EP3027988A2 - Verfahren und vorrichtung zur erzeugung von druckstickstoff - Google Patents

Verfahren und vorrichtung zur erzeugung von druckstickstoff

Info

Publication number
EP3027988A2
EP3027988A2 EP14744775.9A EP14744775A EP3027988A2 EP 3027988 A2 EP3027988 A2 EP 3027988A2 EP 14744775 A EP14744775 A EP 14744775A EP 3027988 A2 EP3027988 A2 EP 3027988A2
Authority
EP
European Patent Office
Prior art keywords
pressure
stream
pressure column
column
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14744775.9A
Other languages
English (en)
French (fr)
Inventor
Alexander Alekseev
Dimitri Goloubev
Thomas Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP14744775.9A priority Critical patent/EP3027988A2/de
Publication of EP3027988A2 publication Critical patent/EP3027988A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04569Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for enhanced or tertiary oil recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/52Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen enriched compared to air ("crude oxygen")
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Definitions

  • the invention relates to a method for producing pressurized nitrogen according to the preamble of patent claim 1.
  • a method of the type mentioned is known from US 6141989.
  • pressurized nitrogen is produced under a product pressure of 12 bar by internal compression.
  • nitrogen is brought to liquid product pressure and then evaporated in indirect heat exchange with air and warmed to about ambient temperature.
  • the natural pressure losses are usually not included here.
  • pressures are considered “equal” if the pressure difference between the corresponding points is not greater than the natural conduction losses caused by pressure losses in piping, heat exchangers, coolers, adsorbers, etc.
  • the internal compression nitrogen flow experiences a pressure loss in the passages of the main heat exchanger; nevertheless, here the discharge pressure of the pressurized nitrogen product downstream of the
  • condenser-evaporator refers to a heat exchanger in which a first condensing fluid stream undergoes indirect heat exchange with a second evaporating fluid stream.
  • Each condenser evaporator has a
  • Condensing passages or evaporation passages exist.
  • the condensation (liquefaction) of a first fluid flow is performed, in the evaporation space the evaporation of a second fluid flow.
  • Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other.
  • the "main heat exchanger" is used for cooling of feed air in indirect
  • Heat exchange with recycle streams from the distillation column system can be composed of a single or several parallel and / or serially connected
  • Heat exchanger sections may be formed, for example, from one or more plate heat exchanger blocks.
  • the main heat exchanger in this sense is formed, for example, in US Pat. No. 6,141,989 by the combination of a gas-gas exchanger with a condenser-evaporator, in which pumped high-pressure column nitrogen is vaporized in indirect heat exchange with a condensing substream of the feed air.
  • the "internal condensing nitrogen stream” is vaporized (or, if its pressure is supercritically pseudo-vaporized) against a high pressure air stream and warmed.
  • the high-pressure air is thereby cooled and liquefied or, if its pressure is supercritical, pseudo-liquefied.
  • no separate condenser-evaporator is used for nitrogen evaporation, but the (pseudo) evaporation and the
  • Heating takes place in an integrated main heat exchanger.
  • oxygen-enriched product gas stream any gaseous product or residual stream that is discharged from the system and that has an oxygen content that is higher than that of air. It can be very pure oxygen or just a light one
  • oxygen-enriched residual gas may comprise one or more such streams.
  • Air separation plant using a gas compressor are further compressed, for example, to 100 bar.
  • the known method therefore requires two externally driven compressors 3 and 5, as shown schematically in FIG. 1, in order to deliver a pressurized nitrogen product below more than 12 bar.
  • two externally driven compressors 3 and 5 as shown schematically in FIG. 1, in order to deliver a pressurized nitrogen product below more than 12 bar.
  • High-pressure nitrogen (HPGAN - High Pressure Gaseous Nitrogen) can be delivered, for example, to support oil production (to EOR - Enhanced Oil Recovery).
  • HPGAN High Pressure Gaseous Nitrogen
  • EOR EOR - Enhanced Oil Recovery
  • the invention is based on the object to produce a pressurized nitrogen product under very high pressure in an energetically particularly favorable manner and thereby to use a relatively inexpensive apparatus.
  • a pressurized nitrogen product is obtained directly by internal compression under a pressure of 15 to 100 bar. If this pressure for the
  • Air separation plant not to be densified and the corresponding energy and equipment expense is eliminated.
  • an external further compression above the internal compression pressure also in the invention is possible; but even then the energy consumption is relatively low and it is sufficient for a relatively small nitrogen gas compressor.
  • the operating pressures of the columns (at the top of each head) are in the invention
  • the expenditure on equipment can be kept comparatively low, in that despite the high air pressure only a single externally driven compressor is used, namely the main air compressor.
  • one-stage turbine-driven compressors boost are not excluded, which require no external energy, but is driven so to speak with the energy generated in the main air compressor, which is converted into mechanical energy during the work-relaxing relaxation in the turbine.
  • the "first partial flow”, which is expanded to perform work, is formed by the entire remainder of the total air flow, which is not required as a “second partial flow” for internal compression.
