous second temperature is adjustable. This is special then the case when the at least one second combustion chamber is heated by the FLX method described above.
  • second burners in the form of FLX burners are suitable for forming a spatially homogeneous temperature profile, which does not have to be the case with a burner operated in flame mode.
  • the stated object is achieved by a method for tempering a stream flowing in at least one reactor tube of a furnace in a flow direction, in particular using a furnace according to the invention, wherein the flowing in the at least one reactor tube stream exposed in a first combustion chamber of a separately adjustable first temperature is, and then exposed in at least a second combustion chamber to protect the at least one reactor tube from overheating a separately adjustable second temperature.
  • a homogeneous second temperature is set in the at least one second combustion chamber.
  • the flow of material flowing in the at least one reactor tube is exposed to a first temperature decreasing in the direction of flow, the maximum of the first temperature being in particular markedly higher (several 100K) than the second temperature.
  • the method according to the invention can be applied to various processes in ovens.
  • the substance stream hydrocarbon compounds and water vapor be converted into hydrogen and carbon oxides in the furnace using suitable catalysts.
  • this chemical reaction is termed
  • the catalysts used are preferably nickel- or noble metal-based catalyst materials.
  • Hydrocarbon compounds are reacted with the water in the furnace to produce olefins such as ethene and propene.
  • olefins such as ethene and propene.
  • this chemical reaction is subsumed under the term steam cracking or steam cracking.
  • the stream contains propane and in particular water vapor, the propane optionally with
  • FIG. 1 shows a schematic illustration of a furnace according to the invention
  • Fig. 2 shows another embodiment of a furnace according to the invention.
  • FIG. 1 shows a schematic representation of a furnace according to the invention 1.
  • a stream M is in at least one reactor tube 2 or a
  • Reactor tube bundle 2 is introduced through the ceiling 10a of a first combustion chamber 10 in the first combustion chamber 10.
  • a first burner 11 is provided on the ceiling 10a of the first combustion chamber 10, which in this example oxidizes a fuel to form a flame.
  • the material flow M heats up.
  • the at least one reactor tube 2 leaves the first combustion chamber 10 through the bottom 10b of the first combustion chamber 10 which is opposite the ceiling 10a along the vertical and enters the second combustion chamber 20 through the bottom 20b of a second combustion chamber 20.
  • two, in particular diagonally opposite, second burners in the form of FLX burners 21 are arranged, which are preferably designed to be
  • the stream M which may consist partly of educt and product in this section (see also the above-described applications of the method), exits through the cover 20b of the second combustion chamber 20 from the furnace 1 and is forwarded from there to possibly. to be further processed. It's closed Note that in this example, the first and the second combustion chamber 10, 20 are formed by a combustion chamber 3, which is divided by a central, vertically extending wall 4 of the combustion chamber 3 in the two combustion chambers 10, 20, so that the two combustion chambers 10th , 20 are laterally adjacent to each other. There may be provided further combustion chambers in the form of the second combustion chamber 20, which may laterally connect to a second combustion chamber 20, for example.
  • the material stream M is initially separated by a first
  • Combustion chamber 10 according to the type of Figure 1, which is also heated in Flammenoxidations horr, led before the stream M enters a second combustion chamber 20, which is heated in the FLX process.
  • the stream M (and the at least one reactor tube 2) enters the second combustion chamber 20 through the cover 20a of the second separate combustion chamber 20 and exits at the bottom 20b.
  • the dotted representation of the at least one reactor tube 2 marks a region or a module 100 of the furnace 1, which can be connected in series as often as desired at this point.
  • This module 100 has a portion of the at least one reactor tube 2 (shown dotted) and the second combustion chamber 20. In each additional module, the temperature can be controlled separately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft einen Ofen (1) sowie ein Verfahren zur Temperierung eines Stoffstroms (M), wobei der Ofen (1) eine erste Brennkammer (10), zumindest ein Reaktorrohr (2) zur Aufnahme eines zu erhitzenden Stoffstromes (M), das durch die erste Brennkammer (10) geführt ist, sowie zumindest eine zweite Brennkammer (20) aufweist, wobei das mindestens eine Reaktorrohr (2) auch durch die mindestens eine zweite Brennkammer (20) geführt ist, wobei der Ofen (1) dazu ausgebildet ist, eine in der ersten Brennkammer (10) erzeugbare erste Temperatur (T1) und eine in der mindestens einen zweiten Brennkammer (20) erzeugbare zweite Temperatur (T2) jeweils separat einzustellen.

