EP3039694B1 - Procédé de fabrication d'un composant électromagnétique monolithique - Google Patents

Procédé de fabrication d'un composant électromagnétique monolithique Download PDF

Info

Publication number
EP3039694B1
EP3039694B1 EP14753101.6A EP14753101A EP3039694B1 EP 3039694 B1 EP3039694 B1 EP 3039694B1 EP 14753101 A EP14753101 A EP 14753101A EP 3039694 B1 EP3039694 B1 EP 3039694B1
Authority
EP
European Patent Office
Prior art keywords
ferrite
precursor
during
coil
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14753101.6A
Other languages
German (de)
English (en)
Other versions
EP3039694A1 (fr
Inventor
Frédéric MAZALEYRAT
Karim ZEHANI
Vincent LOYAU
Eric LABOURÉ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole Normale Superieure de Paris Saclay
Original Assignee
Centre National de la Recherche Scientifique CNRS
Ecole Normale Superieure de Cachan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Ecole Normale Superieure de Cachan filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3039694A1 publication Critical patent/EP3039694A1/fr
Application granted granted Critical
Publication of EP3039694B1 publication Critical patent/EP3039694B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures

Definitions

  • the present invention relates to a method of manufacturing monolithic electromagnetic components.
  • the invention relates to a method of manufacturing a monolithic electromagnetic component comprising several elements including a magnetic core of spinel ferrite and at least one planar coil comprising several turns.
  • One of the objects of the present invention is to provide a method for manufacturing a monolithic electromagnetic component which does not have these drawbacks.
  • the invention relates to a method according to claim 1.
  • the method according to the invention comprises one or more of the optional features of claims 2 to 8.
  • a monolithic electromagnetic component of general reference 10 produced by a method according to the invention comprises a base 12, a coil 14 arranged in the base 12, and an electrically insulating dielectric material 15.
  • component 10 is an inductor intended to be used in conjunction with other electronic components, for example for producing power converters or filtering devices. In addition, it is intended to operate in a given frequency band preferably included in the frequency range 100 kHz - 30 GHz. Finally, it is manufactured according to the process according to the invention, as described below.
  • the base 12 constitutes the bulkier structure of the component 10 and gives it its general appearance.
  • the base 12 has a generally cylindrical shape with a longitudinal axis X-X ', height h and diameter d.
  • the height h is between 1 and 2 mm, and the diameter d is between 8 and 20 mm.
  • the diameter d is between 5 and 50 mm, and the height h is between 1 and 20 mm.
  • the base 12 has a high resistivity.
  • the base 12 is made from a spinel ferrite.
  • Spinels are ferrites of the following general formula (G): AB 2 - ⁇ O 4 , where A is of medium valence 2 and is an element or a combination of elements of the group of cations preferably formed by Mg 2+ , Ni 2 + , Co 2+ , Zn 2+ , V 2+ , Ti 2+ , Sc 2+ , Mn 2+ and possibly Fe 2+ , where B is of medium valence 3 and is an element or a combination of elements of the group cations preferably formed by Fe 3+ and Al 3+ , and where ⁇ represents a possible defect in matter.
  • the material defect ⁇ can be intentionally introduced and is for example between 0 and 0.05.
  • the spinel ferrites have the crystallographic structure of the reference compound MgAl 2 O 4 .
  • the spinel ferrite of component 10 has a composition of formula (1) below: Ni x Zn 1-xy- ⁇ + ⁇ Cu y Co ⁇ Fe 2- ⁇ O 4 , with 0.15 ⁇ x ⁇ 0.6; 0 ⁇ y ⁇ 0.2; 0 ⁇ ⁇ ⁇ 0.1 and 0 ⁇ ⁇ ⁇ 0.05.
  • the ferrite 12 is obtained by densification of a mixture of nanometric oxides or by successive grinding and calcination of a mixture of nanometric oxides, the calcination being carried out at a temperature between 600 ° C and 1100 ° C.
  • the nanometric oxides are oxides of zinc ZnO, copper CuO, nickel NiO, cobalt Co 3 O 4 and iron Fe 2 O 3 , the mixture also exhibiting a composition obeying formula (1).
  • nanometric is meant that the particle size of the oxides can vary up to a maximum of 5 ⁇ m. The particle size is then determined as a function of the frequency at which component 10 is intended to operate.
  • the diameter of the oxides used to produce the base 12 is between 230 and 270 nm, and is substantially equal to 250 nm on average.
  • the coil 14 is suitable for allowing the good circulation of electric currents through it and for being secured to the ferrite of the base 12 by co-sintering.
  • the coil 14 is made from copper.
  • it is made from a noble metal such as silver Ag or palladium Pd, or from an alloy of Palladium Pd, or from an alloy of Palladium Pd and silver Ag.
  • the coil 14 is at least partially embedded in the ferrite of the base 12.
  • the coil 14 comprises several turns 16 including an internal turn 161 and an external turn 162.
  • the turns 16 have the general shape of a circular spiral and have a substantially circular section.
  • the turns have the general shape of a square spiral.
  • the coil 14 also includes an inner leg 18 and an outer leg 19, which constitute bent ends of the inner turn 161 and the outer turn 162 respectively.
  • the coil also has a non-zero thickness e, is substantially planar and is orthogonal to the axis X-X ', so that the coil 14 is substantially included in a discoidal slice T of the base 12, orthogonal to the axis XX 'and of thickness e.
  • the internal 161 and external 162 turns respectively delimit an internal discoidal portion 20 and an external discoidal portion 22 of thickness e of the edge T and of the component 10.
  • two successive turns 16 of the coil 14 define a radial gap 24.
  • FIGS. 2a to 2d represent embodiments of a component 10 produced by a method according to the invention comprising a single coil 14.
  • the interstices 24, as well as the internal 20 and external 22 discoidal portions, are at least partially filled with dielectric material 15.
  • This example advantageously makes it possible to limit the parasitic capacitances which may appear between the turns 16 during the operation of the component 10 via the electrical insulation resulting from the presence of the dielectric material 15.
  • the interstices 24 as well as the internal discoidal portion 20 are at least partially filled with dielectric material 15, and the external discoidal portion 22 is filled with ferrite.
  • This example is advantageously used in order to limit the parasitic capacitances which may appear between the turns 16 during the operation of the component 10, while minimizing the quantity of dielectric material 15 used.
  • the component 10 is devoid of dielectric material 15, the coil 14 thus being fully embedded in the ferrite of the base 12.
  • This variant is advantageously used when the frequency at which component 10 is intended to operate is less than 10 MHz. Beyond this value, the addition of dielectric material 15 is preferable.
  • the internal 18 and external 19 tabs are suitable for allowing the component 10 to be connected to other elements, for example to an electronic device to which it is integrated.
  • the inner 18 and outer 19 tabs are bent relative to the inner turn 161 and the outer turn 162 respectively.
  • the internal tab 18 is oriented along the axis X-X 'and has a length such that it is flush with the upper surface of component 10.
  • the outer tab 19 is oriented radially and has a length such that it is flush with the lateral surface of the component 10.
  • the two tabs 18, 19 are oriented along the axis X-X 'and are flush with the upper and / or lower surface of component 10.
  • the tabs 18, 19 are intended to be brought into contact with an electrically conductive cable (not shown), for example directly or via a metal lacquer attached to the component 10 which makes it possible to facilitate the contacting of the cable with the tabs 18 , 19.
  • FIGS. 3a to 3c illustrate three distinct embodiments of a variant of component 10 produced by a method according to the invention, and in which, in addition to the elements already described in the example of Figure 1 , component 10 comprises a second coil 14B.
  • the second coil 14B is at least partially embedded in the ferrite of the base 12.
  • the second coil 14B is substantially included in a discoidal slice T B of the component 10 parallel to the slice T and spaced therefrom, so that the two slices T and T B define between them a layer C of thickness c of the component 10.
  • this coil 14B is substantially of the same structure and of the same dimensions as the coil 14.
  • the second coil 14B has a number of turns different from the number of turns of the coil 14. This variant is advantageously implemented to modify the behavior of the coils 14, 14B under similar operating conditions.
  • component 10 is a transformer or a magnetic coupler whose two coils 14, 14B are magnetically coupled and electrically isolated.
  • the current entering one of the coils 14, 14B results in a current exiting by the other coil and magnetically induced therein.
  • the value of c is then predetermined as a function of criteria known to those skilled in the art, such as the desired value of the inductance of the coils, of the mutual inductance and of the coupling coefficient between the coils.
  • the value of c is between 100 ⁇ m and 1 mm.
  • component 10 When component 10 is a transformer, a value of c close to 100 ⁇ m is preferable. Conversely, when component 10 is a magnetic coupler, a value of c close to 1 mm is preferable.
  • layer C is at least partially filled with dielectric material 15.
  • This example is advantageously implemented in order to limit the parasitic capacitances which may appear between the respective turns 16 of the two coils 14, 14B during the operation of the component 10, or when it is desirable to modify the topology of the magnetic field of each of the turns. 161.
  • This example is advantageously implemented in order to optimize the coupling between the coils, for example when component 10 is a magnetic coupler, and to limit the leakage fields liable to appear during operation of component 10.
  • the component 10 does not include any dielectric material 15.
  • the two coils 14, 14B are fully embedded in the ferrite of the base 12.
  • This example is advantageously used when it is desirable not to alter the magnetic field resulting from the flow of current in each of the turns 161.
  • the component 10 comprises at least two metallic layers parallel to the coils 14, 14B.
  • the precursor 32 is a ferrite powder obtained by alternating successive grinding and calcinations of a mixture of nanometric oxides, said calcination being carried out at a temperature substantially between 600 ° C and 1100 ° C, and preferably substantially equal. at 760 ° C.
  • the precursor 32 is a ferrite powder obtained by alternating grinding and successive calcinations of a mixture of nanometric oxides of zinc ZnO, copper CuO, nickel NiO, cobalt Co 3 O 4 and iron Fe 2 O 3 , said calcination being carried out at a temperature substantially between 600 ° C and 1100 ° C, and preferably substantially equal to 760 ° C.
  • the purpose of the grinding is to reduce the diameter of the oxides, and thus to lower the sintering temperature of the ferrite powder obtained.
  • the purpose of the calcinations is to form the spinel phase of the ferrite, that is to say to transform the mixture of base oxides into a single phase of spinel structure.
  • phase is understood to mean crystallographic structure.
  • the initial step 110 then comprises the compensation of these undesirable additions in the mixture obtained, for example by formation of an excess of iron oxide of the order of 5% for example.