  • the "first partial flow” of the air can be before the
  • cooling work to be cooled below ambient temperature, in particular in the main heat exchanger to an intermediate temperature between the temperatures of the hot and the cold end of the main heat exchanger. It then enters the work-performing expansion in the gaseous state and is finally at least partially introduced in the gaseous state into the distillation column system, in particular into the high-pressure column.
  • the gas portion of the first partial flow forms the rising vapor in the lower part of the high-pressure column.
  • High pressure column partially or completely liquefied and fed liquid into the high-pressure column; the rising gas in the lower part of the high-pressure column is then formed by the vapor generated in the high pressure column sump evaporator.
  • High-pressure column head condenser is operated with liquid air only (that is, with a liquid having the same or similar composition as the atmospheric air).
  • the "second part of the feed air” is directly or via a separator (phase separator), which may be arranged in a separate container or installed in the high-pressure column, in the
  • High-pressure column top condenser the two columns can be arranged side by side without the need for process pumps to lift liquids.
  • the system becomes more compact and the columns can be largely prefabricated and then transported to the site.
  • the main air compressor has a single drive unit, which is formed in particular by a gas turbine unit, a steam turbine, a gas engine or a diesel engine.
  • This drive unit then represents the sole source of external energy of the whole system, apart from liquid pumps, which consume much less energy than gas compressors, and the power supply for auxiliary equipment such as control and regulation equipment, lighting, etc. This achieves a very extensive simplification of the compressor drive;
  • a bottom evaporator of the low pressure column can be dispensed by steam generated in the evaporation chamber of the high-pressure column head condenser in the bottom region of the low-pressure column is introduced, said steam forms the entire ascending in the lower portion of the low pressure column gas.
  • a "third partial stream" of the first liquid nitrogen stream is fed as reflux to the low-pressure column, and the internal compression nitrogen stream is formed by a second partial stream of the second liquid nitrogen stream.
  • Liquid nitrogen from the high-pressure column overhead condenser as reflux for the low-pressure column a correspondingly increased proportion of the liquid nitrogen from the low-pressure column top condenser of the internal compression can be supplied.
  • third sub-stream here means that in the process a "second sub-stream" of the first liquid nitrogen stream may or may not exist.
  • the internal compression nitrogen flow is formed by a second partial stream of the first liquid nitrogen stream (from the high pressure column top condenser) and a second partial stream of the second liquid nitrogen stream (from the low pressure column top condenser), these two partial streams being separate on the
  • Embodiment also possible to bring the two second streams to different product pressures or partial streams to the required pressures (after pumping) to relax; the various internal compression nitrogen flows under the different pressures are then separated by the
  • the second partial stream of the second liquid nitrogen stream (from the low-pressure column overhead condenser) is first brought to approximately high-pressure column pressure in the liquid state, and then combined with the second partial stream of the first liquid nitrogen stream (from the high-pressure column top condenser). The mixture then forms the internal compression nitrogen stream and is brought together in a further step from the high pressure column pressure to the product pressure.
  • cold is preferably produced in a single expansion machine, wherein the first partial flow of the high-pressure total air flow is at least partially introduced into the high-pressure column downstream of its work-performing expansion.
  • the expansion machine can be formed for example by an expansion turbine. It may be coupled to a secondary compressor in which the first partial flow of the high-pressure total airflow upstream of its work-performing expansion or the second partial flow of the high-pressure total airflow or the high-pressure total airflow is recompressed to a pressure which is higher than the total air pressure.
  • the process of the invention utilizes two condenser evaporators, the high pressure column top condenser and the low pressure column top condenser.
  • a third condenser-evaporator in the form of a high-pressure column bottom evaporator.
  • bottom liquid of the high-pressure column is evaporated in indirect heat exchange with condensing air, which takes the form of a third part of the
  • High-pressure total air flow is introduced into the liquefaction space of the high-pressure column bottom evaporator.
  • the evaporated bottoms liquid is introduced as ascending gas in the high-pressure column, where it strengthens the
  • the "third part" of the high-pressure total air flow can be formed by the work-performing expanded first partial flow or by a part thereof.
  • energy can be saved by the second partial flow of air in a turbine-driven
  • the booster is preferably used by the Powered relaxation machine, in which the first partial flow of air is released to perform work.
  • Liquid turbine is preferably braked by a generator that generates electrical energy.
  • the energy efficiency can in the inventive method by a boost circuit for the high-pressure column (claim 12) or a
  • the invention also relates to a device according to claim 14.
  • the device according to the invention can be supplemented by device features which correspond to the features of the dependent method claims.
  • the invention and further details of the invention are explained in more detail below with reference to exemplary embodiments shown schematically in FIGS. 2 to 12. Hereby show:
  • FIGS. 3 to 5 show three embodiments of the distillation column system of a system according to the invention
  • FIGS 6 and 7 show two embodiments of a cooling and liquefaction unit of a system according to the invention.
