EP3062055B1 - Échangeur thermique, en particulier pour un vehicule automobile - Google Patents

Échangeur thermique, en particulier pour un vehicule automobile Download PDF

Info

Publication number
EP3062055B1
EP3062055B1 EP16153351.8A EP16153351A EP3062055B1 EP 3062055 B1 EP3062055 B1 EP 3062055B1 EP 16153351 A EP16153351 A EP 16153351A EP 3062055 B1 EP3062055 B1 EP 3062055B1
Authority
EP
European Patent Office
Prior art keywords
plate
channel
heat exchanger
exchanger according
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16153351.8A
Other languages
German (de)
English (en)
Other versions
EP3062055A1 (fr
Inventor
Yavuz Altunkaya
Tobias Fetzer
Wilhelm Grauer
Boris Kerler
Jonas Kühndel
Marco Renz
Volker Velte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3062055A1 publication Critical patent/EP3062055A1/fr
Application granted granted Critical
Publication of EP3062055B1 publication Critical patent/EP3062055B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0075Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements the plates having openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages

Definitions

  • the present invention relates to a heat exchanger, in particular for a motor vehicle.
  • EP 2 746 561 A1 discloses a heat exchanger according to the preamble of claim 1.
  • Heat exchangers are used, for example, in motor vehicles to cool the fresh air charged by means of an exhaust-gas turbocharger in a fresh-air system interacting with the internal combustion engine of the motor vehicle.
  • the fresh air to be cooled is introduced into the heat exchanger, where it interacts thermally with a likewise introduced into the heat exchanger coolant and emits heat in this way to the coolant.
  • Such a heat exchanger may be configured, for example, as a plate heat exchanger and having a plurality of plate assemblies each having a pair of plates stacked in a stacking direction, wherein between the plates of a pair of plates a fresh air path is formed through which the fresh air to be cooled is passed.
  • the aforementioned coolant can be fluidically separated from the fresh air to be cooled, which can be set in thermal interaction with the fresh air to be cooled by the plates of the plate arrangement .
  • rib structures may be provided between adjacent plate assemblies which increase the interaction area of the plates available for thermal interaction. Such constructions are known to those skilled in the art by the term "fin-tube heat exchanger".
  • a heat exchanger comprises a plurality of channel devices for flowing through with a first fluid, which are arranged adjacent to one another along a stacking direction.
  • each channel device has a pair of plates with a first and a second plate, which define in the stacking direction a first fluid channel for flowing through the first fluid.
  • the term "plate” is intended to be used herein in a broad sense and includes in particular any type of substantially flat design components. Also plates with on this, in particular sections, trained three-dimensional structures and pot-shaped plates are expressly included in the term "plate” used here.
  • Two adjacent channel devices in the stacking direction are arranged at a distance from one another, so that a second fluid channel for flowing through a second fluid, which is fluidically separated from the first fluid channel, is formed by the intermediate space formed between the two channel devices.
  • a plurality of channel elements is provided, which are each connected to both the first and the second plate.
  • the heat exchanger according to the invention is designed such that the two adjacent in or opposite to the stacking direction interstices of the channel device, each forming a second fluid channel, through the channel elements communicate fluidly with each other.
  • inventive arrangement of the individual channel elements causes the channel housing of the channel elements can be advantageously almost completely surrounded by the first fluid, preferably the air to be cooled. This leads to a comparison with conventional heat exchangers thermal interaction of the first fluid with the flowing through the individual channel elements second fluid, that is preferably a coolant. As a result, this leads to a heat exchanger with improved efficiency.
  • the channel element is designed as a tubular body which comprises a circumferential wall partially delimiting a channel interior.
  • the channel interior is frontally limited by a first passage opening and by a second passage opening opposite this first passage opening.
  • the peripheral wall has a wall thickness of at most 2 mm, preferably of at most 1.5 mm, particularly preferably of at most 1 mm. In this way, the weight of the heat exchanger can be kept low even with a large number of installed channel elements.