  • the initial step 110 also comprises the removal of the corresponding quantity of iron from the precursor 32.
  • element A of the general formula for ferrite is not iron or does not contain iron.
  • the precursor 32 obtained is a ferrite powder whose composition obeys the general formula (G), preferably the formula (1), and of which the spinel phase is formed.
  • the elements of the component including the coil (s) 14 and other than the ferrite are embedded in a mold 34 in the precursor 32 of the ferrite.
  • a first layer 36 of precursor 32 is deposited in the mold 34, on which the coil 14 is then deposited. Then a second layer 38 of precursor is deposited. 32 on the coil 14, so as to obtain the desired structure and component dimensions, the elements of component 10 not yet being secured to each other.
  • the dielectric material 15 is deposited on the coil 14 and the first layer 36, except at least the locations of the turns 16 of the coil 14, so as to form the structure of the desired T wafer ( Figures 2b, 2c and 2d ).
  • a second layer 38 of precursor 32 is deposited, so as to obtain the general structure of the desired component 10, the elements not yet being secured to each other.
  • a layer of dielectric material 15 is deposited so as to form the structure of the desired wafer T and of the layer C, then is deposited the second coil 14B.
  • a second layer of dielectric material is then deposited with a thickness substantially equal to zero with the exception of at least the locations of the turns 16 of the second coil 14B, so as to form the structure of the desired wafer T B.
  • the second layer 38 of precursor 32 is finally deposited last.
  • step 120 the deposition of the layers of dielectric material 15 described above is then replaced by the deposition of layers of precursor 32.
  • This preparation step 120 is preferably carried out in a controlled environment, for example under a sealed hood, which has the effect of limiting the presence of parasitic particles which may be deposited in the mold and thus reduce the quality of the component 10 obtained.
  • This step 120 is for example carried out manually, or else automated by any suitable device.
  • the mold 34 is preferably made from graphite. As a variant, it is made from metal or from a refractory metal alloy, or from electrically conductive ceramic.
  • the precursor 32 of the ferrite is secured to the other elements of the component 10 by co-sintering under load by pulsed electric current.
  • under load is meant that the elements of the component under subjected to a force, in particular an axial force tending to compress the components 10.
  • the mold 34 obtained by the preparation step 120 is placed under neutral gas, and it is subjected to a uniaxial pressure of between 50 and 100 MPa. This pressure is represented by arrows on the Figure 5 . This pressure is maintained until the end of the co-sintering step 130.
  • the mold 34 is placed under vacuum or under oxygen.
  • an electric current of controlled intensity i and between 1 A and 20,000 is discharged through the mold 34.
  • A and preferably between 1 A and 1000 A or between 1 and 10 A per square millimeter of component area. This makes it possible to raise the temperature in the mold 34 and to secure the elements of the component 10 to one another.
  • the temperature inside the mold 34 is controlled by controlling the intensity of the current.
  • the discharge step 132 comprises a co-sintering stage, during which the temperature inside the mold 34 is maintained between 650 ° C and 850 ° C, and preferably between 700 ° C and 800 ° C.
  • the co-sintering stage has a duration of between 1 min and 30 min.
  • the flow of the discharge step 132 is as follows.
  • the temperature is initially increased at a rate of about 100 ° K per minute, from room temperature, to a value between the above values.
  • the co-sintering stage is then carried out.
  • the temperature inside the mold 34 is quickly lowered by interrupting the current.
  • the uniaxial pressure resulting from the compressing step is maintained during the discharging step 132.
  • the average duration of the discharge step 132 is between 10 min and 60 min, and advantageously is substantially 20 minutes.
  • This discharge step 132 is preferably carried out in an automated manner, via a programmable device suitable for controlling the temperature in the mold 34, so that the temperature in the mold 34 is rapidly brought to a set temperature and maintained at this temperature during sintering bearings.
  • the precursor 32 obtained at the end of the initial step 110 is a mixture of nanometric oxides corresponding to the general formula (G), preferably to the formula (1) and whose spinel phase is not not formed.
  • this precursor 32 during the initial step 110, the various oxides are weighed, they are mixed and then the mixture obtained is ground in order to mix these oxides and decrease their diameter. As before, the iron input due to the grinding tools must then be compensated. No calcination takes place during this step, unlike the embodiment described above.
  • the following steps of the process 30 remain the same, with the exception of the discharge phase 132 during which a first reaction level is observed.
  • the function of the first reaction stage is to effect the formation of the spinel phase of the precursor 32. This first reaction stage is carried out at a temperature between 400 ° C and 600 ° C. The first reaction stage is prior to the co-sintering stage.
  • the process according to the invention bears the name of reactive sintering, during which the mixture of ground oxides transforms into a spinel phase during the discharge phase 130, unlike the process described above which bears the name direct sintering and in which the precursor 32 is a crushed and calcined ferrite powder and the spinel phase of which is already formed at the end of the initial step 110.
  • the precursor 32 of general composition (G), preferably of formula (1) is obtained.
  • the initial steps 110 of the direct and reactive sintering processes described above corresponding to so-called solid routes.
  • This variant makes it possible to obtain a ferrite powder of more homogeneous composition and having a particle size distribution that is narrower than by the solid route.
  • the precursor 32 obtained chemically is then a ferrite powder of general composition (G), the grains of which are particles of mixed spinels.
  • G ferrite powder of general composition
  • the simple spinel particles are for example Fe3O4, NiFe2O4, CoFe2O4 or particles of more complex composition, such as for example of composition (1).
  • the precursor of the precursor 32 obtained at the end of the protocol may not have a formed spinel phase, or have a partially formed spinel phase.
  • the initial step 110 comprises an additional calcination phase aimed at forming the spinel phase of the precursor 32, so that the precursor 32 obtained at the end of step 110 has a formed spinel phase.
  • the precursor 32 is obtained by the so-called “polyol” route, during which simple acetate compounds are dissolved, nitrate and chloride in liquid polyols, such as 1,2-propanediol, 1,2-ethane diol, and bis (2-hydroxy ethyl) ether. Due to their fairly high dielectric constant which enables them to dissolve inorganic solids, these polyols constitute favorable media for obtaining various inorganic materials: metals, hydroxides and oxides. Complexes are then formed comprising alkoxy groups, from which oxides and hydroxides are obtained by hydrolysis and polymerization.
  • the competition between these reactions is controllable via the regulation of the hydrolysis rate and the reaction temperature.
  • the control of the stages of germination and growth makes it possible to obtain nanometric, submicron and micron particles exhibiting optimized properties from which the precursor 32 is obtained.
  • the precursor of the precursor 32 obtained may not have a formed spinel phase, or have a partially formed spinel phase.
  • the initial step 110 comprises an additional calcination phase aimed at forming the spinel phase of the precursor 32, so that the precursor 32 obtained at the end of step 110 has a formed spinel phase.
  • the Applicant has successfully implemented the method described above and obtained, among other things, an example of component 10 whose ferrite of composition Ni 0.195 Cu 0.2 Zn 0.5999 Co 0.006 Fe 2 O 4 was co-sintered with a copper coil. 14 by direct sintering under a uniaxial pressure of 50 MPa, under argon, and at a temperature between 650 ° C and 800 ° C.
  • Component 10 which was obtained exhibits a magnetic moment at saturation equal to 54 Am 2 / kg and a relative density greater than 90%.
  • the process according to the invention makes it possible to carry out the co-sintering of ferrites with metals other than the noble metals such as silver Ag or palladium Pd.
  • metals other than the noble metals such as silver Ag or palladium Pd.
  • it allows the production of monolithic components having one or more coils made from copper, which the known methods do not allow.
  • the components obtained by the process according to the invention are therefore of lower cost.
  • the method 30 decreases the risks of occurrence of an error in handling of the elements of the material, or of their degradation during their transport between the places where they are. take place respectively, so that the method according to the invention is generally safer and less expensive than the methods of manufacturing this type of known electronic components.
  • the process according to the invention does not exhibit any particular susceptibility to the dimensions of the desired components, unlike the processes such as the so-called LTCC process (which comes from the English “Low Temperature Cofired Ceramic) which can only achieve components of small size (maximum 10 mm in diameter and 2 mm in thickness, larger dimensions resulting in delaminations and cracks), so that the only limitations of the process fall within limits intrinsic to the materials used.
  • the components 10 obtained according to such a process 30 are not subject to any oversizing imposed by any limitations linked to their manufacturing process, and have a compactness of 100%.
  • the electromagnetic components obtained have a closed magnetic structure which completely confines the magnetic flux and prevents these components from radiating and interfering with neighboring components, so that the integration of the components 10 obtained by the method 30 is facilitated. .
  • the Figure 8b shows that the border between the two elements is perfectly visible.
  • the copper foil remains localized between the two layers of ferrite and is found to a thickness of 100 ⁇ m.
  • the Figure 8c presents the micrograph of the BaTiO 3 / Cu interface observed by SEM and the Figure 8d represents the EDS analysis of this interface.
  • This transformer 10 is produced by the manufacturing process not forming part of the invention as claimed during which the ferrite material NiZnCuFe 2 O 4 is co-sintered with a copper coil 14 of circular spiral shape by direct co-sintering at 800 ° C for five minutes under a uniaxial pressure of 50 MPa and under argon.
  • the value of the primary and secondary inductance of this transformer 10 is marked on the left scale (in ⁇ H) and is close to 1.8 and 2.2 ⁇ H up to 10 MHz, the overvoltage coefficient being marked on the scale of right and being greater than 25 at 1 MHz and canceling out at 40 MHz.
  • a component 10 produced by a method according to the invention comprising a single coil 14 is for example an inductor intended to be used in a filtering device.
  • a component 10 produced by a method according to the invention comprising two coils 14, 14B is for example a transformer or a magnetic coupler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