Description

Verfahren und Vorrichtung zur Dampfreformierunq sowie zur Dampfspaltunq von
Kohlenwasserstoffen
Beschreibung
Die Erfindung betrifft einen Ofen, insbesondere zum Spalten von Kohlenwasserstoffen zur Herstellung von Olefinen, sowie einen Reformer zur Wasserstofferzeugung durch das Dampfreformieren von Methan gemäß Anspruch 1 sowie ein Verfahren zum Temperieren eines in einem Ofen strömenden Stoffstromes nach Anspruch 9.
Dampfreformierung von Methan zur Wasserstofferzeugung ist ein bekanntes
Verfahren. In einem solchen Verfahren wird ein angewärmter Stoffstrom durch ein Bündel von Reaktorrohren geleitet, welches sich in einem Feuerraum (auch
Feuerungsraum genannt) eines Ofens befindet. Der Stoffstrom enthält dabei den methanhaltigen Einsatz sowie Wasserdampf. Das Einleiten des Stoffstroms in einen solchen Ofen geschieht bevorzugt, indem die Reaktorrohre durch die Decke eines sich vertikal erstreckenden Feuerraums in den Feuerraum geführt und am
gegenüberliegenden Boden wieder aus dem Feuerraum herausgeleitet werden. Zum Erhitzen des Stoffstromes sind an der Decke des Feuerraums in der Regel Brenner vorgesehen, die in dem Ofen lokal sehr hohe Temperaturen (beispielsweise bis zu 1800Ό in der Flamme) erzeugen. Die Reaktorrohre de s Rohrbündels bestehen daher aus einem entsprechend hitzeresistenten Material, damit sie diesen extremen
Strahlungsbedingungen widerstehen können. Die Gasbrenner werden für gewöhnlich im Flammenbetrieb betrieben, was dazu führt, dass sich eine inhomogene
Temperaturverteilung im Feuerraum ausbildet, wobei die Temperatur von der Decke des Feuerraums ausgehend nach unten hin abnimmt.
Das Dampfspalten von Kohlenwasserstoffen ist ebenfalls ein bekanntes Verfahren. In einem solchen Verfahren wird ein angewärmter Stoffstrom durch ein Bündel von Reaktorrohren geleitet, welche sich in einem Feuerungsraum eines Ofens befinden. Der Stoffstrom enthält dabei den gasförmigen kohlenwasserstoffhaltigen Einsatz sowie Wasserdampf. Das Einleiten des Stoffstroms in einen solchen Ofen geschieht bevorzugt, indem die Reaktorrohre durch die Decke eines sich vertikal erstreckenden Feuerraums in den Feuerraum geführt werden und in einem Bogen dicht über dem gegenüberliegenden Boden wieder nach oben geführt und aus dem Feuerraum herausgleitet werden. Zum Erhitzen des Stoffstromes sind am Boden und/oder an der Seitenwand des Feuerraums in der Regel Brenner vorgesehen, die in dem Ofen lokal sehr hohe Temperaturen (beispielsweise bis zu 2000°C in der Flamme) erzeugen. Die Reaktorrohre des Rohrbündels bestehen daher aus einem entsprechend
hitzeresistenten Material, damit sie diesen extremen Strahlungsbedingungen widerstehen können.
Bei Eintritt des Stoffstroms in den Feuerraum werden die Reaktorrohre zunächst durch den vergleichsweise kälteren Stoffstrom vor einer Überhitzung geschützt. Dabei erwärmt sich der Stoffstrom im weiteren Verlauf so stark, dass er die Rohre nicht mehr ausreichend kühlen kann, so dass die Temperatur der Feuerung beschränkt werden muss, um die Rohre nicht zu überhitzen. Der Temperaturverlauf im Stoffstrom ist unter anderem von der Fließgeschwindigkeit des Stoffstroms, dem Temperaturprofil im Feuerraum und anderen Faktoren, wie beispielsweise der Art und Menge von in den Rohren angeordnetem Katalysatormaterial, abhängig. Durch diese Faktoren sind Reaktionsbedingungen, insbesondere im Hinblick auf den Temperaturverlauf im Feuerraum, nur eingeschränkt variierbar, unter anderem auch, da die Reaktorrohre nicht überhitzt werden dürfen. Dies hat außerdem zur Folge, dass der Wirkungsgrad der Energieübertragung aufgrund der gegebenen Temperaturdifferenzen zwischen Feuerung und Stoffstrom an die Rohre limitiert ist. Für beide Verfahren ist ein hoher energetischer Wirkungsgrad aus wirtschaftlichen Gründen sehr wichtig, weshalb einiger Aufwand betrieben wird um die Abwärme des verbrannten Brennstoffes zu nutzen. Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Vorrichtung sowie ein Verfahren anzugeben, die eine flexiblere Handhabung der Reaktionsdynamik im Stoffstrom bei gleichzeitig hohem energetischen Wirkungsgrad erlauben und gleichzeitig einen ausreichenden Schutz der Reaktorrohre vor einer Überhitzung sicherstellen.