  • FIGS 8 and 9 show two embodiments of air pretreatment and cooling
  • Figure 10 shows an embodiment of the method according to the invention in
  • FIG. 2 the part of the air separation plant, which is arranged downstream of the main air compressor 9, only schematically shown as a box 10 (ASU). Inside this box hides an air pre-treatment unit, a cooling and liquefaction unit and a distillation column system.
  • atmospheric air In the main air compressor 9, which has multiple stages with intercooling, atmospheric air (AIR) is compressed to a total air pressure higher than 20 bar and in a concrete numerical example is 37.5 bar.
  • the high-pressure total air flow 1 1 (HP-AIR), which exits the main air compressor 9, is introduced into the air separation plant in the strict sense 10. From there will be one
  • All stages of the main air compressor are driven by a common shaft connected to the shaft of a gas turbine unit 1 comprising a gas turbine compressor 13, a gas turbine combustor 14, a gas turbine expander 15 and, optionally, a steam generator 16 (HRSG - Heat Recovery Steam Generation).
  • a gas turbine unit 1 comprising a gas turbine compressor 13, a gas turbine combustor 14, a gas turbine expander 15 and, optionally, a steam generator 16 (HRSG - Heat Recovery Steam Generation).
  • gas turbine compressor 13 ambient air (amb) is compressed; in the combustion chamber 14 natural gas (NG) is burned with the compressed air.
  • Combustion gas from combustion chamber 14 is deprived of heat in the steam generation; the cooled combustion gas is - possibly after cleaning - blown back into the environment (amb).
  • Figure 3 shows a first embodiment of a distillation column system as used in the invention.
  • the distillation column system has a
  • Head capacitors are designed as a condenser-evaporator.
  • the operating pressures of the columns (at the top of each head) are in the example
  • a "second partial flow” 206 (JT-AIR Joule-Thomson Air) of the high-pressure total air flow is taken from the cooling and liquefaction unit at a pressure of 3.5 bar, in a throttle valve 207
  • High-pressure column pressure is released and introduced via line 208 in a predominantly liquid state into a cup 209, which is arranged within the high-pressure column 202 at an intermediate point.
  • This cup 209 serves as a separator (phase separator).
  • the gaseous portion from line 208 rises within high pressure column 202; the liquid portion is at least partially removed again and introduced via line 210 and throttle valve 21 1 in the evaporation space of the Hochtikcicle Kopfkondensators 204, as well as another liquid air stream 221, which is formed by the small amount of liquid generated during the work expansion relaxation. Steam generated in the vaporization space of the high pressure column top condenser 204 is withdrawn via line 212 and fed to the lower portion of the low pressure column 203 as ascending vapor.
  • Gaseous head nitrogen 213 from the high-pressure column 202 is introduced at least to a first part 214 in the liquefaction space of the high-pressure column top condenser 204 and there at least partially, preferably completely or almost completely liquefied.
  • a "first liquid nitrogen stream" 215 is formed.
  • a first partial flow 216 of the first liquid nitrogen stream 215 is as reflux liquid to the
  • the oxygen-enriched bottom liquid 222 of the high-pressure column 202 is subcooled in the subcooling countercurrent 218 and introduced via throttling valve 223 and line 224 into the evaporation space of the low-pressure column top condenser 205.
  • Another cooling fluid for the low-pressure column headcapacitor 205 becomes formed by the bottom liquid 225 of the low-pressure column 203, which also in the subcooling countercurrent 218 supercooled, throttled (226) and in the
  • Evaporation space of the low-pressure column top condenser 205 introduced (227) is.
  • purge liquid 228 is fed from the high-pressure column top condenser 204 into the evaporation space of the low-pressure column top condenser 205.
  • a rinsing liquid is likewise withdrawn (purge) and discarded or compressed to the supercritical pressure and passed through the main heat exchanger.
  • Low-pressure column 203 at least partially, preferably completely or almost completely liquefied.
  • a second liquid nitrogen stream 232 is formed.
  • a first partial stream 233 of the second liquid nitrogen stream 232 is introduced onto the low-pressure column 203 as further reflux liquid.
  • a second partial stream 234 is supplied to an internal compression and thereby brought in a pump 235 in the liquid state to a product pressure which is between 20 and 100 bar and in the example is about 70 bar.
  • the supercritical nitrogen (ICLIN - Internally Compressed Liquid Nitrogen) is supplied via line 236 of the refrigeration and nitrogen
  • Head nitrogen from the high-pressure column 202 and the low-pressure column 203 are obtained directly as a gaseous pressure product (HPGAN - High Pressure Gaseous Nitrogen / MPGAN - Medium Pressure Gaseous Nitrogen), which is naturally still warmed in the cooling and liquefaction unit to about ambient temperature.
  • a third substream 239 of the second liquid nitrogen stream 232 may also be recovered as liquid nitrogen product (LIN - Liquid Nitrogen).
  • High pressure column 202 a separate separator (phase separator) can be used; the gaseous fraction is then introduced into the high-pressure column, the liquid at least partially into the evaporation space of the high-pressure column top condenser 204th
  • FIG. 4 While only a single internal compression pump 235 is used in FIG. 3, in FIG. 4 the two are used.