  • La présente invention concerne un procédé de fabrication de composants électromagnétiques monolithiques.
  • Plus précisément, l'invention concerne un procédé de fabrication d'un composant électromagnétique monolithique comprenant plusieurs éléments dont un noyau magnétique de ferrite spinelle et au moins une bobine planaire comprenant plusieurs spires.
  • Les recherches récentes en électronique de puissance se concentrent sur la miniaturisation des convertisseurs et des composants électroniques qu'ils comprennent, en particulier sur la diminution de la taille des composants actifs et passifs.
  • Dans ce contexte, il existe un besoin de composants monolithiques capables d'être intégrés au plus près des semi-conducteurs et de transférer des puissances volumiques de plus en plus importantes, c'est-à-dire de travailler à plus haute fréquence et d'évacuer plus efficacement la chaleur.
  • De manière connue, certains ferrites spinelles sont utilisés pour fabriquer ce type de composant par frittage conventionnel à des températures de l'ordre de 950°C. Les ferrites obtenus présentent alors de bonnes performances jusqu'à quelques centaines de mégahertz, grâce à une résistivité élevée.
  • Toutefois, la fabrication de composants électroniques monolithiques à partir de ces ferrites via les procédés connus n'est possible qu'avec des bobines constituées de métaux nobles de type argent ou palladium, ce qui rend coûteuse la fabrication en grande quantité de ces composants de puissance. En outre, les procédés de fabrication connus impliquent de nombreuses étapes distinctes réalisées dans des lieux distincts les uns des autres, et entraînent parfois des délaminations, des fissures dans les matériaux ou des diffusions de matière aux interfaces entre le métal et les oxydes.
  • Il est également connu des documents « XXlst Century Ferrites » de Mazaleyrat F et al et JP-A-2010177319 des procédés complexes de fabrication de composants électroniques monolithiques.
  • L'un des objets de la présente invention est de proposer un procédé de fabrication de composant électromagnétique monolithique qui ne présente pas ces inconvénients.
  • A cet effet, l'invention concerne un procédé selon la revendication 1.
  • Selon d'autres modes de réalisation, le procédé selon l'invention comprend une ou plusieurs des caractéristiques optionnelles des revendications 2 à 8.
  • L'invention sera mieux comprise à la lecture de la description détaillée qui va suivre, faite uniquement à titre informatif et non limitatif, et en référence aux dessins annexés, sur lesquels :
    • la Figure 1 est une représentation schématique d'un composant électromagnétique monolithique ;
    • la Figure 2 représente des vues en coupe d'un composant électromagnétique monolithique comprenant une unique bobine.
    • la Figure 3 représente des vues en coupe d'un composant électromagnétique monolithique comprenant deux bobines.
    • la Figure 4 est une illustration schématique d'un procédé selon l'invention de fabrication d'un composant électromagnétique monolithique ;
    • la Figure 5 est une illustration schématique d'une étape du procédé de la Figure 4;
    • la Figure 6 est une illustration schématique du spectre de perméabilité complexe d'un composant électromagnétique réalisé par un procédé de fabrication selon l'invention ;
    • la Figure 7 est une illustration du spectre de perméabilité complexe d'un ferrite d'un composant électromagnétique réalisé par une variante d'un procédé de fabrication ne faisant pas partie de l'invention telle que revendiquée;
    • la Figure 8 est une illustration schématique de la micrographie au microscope électronique à balayage, ainsi que l'analyse EDS de l'interface entre une bobine et du ferrite d'un composant électromagnétique monolithique réalisé par un procédé selon l'invention ;
    • la Figure 9 est un diagramme de représentation de la mesure de l'inductance et du coefficient de surtension en fonction de la fréquence d'un composant électromagnétique monolithique réalisé par un procédé de fabrication selon l'invention; et
    • la Figure 10 est un diagramme de représentation de l'inductance du primaire et du secondaire et du coefficient de surtension d'un composant électromagnétique monolithique réalisé par un procédé selon l'invention.
  • En référence à la figure 1, un composant électromagnétique monolithique de référence générale 10 réalisé par un procédé selon l'invention, ci-après composant 10, comprend une embase 12, une bobine 14 agencée dans l'embase 12, et un matériau diélectrique 15 isolant électriquement.
  • Dans l'exemple de la Figure 1, le composant 10 est une inductance destinée à être utilisée conjointement à d'autres composants électroniques, par exemple pour la réalisation de convertisseurs de puissance ou de dispositifs de filtrage. En outre, il est destiné à fonctionner dans une bande de fréquences donnée préférentiellement comprise parmi la plage de fréquences 100 kHz - 30 GHz. Enfin, il est fabriqué selon le procédé selon l'invention, comme décrit ci-dessous.
  • L'embase 12 constitue la structure la plus volumineuse du composant 10 et lui confère son allure générale.
  • L'embase 12 présente une forme générale cylindrique d'axe longitudinal X-X', de hauteur h et de diamètre d.
  • Dans l'exemple de la Figure 1, la hauteur h est comprise entre 1 et 2 mm, et le diamètre d est compris entre 8 et 20 mm.
  • En variante, le diamètre d est compris entre 5 et 50 mm, et la hauteur h est comprise entre 1 et 20 mm.
  • L'embase 12 présente une résistivité élevée.
  • L'embase 12 est réalisée à partir d'un ferrite spinelle. Les spinelles sont des ferrites de formule générale (G) suivante: AB2-δO4, où A est de valence moyenne 2 et est un élément ou une combinaison d'éléments du groupe des cations formé préférentiellement par Mg2+, Ni2+, Co2+ , Zn2+, V2+, Ti2+, Sc2+, Mn2+ et éventuellement Fe2+, où B est de valence moyenne 3 et est un élément ou une combinaison d'éléments du groupe des cations formé préférentiellement par Fe3+ et Al3+, et où δ représente un éventuel défaut de matière. Le défaut de matière δ peut être volontairement introduit et est par exemple compris entre 0 et 0,05. En outre, les ferrites spinelles ont la structure cristallographique du composé de référence MgAl2O4.
  • Préférentiellement, le ferrite spinelle du composant 10 présente une composition de formule (1) suivante:
    NixZn1-x-y-ε+δCuyCoεFe2-δO4, avec 0,15 ≤ x ≤ 0,6 ; 0 < y ≤ 0,2 ; 0 ≤ ε ≤ 0,1 et 0 ≤ δ ≤ 0,05.
  • Il a ainsi été observé que les composants 10 dont le ferrite de l'embase 12 présentait la formule (1) présentaient de bons résultats en termes de performances magnétiques (pertes faibles) dans la bande de fréquence entre 300 kHz et 3 MHz en particulier et de densification lors de frittage à basse température (en dessous de 1000°C).
  • Comme on le verra par la suite, le ferrite 12 est obtenu par densification d'un mélange d'oxydes nanométriques ou encore par broyage et calcination successifs d'un mélange d'oxydes nanométriques, la calcination étant réalisée à une température comprise entre 600 °C et 1100 °C.
  • Pour les composants dont le ferrite obéit à la formule (1), les oxydes nanométriques sont des oxydes de zinc ZnO, de cuivre CuO, de nickel NiO, de cobalt Co3O4 et de fer Fe2O3, le mélange présentant également une composition obéissant à la formule (1).
  • Par nanométrique, on entend que la granulométrie des oxydes peut varier jusqu'à 5 µm au maximum. La granulométrie est alors déterminée en fonction de la fréquence à laquelle le composant 10 est destiné à fonctionner.
  • Dans l'exemple de la Figure 1, le diamètre des oxydes utilisés pour réaliser l'embase 12 est compris entre 230 et 270 nm, et vaut sensiblement 250 nm en moyenne.
  • La bobine 14 est propre à autoriser la bonne circulation des courants électriques à travers elle et à être solidarisée au ferrite de l'embase 12 par cofrittage.
  • Préférentiellement, la bobine 14 est réalisée à partir de cuivre.
  • En variante, elle est réalisée à partir d'un métal noble comme l'argent Ag ou le palladium Pd, ou d'un alliage de Palladium Pd, ou d'un alliage de Palladium Pd et d'argent Ag.
  • La bobine 14 est au moins partiellement noyée dans le ferrite de l'embase 12.
  • Toujours en référence à la Figure 1, la bobine 14 comprend plusieurs spires 16 dont une spire interne 161 et une spire externe 162.
  • Dans l'exemple de la Figure 1, les spires 16 présentent une forme générale de spirale circulaire et présentent une section sensiblement circulaire.
  • En variante (non représentée), les spires présentent une forme générale de spirale carrée.
  • La bobine 14 comprend également une patte interne 18 et une patte externe 19, qui constituent des extrémités coudées de la spire interne 161 et de la spire externe 162 respectivement.
  • La bobine présente en outre une épaisseur e non nulle, est sensiblement planaire et est orthogonale à l'axe X-X', de sorte que la bobine 14 est sensiblement comprise dans une tranche discoïdale T de l'embase 12, orthogonale à l'axe X-X' et d'épaisseur e.
  • Les spires interne 161 et externe 162 délimitent respectivement une portion discoïdale interne 20 et une portion discoïdale externe 22 d'épaisseur e de la tranche T et du composant 10.
  • En outre, deux spires 16 successives de la bobine 14 délimitent un interstice 24 radial.
  • Les Figures 2a à 2d représentent des exemples de réalisation d'un composant 10 réalisé par un procédé selon l'invention comprenant une seule bobine 14.
  • En référence à la Figure 2b, dans l'exemple de cette Figure, les interstices 24, ainsi que les portions discoïdales interne 20 et externe 22, sont au moins partiellement remplis de matériau diélectrique 15.
  • Seules les parties supérieures et inférieures des spires 16 de la bobine 14 sont au contact du ferrite.