  • the channel members may be integrally formed on the first and second plates of their associated plate pair. This measure is useful if the heat exchanger is to be produced by means of an additive manufacturing process.
  • a particularly uniform heating or cooling performance can be achieved in the heat exchanger in a further preferred embodiment, in which for each channel element in the first plate of the associated channel device a first Plate breakthrough and in the second plate of the same channel device a second plate breakthrough is provided.
  • the respective channel element is arranged in the first fluid channel delimited by the two plates such that the first plate breakthrough of the first plate communicates fluidically with the second plate breakthrough via the channel interior of the channel element.
  • At least the channel elements and the plate pairs of the channel means of the heat exchanger are made by means of an additive manufacturing process.
  • the entire heat exchanger is produced by means of such an additive manufacturing method.
  • additive manufacturing process in the present case includes all manufacturing processes which build up the building component directly from a computer model. Such production processes are also known by the term “rapid forming".
  • rapid forming includes in particular production processes for the rapid and flexible production of components by means of tool-free production directly from CAD data.
  • the use of an additive manufacturing method allows the production of the heat exchanger according to the invention without component-specific investment means such as tool molds or the like. and almost no geometric restrictions.
  • the additive manufacturing method it is possible to construct the design of the heat exchanger functionally bound.
  • the individual components of the heat exchanger, the plate pairs of the channel devices, and the individual channel elements and their interfaces to the plate pairs can be greatly simplified.
  • small parts such as sealing elements or separately formed fastening elements, such as struts or the like, usually exist in a variety of shapes and a large number.
  • the heat exchanger may be integrally formed.
  • Such a one-piece design is formed in particular when using the above-proposed additive manufacturing process, in particular laser melting.
  • a one-piece design of the heat exchanger eliminates the very costly and therefore costly attaching the individual components of the heat exchanger together.
  • the additive manufacturing process may include laser melting.
  • a laser melting process is used for producing channel elements and plate pairs, preferably for producing the entire heat exchanger.
  • the components of the heat exchanger can be made directly from 3D CAD data. Basically, the components of the heat exchanger during laser sintering tool-free and layered based on the three-dimensional CAD model associated with the heat exchanger.
  • the channel elements and the plate pairs of the channel devices are manufactured by means of said additive manufacturing process.
  • the heat exchanger can also be integrally formed.
  • Such a one-piece design is formed in particular when using the above-proposed additive manufacturing process, in particular laser melting.
  • a one-piece design of the heat exchanger eliminates the very costly and therefore costly attaching the individual components of the heat exchanger together.
  • the channel elements can each be designed as hollow cylinders extending along an axial direction.
  • a particularly stable support to the adjacent channel devices can be achieved.
  • Such a hollow cylinder has a diameter measured transversely to the axial axis which is at most 1 mm, preferably at most 0.5 mm, particularly preferably at most 0.3 mm.
  • the peripheral wall of the channel element in a cross section perpendicular to the axial direction has a round, preferably an elliptical, most preferably a circular, geometry.
  • a heat exchanger with such a geometry is particularly easy to produce when using an additive manufacturing process.
  • Particularly advantageous flow characteristics and, associated therewith, a particularly high efficiency of the heat exchanger result in a structural design of the heat exchanger such that the first plate breakthrough of the first plate is aligned in an axial direction with the two through holes of the channel element and with the corresponding second plate breakthrough of the second plate.
  • Said axial direction can be defined by a direction which in turn is orthogonal to a plane defined by the first plate plate plane.
  • a plurality of first plate openings may be provided in the first plate, which are arranged with respect to a plan view of the first plate like a grid with a plurality of first raster lines, but in any case with at least two raster lines on this.