  • a first pump 335a brings the second partial stream 334 of the second liquid nitrogen stream 232 as shown in FIG.
  • FIG. 5 differs from FIG. 4 by a third condenser-type evaporator, the high-pressure column bottom evaporator 438.
  • the gaseous air 401 AIR
  • the resulting liquid 442 is additionally introduced into the cup 209.
  • FIGS. 6 and 7 show two embodiments of a cooling
  • Liquefaction unit 50 which may be combined with Figure 2 and each of the distillation column systems of Figures 3 to 6.
  • the total purified high pressure total air flow 81 1 (see FIGS. 8 and 9) under the total air pressure is supplied to the warm end of a main heat exchanger 51, here realized as a single plate heat exchanger block.
  • a first partial flow 56 of the high pressure total air flow 81 1 is removed at a first intermediate temperature from the main heat exchanger and a
  • working air released air 58 is introduced into a separator (phase separator) 59.
  • the largest part of the work-performing expanded first partial flow 58 is introduced in gaseous form via line 201 into the high-pressure column of the distillation column system; the separated liquid 221 is treated as described in FIG.
  • a second partial flow 52 of the high-pressure total air flow 81 1 is removed again at a second, higher intermediate temperature and in the
  • the recompressed second partial flow 55 is again introduced into the warm end of the main heat exchanger 51, where it is fed to the cold end and pseudo-liquefied there.
  • the supercritical second substream 206 is introduced into the distillation column system in the manner shown in Figs.
  • warmed nitrogen streams are delivered as products 61/62 (HPGAN / MPGAN).
  • the warmed residual gas stream is partially blown off via line 63 into the environment (amb) and partially as regeneration in the
  • Cleaning device 802 used for the feed air (see Figures 8 and 9).
  • high-pressure column 202 and low-pressure column 203 are arranged next to one another. If there is very little floor space available, however, it is also possible with the invention to arrange the columns one above the other like a classic Linde double column. In this case, starting from the bottom, the following pieces of equipment are placed in a line one above the other:
  • High-pressure column 202 (in the case of FIG. 5 with high-pressure column bottom evaporator 438 installed in the high-pressure column)
  • FIG. 7 differs from the line 765 of FIG. 6.
  • the second partial flow 752 of the high-pressure total air flow is not precooled in the main heat exchanger, but by admixing a small part 765 of the cold first partial flow 756 before entering the turbine 57
  • FIG. 8 shows, in addition to the cooling and liquefaction unit 50 from FIG. 6, a first embodiment of an air pretreatment unit 799.
  • the compressor stages 804, 806 and 807 and the coolers 805, 808 of the main air compressor 9 are not part of the air pre-treatment unit.
  • the compressed total air 800 is in a pre-cooler 801 at about
  • Total air pressure compressed high pressure total air flow 81 1 is introduced into the cooling and liquefaction unit 50.
  • the air pre-treatment unit 799 can be operated under the total air pressure (see FIG. 10). However, at the high air pressures used here, it is more convenient in most cases to operate the air pretreatment unit as shown in Figure 8 at a lower pressure by placing it between two stages 806 and 807 of the main air compressor. This will be the
  • All three stages 804, 806, 807 of the main air compressor 9 of the embodiment are driven by a single shaft, which is connected to the shaft of a
  • Gas turbine unit a gas engine or another engine is connected.
  • an intercooler 805 is connected, behind the third and last stage an aftercooler 808.
  • FIG. 9 differs from FIG. 8 in that a part 902 of the supercritical high-pressure air 901 is not conducted via line 206 to the distillation column system, but is relaxed in a throttle valve 903 to an intermediate pressure corresponding to the inlet pressure of the last stage 807 of the main air compressor 9 (plus line losses). It is completely warmed up in the main heat exchanger 51 and then fed to the entry of the last stage 807 of the main air compressor 9. As a result, the amount of high-pressure air used to vaporize internal compression nitrogen is increased. This leads to a reduction of the final pressure of the main air compressor and one can reduce the number of compressor stages (cost advantage).
  • FIG. 10 shows an embodiment of the method according to the invention in its entirety.
  • the main air compressor 9 has several stages with intercooling and is formed by a single machine. Its shaft is powered by an electric motor, a steam turbine, a gas turbine unit, a
  • the cooling and liquefaction unit 50 shown in Fig. 10 corresponds to that of Fig. 6, the distillation column system 1000 to that of Fig. 3.
  • the air pretreatment unit 799 and the main air compressor 9 of Fig. 10 may be used with any of the other cooling and liquefaction units described herein and with each other of the distillation column systems shown in this application are combined.
  • the embodiment of Figure 11 is based on Figure 10. It has a
  • Fluid turbine 1107 instead of the throttle valve 207 and is also equipped with a boost circuit.
  • Compressor (booster) 1 173 which is designed as a cold compressor, is compressed from about 3.9 bar to about 6.9 bar.