  • Cet exemple permet avantageusement de limiter les capacités parasites pouvant apparaître entre les spires 16 lors du fonctionnement du composant 10 via l'isolation électrique résultant de la présence du matériau diélectrique 15.
  • En référence à la Figure 2c, dans l'exemple de cette Figure, les interstices 24 ainsi que la portion discoïdale interne 20 sont au moins partiellement remplis de matériau diélectrique 15, et la portion discoïdale externe 22 est remplie de ferrite.
  • Cet exemple est avantageusement utilisé afin de limiter les capacités parasites pouvant apparaître entre les spires 16 lors du fonctionnement du composant 10, tout en minimisant la quantité de matériau diélectrique 15 utilisée.
  • En référence à la Figure 2a, dans cet exemple, le composant 10 est dépourvu de matériau diélectrique 15, la bobine 14 étant ainsi intégralement noyée dans le ferrite de l'embase 12.
  • Cette variante est avantageusement utilisée lorsque la fréquence à laquelle le composant 10 est destiné à fonctionner est inférieure à 10 MHz. Au-delà de cette valeur, l'ajout de matériau diélectrique 15 est préférable.
  • En référence à la figure 2d, dans cet exemple, seuls les interstices 24 sont au moins partiellement remplis de matériau diélectrique 15.
  • Les pattes interne 18 et externe 19 sont propres à permettre le raccord du composant 10 à d'autres éléments, par exemple à un dispositif électronique auquel il est intégré.
  • A cet effet, les pattes interne 18 et externe 19 sont coudées par rapport à la spire interne 161 et la spire externe 162 respectivement.
  • La patte interne 18 est orientée selon l'axe X-X' et présente une longueur telle qu'elle affleure la surface supérieure du composant 10.
  • La patte externe 19 est orientée radialement et présente une longueur telle qu'elle affleure la surface latérale du composant 10.
  • En variante, les deux pattes 18, 19 sont orientées selon l'axe X-X' et affleurent la surface supérieure et/ou inférieure du composant 10.
  • Les pattes 18, 19 sont destinées à être mises en contact avec un câble conducteur d'électricité (non représenté), par exemple directement ou via une laque métallique rapportée au composant 10 qui permet de faciliter la mise en contact du câble avec les pattes 18, 19.
  • Les Figures 3a à 3c illustrent trois exemples de réalisation distincts d'une variante du composant 10 réalisé par un procédé selon l'invention, et dans laquelle, en sus des éléments déjà décrits dans l'exemple de la Figure 1, le composant 10 comprend une deuxième bobine 14B.
  • La deuxième bobine 14B est au moins partiellement noyée dans le ferrite de l'embase 12.
  • La deuxième bobine 14B est sensiblement comprise dans une tranche discoïdale TB du composant 10 parallèle à la tranche T et espacée de celle-ci, de sorte que les deux tranches T et TB définissent entre elles une couche C d'épaisseur c du composant 10.
  • Dans l'exemple de la Figure 3, cette bobine 14B est sensiblement de même structure et de mêmes dimensions que la bobine 14.
  • En variante, la deuxième bobine 14B présente un nombre de spires différent du nombre de spires de la bobine 14. Cette variante est avantageusement mise en œuvre pour modifier le comportement des bobines 14, 14B à conditions de fonctionnement similaires.
  • Dans l'exemple des Figures 3b et 3c, le composant 10 est un transformateur ou un coupleur magnétique dont les deux bobines 14, 14B sont couplées magnétiquement et isolées électriquement.
  • Dans cette variante, lors du fonctionnement du composant 10, le courant entrant dans l'une des bobines 14, 14B se traduit par un courant sortant par l'autre bobine et induit magnétiquement dans celle-ci.
  • La valeur de c est alors prédéterminée en fonction de critères connus de l'homme du métier, tels quel la valeur souhaitée de l'inductance des bobines, de l'inductance mutuelle et du coefficient de couplage entre les bobines.
  • Ainsi, la valeur de c est comprise entre 100 µm et 1 mm.
  • Lorsque le composant 10 est un transformateur, une valeur de c proche de 100 µm est préférable. A l'inverse, lorsque le composant 10 est un coupleur magnétique, une valeur de c proche de 1 mm est préférable.
  • Dans l'exemple des Figures 3b et 3c, la couche C est au moins partiellement remplie de matériau diélectrique 15.
  • Dans l'exemple de la Figure 3b, seule une portion de la couche C centrée sur l'axe X-X', d'épaisseur c et de diamètre sensiblement égal au diamètre de la spire externe 162 de la bobine 14 est remplie de matériau diélectrique 15.
  • Cet exemple est avantageusement mis en oeuvre afin de limiter les capacités parasites pouvant apparaître entre les spires 16 respectives des deux bobines 14, 14B lors du fonctionnement du composant 10, ou lorsqu'il est souhaitable de modifier la topologie du champ magnétique de chacune des spires 161.
  • Dans l'exemple de la Figure 3c, seule une portion de la couche C centrée sur l'axe X-X' et délimitée radialement d'une part extérieurement par la position de la spire externe 162 de la bobine 14, et d'autre part intérieurement par la position de la spire interne 161 de la bobine 14, est remplie de matériau diélectrique 15.
  • Cet exemple est avantageusement mis en oeuvre afin d'optimiser le couplage entre les bobines, par exemple lorsque le composant 10 est un coupleur magnétique, et de limiter les champs de fuite susceptibles d'apparaître lors du fonctionnement du composant 10.
  • Dans l'exemple de la Figure 3a, le composant 10 ne comprend pas de matériau diélectrique 15. Les deux bobines 14, 14B sont intégralement noyées dans le ferrite de l'embase 12.
  • Cet exemple est avantageusement utilisé lorsqu'il est souhaitable de ne pas altérer le champ magnétique résultant de la circulation du courant dans chacune des spires 161.
  • En variante (non représentée), en sus des éléments déjà décrits dans les exemples de réalisation des Figures 3b et 3c, le composant 10 comprend au moins deux couches métalliques parallèles aux bobines 14, 14B.
  • Deux couches métalliques successives sont alors séparées par une couche au moins partiellement remplie de matériau diélectrique 15.
  • Le procédé de fabrication 30 selon un exemple ne faisant pas partie de l'invention telle que revendiquée pour la fabrication d'un composant 10 réalisé à partir d'un ferrite de composition générale (G) et préférentiellement de composition (1) va maintenant être décrit en référence à la Figure 4.
  • Tout d'abord, au cours d'une étape initiale 110, on obtient un précurseur 32 du ferrite qui composera l'embase 12 du composant 10.
  • Le précurseur 32 est une poudre de ferrite obtenue par une alternance de broyages et de calcinations successifs d'un mélange d'oxydes nanométriques, ladite calcination étant réalisée à une température sensiblement comprise entre 600 °C et 1100 °C, et de préférence sensiblement égale à 760° C.
  • Pour un ferrite de composition (1), le précurseur 32 est une poudre de ferrite obtenue par une alternance de broyages et de calcinations successifs d'un mélange d'oxydes nanométriques de zinc ZnO, de cuivre CuO, de nickel NiO, de cobalt Co3O4 et de fer Fe2O3, ladite calcination étant réalisée à une température sensiblement comprise entre 600 °C et 1100 °C, et de préférence sensiblement égale à 760° C.
  • Les broyages ont pour but de diminuer le diamètre des oxydes, et ainsi abaisser la température de frittage de la poudre de ferrite obtenue.
  • Les calcinations ont pour but de former la phase spinelle du ferrite, c'est-à-dire de c'est-à-dire de transformer le mélange d'oxydes de base en une seule phase de structure spinelle.
  • Par phase, on entend structure cristallographique.
  • Lors des broyages, il peut se produire que des ajouts indésirables de fer soient réalisés via les outils utilisés, tels des billes d'acier.
  • L'étape initiale 110 comprend alors la compensation de ces ajouts indésirables dans le mélange obtenu, par exemple par formation d'un excès d'oxyde de fer de l'ordre de 5% par exemple.
  • Dans certains exemples où le défaut de fer δ n'est pas nul, l'étape initiale 110 comprend également la suppression de la quantité de fer correspondante du précurseur 32. Ceci permet de s'assurer de l'absence de Fe2+ qui pourrait apparaître suite à une légère réduction lors du frittage (lié à la présence de carbone) ou un ajout de fer lors du broyage. A noter que la présence de Fe2+ doit évitée car elle augmente très largement la conductivité du ferrite ce qui produirait des pertes additionnelles par courants de Foucault lors du fonctionnement du composant. Aussi, préférentiellement, l'élément A de la formule générale du ferrite n'est pas du fer ou ne contient pas de fer.
  • A l'issue de cette étape initiale 110, le précurseur 32 obtenu est une poudre de ferrite dont la composition obéit à la formule générale (G), préférentiellement à la formule (1), et dont la phase spinelle est formée.
  • Au cours d'une étape suivante de préparation 120, on noie dans un moule 34 les éléments du composant dont la ou les bobines 14 et autres que le ferrite dans le précurseur 32 du ferrite.
  • Elle se déroule donc de manière légèrement variable en fonction de la structure du composant 10 que l'on souhaite obtenir.
  • Plus spécifiquement, en référence aux Figures 2 et 5, pour un composant avec une seule bobine 14 et ne comprenant pas de matériau diélectrique 15, on dépose dans le moule 34 une première couche 36 de précurseur 32, sur laquelle on dépose ensuite la bobine 14. Puis on dépose une deuxième couche 38 de précurseur 32 sur la bobine 14, de façon à obtenir la structure et les dimensions de composant souhaitées, les éléments du composant 10 n'étant pas encore solidarisés les uns aux autres.