  • a plurality of second plate openings be provided, which are arranged with respect to a plan view of the second plate like a grid with a plurality of second raster lines, but in any case with at least two raster lines on this.
  • the mechanical stability of the heat exchanger can be further increased in a further preferred embodiment by a constructive embodiment is selected in which the first plate openings of two adjacent raster lines are arranged offset from one another.
  • a stable attachment of the individual channel devices to one another in the stacking direction is achieved by providing a holding device between two stacked channel devices, which connects a first plate of a channel device to a second plate of the channel device adjacent in the stacking direction.
  • the respective holding device may comprise a plurality of, in particular strut-like, holding elements, which are supported on the first and the second plate.
  • a wall thickness of the peripheral wall of the channel elements is at most 0.5 mm, preferably at most 0.2 mm.
  • the two adjacent stacking plates which limit the space between two adjacent channel devices, Part of a flat tube, which limits in this way the second fluid channel. This facilitates the realization of the heat exchanger in flat construction.
  • FIG. 1 shows an example of a heat exchanger according to the invention in a perspective view.
  • the FIG. 2 shows the heat exchanger of FIG. 1 in a sectional view along the section plane II-II of FIG. 1 ,
  • the heat exchanger 1 comprises a plurality of channel devices 2 for the flow through with a first fluid F 1 , which are stacked along a stacking direction S.
  • a first fluid F 1 which are stacked along a stacking direction S.
  • FIG. 1 For example, three stacked channel devices 2 stacked in the stacking direction S are shown; in variants of the example, however, this number may vary.
  • each channel means 2 a pair of plates 3, with a first and a second plate 3a, 3b, the limit in the stacking direction S has a first fluid channel 4a for through-flow of the first fluid f1.
  • channel devices 2 are at a distance one above the other, so that a fluidically separated from the first fluid channel 4a second fluid channel 4b is formed for flowing through with a second fluid F 2 by the resulting between the adjacent channel means 2 intermediate space.
  • first fluid channel 4a is corresponding to the FIGS. 1 and 2 in each case a plurality of channel elements 6 are arranged.
  • the channel elements 6 extend in the example scenario in the stacking direction A and are connected both to the first plate 3a and to the second channel plate 3b of the first fluid channel 4a in the stacking direction S bounding plate pair 3.
  • the channel elements 6 may be integrally formed on the first and second plates 3a, 3b of their associated plate pair 3.
  • a flowing through a certain, a second fluid channel 4b intermediate space 5 flowing fluid F 2 can thus through the channel elements 6 in a in or against the stacking direction S adjacent, also a second fluid channel 4b forming gap 5 arrive.
  • the second fluid F 2 may be a coolant by means of which the first fluid F 1 - for example fresh air charged by means of an exhaust-gas turbocharger - is to be cooled before it is introduced into an internal combustion engine.
  • the channel elements 6 as in the FIGS. 1 and 2 may be formed as a tubular body 7.
  • Each tubular body 7 has, in the example scenario, a circumferential wall 8 which partially delimits a channel interior 9.
  • the channel interior 9 is delimited by a first through opening 10a and by a second through opening 10b lying opposite this first through opening 10a.
  • the peripheral wall 8 of the channel element 6 has in the example scenario a wall thickness of at most 2 mm, preferably of at most 1.5 mm, more preferably of at most 1 mm. In this way, the weight of the heat exchanger 1 can be kept low.
  • a first plate opening 11a is provided in the respective first plate 3a for each channel element 6, and a second plate opening 11b is provided in the respective second plate 3b.
  • the channel element 6 in question is arranged in the first fluid channel 4 a delimited by the two plates 3 a, 3 b so that the first plate breakthrough 11 a of the first plate 3 a communicates fluidically with the second plate opening 11 b via the channel interior 9 of the channel element 6.
  • the second fluid can thus from the gap 5 through the first plate breakthrough 11 a of the first plate 3 a and the first passage opening 10, the channel element 6 to flow through the channel interior 9.
  • the channel elements 6 can each be designed as hollow cylinders extending along an axial direction A.
  • the axial direction A and the stacking direction S are identical.
  • the axial direction A is orthogonal to a plate plane E defined by the first plate 3a of the plate pairs 3.
