EP3035418B1 - Matière active composite pour des batteries rechargeables au lithium et procédé de fabrication de cette dernière - Google Patents
Matière active composite pour des batteries rechargeables au lithium et procédé de fabrication de cette dernière Download PDFInfo
- Publication number
- EP3035418B1 EP3035418B1 EP14836628.9A EP14836628A EP3035418B1 EP 3035418 B1 EP3035418 B1 EP 3035418B1 EP 14836628 A EP14836628 A EP 14836628A EP 3035418 B1 EP3035418 B1 EP 3035418B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- active material
- graphite
- lithium secondary
- composite active
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims description 182
- 239000011149 active material Substances 0.000 title claims description 129
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 79
- 229910052744 lithium Inorganic materials 0.000 title claims description 79
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 173
- 229910002804 graphite Inorganic materials 0.000 claims description 151
- 239000010439 graphite Substances 0.000 claims description 151
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 100
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 73
- 239000002245 particle Substances 0.000 claims description 52
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 46
- 239000010703 silicon Substances 0.000 claims description 46
- 229910052710 silicon Inorganic materials 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 39
- 239000007833 carbon precursor Substances 0.000 claims description 37
- 239000000377 silicon dioxide Substances 0.000 claims description 36
- 238000002156 mixing Methods 0.000 claims description 26
- 235000012239 silicon dioxide Nutrition 0.000 claims description 24
- 229920000642 polymer Polymers 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 230000001133 acceleration Effects 0.000 claims description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 8
- 239000011300 coal pitch Substances 0.000 claims description 3
- 239000000571 coke Substances 0.000 claims description 3
- 239000011302 mesophase pitch Substances 0.000 claims description 3
- 239000003921 oil Substances 0.000 claims description 3
- 239000011301 petroleum pitch Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 38
- 239000000463 material Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 21
- 239000003792 electrolyte Substances 0.000 description 17
- 239000002904 solvent Substances 0.000 description 16
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 15
- 239000002253 acid Substances 0.000 description 14
- 238000007599 discharging Methods 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- -1 plates Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 12
- 239000002243 precursor Substances 0.000 description 12
- 239000007772 electrode material Substances 0.000 description 11
- 239000002033 PVDF binder Substances 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- 239000002002 slurry Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000011246 composite particle Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 229910021389 graphene Inorganic materials 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000010405 anode material Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910001290 LiPF6 Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910021385 hard carbon Inorganic materials 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910014330 LiNi1-x-yCoxAlyO2 Inorganic materials 0.000 description 2
- 229910014360 LiNi1−x−yCoxAlyO2 Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 208000037998 chronic venous disease Diseases 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- XSXHWVKGUXMUQE-UHFFFAOYSA-N osmium dioxide Inorganic materials O=[Os]=O XSXHWVKGUXMUQE-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 229910021384 soft carbon Inorganic materials 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910010584 LiFeO2 Inorganic materials 0.000 description 1
- 229910002993 LiMnO2 Inorganic materials 0.000 description 1
- 229910013534 LiN(HCF2CF2CH2OSO2)2 Inorganic materials 0.000 description 1
- 229910013406 LiN(SO2CF3)2 Inorganic materials 0.000 description 1
- 229910014167 LiNi1-YCOYO2 Inorganic materials 0.000 description 1
- 229910014940 LiNi1−yCoyO2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910012576 LiSiF6 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- AQIHMSVIAGNIDM-UHFFFAOYSA-N benzoyl bromide Chemical compound BrC(=O)C1=CC=CC=C1 AQIHMSVIAGNIDM-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 239000003660 carbonate based solvent Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000006255 coating slurry Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- BDUPRNVPXOHWIL-UHFFFAOYSA-N dimethyl sulfite Chemical compound COS(=O)OC BDUPRNVPXOHWIL-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000007572 expansion measurement Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a composite active material for lithium secondary batteries and a production method therefor.
- lithium ion secondary batteries lithium secondary batteries
- anode material determines basic battery characteristics
- anode materials with better characteristics such as charging and discharging characteristics are being actively developed.
- Patent Document 1 discloses a composite active material for lithium secondary batteries capable of producing a lithium secondary battery having a large charging and discharging capacity, high-speed charging and discharging characteristics, and good cycle characteristics, as well as a production method therefor.
- Patent Literature 1 Japanese Patent No. 5227483B
- JP 2012 124115 A discloses a negative electrode active material for nonaqueous electrolyte secondary battery, said material being a composite particle containing first particles, for example spherical graphite particles, and second particles containing silicon atom, wherein said first and second particles are combined/integrated with a carbonaceous substance derived from a carbon precursor as a binder, wherein the content of Si on the outer surface of the composite particle is much higher than in the core part of the composite particle.
- JP 2007 059213 A discloses a composite active material for an anode of a lithium secondary battery, said composite material comprising a composite containing Si and SiO 2 , with Si dispersed in SiO 2 , and a carbonaceous substance which comprises graphite component, wherein SiO 2 and graphite component are dispersed in the carbonaceous substance, and wherein the main surface of the composite active material is the carbonaceous substance.
- US 2006/068287 A1 discloses a negative electrode active material for a nonaqueous electrolyte secondary battery comprising composite particles having a structure in which Si and SiO 2 are dispersed in a carbonaceous matrix that may be graphite, said composite particles being coated with a carbon coating layer that is different from graphite.
- an object of the present invention is to provide a composite active material for lithium secondary batteries capable of producing an electrode material in which volume expansion is suppressed even after repeated charging and discharging, and capable of producing a lithium secondary battery exhibiting excellent cycle characteristics, as well as a production method therefor.
- Another object of the present invention is to provide a battery that uses this composite active material for lithium secondary batteries.
- a composite active material for lithium secondary batteries exhibiting the desired characteristics is obtained by using silicon monoxide and a carbon precursor as the raw materials of production of a composite active material for lithium secondary batteries.
- the present invention can provide a composite active material for lithium secondary batteries capable of producing an electrode material in which volume expansion is suppressed even after repeated charging and discharging, and capable of producing a lithium secondary battery exhibiting excellent cycle characteristics, as well as a production method therefor.
- the present invention can provide a battery that uses this composite active material for lithium secondary batteries.
- FIG. 1 is a schematic cross-sectional view of an embodiment of the composite active material for lithium secondary batteries of the present invention.
- the composite active material for lithium secondary batteries and production method therefor of the present invention will be described in detail below.
- One feature of the production method of the present invention is that graphite having a prescribed specific surface area as well as silicon monoxide and a carbon precursor are used as starting raw materials of a composite active material for lithium secondary batteries.
- silicon which is a battery active material capable of combining with lithium ions, gradually oxides and becomes sponge-like.
- the cause of oxidation of the silicon is surmised to be a process which occurs repeatedly when lithium ions are accumulated in and released from the silicon, wherein stress is applied to the silicon and cracking occurs, and electrolyte permeates in from these cracks when volume expansion and contraction occur.
- a spherical mixture in which silicon monoxide is encapsulated in a graphite component is obtained by performing a mixing step and conglobation treatment to be described later using silicon monoxide.
- this mixture is heat-treated, the following reaction proceeds, and a composite containing silicon dioxide (SiO 2 ) and silicon (Si) (silicon-containing composite) is obtained.