  • the compressed recycle stream 1 174 is introduced at an intermediate point in the main heat exchanger 51 and cooled there to the cold end.
  • the cooled circulation stream 1 175 is again fed to the high-pressure column 202 at the bottom and intensifies the separation process there. Therefore, the whole thing is called a gain cycle.
  • the work-performing expansion of the first partial flow 56 of the high-pressure total air flow 11 is carried out in two expansion turbines 57a, 57b connected in parallel.
  • the first turbine 57a drives the hot secondary compressor 53 for the first partial flow 752 as before, the second turbine 57b drives the cold compressor 1 173.
  • the two turbines 57a, 57b in the exemplary embodiment have the same inlet and outlet parameters with respect to pressure and temperature (FIG. at others
  • FIG. 12 differs from FIG. 11 in that the boost circuit 1272/1273/1274/1275 does not lead from the evaporation space of the high-pressure column top condenser into the high-pressure column but from the top of the low-pressure column 203 into the liquefaction space of the high-pressure column top condenser 204.
  • gaseous nitrogen product can also be withdrawn directly from the top of the high-pressure column 202 and / or the low-pressure column 203 and heated in the main heat exchanger 51 in the methods of FIGS. 11 and 12.
  • the intensifier circuits shown in FIGS. 11 and 12 can be used with any other of the cooling and liquefaction units described herein as well as with each other of the distillation column systems shown in this application are combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Erzeugung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das eine Hochdrucksäule (202) und eine Niederdrucksäule (203) sowie einen Hochdrucksäulen-Kopfkondensator (204) und einen Niederdrucksäulen-Kopfkondensator (205) aufweist. Ein Hauptluftverdichter (9) stellt den einzigen mit externer Energie angetriebenen Gasverdichter dar; darin wird die Einsatzluft auf einen Gesamtluftdruck verdichtet, der mindestens 5 bar über dem Betriebsdruck der Hochdrucksäule (202) liegt. Ein erster Teilstrom (56) des Hochdruck-Gesamtluftstroms (11, 811) aus dem Hauptluftverdichter (9) wird arbeitsleistend Betriebsdruck der Hochdrucksäule oder einen höheren Druck entspannt (57) und in das Destillationssäulen-System eingeleitet (201). Ein zweiter Teilstrom (52, 55) des Hochdruck-Gesamtluftstroms (11, 811) wird in einem Hauptwärmetauscher (51) abgekühlt und mindestens teilweise flüssig in das Destillationssäulen-System eingeleitet (206, 210). Ein Innenverdichtungsstickstoffstrom wird durch einen Teilstrom (319) des flüssigen Stickstoffstroms (215) aus dem Hochdrucksäulen-Kopfkondensator (204) und/oder einen Teilstrom (234, 334) des flüssigen Stickstoffstroms (232) aus dem Niederdrucksäulen-Kopfkondensator (205) gebildet; er wird in flüssigem Zustand auf einen Produktdruck gebracht (235, 335a, 335b), der zwischen 15 und 100 bar liegt; anschließend wird er im Hauptwärmetauscher (51) angewärmt und anschließend als gasförmiger Druckstickstoff-Produktstrom (60) unter dem Produktdruck abgezogen.

Description

Beschreibung
Verfahren und Vorrichtung zur Erzeugung von Druckstickstoff
Die Erfindung betrifft ein Verfahren zur Erzeugung von Druckstickstoff gemäß dem Oberbegriff des Patentanspruchs 1.
Ein Verfahren der eingangs genannten Art ist aus US 6141989 bekannt. Hier wird in einem Destillationssäulen-System mit drei oder sogar vier Kondensator-Verdampfern Druckstickstoff unter einem Produktdruck von 12 bar durch Innenverdichtung erzeugt. Dabei wird Stickstoff flüssig auf den Produktdruck gebracht und anschließend in indirektem Wärmeaustausch mit Luft verdampft und auf etwa Umgebungstemperatur angewärmt.
Bei den Druckangaben werden hier die natürlichen Druckverluste in der Regel nicht einbezogen. Drücke werden hier als "gleich" gewertet, wenn der Druckunterschied zwischen den entsprechenden Stellen nicht größer als die natürlichen Leitungsverluste sind, die durch Druckverluste in Rohrleitungen, Wärmetauschern, Kühlern, Adsorbern etc. verursacht werden. Zum Beispiel erfährt der Innenverdichtungsstickstoffstrom einen Druckverlust in den Passagen des Hauptwärmetauschers; trotzdem werden hier der Abgabedruck des Druckstickstoff-Produkts stromabwärts des
Hauptwärmetauschers und der Druck stromaufwärts des Hauptwärmetauschers gleichermaßen als "der Produktdruck" bezeichnet.