  • the channel elements 6 designed as hollow cylinders have a diameter measured transversely to the axial axis A which is at most 1 mm, preferably at most 0.5 mm, particularly preferred not more than 0.3mm. This makes it possible to provide a plurality of channel elements 6 and in this way to extremely increase the effective heat-interaction area between the two fluids compared to conventional heat exchangers.
  • peripheral walls 8 of the channel elements 6 in a cross section perpendicular to the axial direction A a round, preferably one in FIG. 1 illustrated elliptical geometry. Also, a circular geometry (not shown) is conceivable. In other variants of the example, other geometries can be realized.
  • a wall thickness of the peripheral wall 8 of the channel elements 6 may be at most 0.5 mm, preferably at most 0.2 mm.
  • the channel elements 6 and plate pairs 3 shown in the figures with the first and second plates 3a, 3b of the plate pairs 3 of the heat exchanger 1 are manufactured by means of an additive manufacturing process. All may be preferred essential components of the heat exchanger 1, in extreme cases the complete heat exchanger, are produced by means of such an additive manufacturing process.
  • the use of an additive manufacturing method allows the production of the heat exchanger 1 without component-specific investment means, such as tool molds or the like. and almost no geometric restrictions.
  • the additive manufacturing process it is possible to construct the design of the heat exchanger 1 functionally bound - and no longer tool-bound.
  • the individual components of the heat exchanger 1, such as the plate pairs 3 and the channel pairs 6 connecting the plate pairs 3 can be formed integrally with each other directly in the course of the manufacturing process.
  • the provision of small parts such as sealing elements for sealing the channel elements 6 can thus largely or even completely eliminated.
  • the additive manufacturing process presented here may also include so-called laser sintering.
  • laser sintering This means that, at least for producing the plate pairs 3 and the channel elements 6, in extreme cases for producing the entire heat exchanger 1, a laser sintering method is used, which is also known to the person skilled in the art under the term "laser melting".
  • laser melting the components of the heat exchanger can be made directly from 3D CAD data.
  • the said components of the heat exchanger 1 during the laser melting process are manufactured without tools and in layers on the basis of a three-dimensional CAD model assigned to the heat exchanger 1.
  • FIG. 2 can recognize the aligned in the first plates 3a first plate openings 11a in the axial direction A and the stacking direction S both with the two through holes 10a, 10b of the first plate opening 11a associated channel member 6 as well as with the associated, provided in the second plate 3b second plate openings 11b.
  • the first plate apertures 11a provided in the first plate 3a are arranged in a grid-like manner with a plurality of first grid lines 12 with respect to a plan view of the first plate 3a in the axial direction A or stacking direction S, respectively.
  • the second plate openings 11b formed in the second plate 3b are also arranged with a plurality of second raster lines 12b on them in the axial direction A or in the stacking direction S with respect to a plan view of the second plate 3b.
  • the associated grid-like arrangement of the channel elements 6 leads to an improved mechanical rigidity of the heat exchanger 1. This applies in particular to the in FIG. 1 shown variant in which the first plate openings 11a of two adjacent first raster lines 12a and in an analogous manner the second plate openings 11b of two adjacent second raster lines 12b are arranged offset from one another.
  • Each holding device 13 comprises a plurality of strut-like holding elements 14, which are arranged between the first and second plates 3a, 3b of two adjacent channel devices 2 in the respective intermediate space 5.
  • the strut-like holding elements 14 are supported at one end on the intermediate plate 5 in the stacking direction S limiting second plate 3b and the other end of the gap 5 against the stacking direction S limiting first plate 3a from.
  • the heat exchanger 1 may also be formed in one piece. Such a one-piece design is formed in particular when using the above-proposed additive manufacturing process, in particular laser melting. In a one-piece design of the heat exchanger eliminates the very costly and therefore costly attaching the individual components of the heat exchanger together. It is understood that in the case of a one-piece construction of the heat exchanger 1, the terms used herein such as e.g. "first plate 3a" remain valid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (14)