- the obtained composite has the characteristic that stress does not tend to be applied to the silicon because the silicon consists of fine crystals (preferably not greater than 100 nm), and cracking does not tend to occur even with repeated expansion and contraction. Therefore, oxidation by the electrolyte occurs only on the surface, and advancement of oxidation by the electrolyte into the interior is averted. Furthermore, the majority of the fine silicon surface obtained in the mode described above is protected by silicon dioxide, and oxidation by the electrolyte as described above tends not to occur; this is also considered to result in a contribution to suppression of volume expansion of the electrode materials.
- the carbon precursor used in conjunction functions as an adhesive between the graphite component and the aforementioned composite, and has the function in aiding electrical contact between the two. As a result, the cycle characteristics of the lithium secondary battery are further improved.
- composite active material for lithium secondary batteries of the present invention also referred to simply as “composite active material” hereinafter
- modes of the produced composite active material for lithium secondary batteries will be described in detail.
- the production method for composite active material for lithium secondary batteries of the present invention has a mixing step of mixing prescribed components; a conglobation step of performing conglobation treatment on the obtained mixture; and a heating step of heat-treating the obtained spherical mixture.
- the mixing step is a step in which graphite having a specific surface area of not less than 30 m 2 /g, silicon monoxide, and a carbon precursor are mixed to obtain a mixture.
- a mixture in which silicon monoxide is uniformly blended across an extremely large graphite surface and silicon monoxide is dispersed to an extremely high degree can be obtained.
- the carbon precursor serves the purpose of aiding adhesion between the graphite and the silicon monoxide at that time.
- the silicon monoxide and carbon precursor dispersed on and attached to the graphite surface in the mixture becomes enveloped (in other words, encapsulated) in the graphite in a form where it is sandwiched by the graphite, simply by slight pressure being applied to the graphite.
- the graphite used in this step has a specific surface area of not less than 30 m 2 /g. As long as it is within this range, a composite active material for lithium secondary batteries in which silicon is highly dispersed on the graphite surface having high surface area (and preferably thin) is obtained. As a result, the battery material that uses the composite active material for lithium secondary batteries of the present invention exhibits excellent battery characteristics (for example, high-speed charging and discharging characteristics, large charging and discharging capacity, good cycle characteristics, and the like).
- the specific surface area is preferably not less than 40 m 2 /g and more preferably not less than 60 m 2 /g because the cycle characteristics of a lithium secondary battery that uses the composite active material are better.
- the upper limit is not particularly limited, but the specific surface area is preferably not greater than 200 m 2 /g because otherwise, the production procedure becomes complex and synthesis is difficult.
- the specific surface area of graphite is measured using the BET method by nitrogen adsorption (JIS Z 8830, single-point method).
- the graphite contains layers consisting of multiple graphene sheets stacked in the direction in which the graphite planes are stacked, and the graphene sheets are bonded to each other primarily by van der Waals forces.
- the average thickness of the layer of laminated graphene sheets contained in the graphite having the above prescribed specific surface area is preferably not greater than 29 nm and more preferably not greater than 22 nm, because the charging and discharging quantity and the cycle characteristics of a lithium secondary battery that uses the composite active material are better.
- the lower limit is not particularly limited but is normally not less than 4.4 nm in many cases because otherwise, the production procedure becomes complex.
- the graphite is observed by electron microscope (TEM) and the thickness of the laminated graphene sheet layer in the graphite is measured at not less than 10 locations, and the average thickness is obtained by taking the arithmetic mean of those values.
- TEM electron microscope
- the upper limit of bulk specific gravity of the graphite used is not particularly limited but is preferably not greater than 0.02 g/cm 3 and more preferably not greater than 0.01 g/cm 3 because the composite is more uniform and more highly dispersed in the graphite component in the composite active material. Due to problems in production, the lower limit is often not less than 0.005 g/cm 3 .
- a sample is inserted in a 500-mL glass graduated cylinder so as not to compress it, and bulk specific gravity is determined by dividing the sample weight by the sample volume.
- graphite used in this step a commercially available product may be used or graphite may be produced by a known method.
- Expanded graphite may be produced by, for example, soaking graphite (for example, scaly graphite) in an acid at room temperature and then heat-treating (for example, treating at 700 to 1000°C) the obtained acid-treated graphite. More specifically, scaly natural graphite is soaked for approximately 1 hour in a mixed acid of 9 parts by weight of sulfuric acid and 1 part by weight of nitric acid, and then the acid is removed and the resultant graphite is washed and dried. The obtained acid-treated graphite is then put into a furnace at approximately 850°C to obtain expanded graphite. Expanded graphite may also be obtained when graphite that has formed an intercalation compound of graphite and an alkali metal or the like is used.
- the bulk density of the acid-treated graphite obtained as described above is not particularly limited but is preferably not less than 0.6 g/cm 3 and more preferably not less than 0.7 g/cm 3 because the acid-treated graphite expands sufficiently.
- the upper limit is not particularly limited but is often not greater than 1.0 g/cm 3 due to problems in production otherwise.
- a sample is inserted in a 100-mL glass graduated cylinder so as not to compress it, and bulk density is determined by dividing the sample weight by the sample volume.
- the above expanded graphite is dispersed in a solvent, and by treating it with ultrasonic treatment or a crusher that applies high shear stress (for example, a millstone), the hinge parts of the expanded graphite are destroyed and flake graphite in which approximately 50 graphene sheets (preferably from 10 to 150 sheets) are laminated is obtained.
- the silicon monoxide used in this step functions as a precursor that produces silicon, which is the battery active material capable of combining with lithium ions. More specifically, a composite (silicon-containing composite) of silicon (Si) and silicon dioxide (SiO 2 ) is obtained by heat-treating a spherical mixture containing silicon monoxide in the heating step to be described later.
- SiO x (0.8 ⁇ x ⁇ 1.5) is preferably used as the silicon monoxide.
- the use of SiO (x ⁇ 1) is particularly desirable because the quantitative relationship between silicon and silicon dioxide is the preferred ratio.
- the shape of the silicon monoxide used is not particularly limited, and any shape such as powder, plates, granules, fibers, lumps, and spheres may be used.
- the average particle size of the silicon monoxide used is preferably not greater than 1 ⁇ m, more preferably not greater than 0.5 ⁇ m, and even more preferably not greater than 0.3 ⁇ m because sloughing off of silicon monoxide when forming the composite with graphite as well as expansion and destruction of silicon accompanying cycling can be further suppressed and because there are a greater number of electrical contact points with the graphite.
- the lower limit is not particularly limited and is preferably low, but is normally not less than 0.1 ⁇ m in many cases.
- Laser diffraction-style particle size distribution measurement equipment is used to measure average particle size. More specifically, D50 (50% volume particle diameter) is used as the average particle size.
- silicon monoxide particles of the above prescribed small particle size may be obtained by crushing silicon monoxide using a known apparatus such as a mixing tank-type agitation mill (bead mill or the like).
- the carbon precursor used in this step functions as an adhesive that increases adhesion between the graphite and the silicon monoxide in the mixture.
- the carbon precursor is converted to a carbide (for example, hard carbon, soft carbon, non-crystalline carbon, or the like).