Dieses Problem wird durch einen Ofen mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren mit den Merkmalen des Anspruchs 9 gelöst. Vorteilhafte
Ausgestaltungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben und werden nachfolgend beschrieben. Gemäß Anspruch 1 ist erfindungsgemäß vorgesehen, dass der Ofen zumindest eine zweite Brennkammer aufweist, wobei das mindestens eine Reaktorrohr auch durch die mindestens eine zweite Brennkammer geführt ist, wobei der Ofen dazu ausgebildet ist, eine in der ersten Brennkammer erzeugbare erste Temperatur und eine in der mindestens einen zweiten Brennkammer erzeugbare zweite Temperatur jeweils separat einzustellen.
Durch dieses Mehrkammerprinzip lassen sich insbesondere die Temperaturverläufe in dem Stoffstrom besser einstellen, da die Umgebungstemperatur in der mindestens einen zweiten Brennkammer separat einstellbar ist und somit eine Temperaturdifferenz zwischen einem Reaktorrohr und der mindestens einen weiteren Brennkammer vorgebbar ist. Dadurch kann insbesondere der Schutz des Reaktorrohres vor
Überhitzung sichergestellt werden. Gleichzeitig wird die Möglichkeit der Temperierung des Stoffstroms in einem Reaktorrohr erhalten. Der Ofen kann natürlich mehrere Reaktorrohre zum Führen/Erhitzen des Stoffstromes aufweisen, die ein Rohrbündel bilden können.
In einer bevorzugten Variante der Erfindung ist vorgesehen, dass das mindestens eine Reaktorrohr so durch die Brennkammern geführt ist, dass ein darin strömender Stoffstrom zunächst durch die erste und dann durch die mindestens eine zweite Brennkammer und ggf. weitere Brennkammern geführt wird.
In einer bevorzugten Ausführungsform der Erfindung weist der Ofen zumindest einen ersten Brenner auf, der dazu ausgebildet ist, zum Erhitzen eines in dem mindestens einen Reaktorrohr strömenden Stoffstromes einen Brennstoff unter Erzeugung einer Flamme in der ersten Brennkammer zu verbrennen. Der Ofen kann auch mehrere derartige erste Brenner in der ersten Brennkammer aufweisen.
In einer bevorzugten Variante der Erfindung weist der Ofen zumindest einen zweiten Brenner auf, der dazu ausgebildet ist, einen Brennstoff flammenlos in der mindestens einen zweiten Brennkammer zu oxidieren (so genannter FLX-Brenner).
Auch hier können ggf. mehrere derartige zweite Brenner in der zweiten Brennkammer (oder ggf. weiteren Brennkammern) vorgesehen sein. Eine solche flammenlose Oxidation (FLX) zeichnet sich beispielsweise durch die Verminderung der Entstehung von Stickoxiden aus. Mittels derartiger zweiter Brenner lässt sich durch einen hohen Eintrittsimpuls des Luftstroms eine gute
Rauchgasvermischung erzeugen, die zu einer homogenen Temperaturverteilung in der entsprechenden Brennkammer führt.
In einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass der mindestens eine erste Brenner insbesondere an einer Decke oder an einem Boden der ersten Brennkammer angeordnet ist, wobei insbesondere der Eintritt des mindestens einen Reaktorrohres in die erste Brennkammer auf derjenigen Seite der ersten
Brennkammer erfolgt, auf der auch der mindestens eine erste Brenner angeordnet ist, und wobei insbesondere das mindestens eine Reaktorrohr auf derjenigen Seite aus der ersten Brennkammer austritt, die dem mindestens einen ersten Brenner
gegenüberliegt.