  1. Échangeur de chaleur (1),
    - avec une pluralité de dispositifs de canaux (2) pour le passage d'un premier fluide (F1), lesquels sont agencés empilés les uns sur les autres le long d'une direction d'empilement (S),
    - dans lequel chaque dispositif de canaux (2) présente une paire de plaques (3) avec une première et une deuxième plaque (3a, 3b), qui délimitent dans la direction d'empilement (S) un premier canal de fluide (4a) pour le passage du premier fluide (F1)
    - dans lequel deux dispositifs de canaux (2) adjacents dans la direction d'empilement (S) sont agencés à distance l'un de l'autre de sorte qu'un deuxième canal de fluide (4b) séparé fluidiquement du premier canal de fluide (4a) est formé par un espace intermédiaire (5) formé entre les deux dispositifs de canaux (2) adjacents pour le passage d'un deuxième fluide (F2),
    - dans lequel une pluralité d'éléments de canaux (6), lesquels sont reliés aussi bien à la première qu'à la deuxième plaque (3a, 3b) de sorte que les deux espaces intermédiaires (5) du dispositif de canaux (2) adjacents le long de la direction d'empilement (S) communiquent fluidiquement entre eux au moyen des éléments de canaux (6), est prévue dans le premier canal de fluide (4a) d'au moins un dispositif de canaux (2), de préférence de tous les dispositifs de canaux (2),
    - dans lequel l'élément de canal (6) est réalisé en tant que corps tubulaire (7), qui comprend une paroi périphérique (8) délimitant en partie un intérieur de canal (9), dans lequel l'intérieur de canal (9) est délimité côté frontal par une première ouverture de passage (10a) et une deuxième ouverture de passage (10b) opposée à celle-ci,
    caractérisé en ce que
    - au moins les éléments de canaux (6) et les paires de plaques (3) de l'échangeur de chaleur (1) sont fabriqués au moyen d'un procédé de fabrication additif,
    - la paroi périphérique (8) de l'élément de canal (6) présente dans une coupe transversale perpendiculairement à la direction axiale (A) une géométrie elliptique.
  2. Échangeur de chaleur selon la revendication 1,
    caractérisé en ce que
    la paroi périphérique (8) présente une épaisseur de paroi de maximum 2 mm, plus préféré de maximum 1,5 mm, le plus de préférence de maximum 1 mm.
  3. Échangeur de chaleur selon la revendication 1 ou 2,
    caractérisé en ce que
    - pour chaque élément de canal (6), une première traversée de plaque (11a) est prévue dans la première plaque (3a) et une deuxième traversée de plaque (11b) est prévue dans la deuxième plaque (3b),
    - les éléments de canaux (6) sont agencés dans le premier canal de fluide (4a) délimité par les deux plaques (3a, 3b) de sorte que la première traversée de plaque (11a) de la première plaque (3a) communique fluidiquement avec la deuxième traversée de plaque (11b) par le biais de l'intérieur de canal (9) de l'élément de canal (6).
  4. Échangeur de chaleur selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    l'échangeur de chaleur (1) est réalisé d'un seul tenant.
  5. Échangeur de chaleur selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    le procédé de fabrication additif comprend un procédé de fusion laser.
  6. Échangeur de chaleur selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    - l'élément de canal (6) est réalisé en tant que cylindre creux s'étendant le long d'une direction axiale (A),
    - le cylindre creux présente un diamètre mesuré transversalement à l'axe axial (A), qui est de maximum 1 mm, plus préféré de maximum 0,5 mm, le plus de préférence de maximum 0,3 mm.
  7. Échangeur de chaleur selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    les éléments de canaux (6) sont réalisés intégralement au niveau de la première et deuxième plaque (3a, 3b) de la paire de plaques (3) qui leur est associée.
  8. Échangeur de chaleur selon l'une quelconque des revendications 3 à 7,
    caractérisé en ce que
    la première traversée de plaque de la première plaque s'aligne dans la direction axiale avec les deux ouvertures de passage de l'élément de canal et avec la deuxième traversée de plaque associée de la deuxième plaque.
  9. Échangeur de chaleur selon l'une quelconque des revendications 3 à 8,
    caractérisé en ce que
    - dans la première plaque (3a), une pluralité de premières traversées de plaque (11a) est prévue, qui sont agencées par rapport à une vue de dessus sur la première plaque (3a) à la manière d'une trame avec une pluralité de premières lignes de trame (12a) sur celle-ci, et/ou que
    - dans la deuxième plaque (3b), une pluralité de deuxièmes traversées de plaque (11b) est prévue, qui sont agencées par rapport à une vue de dessus sur la deuxième plaque (3b) à la manière d'une trame avec une pluralité de deuxièmes lignes de trame (12b) sur celle-ci.
  10. Échangeur de chaleur selon la revendication 9,
    caractérisé en ce que
    - les premières traversées de plaque de deux premières lignes de trame adjacentes sont agencées décalées l'une par rapport à l'autre,
    - les deuxièmes traversées de plaque de deux deuxièmes lignes de trame adjacentes sont agencées décalées l'une par rapport à l'autre.
  11. Échangeur de chaleur selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    un dispositif de retenue (13), qui relie une première plaque (3a) d'un dispositif de canaux déterminé à une deuxième plaque (3b) du dispositif de canaux (2) adjacent dans la direction d'empilement (S), est prévu entre deux dispositifs de canaux (2) adjacents dans la direction d'empilement (S).
  12. Échangeur de chaleur selon la revendication 11,
    caractérisé en ce que
    le dispositif de retenue (13) comprend une pluralité d'éléments de retenue (14), réalisés à la manière d'entretoises, qui s'appuient sur la première et la deuxième plaque (3a, 3b).
  13. Échangeur de chaleur selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    une épaisseur de paroi de la paroi périphérique (8) des éléments de canaux est de maximum 0,5 mm, de préférence de maximum 0,2 mm.
  14. Échangeur de chaleur selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    les deux plaques (3a, 3b) délimitant un espace intermédiaire (5) entre deux dispositifs de canaux (6) adjacents dans la direction d'empilage (S) font partie d'un tube plat délimitant le deuxième canal de fluide (5b).
EP16153351.8A 2015-02-26 2016-01-29 Échangeur thermique, en particulier pour un vehicule automobile Active EP3062055B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015203471.2A DE102015203471A1 (de) 2015-02-26 2015-02-26 Wärmetauscher, insbesondere für ein Kraftfahrzeug