  • Pour un composant à une seule bobine 14 comprenant du matériau diélectrique 15, après avoir déposé la bobine 14 sur la première couche 36 de précurseur 32, on dépose, sur la bobine 14 et la première couche 36 le matériau diélectrique 15, à l'exception d'au moins les emplacements des spires 16 de la bobine 14, et ce de façon à former la structure de la tranche T souhaitée (Figures 2b, 2c et 2d). Enfin, on dépose une deuxième couche 38 de précurseur 32, de sorte à obtenir la structure générale du composant 10 souhaitée, les éléments n'étant pas encore solidarisés les uns aux autres.
  • Pour un composant 10 comprenant deux bobines 14, 14B et du matériau diélectrique 15, après la première couche 36, on dépose une couche de matériau diélectrique 15 de façon à former la structure de la tranche T et de la couche C souhaitées, puis on dépose la deuxième bobine 14B. On dépose ensuite une deuxième couche de matériau diélectrique d'épaisseur valant sensiblement e à l'exception d'au moins les emplacements des spires 16 de la deuxième bobine 14B, de façon à former la structure de la tranche TB souhaitée. La deuxième couche 38 de précurseur 32 est enfin déposée en dernier.
  • Pour un composant 10 à deux bobines 14, 14B ne comprenant pas de matériau diélectrique, lors de l'étape 120, le dépôt des couches de matériau diélectrique 15 décrit ci-dessus est alors remplacé par le dépôt de couches de précurseur 32.
  • Cette étape de préparation 120 est préférentiellement réalisée en milieu contrôlé, par exemple sous hotte étanche, ce qui a pour effet de limiter la présence de particules parasites pouvant se déposer dans le moule et ainsi diminuer la qualité du composant 10 obtenu.
  • Cette étape 120 est par exemple réalisée de façon manuelle, ou encore automatisée par tout dispositif approprié.
  • Le moule 34 est préférentiellement réalisé à partir de graphite. En variante, il est réalisé à partir de métal ou d'un alliage métallique réfractaire, ou de céramique conductrice électriquement.
  • A la suite de cette étape de préparation 120, au cours d'une étape de cofrittage 130, on solidarise le précurseur 32 du ferrite avec les autres éléments du composant 10 par cofrittage sous charge par courant électrique pulsé. Par « sous charge », on entend que les éléments du composant sous soumis à un effort, en particulier un effort axial tendant à comprimer les composants 10.
  • Au cours d'une étape de compression 131 de cette étape de cofrittage 130, on place le moule 34 obtenu par l'étape de préparation 120 sous gaz neutre, et on le soumet à une pression uniaxiale comprise entre 50 et 100 MPa. Cette pression est représentée par des flèches sur la Figure 5. Cette pression est maintenue jusqu'à la fin de l'étape de cofrittage 130.
  • En variante, le moule 34 est placé sous vide ou sous oxygène.
  • Ensuite, au cours d'une étape de décharge 132 de cette étape 130 et qui correspond au cofrittage par courant électrique pulsé à proprement parler, on décharge à travers le moule 34 un courant électrique d'intensité i contrôlée et comprise entre 1 A et 20000 A, et de préférence entre 1 A et 1000 A ou entre 1 et 10 A par millimètre carré de surface de composant. Ceci permet d'élever la température dans le moule 34 et de solidariser les éléments du composant 10 les uns aux autres. La température à l'intérieur du moule 34 est maîtrisée via le contrôle de l'intensité du courant.
  • L'étape de décharge 132 comprend un palier de cofrittage, au cours duquel la température à l'intérieur du moule 34 est maintenue entre 650 °C et 850 °C, et de préférence entre 700 °C et 800 °C. Le palier de cofrittage présente une durée comprise entre 1 min et 30 min.
  • Le déroulement de l'étape de décharge 132 est le suivant. La température est initialement portée à une vitesse d'environ 100 °K par minute, à partir de la température ambiante, à une valeur comprise entre les valeurs ci-dessus. Le palier de cofrittage est ensuite réalisé. Ensuite, la température à l'intérieur du moule 34 est rapidement abaissée par interruption du courant. Comme indiqué précédemment, la pression uniaxiale résultant l'étape de compression est maintenue pendant l'étape de décharge 132.
  • La durée moyenne de l'étape de décharge 132 est comprise entre 10 min et 60 min, et avantageusement vaut sensiblement 20 minutes.
  • Cette étape de décharge 132 est réalisée de préférence de façon automatisée, via un dispositif programmable adapté pour contrôler la température dans le moule 34, de sorte que la température dans le moule 34 soit rapidement portée à une température de consigne et maintenue à cette température lors des paliers de frittage.
  • Selon l'invention, le précurseur 32 obtenu à l'issue de l'étape initiale 110 est un mélange d'oxydes nanométriques répondant à la formule générale (G), préférentiellement à la formule (1) et dont la phase spinelle n'est pas formée.
  • Pour l'obtention de ce précurseur 32, au cours de l'étape initiale 110, on pèse les différents oxydes, on les mélange puis on broie le mélange obtenu afin de mélanger ces oxydes et de diminuer leur diamètre. Comme précédemment, l'apport en fer dû aux outils de broyage doit alors être compensé. Aucune calcination n'a lieu lors de cette étape, à l'inverse du mode de réalisation précédemment décrit.
  • Les étapes suivantes du procédé 30 demeurent les mêmes, à l'exception de la phase de décharge 132 au cours de laquelle on observe un premier palier de réaction. La fonction du premier palier de réaction est de réaliser la formation de la phase spinelle du précurseur 32. Ce premier palier de réaction est réalisé à une température comprise entre 400 °C et 600 °C. Le premier palier de réaction est préalable au palier de cofrittage.
  • Le procédé 30 selon l'invention porte le nom de frittage réactif, au cours duquel le mélange d'oxydes broyés se transforme en phase spinelle lors de la phase de décharge 130, à l'inverse du procédé décrit ci-dessus qui porte le nom de frittage direct et dans lequel le précurseur 32 est une poudre de ferrite broyée et calcinée et dont la phase spinelle est déjà formée à l'issue de l'étape initiale 110.
  • Ce procédé 30 présente plusieurs avantages :
    • il n'est plus nécessaire de réaliser des calcinations lors de la phase initiale 110, de sorte que le procédé 30 selon l'invention est simplifié, la phase spinelle du
      ferrite se formant directement lors de la phase de décharge 132,
    • elle permet l'obtention de noyaux magnétiques doux pour hautes fréquences et très hautes fréquences à partir d'un frittage réalisé à une température inférieure à celle des procédés connus.
  • En variante (non représentée), et ne faisant pas partie de l'invention telle que revendiquée, au cours de l'étape initiale 110, on procède à l'obtention du précurseur 32 de composition générale (G), préférentiellement de formule (1), par voie chimique, les étapes initiales 110 des procédés de frittage direct et réactif décrites ci-dessus correspondant à des voies dites solides. Cette variante permet d'obtenir une poudre de ferrite de composition plus homogène et présentant une distribution granulométrique plus étroite que par voie solide.
  • Le précurseur 32 obtenu par voie chimique est alors une poudre de ferrite de composition générale (G) dont les grains sont des particules de spinelles mixtes. Pour une poudre de ferrite de formule (1), les particules de spinelles simples sont par exemple Fe3O4, NiFe2O4, CoFe2O4 ou des particules de composition plus complexes, telles que par exemple de composition (1).
  • L'étape initiale 110 selon la voie chimique est alors réalisée selon l'un des trois protocoles suivants :
    • La synthèse par coprécipitation, qui consiste en la précipitation de solutions aqueuses contenant les ions métalliques à concentration contrôlée pour former le ferrite de composition visée. La cinétique de précipitation est lente et la phase qui précipite est amorphe. La taille des nanoparticules obtenues est comprise entre 5 nm et 7 nm.
    • La synthèse par Sol-gel, qui consiste en l'hydrolyse de solutions d'alkoxydes de formule Me(OR)n en milieu alcoolique. On obtient des solutions colloïdales où les nanoparticules sont maintenues en suspension avec une taille de l'ordre de 5 nm, que l'on précipite ensuite.
    • La synthèse hydrothermale, qui consiste en la dissolution de composés précurseurs (ou de dérivés intermédiaires) du précurseur 32 lui-même, suivie d'une précipitation des solutions obtenues. La synthèse hydrothermale diffère des autres protocoles par les conditions de température et de pression mises en œuvre, et est réalisée à des températures comprises entre 90 °C et 500 °C dans un réacteur sous une pression de l'ordre de quelques dizaines d'atmosphères. Cette synthèse par voie hydrothermale est avantageuse car elle produit des poudres très fines, faiblement agglomérées, et bien cristallisées. En outre, elle se produit à relativement basse température, les poudres de ferrites peuvent être obtenues à l'état doux, c'est-à-dire présenter une aimantation spécifique à saturation élevée et à champ cœrcitif de faible valeur, les caractéristiques des particules synthétisées sont facilement contrôlables via le contrôle des conditions de la réaction (sa température, sa durée, etc.), et la poudre de ferrite obtenue est adaptée pour être frittée à basse température tout en produisant un matériau massif et dense.
  • En fonction des conditions de réaction et du protocole de synthèse choisi, le précurseur du précurseur 32 obtenu à l'issue du protocole peut ne pas présenter de phase spinelle formée, ou présenter une phase spinelle partiellement formée.
  • Dans ce cas, l'étape initiale 110 comprend une phase de calcination supplémentaire visant à former la phase spinelle du précurseur 32, de sorte que le précurseur 32 obtenu à l'issue de l'étape 110 présente une phase spinelle formée.