- the carbon precursor is not particularly limited as long as it is a material that is converted to a carbide by heat treatment (baking carbonization) as described above.
- Examples include polymer compounds (organic polymers), coal-based pitch, petroleum-based pitch, mesophase pitch, coke, low-molecular-weight oil, derivatives thereof, and the like.
- polymer compounds are preferred because expansion of a battery material that uses the composite active material for lithium secondary batteries is further suppressed and the cycle characteristics for lithium secondary batteries of such a material are better (also stated simply as "because the effects of the present invention are better" hereinafter).
- polymer compound examples include phenol resin, furan resin, epoxy resin, polyvinyl chloride, polyvinyl alcohol, polyacrylamide, polyethyleneimide, cellulose, rayon, polyacrylonitrile, polystyrene, and the like.
- One type of carbon precursor may be used alone or two or more types may be used in combination.
- the shape of the carbon precursor used is not particularly limited, and any shape such as powder, plates, granules, fibers, lumps, and spheres may be used. These carbon precursors are preferably dissolved in the solvent used when mixing the silicone monoxide and the expanded graphite.
- the average molecular weight of the carbon precursor used is preferably not less than 1000 and more preferably not greater than 1,000,000 because the effects of the present invention are better.
- the method for mixing the above-described graphite, silicon monoxide, and carbon precursor is not particularly limited, and known methods such as so-called dry processes, wet processes, or the like may be used. Wet processes are preferred because the graphite, silicon monoxide, and carbon precursor in the obtained mixture are more uniformly mixed.
- An example of a dry process is to add the above-described graphite, silicon monoxide, and carbon precursor and mix them in a known stirring device (for example, a Henschel mixer).
- An example of a wet process is to disperse the above-described graphite, silicon monoxide, and carbon precursor in a solvent, stir and mix the obtained solution, and remove the solvent.
- the type of solvent used in wet processes is not particularly limited, and should be a solvent that can disperse graphite, silicon monoxide, and carbon precursor.
- examples include alcohol-based solvents (for example, methanol, ethanol, isopropanol), ketone-based solvents (for example, acetone, methyl ethyl ketone, cyclohexane), amide-based solvents (for example, formamide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone), nitrile-based solvents (for example, acetonitrile, propionitrile), ester-based solvents (for example, methyl acetate, ethyl acetate), carbonate-based solvents (for example, dimethyl carbonate, diethyl carbonate), ether-based solvents (for example, cellosolve), halogen-based solvents, water, mixtures thereof, and the like.
- alcohol-based solvents for example,
- an alcohol-based solvent is preferred because the cycle characteristics of a lithium secondary battery that uses the obtained composite active material for lithium secondary batteries are better.
- the conditions of mixing and stirring the graphite, silicon monoxide, and carbon precursor are not particularly limited, and optimal conditions are selected as appropriate according to the materials used.
- the stirring time is preferably approximately 1 to 2 hours because the graphite, silicon monoxide, and carbon precursor can be more uniformly dispersed, and as a result, the cycle characteristics of a lithium secondary battery that uses the obtained composite active material for lithium secondary batteries are better.
- ultrasonic waves may be applied as necessary while stirring.
- the stirring time should be approximately 10 minutes.
- the method for removing the solvent is not particularly limited, and a method using a known apparatus (for example, an evaporator) or the like may be employed.
- the mixing ratio of graphite and silicon monoxide is not particularly limited, but is preferably from 10 to 230 parts by mass and more preferably from 20 to 200 parts by mass of silicon monoxide relative to 100 parts by mass of graphite because the effects of the present invention are better.
- the mixing ratio of graphite and carbon precursor is not particularly limited, but is preferably from 1 to 50 parts by mass and more preferably from 5 to 20 parts by mass of carbon precursor relative to 100 parts by mass of graphite because the effects of the present invention are better.
- the mixing ratio of silicon monoxide and carbon precursor is not particularly limited, but is preferably from 0.1 to 100 parts by mass and more preferably from 1 to 50 parts by mass of carbon precursor relative to 100 parts by mass of silicon monoxide because the effects of the present invention are better.
- the used amount thereof is not particularly limited, but since the effects of the present invention are better as a result of a higher degree of dispersion, it is preferably from 3000 to 15,000 parts by mass and more preferably from 5000 to 7000 parts by mass of solvent relative to 100 parts by mass of graphite.
- a pressing step of pressing the obtained mixture may be included as necessary.
- the distance between graphite particles is smaller and the conglobation treatment proceeds more efficiently.
- the method of pressing is not particularly limited, and a known method may be employed.
- the conglobation step is a step in which conglobation treatment is performed on the mixture containing graphite, silicon monoxide, and a carbon precursor obtained in the above mixing step, to produce a spherical mixture.
- the graphite sheets are folded and conglobated so as to incorporate the silicon monoxide and carbon precursor inside them. At that time, a structure is obtained in which the edge parts of the graphite are folded to the inside and substantially no silicon monoxide is exposed on the surface of the composite active material for lithium secondary batteries.
- the long axis direction - that is, the AB plane - of the graphite aligns in the direction of the airflow and collides with pins or collision plates placed perpendicular to the airflow, or the particles of the graphite-precursor material mixture collide with each other, and the AB plane of the graphite is compressed and deformed and consequently undergoes conglobation in a form where it sandwiches the precursor material.
- the long axis of expanded graphite is the C axis direction of the graphite
- the C axis of the graphite aligns in the direction of the airflow and collides with the pins or collision plates, or the particles collide with each other.
- the C axis of the graphite is compressed and the graphite is changed to a state close to its pre-expansion form. This means that the precursor material attached to the AB plane of the graphite is crushed by the graphite and completely sandwiched by the graphite layers.
- the graphite compressed in the C axis direction changes to a structure in which the AB plane serves as the long axis, and eventually the AB plane of the graphite changes to a folded spherical body.
- the laminated graphene sheet layers that constitute expanded graphite or flake graphite are thin, the AB plane is easily deformed by a smaller compressive force in the direction of the AB plane.
- the method of conglobation treatment is not particularly limited as long as a crusher that can mainly apply impact stress is used.
- the crusher include a high-speed rotary impact crusher, and more specifically, a sample mill, hammer mill, pin mill, or the like may be used. Above all, a pin mill is preferred because mixing of the graphite and the precursor material is more uniform and the effects of the present invention are better.
- the high-speed rotary impact crusher may be one that causes a sample to collide with a rotor which rotates at high speed and crushes it into fine particles using the impact force thereof.
- Examples include a hammer type of hammer mill in which a stationary-style or swinging-style impactor is mounted on a rotor, a rotating disk type of pin mill in which pins or collision heads are mounted on rotating disks, an axial flow type which crushes the sample while it is fed in the direction of the shaft, and an annular type which makes particles fine using narrow ring-shaped parts. More specific examples include a hammer mill, pin mill, screen mill, turbo mill, centrifugal classifier-type mill, and the like.
- this step is performed using a high-speed rotary impact crusher, conglobation is performed at a rotation speed of normally not less than 100 rpm, preferably not less than 1500 rpm, and normally not greater than 20,000 rpm. Therefore, the collision speed is preferably approximately from 20 m/sec to 100 m/sec.
- conglobation treatment is performed with low impact force, unlike crushing, circulating treatment is preferably performed in this step.