Publications (2)

Publication Number Publication Date
EP3062055A1 EP3062055A1 (fr) 2016-08-31
EP3062055B1 true EP3062055B1 (fr) 2019-05-08

Family

ID=55272324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16153351.8A Active EP3062055B1 (fr) 2015-02-26 2016-01-29 Échangeur thermique, en particulier pour un vehicule automobile

Country Status (2)

Country Link
EP (1) EP3062055B1 (fr)
DE (1) DE102015203471A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180112932A1 (en) * 2016-10-20 2018-04-26 Hamilton Sundstrand Corporation Tube-fin heat exchanger
EP3652493A1 (fr) * 2017-07-10 2020-05-20 Linde Aktiengesellschaft Dispositif de conduites de fluides et procédé pour le mélange de fluides
CN111201414B (zh) * 2017-10-13 2022-03-22 沃尔沃卡车集团 热交换器和用于制造热交换器的增材制造方法
DE202019102083U1 (de) 2019-04-11 2019-04-18 Mahle International Gmbh Kühlfluiddurchströmte Wellrippenanordnung und Kraftfahrzeugbauteil
CN115060108A (zh) * 2022-06-23 2022-09-16 西安热工研究院有限公司 一种仿生叶脉流道结构换热板及具有其的换热器
CN115235263A (zh) * 2022-09-21 2022-10-25 杭州沈氏节能科技股份有限公司 一种换热通道结构和换热器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1156524A (en) * 1966-07-14 1969-06-25 Apv Co Ltd Improvements in or relating to Heat Exchangers
GB1134239A (en) * 1966-07-14 1968-11-20 Apv Co Ltd Improvements in or relating to heat exchangers
US5025856A (en) * 1989-02-27 1991-06-25 Sundstrand Corporation Crossflow jet impingement heat exchanger
US5628363A (en) * 1995-04-13 1997-05-13 Alliedsignal Inc. Composite continuous sheet fin heat exchanger
FR2795166B1 (fr) * 1999-06-21 2001-09-07 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, en particulier pour le refroidissement d'une huile de vehicule automobile
DE10328638A1 (de) * 2003-06-26 2005-01-20 Modine Manufacturing Co., Racine Wärmetauscher in gehäuseloser Plattenbauweise
GB0427362D0 (en) * 2004-12-14 2005-01-19 Sustainable Engine Systems Ltd Heat exchanger
US9200855B2 (en) * 2012-03-06 2015-12-01 Honeywell International Inc. Tubular heat exchange systems
EP2746561A1 (fr) * 2012-12-24 2014-06-25 BorgWarner Inc. Conduit destiné à un échangeur de chaleur d'un système EGR de moteur à combustion interne
TWM469450U (zh) * 2013-01-21 2014-01-01 Huang-Han Chen 冷凝排
DE102013215241A1 (de) * 2013-06-27 2014-12-31 Robert Bosch Gmbh Wärmeübertrager