In einer weiteren bevorzugten Ausführungsform der Erfindung weist der Ofen einen Feuerraum auf, der durch zumindest eine Wand des Feuerraumes in die erste und die mindestens eine zweite Brennkammer unterteilt ist. Alternativ besteht natürlich auch die Möglichkeit, vollkommen separate Brennkammern in Form von separaten
Feuerräumen bereitzustellen.
Vorzugsweise teilen sich die erste und die mindestens einen weitere Brennkammer insbesondere eine gemeinsame Wandung. Bei mehreren Brennkammern in Form von separaten Einheiten werden die Brennkammern durch die Reaktorrohre verbunden, die zwischen den Einheiten verlaufen.
In einer bevorzugten Variante der Erfindung ist der Ofen so ausgebildet, dass die in der ersten Brennkammer erzeugbare erste Temperatur höher ist als die in der mindestens einen zweiten Brennkammer erzeugbare zweite Temperatur. Da die
Temperaturverteilung in der ersten Brennkammer aufgrund der Anordnung der ersten Brenner in der Regel heterogen ausfällt, bezieht sich die erste Temperatur
insbesondere auf den Bereich der Flamme des mindestens ersten Brenners.
Bevorzugt ist der Ofen weiterhin so ausgebildet, dass in der mindestens einen zweiten Brennkammer eine homogene zweite Temperatur einstellbar ist. Dies ist insbesondere dann der Fall, wenn die mindestens eine zweite Brennkammer durch das oben beschriebene FLX-Verfahren geheizt wird.
Wie bereits erwähnt, sind insbesondere zweite Brenner in Form von FLX-Brennern dazu geeignet, ein räumlich homogenes Temperaturprofil auszubilden, was bei einem im Flammenbetrieb gefahrenen Brenner nicht der Fall sein muss.
Weiterhin wird die gestellte Aufgabe durch ein Verfahren zum Temperieren eines in zumindest einem Reaktorrohr eines Ofens in einer Strömungsrichtung strömenden Stoffstromes gelöst, insbesondere unter Verwendung eines erfindungsgemäßen Ofens, wobei der in dem mindestens einen Reaktorrohr strömende Stoffstrom in einer ersten Brennkammer einer separat einstellbaren ersten Temperatur ausgesetzt wird, und sodann in zumindest einer zweiten Brennkammer zum Schutz des mindestens einen Reaktorrohres vor einer Überhitzung einer separat einstellbaren zweiten Temperatur ausgesetzt wird.
In einer bevorzugten Ausführungsform der Erfindung wird in der mindestens einen zweiten Brennkammer eine homogene zweite Temperatur eingestellt. Hierbei wird insbesondere in der ersten Brennkammer der in dem mindestens einen Reaktorrohr strömende Stoffstrom einer in Strömungsrichtung abnehmenden ersten Temperatur ausgesetzt, wobei das Maximum der ersten Temperatur insbesondere deutlich höher (mehrere 100K) liegt als die zweite Temperatur.
Das erfindungsgemäße Verfahren lässt sich auf verschiedene Prozesse in Öfen anwenden.
So ist in einer bevorzugten Ausführungsform der Erfindung vorgesehen, dass der Stoffstrom Kohlenwasserstoffverbindungen und Wasserdampf gegebenenfalls unter Einsatz geeigneter Katalysatoren im Ofen zu Wasserstoff und Kohlenstoffoxiden umgesetzt werden. Allgemeinhin wird diese chemische Reaktion unter dem Begriff
Dampfreformierung subsummiert. Als Katalysatoren werden vorzugsweise Nickel- oder Edelmetall-basierte Katalysatormaterialien verwendet.
In einer weiteren bevorzugten Variante der Erfindung ist vorgesehen, dass der
Stoffstrom längerkettige Kohlenwasserstoffverbindungen, insbesondere Naphtha, Propan, Butan und oder Ethan, und Wasser enthält, wobei die
Kohlenwasserstoffverbindungen mit dem Wasser im Ofen zu Olefinen wie Ethen und Propen umgesetzt werden. Gemeinhin wird diese chemische Reaktion unter dem Begriff Dampfspaltung oder Steamcracking subsummiert.
In einer weiteren bevorzugten Variante der Erfindung enthält der Stoffstrom Propan und insbesondere Wasserdampf, wobei das Propan gegebenenfalls mit
entsprechenden Katalysatoren im Ofen zu Propen im Rahmen einer
Propandehydrierungsreaktion umgesetzt wird.
Weitere Merkmale und Vorteile der Erfindung werden in den nachfolgenden