- the treatment time varies depending on the type of crusher used and the quantity loaded, but normally it is 2 minutes or less, and treatment is completed in approximately 10 seconds as long as it is an apparatus in which appropriate pins or collision plates are arranged.
- conglobation treatment is preferably performed in air.
- this treatment is performed under nitrogen flow, there is danger of ignition when opened to the atmosphere.
- the size of the spherical mixture obtained by the above conglobation treatment is not particularly limited, but the particle size of the spherical mixture (D50: 50% volume particle diameter) is preferably from 2 to 40 ⁇ m, more preferably from 5 to 35 ⁇ m, and even more preferably from 5 to 30 ⁇ m, because the effects of the present invention are better.
- D50 corresponds to the 50% cumulative particle diameter from the fine side of the cumulative particle size distribution measured by the laser diffraction/scattering measurement method.
- the spherical mixture is added to a liquid and mixed vigorously while using ultrasonic waves or the like, and the produced dispersion is introduced into the apparatus as a sample and measured.
- the liquid water, alcohol, or a low-volatility organic solvent is preferred due to ease of handling. It is preferred that the obtained particle size distribution be a normal distribution at that time.
- the heating step is a step of heat-treating the spherical mixture obtained as described above and producing a substantially spherical composite active material for lithium secondary batteries (composite active material).
- the composite active material contains a graphite component derived from the aforementioned graphite and a composite containing silicon and silicon dioxide (silicon-containing composite), and the composite is encapsulated in the graphite component as will be described later.
- the composite contains silicon and silicon dioxide
- the state of dispersion of the two is not particularly limited, and may be, for example, a sea-and-island state of dispersion. Above all, it is preferably a composite in which silicon is dispersed in silicon dioxide because the effects of the present invention are better. Furthermore, some of the precursor silicon monoxide sometimes may remain in the composite.
- the heating temperature is preferably not less than 700°C and more preferably not less than 800°C because the effects of the present invention are better.
- the upper limit is not particularly limited but is preferably not greater than 2000°C, more preferably not greater than 1500°C, and even more preferably not greater than 1000°C.
- the heating time is preferably not less than 0.5 hours and more preferably not less than 1 hour.
- the upper limit is not particularly limited but is often not greater than 5 hours because the effects of the present invention become saturated and because fine crystals of silicon are of a preferred size.
- the atmosphere in which heat treatment is performed is preferably an inert atmosphere because it prevents oxidation of silicon and carbon.
- FIG. 1 is a schematic view of an embodiment of a composite active material.
- a composite active material 10 is substantially spherical, and as the structure thereof, a composite 14 is encapsulated in a graphite component 12, and in the composite 14, silicon 18 is dispersed in silicon dioxide 16. Note that a composite in which silicon is dispersed in silicon dioxide is described above, but it is not limited to this mode.
- the obtained composite active material will be described in detail below.
- the shape of the composite active material is substantially spherical because of the treatment described above.
- substantially spherical means that the composite active material has a structure having roundness and is a shape that does not have sharp edges (peaks and jutting parts) as are generally seen in fractured particles.
- substantially spherical indicates a shape of composite active material in which the aspect ratio, which is the ratio of the long diameter to the short diameter (long diameter/short diameter) is approximately in the range of 1 to 3 (more preferably 1 to 2 because the effects of the present invention are better).
- the aspect ratio signifies the arithmetic mean of the values of long diameter/short diameter of at least 100 particles.
- the short diameter in the above description is the distance between the two parallel lines that result in the shortest distance among the combinations of two parallel lines touching the outside of and sandwiching a particle observed by scanning electron microscope.
- the long diameter is the distance between the two parallel lines that result in the longest distance among the combinations of two parallel lines touching the outside of a particle and orthogonal to the parallel lines that determine the short diameter.
- the rectangle formed by these four lines has a size that the particle just fits into.
- the area ratio of the graphite component exposed on the composite active material surface observed by scanning electron microscope (SEM) at acceleration voltage of not greater than 10 kV is not less than 95%. Above all, not less than 98% is more preferred, and not less than 99% is even more preferred.
- the upper limit is not particularly limited, and may be 100%. As long as the area ratio is within the above range, the amount of composite exposed on the surface of the composite active material is small, and as a result, volume expansion of an electrode material that contains the composite active material is suppressed and a lithium secondary battery that contains the composite active material exhibits excellent cycle characteristics.
- the composite readily sloughs off and cycle characteristics are inferior, or volume expansion of an electrode material containing the composite is large.
- At least 100 particles of composite active material are observed by scanning electron microscope (SEM) at acceleration voltage of not greater than 10 kV (preferably at a magnification of not less than 2000X), and the area ratio of the graphite component relative to the surface of each composite active material particle is measured, and the arithmetic mean thereof is taken as the area ratio.
- SEM scanning electron microscope
- the area ratio of the composite exposed on the composite active material surface observed by scanning electron microscope (SEM) at acceleration voltage of not greater than 10 kV is preferably not greater than 5%. Above all, not greater than 2% is more preferred, and not greater than 1% is even more preferred.
- the lower limit is not particularly limited, and may be 0%. As long as the area ratio is within the above range, the amount of composite exposed on the surface of the composite active material is small, and as a result, volume expansion on an electrode material that contains the composite active material is suppressed and a lithium secondary battery that contains the composite active material exhibits excellent cycle characteristics.
- At least 100 particles of composite active material are observed by scanning electron microscope (SEM) at acceleration voltage of not greater than 10 kV (preferably at magnification of not less than 2000X), and the area ratio of the composite relative to the surface of each composite active material particle is measured, and the arithmetic mean thereof is taken as the area ratio.
- SEM scanning electron microscope
- a feature of the composite active material for lithium secondary batteries is that when observed by scanning electron microscope (SEM) at acceleration voltage of not greater than 10 kV, the composite that has penetrated through the thin graphite layer and has been encapsulated in a state sandwiched in graphite layers can be observed directly.
- SEM scanning electron microscope
- a preferred mode of the composite active material is a mode in which substantially no edge parts of the graphite are exposed on the surface thereof. Due to no edge parts being exposed on the surface, degradation of the electrolyte and destruction of the graphite, which readily occur during the charge-discharge cycle, are suppressed, resulting in improved cycle characteristics.
- the graphite component in the composite active material is the graphite-derived component described above. Note that because conglobation treatment is performed at the time of formation of the composite active material, the above-described graphite may also take on a folded structure in the composite active material.
- the content of the composite in the composite active material may be adjusted as appropriate according to the content of silicon monoxide in the mixing step described above.
- the content of the composite is preferably not less than 10 mass%, more preferably 20 mass%, and particularly preferably not less than 30 mass% relative to the total amount of composite active material because the effects of the present invention are better.
- the upper limit is preferably not greater than 80 mass% and more preferably not greater than 70 mass%.
- the area ratio of the graphite component exposed on the composite active material surface is within the above range even when the content of the composite is within the above range.
- the shape of the composite in the composite active material is not particularly limited, but is normally substantially spherical in many cases.
- the composite active material may also contain a large number of composite particles, as illustrated in FIG. 1 .