Als "Kondensator-Verdampfer " wird ein Wärmetauscher bezeichnet, in dem ein erster, kondensierender Fluidstrom in indirekten Wärmeaustausch mit einem zweiten, verdampfenden Fluidstrom tritt. Jeder Kondensator-Verdampfer weist einen
Verflüssigungsraum und einen Verdampfungsraum auf, die aus
Verflüssigungspassagen beziehungsweise Verdampfungspassagen bestehen. In dem Verflüssigungsraum wird die Kondensation (Verflüssigung) eines ersten Fluidstroms durchgeführt, in dem Verdampfungsraum die Verdampfung eines zweiten Fluidstroms. Verdampfungs- und Verflüssigungsraum werden durch Gruppen von Passagen gebildet, die untereinander in Wärmeaustauschbeziehung stehen. Der "Hauptwärmetauscher" dient zur Abkühlung von Einsatzluft in indirektem
Wärmeaustausch mit Rückströmen aus dem Destillationssäulen-System. Er kann aus einem einzelnen oder mehreren parallel und/oder seriell verbundenen
Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken. Der Hauptwärmetauscher in diesem Sinne wird beispielsweise in US 6141989 durch die Kombination eines Gas-Gas-Tauschers mit einem Kondensator-Verdampfer gebildet, in dem gepumpter Hochdrucksäulen- Stickstoff in indirektem Wärmeaustausch mit einem kondensierenden Teilstrom der Einsatzluft verdampft wird. In dem Hauptwärmetauscher der Erfindung wird der "Innenverdichtungsstickstoffstrom" gegen einen Hochdruckluftstrom verdampft (oder - falls sein Druck überkritisch pseudo-verdampft) und angewärmt. Die Hochdruckluft wird dabei abgekühlt und verflüssigt oder, falls ihr Druck überkritisch ist, pseudo-verflüssigt. Bei der Erfindung wird vorzugsweise kein separater Kondensator-Verdampfer zu Stickstoffverdampfung verwendet, sondern die (Pseudo-) Verdampfung und die
Anwärmung finden in einem integrierten Hauptwärmetauscher statt.
Unter einem "sauerstoffangereicherter Produktgasstrom" ist hier jeder gasförmige Produkt- oder Reststrom zu verstehen, der von dem System abgegeben wird und der einen Sauerstoffgehalt aufweist, der höher ist als derjenige von Luft. Es kann sich dabei um sehr reinen Sauerstoff handeln oder auch um ein nur leicht
sauerstoffangereichertes Restgas. Das Verfahren der Erfindung kann einen oder mehrere solcher Ströme aufweisen.
Da das Druckstickstoff-Produkt der oben erwähnten US 6141989 unter einem Druck von 12 bar erzeugt wird, muss es für viele Anwendungen außerhalb der
Luftzerlegungsanlage mit Hilfe eines Gasverdichters weiter verdichtet werden, beispielsweise auf 100 bar.
Das bekannte Verfahren benötigt also zwei extern angetriebene Verdichter 3 und 5, wie es in Figur 1 schematisch dargestellt ist, um ein Druckstickstoff-Produkt unter mehr als 12 bar zu liefern. Insbesondere dann, wenn am Ort der Anlage kein leistungsfähiges Netz für elektrischen Strom vorhanden ist und eine separate
Antriebseinheit wie eine Gasturbineneinheit 1 zur Verfügung steht, bedeutet dies mehrere Schritte zur Übertragung der an der Welle der Gasturbine erzeugten mechanischen Energie auf die Antriebswellen der Verdichter 3 und 5: Zunächst wird die mechanische Energie in einem Generator 8 in elektrische Energie umgewandelt und in einem Transformator 2 auf eine geeignete Spannung gebracht. Anschließend wird die elektrische Energie in den Motoren 4 und 6 wieder in mechanische Energie zurückverwandelt. Die Luftzerlegung im engeren Sinne 7 (ASU) wird durch eine konventionelle Luftzerlegungsanlage gebildet, die Mitteldruckstickstoff (PGAN -
Pressurized Gaseous Nitrogen) unter einem Druck von beispielsweise 12 bar erzeugt. Dieser Mitteldruckstickstoff muss anschließend in einem Stickstoffgasverdichter 5 weiter auf einen Druck von beispielsweise 100 bar verdichtet werden, um als
Hochdruckstickstoff (HPGAN - High Pressure Gaseous Nitrogen) abgegeben werden zu können, beispielsweise zur Unterstützung der Erdölförderung (to EOR - Enhanced Oil Recovery). (Die Funktionsweise der Gasturbineneinheit 1 wird unten bei Figur 2 näher erläutert.)
Der Erfindung liegt die Aufgabe zu Grunde, auf energetisch besonders günstige Weise ein Druckstickstoff-Produkt unter sehr hohem Druck zu erzeugen und dabei eine vergleichsweise wenig aufwändige Apparatur zu verwenden.