schematisch in den Figuren 1 und 2 dargestellten Ausführungsbeispielen erläutert. Es zeigen: Fig. 1 eine schematische Abbildung eines erfindungsgemäßen Ofens; und
Fig. 2 eine weitere Ausführungsform eines erfindungsgemäßen Ofens.
Figur 1 zeigt eine schematische Darstellung eines erfindungsgemäßen Ofens 1. Ein Stoffstrom M wird dabei in mindestens einem Reaktorrohr 2 oder einem
Reaktorrohrbündel 2 durch die Decke 10a einer ersten Brennkammer 10 in die erste Brennkammer 10 eingeleitet. An der Decke 10a der ersten Brennkammer 10 ist zumindest ein erster Brenner 11 vorgesehen, der in diesem Beispiel einen Brennstoff unter Bildung einer Flamme oxidiert. In der ersten Brennkammer 10 heizt sich der Stoffstrom M auf. Das mindestens eine Reaktorrohr 2 verlässt die erste Brennkammer 10 durch den der Decke 10a entlang der Vertikalen gegenüberliegenden Boden 10b der ersten Brennkammer 10 und tritt durch den Boden 20b einer zweiten Brennkammer 20 in die besagte zweite Brennkammer 20 ein. In dieser zweiten Brennkammer 20 sind zwei einander insbesondere diagonal gegenüberliegende zweite Brenner in Form von FLX-Brennern 21 angeordnet, die vorzugsweise dazu ausgebildet sind, ein
vergleichsweise homogenes räumliches Temperaturprofil in der zweiten Brennkammer 20 zu erzeugen. Der Stoffstrom M, der in diesem Abschnitt teilweise aus Edukt und Produkt bestehen mag (siehe auch die oben beschriebenen Anwendungen des Verfahrens), tritt durch die Decke 20b der zweiten Brennkammer 20 aus dem Ofen 1 aus und wird von dort aus weitergeleitet, um evtl. weiterverarbeitet zu werden. Es ist zu beachten, dass in diesem Beispiel die erste und die zweite Brennkammer 10, 20 durch einen Feuerraum 3 gebildet werden, der durch eine mittige, vertikal verlaufende Wand 4 des Feuerraum 3 in die beiden Brennkammern 10, 20 unterteilt ist, so dass die beiden Brennkammern 10, 20 lateral zueinander benachbart sind. Es können weitere Brennkammern in Form der zweiten Brennkammer 20 vorgesehen sein, die sich z.B. lateral an die eine zweite Brennkammer 20 anschließen können.
In Figur 2 wird wie in Figur 1 der Stoffstrom M zunächst durch eine erste
Brennkammer 10 nach Art der Figur 1 , die ebenfalls im Flammenoxidationsbetrieb beheizt wird, geführt, bevor der Stoffstrom M in eine zweite Brennkammer 20 eintritt, die im FLX-Verfahren beheizt wird. In diesem Fall allerdings tritt der Stoffstrom M (und das mindestens eine Reaktorrohr 2) in die zweite Brennkammer 20 durch die Decke 20a der zweiten separaten Brennkammer 20 ein und tritt an deren Boden 20b wieder aus. Die gepunktete Darstellung des mindestens einen Reaktorrohres 2 markiert einen Bereich oder ein Modul 100 des Ofens 1 , der bzw. das an dieser Stelle beliebig oft hintereinandergeschaltet werden kann. Dieses Modul 100 weist einen Abschnitt des mindestens einen Reaktorrohres 2 (der gepunktet dargestellt ist) und die besagte zweite Brennkammer 20 auf. In jedem weiteren Modul kann die Temperatur separat geregelt werden. Nach Durchlaufen einer letzten Brennkammer 50 tritt der Stoffstrom M aus dieser aus und kann entsprechend weiterverarbeitet werden. Dieses System stellt eine Optimierung von herkömmlichen Öfen dar. Eine Modifikation der Anordnung gemäß Figur 2 kann vorsehen, dass die Brennkammern 10, 20, 50 wiederum aus einem einzigen Feuerraum durch Unterteilung des Feuerraumes mittels Wänden des Feuerraumes hervorgehen.
Bezugszeichenliste
1 Ofen
2 Reaktorrohr / Rohrbündel
3 Feuerraum
4 Trennwand von zwei Brennkammern
10 Erste Brennkammer
10a Decke der ersten Brennkammer
10b Boden der ersten Brennkammer
11 Brenner der ersten Brennkammer
20 Zweite Brennkammer
20a Decke der zweiten Brennkammer
20b Boden der zweiten Brennkammer
21 FLX Brenner der zweiten Brennkammer
50 Eine letzte Brennkammer
100 Brennkammer-Modul
M Stoffstrom
T1 Erste Temperatur
T2 Zweite Temperatur