- the average particle size of the composite in the composite active material is not particularly limited but is preferably not greater than 1 ⁇ m, more preferably not greater than 0.5 ⁇ m, and even more preferably not greater than 0.3 ⁇ m because the effects of the present invention are better.
- the lower limit is not particularly limited and is preferably low (not less than 50 nm in many cases).
- the method for measuring the average particle size a cross-section of the composite active material is observed by electron microscope and the diameter of at least 10 composite particles is measured, and the arithmetic mean thereof is taken as the average particle size. Note that when the composite does not have a perfectly circular shape, the circular equivalent diameter is used.
- the "circular equivalent diameter" is the diameter of a circle having the same projected area as the projected area of the composite when it is assumed that the shape of the observed composite is that circle.
- the composite contains silicon and silicon dioxide, and the silicon is preferably encapsulated in the silicon dioxide.
- the composite may also contain a large number of silicon particles, as illustrated in FIG. 1 .
- the average particle size of silicon in the composite is not particularly limited but is preferably from 1 to 100 nm and more preferably from 1 to 20 nm because the effects of the present invention are better.
- TEM electron microscope
- the content of silicon in the composite is not particularly limited but is preferably from 20 to 200 mass% and more preferably from 40 to 150 mass% relative to the total mass of silicon dioxide in the composite because the effects of the present invention are better.
- silicon dioxide (SiO 2 ) in the composite may be removed as necessary using HF or the like.
- the amount of silicon dioxide on the silicon (Si) surface can be adjusted by varying the amount of etching. From the perspective of protecting the surface, it is preferable to leave a certain amount of silicon dioxide.
- the relative mass of Si which is the active material can be increased and capacity can be increased.
- the voids left after silicon dioxide has been removed can be decreased using an apparatus that isotropically applies force, such as a mill used in conglobation.
- the content of silicon may be increased by eluting SiO 2 with HF, and in that case, the content of silicon may be adjusted to 100 to 9900 mass% relative to the total mass of silicon dioxide in the composite.
- the content of silicon may be measured by ICP emission spectroscopy.
- the composite active material normally contains a carbide derived from a carbon precursor (carbon material; for example, hard carbon, soft carbon, or the like).
- the content of the carbide in the composite active material may be adjusted as appropriate according to the content of carbon precursor in the mixing step described above.
- the carbide content is preferably not less than 1 mass%, more preferably not less than 2 mass%, and particularly preferably not less than 5 mass% relative to the total amount of composite active material because the effects of the present invention are better.
- the upper limit is preferably not greater than 30 mass% and more preferably not greater than 20 mass%.
- the particle diameter (D50: 50% volume diameter) of the composite active material is not particularly limited but is preferably from 2 to 40 ⁇ m, more preferably from 5 to 35 ⁇ m, and even more preferably from 5 to 30 ⁇ m because the effects of the present invention are better.
- the particle diameter (D90: 90% volume diameter) is not particularly limited but is preferably from 10 to 60 ⁇ m and more preferably from 20 to 45 ⁇ m because the effects of the present invention are better.
- the particle diameter (D10: 10% volume diameter) is not particularly limited but is preferably from 1 to 20 ⁇ m and more preferably from 2 to 10 ⁇ m because the effects of the present invention are better.
- D10, D50, and D90 correspond to the 10%, 50%, and 90% cumulative particle diameter from the fine side of the cumulative particle size distribution measured by the laser diffraction/scattering measurement method.
- the composite active material when measurement is performed, the composite active material is added to a liquid and mixed vigorously while using ultrasonic waves or the like, and the produced dispersion is introduced into the apparatus as a sample and measured.
- the liquid water, alcohol, or a low-volatility organic solvent is preferred due to ease of handling. It is preferred that the obtained particle size distribution be a normal distribution at that time.
- the bulk density of the composite active material is not particularly limited but is preferably not less than 0.5 g/cm 3 and more preferably not less than 0.7 g/cm 3 because the capacity per volume of obtained composite active material is larger.
- the upper limit is not particularly limited.
- the method for measuring bulk density is the same as the method for measuring the bulk density of graphite described above except that a 25-mL graduated cylinder is used.
- the tap density of the composite active material is not particularly limited but is preferably not less than 0.8 g/cm 3 and more preferably not less than 1.0 g/cm 3 because the capacity per volume of obtained composite active material is larger.
- the upper limit is not particularly limited, but not greater than 1.6 g/cm 3 is preferred.
- a sample is inserted in a 25-mL graduated cylinder, it is tapped, and tap density is determined by dividing the sample weight by the sample volume at the point when there is no longer any change in volume.
- the specific surface area (BET specific surface area) of the composite active material is not particularly limited but is preferably not less than 5 m 2 /g and more preferably not less than 8 m 2 /g because the cycle characteristics of a lithium secondary battery that uses the obtained composite active material are better.
- the upper limit is not particularly limited, but not greater than 100 m 2 /g is preferred.
- the sample is measured by the nitrogen adsorption single-point method after vacuum-drying for 30 minutes at 300°C.
- the surface of the composite active material may be covered with carbon as necessary. By implementing such treatment, the surface area of the composite active material may be adjusted and electrochemical stability may be increased.
- the method for covering with carbon is not particularly limited but may be CVD, for example. More specifically, it is preferable to perform CVD treatment at 750 to 1100°C under the flow of a gas such as toluene.
- the composite active material described above is useful as an active material used in battery materials (electrode materials) used in lithium secondary batteries.
- battery materials that use the above composite active material are that capacity is close to the theoretical value of the battery material and that expansion is suppressed. Furthermore, a battery that uses this battery material exhibits excellent cycle characteristics. Additionally, ultra-fast charging and discharging characteristics are excellent because the diffusion length of Li ions is small as a result of silicon having been made into fine particles.
- composite active material is preferably used in the anode.
- a mode using the composite active material in an anode will be described in detail below.
- the method for producing an anode for lithium secondary batteries using the composite active material is not particularly limited, and a known method may be used.
- an anode for lithium secondary batteries may be produced by mixing the composite active material and a binder, making it into a paste using compression molding or a solvent, and applying it to copper foil. More specifically, 92 g of composite active material, 62 g of 13% PVDF/NMP solution, 0.5 g of conductive carbon black, and 29 g of NMP are mixed, and a good slurry is obtained using a typical dual arm mixer.
- a material having a three-dimensional structure may also be used as a current collector because the cycle characteristics of the battery are better.
- materials of a current collector having a three-dimensional structure include carbon fibers, sponge-like carbon (carbon applied to sponge-like resin), metals, and the like.
- Examples of a current collector (porous current collector) having a three-dimensional structure include, as porous bodies of metal or carbon current collectors, plain weave metal mesh, expanded metal, lath mesh, metal foam, metal fabric, metal non-woven fabric, carbon fiber fabric, carbon fiber non-woven fabric, and the like.
- the binder used may be a known material, examples of which include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, SBR, polyethylene, polyvinyl alcohol, carboxymethylcellulose, glue, and the like.
- fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, SBR, polyethylene, polyvinyl alcohol, carboxymethylcellulose, glue, and the like.
- solvent examples include water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, and the like.
- stirring and mixing may be performed using a known stirrer, blender, mixer, kneader, or the like according to need, as described above.
- conductive carbon black, carbon nanotubes, or a mixture thereof as a conductive material.