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015203471A1 (de) 2016-09-01
EP3062055A1 (fr) 2016-08-31

Similar Documents

Publication Publication Date Title
EP3062055B1 (fr) Échangeur thermique, en particulier pour un vehicule automobile
EP3062054B1 (fr) Échangeur thermique, en particulier pour un vehicule automobile
DE69003241T2 (de) Platten-wärmeaustauscher und verfahren zur herstellung.
EP3265738B1 (fr) Échangeur de chaleur, en particulier pour véhicule automobile
EP1910764B1 (fr) Element de plaque pour refroidisseur a plaques
DE10393221B4 (de) Anordnung für einen Plattenwärmetauscher
EP3198676B1 (fr) Échangeur de chaleur pour batterie
EP1792135B1 (fr) Echangeur thermique pour vehicules a moteur
WO2012000905A2 (fr) Échangeur de chaleur
DE102011077838A1 (de) Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers
WO2016146296A1 (fr) Echangeur de chaleur, notamment refroidisseur d'huile pour un moteur a combustion interne
EP1842020A1 (fr) Echangeur thermique a empilement de disques
EP3062057B1 (fr) Échangeur thermique, en particulier pour un vehicule automobile
EP2669027B1 (fr) Procédé et outil de presse pour la fabrication d'un échangeur thermique à plaques
WO2013020931A1 (fr) Échangeur de chaleur pour un véhicule et procédé de fabrication d'un échangeur de chaleur pour un véhicule
DE102015204014A1 (de) Wärmetauscher, insbesondere für ein Kraftfahrzeug
EP1819458B1 (fr) Procédé de production d'un échangeur de chaleur
DE102017121826A1 (de) Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Herstellung eines Zylinderkopfes
EP2295916B1 (fr) Refroidisseur à empilement de plaques, utilisation du refroidisseur à empilement de plaques et moteur à combustion interne doté d'un refroidisseur à empilement de plaques
WO2016146294A1 (fr) Échangeur de chaleur, en particulier pour un véhicule à moteur
DE102019207799A1 (de) Tauchrohr zur Kältemittelverteilung in einem Chiller
EP2503275B1 (fr) Échangeur de chaleur
DE19528168A1 (de) Wärmetauscher, daraus hergestellte Wärmetauscheranordnung und Verfahren zu dessen bzw. deren Herstellung
DE102016209591A1 (de) Wärmetauscher
DE102015012554A1 (de) Gusskörper eines Zylinderkurbelgehäuses und Verfahren zur Herstellung mit Verwendung einer Gießform mit filigranem einstückigen Einsatzkern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170228

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 3/08 20060101AFI20181121BHEP

Ipc: F28D 9/00 20060101ALI20181121BHEP

INTG Intention to grant announced

Effective date: 20181219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004492

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004492

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1130831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 9