Claims

Patentansprüche
Ofen (1) mit einer ersten Brennkammer (10) sowie zumindest einem durch die erste Brennkammer (10) geführten Reaktorrohr (2) zur Aufnahme eines zu erhitzenden Stoffstromes (M), dadurch gekennzeichnet, dass der Ofen (1 ) zumindest eine zweite Brennkammer (20) aufweist, durch die das mindestens eine Reaktorrohr (2) gleichfalls geführt ist, wobei der Ofen (1 ) so ausgebildet ist, dass eine in der ersten Brennkammer (10) erzeugbare erste Temperatur (T1 ) und eine in der mindestens einen zweiten Brennkammer (20) erzeugbare zweite
Temperatur (T2) jeweils separat einstellbar sind.
Ofen nach Anspruch 1 , dadurch gekennzeichnet, dass das mindestens eine Reaktorrohr (2) so durch die Brennkammern (10, 20) geführt ist, dass ein darin strömender Stoffstrom (M) zunächst durch die erste und dann durch die mindestens eine zweite Brennkammer (10, 20) geführt wird.
Ofen nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Ofen (1 ) zumindest einen ersten Brenner (11 ) aufweist, der dazu ausgebildet ist, zum Erhitzen eines in dem mindestens einen Reaktorrohr (2) strömenden Stoffstromes (M) einen Brennstoff unter Erzeugung einer Flamme in der ersten Brennkammer (10) zu verbrennen.
Ofen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Ofen (1 ) zumindest einen zweiten Brenner (11 ) aufweist, der dazu ausgebildet ist, einen Brennstoff flammenlos in der mindestens einen zweiten Brennkammer (20) zu oxidieren.
Ofen nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass der mindestens eine erste Brenner (11 ) insbesondere an einer Decke (10a) oder an einem Boden (10b) der ersten Brennkammer (10) angeordnet ist, wobei insbesondere der Eintritt des Reaktorrohres (2) in die erste Brennkammer (10) auf derjenigen Seite der ersten Brennkammer (10) erfolgt, auf der auch der mindestens eine erste Brenner (11 ) angeordnet ist, und wobei insbesondere das mindestens eine Reaktorrohr (2) auf derjenigen Seite aus der ersten Brennkammer (10) austritt, die dem mindestens einen ersten Brenner (1 1 ) gegenüberliegt.
6. Ofen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Ofen (1 ) einen Feuerraum (3) aufweist, der durch zumindest eine Wand (4) des
Feuerraumes (3) in die erste und die mindestens eine zweite Brennkammer (10, 20) unterteilt ist, oder dass die Brennkammern (10, 20) durch separate
Feuerräume gebildet sind. 7. Ofen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Ofen (1 ) so ausgebildet ist, dass die in der ersten Brennkammer (10) erzeugbare erste Temperatur (T1 ) höher ist als die in der mindestens einen zweiten Brennkammer (20) erzeugbare zweite Temperatur (T2), wobei die Differenz der ersten
Temperatur und der zweiten Temperatur insbesondere mehrere 100K beträgt.
8. Ofen nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Ofen (1 ) so ausgebildet ist, dass in der mindestens einen zweiten Brennkammer (20) eine homogene zweite Temperatur (T2) einstellbar ist. 9. Verfahren zum Temperieren eines in zumindest einem Reaktorrohr (2) eines
Ofens (1 ) in einer Strömungsrichtung strömenden Stoffstromes (M), insbesondere unter Verwendung eines Ofens (1 ) gemäß einem der vorhergehenden Ansprüche, wobei der in dem mindestens einen Reaktorrohr (2) strömende Stoffstrom (M) in einer ersten Brennkammer (10) einer separat einstellbaren ersten Temperatur ausgesetzt wird und anschließend in zumindest einer zweiten Brennkammer (20) zum Schutz des mindestens einen Reaktorrohres (2) vor einer Überhitzung einer separat einstellbaren zweiten Temperatur ausgesetzt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass in der mindestens einen zweiten Brennkammer (20) eine homogene zweite Temperatur (T2) eingestellt wird.
11. Verfahren nach den Ansprüchen 9 oder 10, dadurch gekennzeichnet, dass der Stoffstrom (M) Kohlenwasserstoffverbindungen und Wasserdampf enthält, wobei die Kohlenwasserstoffe mit dem Wasser gegebenenfalls mit einem Katalysator im Ofen (1 ) zu Wasserstoff und den entsprechenden oxidierten
Kohlenstoffverbindungen umgesetzt werden.
12. Verfahren nach den Ansprüchen 9 oder 10, dadurch gekennzeichnet, dass der Stoffstrom (M) Kohlenwasserstoffverbindungen, insbesondere Naphtha, Propan,
Butan und/oder Ethan und Wasserdampf enthält, wobei die
Kohlenwasserstoffverbindungen mit dem Wasser im Ofen (1 ) zu Olefinen, wie z.B. Ethen und/oder Propen, umgesetzt werden.
13. Verfahren nach den Ansprüchen 9 oder 10, dadurch gekennzeichnet, dass der Stoffstrom (M) Propan und Wasserdampf enthält, wobei das Propan im Ofen (1 ) zu Propen umgesetzt wird, insbesondere in Gegenwart eines Katalysators.
EP14795781.5A 2013-11-15 2014-11-07 Verfahren und vorrichtung zur dampfreformierung sowie zur dampfspaltung von kohlenwasserstoffen Withdrawn EP3068529A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013019148 2013-11-15
DE102014007470.6A DE102014007470A1 (de) 2013-11-15 2014-05-20 Verfahren und Vorrichtung zur Dampfreformierung sowie zur Dampfspaltung von Kohlenwasserstoffen
PCT/EP2014/002986 WO2015070963A1 (de) 2013-11-15 2014-11-07 Verfahren und vorrichtung zur dampfreformierung sowie zur dampfspaltung von kohlenwasserstoffen