- the shape of the composite active material obtained by the above steps is often relatively particulate (especially substantially spherical), and contact between particles tends to be point contact.
- methods in which carbon black, carbon nanotubes, or a mixture thereof is blended in the slurry may be employed.
- Carbon black, carbon nanotubes, or a mixture thereof can prevent the disconnection of contact points (increased resistance) which accompanies cycling because they aggregate in a concentrated manner in the capillary portions formed by contact with the composite active material when the slurry solvent is dried.
- the blended amount of carbon black, carbon nanotubes, or a mixture thereof is not particularly limited but is preferably from 0.2 to 4 part by mass and more preferably from 0.5 to 2 parts by mass relative to 100 parts by mass of composite active material.
- Examples of carbon nanotubes include single-wall carbon nanotubes and multi-wall carbon nanotubes.
- Cathodes that use known cathode materials may be used as the cathode used in a lithium secondary battery having an anode obtained using the above composite active material.
- cathode active material examples include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide; lithium metal oxides such as LiCoO 2 , LiNiO 2 , LiNi 1-y Co y O 2 , LiNi 1-x-y Co x Al y O 2 , LiMnO 2 , LiMn 2 O 4 , and LiFeO 2 ; transition metal chalcogen compounds such as titanium sulfide and molybdenum sulfide; and conductive conjugated polymer materials such as polyacetylene, polyparaphenylene, and polypyrrole.
- metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide
- lithium metal oxides such as LiCoO 2 , LiNiO 2 , LiNi 1-y Co y O 2 , LiNi 1-x-y Co x Al y O 2 , LiMnO 2 , LiMn 2 O 4
- electrolytes may be used as the electrolyte used in a lithium secondary battery having an anode obtained using the above composite active material.
- electrolyte salts that may be contained in the electrolyte include lithium salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiN(CF 3 CH 2 OSO 2 ) 2 , LiN(CF 3 CF 3 OSO 2 ) 2 , LiN(HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN ⁇ (CF 3 ) 2 CHOSO 2 ⁇ 2 , LiB ⁇ (C 6 H 3 (CF 3 ) 2 ⁇ 4 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiAlCl 4 , and LiSiF 6 .
- LiPF 6 and LiBF 4 are particularly preferred from the perspective of oxidation stability.
- the electrolyte salt concentration in the electrolyte solution is preferably from 0.1 to 5 mol/L and more preferably from 0.5 to 3 mol/L.
- solvent used in the electrolyte examples include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate; ethers such as 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, ⁇ -butyrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolane, anisole, and diethyl ether; thioethers such as sulfolane and methylsulfolane; nitriles such as acetonitrile, chloronitrile, and propionitrile; and organic aprotic solvents such as trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromid
- Additives such as fluoroethylene carbonate and the like may also be added to the electrolyte. These additives form a stable protective film on the silicon surface and are known to improve cycle characteristics.
- a polymer electrolyte such as polymer solid electrolyte or polymer gel electrolyte may also be used.
- ether-based polymer compounds such as polyethylene oxide or cross-linked compounds thereof; methacrylate-based polymer compounds such as polymethacrylate; acrylate-based polymer compounds such as polyacrylate; and fluorine-based polymer compounds such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer may be used. These may also be used as mixtures. From the perspective of oxidation-reduction stability, fluorine-based polymer compounds such as polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer are particularly preferred.
- Known materials may be used as the separator used in a lithium secondary battery having an anode obtained using the above composite active material.
- Examples include fabric, non-woven fabric, synthetic microporous resin film, and the like.
- Synthetic microporous resin films are advantageous, among which polyolefin-based microporous films are advantageous from the perspectives of film thickness, film strength, film resistance, and the like.
- examples include polyethylene and polypropylene microporous films, microporous films that are composites thereof, and the like.
- a lithium secondary battery may have the form of a cylinder, a rectangle, or a button produced by customary methods using the above-described anode, cathode, separator, electrolyte, and other constituent elements of a battery (for example, the current collector, gasket, seal sheet, case, and the like).
- the lithium secondary battery of the present invention may be used in various portable electronic devices, especially notebook PCs, notebook word processors, palmtop (pocket) PCs, cellular telephones, portable fax machines, portable printers, headphone stereos, video cameras, portable televisions, portable CD players, portable minidisc players, electric shavers, electronic organizers, transceivers, power tools, radios, tape recorders, digital cameras, portable copiers, portable game devices, and the like. Furthermore, it may also be used as a secondary battery for electric automobiles, hybrid automobiles, vending machines, electric carts, capacitor systems for load leveling, household capacitors, distributed power storage device systems (built into deferred operation products), emergency power supply systems, and the like.
- Scaly natural graphite having an average particle size of 1 mm was soaked for 1 hour in a mixed acid containing 9 parts by weight of sulfuric acid and 1 part by weight of nitric acid, and then the mixed acid was removed with a no. 3 glass filter, to obtain acid-treated graphite.
- the acid-treated graphite was then washed with water and dried. Then, 5 g of the dried acid-treated graphite was stirred in 100 g of distilled water, and when the pH was measured after 1 hour it was 6.7.
- the dried acid-treated graphite was put in a vertical electric furnace in a nitrogen atmosphere set to 850°C, to obtain expanded graphite.
- the bulk density of the acid-treated graphite was 0.78 g/cm 3 .
- the specific surface area of the expanded graphite was 83 m 2 /g, the bulk specific gravity was 0.011 g/cm 3 , and the average thickness of the layer of laminated graphene sheets was 16 nm.
- the above expanded graphite (12 parts by mass) was added to ethanol in which SiO was dispersed, to prepare a uniformly mixed slurry containing expanded graphite, SiO fine powder, and phenol resin.
- the ethanol was recovered from the slurry using an evaporator, and a powder mixture was obtained.
- the powder mixture obtained as described above was granulation-molded into a spherical shape using a New Power Mill PM-2005M-1380W (Osaka Chemical Co., Ltd.) (rotational speed: 20,000 rpm, treatment time: 90 seconds, performed 10 times).
- the area ratio of graphite exposed on the surface of the composite active material for lithium secondary batteries observed by SEM was 98%, and the area ratio of exposed composite was 2%.
- PVDF polyvinylidene fluoride
- a cycle test was conducted using the above full cell, and then the cell was disassembled and the electrodes removed, and the change in thickness of the electrodes ⁇ (electrode thickness after test - electrode thickness before test)/(electrode thickness before test) ⁇ 100 ⁇ was measured. Furthermore, a cycle experiment was conducted using a charging and discharging rate of C/3 (0.18 mA) with a cutoff voltage on the charging side of 4.2 V and a cutoff voltage on the discharging side of 3.0 V.
- the shape of the electrode before the cycle test was a disc 14 mm in diameter of thickness 55 ⁇ m.
- the thickness was an average value, determined by measuring the thickness at the center of the disc and any other three points and taking the arithmetic mean thereof.
- the thickness of the electrodes after the cycle test was similarly determined by measuring the thickness at the center of the disc and any other three points and taking the arithmetic mean thereof.
- the capacity retention rate in the 11 th cycle was measured based on the average discharge capacity (mAh) in the second cycle.