Diese Aufgabe wird durch die Gesamtheit der Merkmale des Patentanspruchs 1 gelöst. Bei der Erfindung wird ein Druckstickstoff-Produkt unter einem Druck von 15 bis 100 bar direkt durch Innenverdichtung gewonnen. Falls dieser Druck für die
vorgegebene Anwendung (zum Beispiel in bei der Erdölförderung - EOR = Enhanced Oil Recovery) ausreicht, braucht der gasförmige Druckstickstoff außerhalb der
Luftzerlegungsanlage nicht nachverdichtet zu werden und der entsprechende energetische und apparative Aufwand entfällt. Selbstverständlich ist eine externe Weiterverdichtung über den Innenverdichtungsdruck hinaus auch bei der Erfindung möglich; aber auch dann ist der Energieaufwand relativ gering und es genügt ein relativ kleiner Stickstoff-Gasverdichter. Die Betriebsdrücke der Säulen (jeweils am Kopf) betragen bei der Erfindung
- 6 bis 12 bar in der Hochdrucksäule 202 und
- 3 bis 5 bar in der Niederdrucksäule 204.
Grundsätzlich ist es bekannt, Stickstoff-Innenverdichtungen in dem Druckbereich von 15 bis 100 bar zu betrieben. Bei einer Anwendung dieser bekannten Lehre auf das Verfahren von US 6141989 würde der Fachmann jedoch nur den unbedingt für die Innenverdichtung erforderlichen Teil der Luft auf einen erhöhten Druck verdichten, der mehr als 5 bar über dem Hochdrucksäulendruck liegt. Eine Verdichtung der Gesamtluft auf diesen sehr hohen Druck erschiene als vermeidbare Energieverschwendung, weil dieser hohe Druck für den übrigen Teil der Einsatzluft, der nicht für die
Innenverdichtung erforderlich ist, kaum sinnvoll zu nutzen zu sein scheint.
Im Rahmen der Erfindung hat sich jedoch überraschenderweise herausgestellt, dass bei diesem speziellen Prozess, der hauptsächlich oder ausschließlich zur Erzeugung von Druckstickstoff durch Innenverdichtung dient, gerade bei Verdichtung der
Gesamtluft auf einen sehr hohen Druck insgesamt ein energetisch besonders günstiges Verfahren ergibt.
Dabei kann auch der apparative Aufwand vergleichsweise gering gehalten werden, indem trotz des hohen Luftdrucks nur ein einziger extern angetriebener Verdichter verwendet wird, nämlich der Hauptluftverdichter. Damit sind natürlich einstufige turbinengetriebene Verdichter (Booster) nicht ausgeschlossen, die keine externe Energie benötigen, sondern sozusagen mit der im Hauptluftverdichter erzeugten Energie angetrieben wird, die bei der arbeitsleistenden Entspannung in der Turbine in mechanische Energie umgewandelt wird.
Vorzugsweise wird der "erste Teilstrom", der arbeitsleistend entspannt wird, durch den gesamten Rest des Gesamtluftstroms gebildet, der nicht als "zweiter Teilstrom" für die Innenverdichtung benötigt wird. Der "erste Teilstrom" der Luft kann vor der
arbeitsleistenden Entspannung auf unter Umgebungstemperatur abgekühlt werden, insbesondere in dem Hauptwärmetauscher auf eine Zwischentemperatur zwischen den Temperaturen des warmen und des kalten Endes des Hauptwärmetauschers. Er tritt dann in gasförmigem Zustand in die arbeitsleistende Entspannung ein und wird schließlich mindestens teilweise in gasförmigem Zustand in das Destillationssäulen- System, insbesondere in die Hochdrucksäule, eingeleitet. Der Gasanteil des ersten Teilstroms bildet den aufsteigenden Dampf im unteren Bereich der Hochdrucksäule. Alternativ zu der gasförmigen Einleitung in die Hochdrucksäule kann der
arbeitsleistend entspannte erste Teilstrom in einem Sumpfverdampfer der
Hochdrucksäule teilweise oder vollständig verflüssigt und flüssig in die Hochdrucksäule eingespeist werden; das aufsteigende Gas im unteren Bereich der Hochdrucksäule wird dann durch den in dem Hochdrucksäulen-Sumpfverdampfer erzeugten Dampf gebildet.
Weiter Energie gespart werden kann bei der Erfindung durch eine spezielle
Ausgestaltung des Destillationssäulen-Systems, wie sie in Patentanspruch 2 beschrieben ist. Das Destillationssäulen-System wird also nicht wie eine klassische Linde-Doppelsäule betrieben (das heißt der Hochdrucksäulen-Kopfkondensator wird nicht mit Sumpfflüssigkeit der Niederdrucksäule gekühlt), sondern der
Hochdrucksäulen-Kopfkondensator wird mit ausschließlich mit flüssiger Luft (das heißt mit einer Flüssigkeit, die gleiche oder eine ähnliche Zusammensetzung wie die atmosphärische Luft aufweist) betrieben. Der "zweite Teil der Einsatzluft" wird direkt oder über einen Abscheider (Phasentrenner), der in einem separaten Behälter angeordnet oder in die Hochdrucksäule eingebaut sein kann, in den
Verdampfungsraum des Hochdrucksäulen-Kopfkondensators eingeleitet, ohne dass er zuvor an der Rektifikation in einer der Säulen des Destillationssäulen-Systems teilnimmt.