Publications (1)

Publication Number Publication Date
EP3068529A1 true EP3068529A1 (de) 2016-09-21

Family

ID=51868933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14795781.5A Withdrawn EP3068529A1 (de) 2013-11-15 2014-11-07 Verfahren und vorrichtung zur dampfreformierung sowie zur dampfspaltung von kohlenwasserstoffen

Country Status (14)

Country Link
US (1) US10207235B2 (de)
EP (1) EP3068529A1 (de)
JP (1) JP2017503739A (de)
KR (1) KR20160087835A (de)
CN (1) CN105980040A (de)
AU (1) AU2014350603B2 (de)
BR (1) BR112016010722A2 (de)
CA (1) CA2929752A1 (de)
DE (1) DE102014007470A1 (de)
EA (1) EA029756B1 (de)
MY (1) MY188065A (de)
PH (1) PH12016500893A1 (de)
WO (1) WO2015070963A1 (de)
ZA (1) ZA201603034B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2933119T3 (es) * 2018-11-12 2023-02-02 Ws Waermeprozesstechnik Gmbh Procedimiento y dispositivo para la combustión escalonada sin llama
US20230008708A1 (en) * 2021-07-08 2023-01-12 U.S. Army DEVCOM, Army Research Laboratory Highly heat recirculating multiplexed reactors
KR102619135B1 (ko) * 2022-12-29 2024-01-02 (주)바이오프랜즈 버너 일체형 탄화수소 개질기 및 이를 이용한 탄화수소 개질 시스템

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2751893A (en) * 1952-07-21 1956-06-26 Shell Dev Radiant tubular heater and method of heating

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2101485A (en) 1931-12-04 1937-12-07 Phillips Petroleum Co Process and apparatus for the conversion of hydrocarbon liquids and glases
US3573012A (en) * 1969-02-20 1971-03-30 Selas Corp Of America Method for straight-through cracking of hydrocarbons
JPS59203704A (ja) * 1983-04-28 1984-11-17 Hitachi Ltd 炭化水素の改質装置
US4599480A (en) * 1985-07-12 1986-07-08 Shell Oil Company Sequential cracking of hydrocarbons
JPS6281330A (ja) * 1985-10-03 1987-04-14 Babcock Hitachi Kk 炭化水素の熱分解方法
JPH0649868B2 (ja) * 1990-01-16 1994-06-29 バブコツク日立株式会社 炭化水素の熱分解炉
US5147511A (en) * 1990-11-29 1992-09-15 Stone & Webster Engineering Corp. Apparatus for pyrolysis of hydrocarbons
EP0625481B1 (de) * 1993-05-17 1998-08-19 Haldor Topsoe A/S Hochtemperaturdampfreformierung
JPH07238288A (ja) * 1994-02-25 1995-09-12 Babcock Hitachi Kk 熱分解炉
JP3780782B2 (ja) * 1999-11-22 2006-05-31 松下電工株式会社 改質装置
DE10119083C1 (de) * 2001-04-19 2002-11-28 Joachim Alfred Wuenning Kompakt-Dampf-Reformer
US7919057B2 (en) * 2005-09-06 2011-04-05 Air Products And Chemicals, Inc. Method and apparatus for producing a hydrogen-containing gas
US8101485B2 (en) 2005-12-16 2012-01-24 Intel Corporation Replacement gates to enhance transistor strain
EP2184538B1 (de) * 2008-11-07 2010-12-22 WS-Wärmeprozesstechnik GmbH Regenerator-FLOX-Brenner
GB201007196D0 (en) * 2010-04-30 2010-06-16 Compactgtl Plc Gas-to-liquid technology
EP2415886A1 (de) * 2010-08-04 2012-02-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren zum Schmelzen von Altmetall
US8703064B2 (en) * 2011-04-08 2014-04-22 Wpt Llc Hydrocabon cracking furnace with steam addition to lower mono-nitrogen oxide emissions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2751893A (en) * 1952-07-21 1956-06-26 Shell Dev Radiant tubular heater and method of heating