- Substantially spherical composite active material for lithium secondary batteries comprising 70 mass% of graphite and 30 mass% of metallic Si was obtained according to Example 1 of Patent Document 1 (Japanese Patent No. 5227483B ).
- Example 1 Average discharge capacity (2 nd cycle) Average discharge capacity (11 th cycle) Capacity retention rate (%) Coulombic efficiency th (10 th cycle) Electrode expansion rate (10 th cycle) Example 1 1.79 1.77 98.8 99.30% 13% Comparative Example 1 2.34 2.04 87.1 98.50% 35%
- the full cell that used the composite active material for lithium secondary batteries of the present invention exhibited excellent capacity retention rate and Coulombic efficiency, and it was ascertained to have excellent cycle characteristics. It was also ascertained that expansion of the electrodes containing this composite active material was suppressed.
- Comparative Example 1 which is a mode of Patent Document 1, the cycle characteristics of the full cell were poor and electrode expansion was larger compared to the example above.
- the composite active material according to the present invention may be used as an electrode material of a lithium secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Claims (8)
- Matière composite active pour batterie rechargeable au lithium comprenant :un composite contenant du silicium et du dioxyde de silicium ; etun composant graphite ;le rapport en surface du composant graphite exposé sur une surface observée au microscope électronique à balayage à une tension d'accélération inférieure ou égale à 10 kV n'étant pas inférieur à 95 %.
- Matière composite active pour batterie rechargeable au lithium selon la revendication 1, dans laquelle une taille de particule moyenne du silicium est de 1 à 100 nm.
- Matière composite active pour batterie rechargeable au lithium selon la revendication 1 ou 2, dans laquelle une taille de particule moyenne du composite est de 50 à 1000 nm.
- Procédé de production de la matière composite active pour batterie rechargeable au lithium décrite à la revendication 1, comprenant :une étape de mélange comprenant le mélange d'un graphite ayant une surface spécifique égale ou supérieure à 30 m2/g, du monoxyde de silicium, et d'un précurseur de carbone pour obtenir un mélange ;une étape de conglobation comprenant l'application d'un traitement de conglobation au mélange et l'obtention d'un mélange sphérique ; etune étape de chauffage comprenant le traitement thermique du mélange sphérique et la production d'une matière composite active pour batterie rechargeable au lithium sensiblement sphérique.
- Procédé de production d'une matière composite active pour batterie rechargeable au lithium selon la revendication 4, dans lequel une taille de particule moyenne du monoxyde de silicium n'est pas supérieure à 1 µm.
- Procédé de production d'une matière composite active pour batterie rechargeable au lithium selon la revendication 4 ou 5, dans lequel
le précurseur de carbone est au moins d'un type choisi dans le groupe constitué par les composés polymères, une poix à base de charbon, une poix à base de pétrole, une poix à l'état de mésophase, le coke, une huile de bas poids moléculaire, et des dérivés de ceux-ci. - Procédé de production d'une matière composite active pour batterie rechargeable au lithium selon l'une quelconque des revendications 4 à 6, dans lequel le graphite est un graphite expansé.
- Batterie rechargeable au lithium comprenant la matière composite active pour batterie rechargeable au lithium décrite dans l'une quelconque des revendications 1 à 3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013168719A JP6508870B2 (ja) | 2013-08-14 | 2013-08-14 | リチウム二次電池用複合活物質およびその製造方法 |
PCT/JP2014/071308 WO2015022964A1 (fr) | 2013-08-14 | 2014-08-12 | Matière active composite pour des batteries rechargeables au lithium et procédé de fabrication de cette dernière |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3035418A1 EP3035418A1 (fr) | 2016-06-22 |
EP3035418A4 EP3035418A4 (fr) | 2017-01-18 |
EP3035418B1 true EP3035418B1 (fr) | 2019-07-31 |
Family
ID=52468349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14836628.9A Active EP3035418B1 (fr) | 2013-08-14 | 2014-08-12 | Matière active composite pour des batteries rechargeables au lithium et procédé de fabrication de cette dernière |
Country Status (5)
Country | Link |
---|---|
US (1) | US10749178B2 (fr) |
EP (1) | EP3035418B1 (fr) |
JP (1) | JP6508870B2 (fr) |
CN (1) | CN105453310A (fr) |
WO (1) | WO2015022964A1 (fr) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3133690A1 (fr) * | 2015-07-20 | 2017-02-22 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Matériau particulaire composite silicium-carbone |
JP6733248B2 (ja) * | 2016-03-22 | 2020-07-29 | 東ソー株式会社 | リチウム二次電池用複合活物質の製造方法 |
EP3497055B1 (fr) * | 2016-08-11 | 2022-03-16 | Wacker Chemie AG | Préparation de particules precomposites de si/c |
SG11202000089TA (en) * | 2016-10-11 | 2020-02-27 | Grst Int Ltd | Cathode slurry for lithium ion battery |
WO2018098506A1 (fr) * | 2016-11-28 | 2018-05-31 | Sila Nanotechnologies Inc. | Électrodes de batterie à capacité élevée dotées de liants, de construction et de performances améliorés |
WO2018179111A1 (fr) * | 2017-03-28 | 2018-10-04 | 日立化成株式会社 | Matériau actif d'électrode négative pour batterie secondaire lithium-ion, électrode négative pour batterie secondaire lithium-ion, et batterie secondaire lithium-ion |
US10714745B2 (en) | 2017-07-28 | 2020-07-14 | Uchicago Argonne, Llc | High energy, long cycle life electrode for lithium-ion batteries |
CN107623113A (zh) * | 2017-09-08 | 2018-01-23 | 赣州市瑞富特科技有限公司 | 一种多孔长循环硅碳负极材料制备方法 |
KR102244953B1 (ko) * | 2017-11-09 | 2021-04-27 | 주식회사 엘지화학 | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 |
JP6978947B2 (ja) * | 2018-01-12 | 2021-12-08 | 株式会社クレハ | 電池用負極材料及びその製造方法、二次電池用負極、並びに二次電池 |
KR20200110754A (ko) * | 2018-01-31 | 2020-09-25 | 히타치가세이가부시끼가이샤 | 리튬 이온 이차 전지용 음극 활물질, 리튬 이온 이차 전지용 음극 및 리튬 이온 이차 전지 |
CN111656584A (zh) * | 2018-01-31 | 2020-09-11 | 日立化成株式会社 | 锂离子二次电池用负极活性物质、锂离子二次电池用负极和锂离子二次电池 |
CN114744167B (zh) * | 2022-03-10 | 2024-02-27 | 合盛科技(宁波)有限公司 | 一种氧化亚硅/膨胀石墨/碳复合材料及其制备方法 |
CN115911303A (zh) * | 2022-10-25 | 2023-04-04 | 广东容钠新能源科技有限公司 | 一种高倍率硅基硬炭材料的制备方法及应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060068287A1 (en) * | 2004-09-24 | 2006-03-30 | Kabushiki Kaisha Toshiba | Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI278429B (en) | 2002-05-17 | 2007-04-11 | Shinetsu Chemical Co | Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell |
JP2004119176A (ja) * | 2002-09-26 | 2004-04-15 | Toshiba Corp | 非水電解質二次電池用負極活物質及び非水電解質二次電池 |
JP3995050B2 (ja) | 2003-09-26 | 2007-10-24 | Jfeケミカル株式会社 | リチウムイオン二次電池負極材料用複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池 |