  • En variante encore, ne faisant toujours pas partie de l'invention telle que revendiquée, lors de l'étape initiale 110, le précurseur 32 est obtenu par voie dite « polyol », au cours de laquelle on dissout des composés simples d'acétate, nitrate et chlorure dans des polyols liquides, tels que le 1,2- propane diol, le 1,2- éthane diol et le bis(2-hydroxy éthyl) éther. En raison de leur constante diélectrique assez élevée qui leur permet de dissoudre les solides inorganiques, ces polyols constituent des milieux propices à l'obtention de matériaux inorganiques divers : métaux, hydroxydes et oxydes. Se forment alors des complexes comprenant des groupes alkoxy, à partir desquels on obtient des oxydes et hydroxydes par hydrolyse et polymérisation.
  • La compétition entre ces réactions est contrôlable via la régulation du taux d'hydrolyse et de la température de réaction. Le contrôle des étapes de germination et de croissance permet d'obtenir des particules nanométriques, submicroniques et microniques présentant des propriétés optimisées à partir desquelles on obtient le précurseur 32.
  • Comme précédemment, en fonction des conditions de réalisation de l'étape initiale 110 par voie polyol, le précurseur du précurseur 32 obtenu peut ne pas présenter de phase spinelle formée, ou présenter une phase spinelle partiellement formée.
  • Dans ce cas, l'étape initiale 110 comprend une phase supplémentaire de calcination visant à former la phase spinelle du précurseur 32, de sorte que le précurseur 32 obtenu à l'issue de l'étape 110 présente une phase spinelle formée.
  • En résumé, le précurseur 32 de formule générale (G), préférentiellement de formule (1), obtenu à l'issue de l'étape initiale 110 est:
    • une poudre de ferrite présentant une phase spinelle formée obtenue par une alternance de broyages et de calcinations successifs d'un mélange d'oxydes nanométriques, et est obtenu par voie solide, variante ne faisant pas partie de l'invention telle que revendiquée, ou
    • un mélange d'oxydes nanométriques ne présentant pas de phase spinelle et est obtenu par voie solide selon l'invention, ou
    • une poudre de ferrite présentant une phase spinelle formée et est obtenu par voie chimique par synthèse par coprécipitation, par synthèse Sol-gel ou par synthèse hydrothermale, variante ne faisant pas partie de l'invention telle que revendiquée, ou
    • une poudre de ferrite présentant une phase spinelle formée et est obtenu par voie polyol, variante ne faisant pas partie de l'invention telle que revendiquée.
  • La Demanderesse a mis en œuvre le procédé 30 décrit ci-dessus avec succès et a obtenu entre autres un exemple de composant 10 dont le ferrite de composition Ni0.195Cu0.2Zn0.5999Co0.006Fe2O4 a été cofritté avec une bobine de cuivre 14 par frittage direct sous une pression uniaxiale de 50 MPa, sous argon, et à une température comprise entre 650 °C et 800 °C.
  • Le composant 10 qui a été obtenu présente un moment magnétique à saturation égal à 54 A.m2/kg et une densité relative supérieure à 90%.
  • Le procédé 30 selon l'invention permet de réaliser le cofrittage de ferrites avec des métaux autres que les métaux nobles tels que l'argent Ag ou le Palladium Pd. En particulier, il permet la réalisation de composants monolithiques présentant une ou plusieurs bobines réalisées à partir de cuivre, ce que les procédés connus n'autorisent pas.
  • En effet, les méthodes de frittage conventionnelles imposent l'exposition prolongée, pour des durées allant parfois jusqu'à plusieurs jours, des éléments du composant à des températures relativement proches de la température de fusion du cuivre.
  • Ceci a pour effet d'induire des diffusions du cuivre dans le ferrite, ce qui dégrade voire rend inutilisables les composants obtenus.
  • Les composants obtenus par le procédé selon l'invention sont donc de moindre coût.
  • En outre, du fait qu'il ne contient que peu d'étapes, le procédé 30 diminue les risques d'occurrence d'une erreur de manipulation des éléments du matériau, ou de leur dégradation lors de leur transports entre les lieux où elles se déroulent respectivement, de sorte que le procédé selon l'invention est globalement plus sûr et moins coûteux que les procédés de fabrication de ce type de composants électroniques connus.
  • En outre, le procédé selon l'invention ne présente pas de susceptibilité particulière aux dimensions des composants souhaités, à l'inverse des procédés comme le procédé dit LTCC (qui vient de l'anglais « Low Temperature Cofired Ceramic) qui ne peut réaliser que des composants de faible taille (au maximum 10 mm de diamètre et 2 mm d'épaisseur, des dimensions supérieures se traduisant par des délaminations et des fissures), de sorte que les seules limitations du procédé 30 relèvent de limites intrinsèques aux matériaux utilisés.
  • Les composants 10 obtenus selon un tel procédé 30 ne font l'objet d'aucun surdimensionnement imposé par d'éventuelles limitations liées à leur procédé de fabrication, et présentent une compacité de 100%.
  • Par ailleurs, les composants électromagnétiques obtenus présentent une structure magnétique fermée qui confine totalement le flux magnétique et évite que ces composants ne rayonnent et n'interfèrent avec les composants voisins, de sorte que l'intégration des composants 10 obtenus par le procédé 30 est facilitée.
  • A l'inverse, un procédé comme le LTCC, qui ne permet la réalisation que de petits composants, rend très difficile la fabrication de composants dont le flux magnétique est confiné, les composants obtenus s'avérant complexes à intégrer.
  • En référence à la Figure 6, qui illustre le spectre de perméabilité complexe en fonction de la fréquence d'un composant électromagnétique 10 obtenu par le procédé 30 de frittage réactif selon l'invention avec sa partie réelle, µ', repérée sur l'échelle de gauche et sa partie imaginaire, µ", sur l'échelle de droite, on constate que la perméabilité initiale est voisine de 120 jusqu'à une fréquence fr égale à 10 MHz et diminue au-delà. En ce qui concerne la perméabilité imaginaire µ", elle est inférieure à 0.01 jusqu'à 2 MHz et augmente au-delà jusqu'à une fréquence fr de résonance égale à 30 MHz. Ainsi le facteur de mérite µ'*fr est égal à 6.6 GHz.
  • En référence à la Figure 7, qui illustre spectre de perméabilité complexe en fonction de la fréquence d'un ferrite d'un composant 10 et réalisé par le procédé 30 de frittage direct ne faisant pas partie de l'invention telle que revendiquée avec sa perméabilité réelle repérée sur l'échelle de gauche et sa perméabilité imaginaire repérée sur l'échelle de droite, on constate que la perméabilité initiale µ' est voisine de 60 jusqu'à une fréquence égale à 10 MHz, elle augmente jusqu'à 67 pour une fréquence égale à 50 MHz et diminue au-delà. En ce qui concerne la perméabilité imaginaire µ", elle est inférieure à 0,01 jusqu'à 10 MHz et augmente au-delà jusqu'à une fréquence fr de résonance égale à 100 MHz. Ainsi le facteur de mérite µ'*fr est égal à 6 GHz.
  • En référence à la Figure 8, dont la Figure 8a illustre la micrographie au microscope électronique à balayage (MEB) de l'interface ferrite/cuivre d'un composant 10, et dont la Figure 8b illustre l'analyse EDS de l'interface entre une bobine 14 et du ferrite de ce composant 10, on constate d'après la Figure 8a que la tenue mécanique après cofrittage est satisfaisante. Les interfaces sont régulières et ne présentent ni délaminages ni fissures.
  • La Figure 8b montre que la frontière entre les deux éléments est parfaitement visible. La feuille de cuivre reste localisée entre les deux couches de ferrite et se retrouve sur une épaisseur de 100 µm. Au vu de cette Figure 8b, nous pouvons donc conclure que le cofrittage est parfaitement réussi entre le cuivre et le ferrite du composant 10 obtenu.
  • Quant à elles, la Figure 8c présente la micrographie de l'interface BaTiO3/Cu observée au MEB et la Figure 8d représente l'analyse EDS de cette interface.
  • On observe une bonne tenue mécanique de la pièce cofrittée et une interface régulière entre les différents matériaux. Le cuivre reste bien confiné entre les couches de diélectriques et de ferrite. En outre, on ne retrouve aucun des éléments du diélectrique dans la couche du cuivre et inversement, on ne retrouve pas de cuivre dans le diélectrique. Ceci indique qu'il n'y a pas eu de diffusion entre les différents éléments de chaque couche à l'échelle du micron.
  • En référence à la Figure 9, qui présente en fonction de la fréquence l'inductance série Ls en trait épais et en trait fin le facteur de surtension Q d'une inductance monolithique intégrée réalisée par le procédé selon l'invention à 800 °C pendant cinq minutes, sous une pression uni-axiale de 50 MPa et sous argon, on constate que la valeur d'inductance série Ls de ce composant 10 selon l'invention est égale à 3,4 µH jusqu'à 10 MHz, le coefficient de surtension Q étant supérieur à 35 à 1MHz et s'annulant à 10 MHz. La Figure 10 présente les mesures de l'inductance primaire et secondaire d'un transformateur 10 sans matériau diélectrique 15 et fonctionnant de 100 kHz à 10 MHz en fonction de la fréquence. Ce transformateur 10 est réalisé par le procédé de fabrication ne faisant pas partie de l'invention telle que revenquée au cours duquel du matériau ferrite NiZnCuFe2O4 est cofritté avec une bobine 14 de cuivre de forme spiralée circulaire par cofrittage direct à 800 °C pendant cinq minutes sous une pression uniaxiale de 50 MPa et sous argon. La valeur de l'inductance primaire et secondaire de ce transformateur 10 est repérée sur l'échelle de gauche (en µH) et est voisine de 1.8 et 2.2 µH jusqu'à 10 MHz, le coefficient de surtension étant repéré sur l'échelle de droite et étant supérieur à 25 à 1 MHz et s'annulant à 40 MHz.
  • Un composant 10 réalisé par un procédé selon l'invention comprenant une unique bobine 14 est par exemple une inductance destinée à être utilisée dans un dispositif de filtrage.
  • Un composant 10 réalisé par un procédé selon l'invention comprenant deux bobines 14, 14B est par exemple un transformateur ou un coupleur magnétique.