Also Published As

Publication number Publication date
PH12016500893A1 (en) 2016-06-20
CN105980040A (zh) 2016-09-28
AU2014350603B2 (en) 2017-11-09
US10207235B2 (en) 2019-02-19
AU2014350603A1 (en) 2016-06-09
CA2929752A1 (en) 2015-05-21
EA029756B1 (ru) 2018-05-31
JP2017503739A (ja) 2017-02-02
MY188065A (en) 2021-11-15
ZA201603034B (en) 2017-07-26
KR20160087835A (ko) 2016-07-22
EA201690986A1 (ru) 2016-09-30
WO2015070963A1 (de) 2015-05-21
DE102014007470A1 (de) 2015-05-21
US20160354746A1 (en) 2016-12-08
BR112016010722A2 (pt) 2018-03-27

Similar Documents

Publication Publication Date Title
DE60133087T2 (de) Mehrzonen-crackofen
EP2445830B1 (de) Primärreformer mit variablem rauchgasstrom
EP3837922B1 (de) Vorrichtung und verfahren zum erhitzen eines fluides in einer rohrleitung
EP2139595B1 (de) Primärreformer mit brennerzuführenden sekundäreinlasskanälen
DE102006060509A1 (de) Reaktor zur Durchführung einer kontinuierlichen Oxidehydrierung sowie Verfahren
EP3153466A1 (de) Induktives heizen eines dampfreformerofens
EP3068529A1 (de) Verfahren und vorrichtung zur dampfreformierung sowie zur dampfspaltung von kohlenwasserstoffen
DE2203420B2 (de) Verfahren zum Erhitzen eines kohlenmonoxidhaltigen Gases und insbesondere zur Durchführung dieses Verfahrens geeignete Vorrichtung
DE10001293B4 (de) Röhren-Erhitzerofen
DE60221476T2 (de) Pyrolyseofen mit neuartiger Wärmezufuhr und Verfahren zum Cracken bei hohen Temperaturen mit demselben
DE2616085A1 (de) Mit waerme arbeitender reformierofen und diesen enthaltendes reformiersystem
DE4000675A1 (de) Verfahren und vorrichtung zum dampfkracken in einer durch konvektion beheizten reaktionszone
DE102016221602A1 (de) Reformer und Verfahren zum Betrieb eines Reformers
EP3153465A1 (de) Reformer zur erzeugung von synthesegas
DE102009016695A1 (de) Verfahren und Vorrichtung zur Spaltung von Kohlenwasserstoffen
EP4198393B1 (de) Rekuperatorbrenner
WO2017137441A1 (de) Verfahren zur umsetzung von kohlenwasserstoff reaktanden mit einem in den reaktor mündenden brenner zur erzeugung von wasserdampf und wärme
WO2016066297A1 (de) Reformer mit poren- bzw. flächenbrennern
DE3100641C2 (de) Verfahren zum Betreiben einer Vorrichtung zur Erzeugung von Spaltgas für die Herstellung von NH↓3↓-Synthesegas
DE2413752B2 (de) Vertikalrohrofen zur Herstellung von Äthylen durch Krackung
DE102010024539B4 (de) Primärreformer mit variablem Rauchgasstrom
WO2018108321A1 (de) Wärmetauscher mit brenner
DE102009016696A1 (de) Verfahren und Vorrichtung zur Spaltung von Kohlenwasserstoffen mit sauerstoffangereicherter Luft
DE2035112B2 (de) Ofen zur thermischen spaltung von kohlenwasserstoffen
EP3838397B1 (de) Reformerofen und dessen verwendung zur dampfreformierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190329

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190809