KR100578870B1 (ko) | 2004-03-08 | 2006-05-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지 |
JP4533822B2 (ja) * | 2005-08-24 | 2010-09-01 | 株式会社東芝 | 非水電解質電池および負極活物質 |
JP2008027897A (ja) | 2006-06-20 | 2008-02-07 | Osaka Gas Chem Kk | リチウムイオン二次電池用負極活物質 |
JP5143437B2 (ja) * | 2007-01-30 | 2013-02-13 | 日本カーボン株式会社 | リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極 |
KR101375328B1 (ko) | 2007-07-27 | 2014-03-19 | 삼성에스디아이 주식회사 | Si/C 복합물, 이를 포함하는 음극활물질 및 리튬전지 |
JP5272492B2 (ja) * | 2008-04-21 | 2013-08-28 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及びその製造方法、ならびに非水電解質二次電池用負極及び非水電解質二次電池 |
US9093693B2 (en) * | 2009-01-13 | 2015-07-28 | Samsung Electronics Co., Ltd. | Process for producing nano graphene reinforced composite particles for lithium battery electrodes |
US8778538B2 (en) | 2009-11-06 | 2014-07-15 | Northwestern University | Electrode material comprising graphene-composite materials in a graphite network |
US9558860B2 (en) * | 2010-09-10 | 2017-01-31 | Samsung Electronics Co., Ltd. | Graphene-enhanced anode particulates for lithium ion batteries |
JP5691468B2 (ja) | 2010-12-10 | 2015-04-01 | 日立化成株式会社 | リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池 |
CN103262314B (zh) * | 2010-12-10 | 2015-07-01 | 日立化成株式会社 | 锂离子二次电池用负极材料及其制造方法、锂离子二次电池用负极和锂离子二次电池 |
JP2013073920A (ja) * | 2011-09-29 | 2013-04-22 | Sumitomo Bakelite Co Ltd | 組成物、リチウムイオン二次電池負極材用炭素複合材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
JP5639017B2 (ja) | 2011-07-29 | 2014-12-10 | 住友ベークライト株式会社 | リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 |
KR20140026633A (ko) | 2011-07-29 | 2014-03-05 | 스미토모 베이클리트 컴퍼니 리미티드 | 리튬 이온 2차 전지용 탄소재의 제조 방법, 리튬 이온 2차 전지용 탄소재, 리튬 이온 2차 전지용 부극 활물질, 조성물, 리튬 이온 2차 전지 부극재용 탄소 복합재, 리튬 이온 2차 전지용 부극 합제, 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지 |
CN103891015B (zh) * | 2011-08-22 | 2017-05-24 | 可知直芳 | 锂二次电池用复合活性物质及其制造方法 |
JP5636351B2 (ja) | 2011-09-27 | 2014-12-03 | 株式会社東芝 | 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法 |
JP2013219018A (ja) | 2012-03-11 | 2013-10-24 | Connexx Systems株式会社 | リチウム二次電池用複合活物質およびその製造方法 |
EP2960971B1 (fr) | 2013-02-21 | 2020-04-22 | Connexx Systems Corporation | Substance active composite pour batterie secondaire au lithium ainsi que procédé de production de celle-ci |
-
2013
- 2013-08-14 JP JP2013168719A patent/JP6508870B2/ja active Active
-
2014
- 2014-08-12 EP EP14836628.9A patent/EP3035418B1/fr active Active
- 2014-08-12 WO PCT/JP2014/071308 patent/WO2015022964A1/fr active Application Filing
- 2014-08-12 CN CN201480045075.XA patent/CN105453310A/zh active Pending
- 2014-08-12 US US14/911,826 patent/US10749178B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060068287A1 (en) * | 2004-09-24 | 2006-03-30 | Kabushiki Kaisha Toshiba | Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
EP3035418A4 (fr) | 2017-01-18 |
CN105453310A (zh) | 2016-03-30 |
US20160197345A1 (en) | 2016-07-07 |
EP3035418A1 (fr) | 2016-06-22 |
US10749178B2 (en) | 2020-08-18 |
JP2015037057A (ja) | 2015-02-23 |
JP6508870B2 (ja) | 2019-05-08 |
WO2015022964A1 (fr) | 2015-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3035418B1 (fr) | Matière active composite pour des batteries rechargeables au lithium et procédé de fabrication de cette dernière | |
EP2960971B1 (fr) | Substance active composite pour batterie secondaire au lithium ainsi que procédé de production de celle-ci | |
US20190088935A1 (en) | Composite active material for lithium secondary batteries and method for producing same | |
KR102473873B1 (ko) | 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법 | |
EP3407409B1 (fr) | Matière active d'électrode négative, matière à base d'un mélange de matières actives d'électrode négative, électrode négative pour batterie secondaire à électrolyte non-aqueux, batterie secondaire de type lithium-ion, procédé de production d'une matière active d'électrode négative, et procédé de production d'une batterie rechargeable de type lithium-ion | |
JP7480284B2 (ja) | 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池 | |
EP4050676A1 (fr) | Feuille d'électrode négative, dispositif électrochimique comprenant une feuille d'électrode négative et dispositif électronique | |
WO2016125819A1 (fr) | Matériau actif composite pour pile rechargeable au lithium et son procédé de fabrication | |
WO2019131519A1 (fr) | Matériau actif composite pour accumulateur au lithium et son procédé de fabrication | |
KR102176590B1 (ko) | 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지 | |
JP6759583B2 (ja) | リチウム二次電池用複合活物質およびその製造方法、リチウム二次電池 | |
JP4839180B2 (ja) | 炭素粉末およびその製造方法、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池 | |
EP4131488A1 (fr) | Matière active composite pour batterie secondaire au lithium, composition d'électrode pour batterie secondaire au lithium, électrode de batterie secondaire au lithium et procédé de fabrication de matière active composite pour batterie secondaire au lithium | |
KR20210040808A (ko) | 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지 | |
JP7498267B2 (ja) | 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池 | |
KR20230117625A (ko) | 음극 극편, 상기 음극 극편을 포함하는 전기화학 디바이스및 전자 디바이스 | |
KR20240078312A (ko) | 리튬-황 전지용 양극 및 고에너지 밀도 특성을 갖는 리튬-황 전지 | |
TW202146330A (zh) | 碳材料、碳材料之製造方法、鋰離子蓄電池用負極及鋰離子蓄電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160127 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20161216 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 4/48 20100101ALI20161212BHEP Ipc: H01M 4/13 20100101ALI20161212BHEP Ipc: H01M 4/04 20060101ALI20161212BHEP Ipc: H01M 4/587 20100101ALI20161212BHEP Ipc: H01M 4/38 20060101ALI20161212BHEP Ipc: H01M 4/36 20060101AFI20161212BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180920 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190416 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20190611 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1161882 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014050999 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190731 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1161882 Country of ref document: AT Kind code of ref document: T Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191031 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191202 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191031 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191101 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191130 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190812 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014050999 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190812 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230711 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230703 Year of fee payment: 10 Ref country code: DE Payment date: 20230627 Year of fee payment: 10 |