Claims (8)

  1. Procédé de fabrication d'un composant électromagnétique monolithique (10) comprenant plusieurs éléments dont une embase (12) réalisée à partir de ferrite spinelle et au moins une bobine (14, 14B) planaire comprenant plusieurs spires (16), l'un des éléments du composant électromagnétique monolithique (10) étant un matériau diélectrique (15),
    caractérisé en ce qu'il comprend la succession d'étapes suivantes :
    - au cours d'une étape initiale (110), on obtient un précurseur (32) du ferrite, le précurseur (32) du ferrite étant un mélange d'oxydes ne présentant pas de phase spinelle formée, la granulométrie des oxydes étant de 5 µm au maximum.
    - au cours d'une étape de préparation (120), dans un moule (34), on noie dans le précurseur (32) les éléments du composant électromagnétique monolithique (10) autres que le ferrite dont
    ladite au moins une bobine (14, 14B) et
    - au cours d'une étape de cofrittage (130), on solidarise ledit précurseur (32), qui ne présente pas de phase spinelle formée, avec les autres éléments du composant électromagnétique monolithique (10) dont ladite au moins une bobine (14, 14B) par cofrittage sous charge par courant électrique pulsé.
  2. Procédé selon la revendication 1, caractérisé en ce que la ou chaque bobine (14, 14B) est réalisée à partir de cuivre.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le ferrite présente une composition de formule NixZn1-x-y-ε+δCuyCoεFe2-δO4, avec : 0,15 x 0,6 ;
    Figure imgb0001
    0 < y 0,2 ;
    Figure imgb0002
    0 ε 0,1 ;
    Figure imgb0003
    et 0 δ 0,05 .
    Figure imgb0004
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les spires (16) de la ou chaque bobine (14, 14B) présentent une forme générale de spirale circulaire ou de spirale carrée.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au cours de l'étape de préparation (120), on dépose dans le moule (34) une première couche (36) de précurseur (32) du ferrite, puis on dispose les autres éléments du composant électromagnétique monolithique dont la ou chaque bobine (14, 14B), puis on dépose une deuxième couche (38) de précurseur (32).
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de cofrittage (130) comprend les étapes suivantes :
    - une étape de compression (131), au cours de laquelle le moule (34) est soumis à une pression uniaxiale comprise entre 50 et 100 MPa, et
    - une étape de décharge (132), au cours de laquelle un courant électrique d'intensité i comprise entre 1 A et 20000 A, et de préférence entre 1 A et 1000 A ou
    entre 1 et 10 A par millimètre carré de surface de composant, est délivré à travers le moule (34), de sorte que la température dans le moule (34) s'élève et les éléments du composant électromagnétique monolithique (10) se solidarisent les uns aux autres.
  7. Procédé selon la revendication 6, caractérisé en ce que l'étape de décharge (132) comprend un palier de cofrittage au cours duquel la température à l'intérieur du moule (34) est maintenue entre 650 °C et 850 °C, et de préférence entre 700 °C et 800 °C, pour une durée comprise entre 1 min et 30 min.
  8. Procédé selon la revendication 6 ou 7, caractérisé en ce que l'étape de décharge (132) comprend également un premier palier de réaction au cours duquel la température dans le moule (34) est comprise entre 400 °C et 600 °C, et au cours duquel la phase spinelle du précurseur (32) se forme.
EP14753101.6A 2013-08-26 2014-08-21 Procédé de fabrication d'un composant électromagnétique monolithique Active EP3039694B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1358177A FR3009884B1 (fr) 2013-08-26 2013-08-26 Procede de fabrication d'un composant electromagnetique monolithique et composant magnetique monolithique associe
PCT/EP2014/067852 WO2015028389A1 (fr) 2013-08-26 2014-08-21 Procédé de fabrication d'un composant électromagnétique monolithique et composant magnétique monolithique associé

Publications (2)

Publication Number Publication Date
EP3039694A1 EP3039694A1 (fr) 2016-07-06
EP3039694B1 true EP3039694B1 (fr) 2021-12-22

Family

ID=49949782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14753101.6A Active EP3039694B1 (fr) 2013-08-26 2014-08-21 Procédé de fabrication d'un composant électromagnétique monolithique

Country Status (5)

Country Link
US (1) US10490347B2 (fr)
EP (1) EP3039694B1 (fr)
JP (1) JP6568072B2 (fr)
FR (1) FR3009884B1 (fr)
WO (1) WO2015028389A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020176584A1 (fr) * 2019-02-27 2020-09-03 Ferro Corporation Compositions diélectriques ltcc et dispositifs ayant des facteurs q élevés
CN113178312B (zh) * 2021-03-27 2022-06-28 安徽省昌盛电子有限公司 一种直流叠加特性高的一体成型电感

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022814A (ja) * 2002-06-17 2004-01-22 Alps Electric Co Ltd 磁気素子及びインダクタ及びトランス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3255512A (en) * 1962-08-17 1966-06-14 Trident Engineering Associates Molding a ferromagnetic casing upon an electrical component
US5062197A (en) * 1988-12-27 1991-11-05 General Electric Company Dual-permeability core structure for use in high-frequency magnetic components
US5087804A (en) * 1990-12-28 1992-02-11 Metcal, Inc. Self-regulating heater with integral induction coil and method of manufacture thereof
US6162311A (en) * 1998-10-29 2000-12-19 Mmg Of North America, Inc. Composite magnetic ceramic toroids
US6594157B2 (en) * 2000-03-21 2003-07-15 Alps Electric Co., Ltd. Low-loss magnetic powder core, and switching power supply, active filter, filter, and amplifying device using the same
JP4684461B2 (ja) * 2000-04-28 2011-05-18 パナソニック株式会社 磁性素子の製造方法
US8066498B2 (en) * 2005-09-29 2011-11-29 Tdk Corporation Magnetic field molding device, method for producing ferrite magnet, and die
US7879269B1 (en) * 2006-09-13 2011-02-01 Rf Micro Devices, Inc. Ferrite powder optimized for fabrication of ferrite features and related methods
DE102007028239A1 (de) * 2007-06-20 2009-01-02 Siemens Ag Monolithisches induktives Bauelement, Verfahren zum Herstellen des Bauelements und Verwendung des Bauelements
JP5325799B2 (ja) * 2009-01-22 2013-10-23 日本碍子株式会社 小型インダクタ及び同小型インダクタの製造方法
JP2010177319A (ja) * 2009-01-28 2010-08-12 Kyocera Corp インダクタ部品
JP5550013B2 (ja) * 2010-03-31 2014-07-16 学校法人同志社 磁性ナノコンポジット及びその製造方法
KR101108719B1 (ko) * 2010-07-15 2012-03-02 삼성전기주식회사 적층 인덕터와 이의 제조 방법
TWI651395B (zh) * 2012-04-18 2019-02-21 日東電工股份有限公司 磷光體陶瓷及其製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022814A (ja) * 2002-06-17 2004-01-22 Alps Electric Co Ltd 磁気素子及びインダクタ及びトランス

Also Published As

Publication number Publication date
US10490347B2 (en) 2019-11-26
EP3039694A1 (fr) 2016-07-06
JP6568072B2 (ja) 2019-08-28
FR3009884A1 (fr) 2015-02-27
WO2015028389A1 (fr) 2015-03-05
FR3009884B1 (fr) 2016-12-09
US20160203908A1 (en) 2016-07-14
JP2016529727A (ja) 2016-09-23

Similar Documents

Publication Publication Date Title
EP1010186B1 (fr) Varistances a base de poudres nanocristallines produites par broyage mecanique intense
EP0800183B1 (fr) Ferrite à faibles pertes entre 1 MHz et 100 MHz et procédé de réalisation
EP2945172B1 (fr) Poudre de métal magnétique douce et noyau à poudre de métal magnétique douce utilisant celle-ci
EP2945171B1 (fr) Poudre de métal magnétique douce et noyau à poudre de métal magnétique douce utilisant celle-ci
EP2622613B1 (fr) Procédé de fabrication d&#39;un composant hyperfréquence de FERRITE GRENAT D&#39;YTTRIUM-FER et COMPOSANT HYPERFRÉQUENCE
EP2945170B1 (fr) Poudre de métal magnétique douce et noyau à poudre de métal magnétique douce utilisant celle-ci
WO2014132746A1 (fr) Cible de pulvérisation à base de fept-c et son procédé de production
EP3039694B1 (fr) Procédé de fabrication d&#39;un composant électromagnétique monolithique
EP1065676A1 (fr) Ferrites à faibles pertes
CN116825463A (zh) 软磁性成形体、磁芯及电子部件
FR2818969A1 (fr) Materiau ceramique dielectrique et son procede de fabrication
EP1842837B1 (fr) Materiau ferrite à faibles pertes et à basse temperature de frittage, procédé de fabrication et composant magnetique comportant ledit materiau ferrite
JP2002015913A (ja) 磁性フェライト粉末、磁性フェライト焼結体、積層型フェライト部品および積層型フェライト部品の製造方法
EP3033755B1 (fr) Composant ferrite pour application de puissance et procede de fabrication du composant
JP7246232B2 (ja) スパッタリングターゲット部材、スパッタリングターゲット、スパッタリングターゲット部材の製造方法、及びスパッタ膜の製造方法
EP2502241B1 (fr) Materiau ferrite a faibles pertes pour fonctionnement a haute frequence et dans une large gamme de temperature
JP2010059467A (ja) ニッケル粉末およびその製造方法
WO2004102595A2 (fr) Materiau ferrite pour aimant permanent et procede de fabrication
CN111183244B (zh) 强磁性材料溅射靶
KR20130007676A (ko) 소결용 Sb-Te 계 합금 분말 및 그 분말의 제조 방법 그리고 소결체 타겟
CA2299167C (fr) Varistances a base de poudres nanocristallines produites par broyage mecanique intense
CN113692457A (zh) 溅射靶以及溅射靶的制造方法
JP2012138399A (ja) フェライトコアおよび電子部品
JPH06333720A (ja) 磁性フェライトの製造方法、磁性フェライト、積層型インダクタ部品、複合積層部品および磁心
FR2847575A1 (fr) Procede de fabrication de ceramique texturee a base de niobate de plomb-magnesium et de titanate de plomb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZEHANI, KARIM

Inventor name: MAZALEYRAT, FREDERIC

Inventor name: LOYAU, VINCENT

Inventor name: LABOURE, ERIC

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190314

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210719

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAZALEYRAT, FREDERIC

Inventor name: ZEHANI, KARIM

Inventor name: LOYAU, VINCENT

Inventor name: LABOURE, ERIC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014081813

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1457616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211222

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ECOLE NORMALE SUPERIEURE PARIS-SACLAY

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.)

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1457616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014081813

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

26N No opposition filed

Effective date: 20220923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220821

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240926

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240828

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240829

Year of fee payment: 11