Insbesondere dann, wenn diese Flüssigluft das einzige Kühlfluid für den
Hochdrucksäulen-Kopfkondensator darstellt, können die beiden Säulen nebeneinander angeordnet werden, ohne dass Prozesspumpen zum Anheben von Flüssigkeiten benötigt werden. Das System wird dadurch kompakter und die Säulen können weitgehend vorgefertigt und anschließend zum Aufstellungsort transportiert werden.
Vorzugsweise weist der der Hauptluftverdichter eine einzige Antriebseinheit auf, die insbesondere durch eine Gasturbineneinheit, eine Dampfturbine, einen Gasmotor oder einen Dieselmotor gebildet wird. Diese Antriebseinheit stellt dann die alleinige Quelle für externe Energie des gesamten Systems dar, wenn man von Flüssigpumpen, die sehr viel weniger Energie als Gasverdichter verbrauchen, und von der Energiezufuhr für Hilfseinrichtungen wie Regel- und Steuereinrichtung, Beleuchtung etc. absieht. Damit wird eine sehr weitgehende Vereinfachung des Verdichterantriebs erreicht;
Generatoren, Transformatoren und Elektromotoren für die Gasverdichtung sind unnötig und können damit auch nicht zu Energieverlusten führen. Dies gilt insbesondere dann, wenn der Hauptluftverdichter den einzigen mit externer Energie angetriebenen
Gasverdichter darstellt, der in dem Verfahren verwendet wird. Außerdem ist es günstig, wenn bei dem erfindungsgemäßen Verfahren der zweite Teilstrom des Hochdruck-Gesamtluftstroms in einer Entspannungsturbine
(Flüssigturbine) anstelle der Entspannung in einem Drosselventil entspannt und dadurch verflüssigt wird und danach in das Destillationssäulen-System eingeleitet wird.
Auf einen Sumpfverdampfer der Niederdrucksäule kann verzichtet werden, indem in dem Verdampfungsraum des Hochdrucksäulen-Kopfkondensators erzeugter Dampf in den Sumpfbereich der Niederdrucksäule eingeleitet wird, wobei dieser Dampf das gesamte im unteren Abschnitt der Niederdrucksäule aufsteigende Gas bildet.
In einer ersten Ausführungsvariante der Erfindung wird ein "dritter Teilstrom" des ersten flüssigen Stickstoffstroms als Rücklauf auf die Niederdrucksäule aufgegeben, und der Innenverdichtungsstickstoffstrom wird durch einen zweiten Teilstrom des zweiten flüssigen Stickstoff Stroms gebildet. Durch die Verwendung von
Flüssigstickstoff aus dem Hochdrucksäulen-Kopfkondensator als Rücklauf für die Niederdrucksäule kann ein entsprechend erhöhter Anteil des Flüssigstickstoffs aus dem Niederdrucksäulen-Kopfkondensator der Innenverdichtung zugeführt werden. (Die Bezeichnung "dritter Teilstrom" bedeutet hier, dass in dem Verfahren ein "zweiter Teilstrom" des ersten flüssigen Stickstoffstroms existieren kann, aber nicht muss.)
In einer zweiten Ausführungsvariante der Erfindung wird der Innenverdichtungs- stickstoffstrom durch einen zweiten Teilstrom des ersten flüssigen Stickstoffstroms (aus dem Hochdrucksäulen-Kopfkondensator) und einen zweiten Teilstrom des zweiten flüssigen Stickstoffstroms (aus dem Niederdrucksäulen-Kopfkondensator) gebildet wird, wobei diese beiden Teilströme getrennt voneinander auf den
Produktdruck gebracht werden. Wenn Stickstoff unter zwei oder mehreren
verschiedenen Produktdrücken gebraucht wird, ist es in einer abgewandelten
Ausführungsform auch möglich, die beiden zweiten Teilströme auf unterschiedliche Produktdrücke zu bringen oder Teilströme auf die erforderliche Drücke (nach dem Pumpen) zu entspannen; die verschiedenen Innenverdichtungsstickstoffströme unter den verschiedenen Drücken werden dann getrennt voneinander durch den
Hauptwärmetauscher geführt und als Druckstickstoff-Produkte unter den
verschiedenen Drücken gewonnen. In einer dritten Ausführungsvariante der Erfindung wird der zweite Teilstrom des zweiten flüssigen Stickstoffstroms (aus dem Niederdrucksäulen-Kopfkondensator) zunächst in flüssigem Zustand auf etwa Hochdrucksäulendruck gebracht, und anschließend mit dem zweiten Teilstrom des ersten flüssigen Stickstoffstroms (aus dem Hochdrucksäulen-Kopfkondensator) zum zusammengeführt. Das Gemisch bildet dann den Innenverdichtungsstickstoffstrom und wird in einem weiteren Schritt gemeinsam vom Hochdrucksäulendruck auf den Produktdruck gebracht.
Kälte wird in dem erfindungsgemäßen Verfahren vorzugsweise in einer einzigen Entspannungsmaschine erzeugt, wobei der erste Teilstrom des Hochdruck- Gesamtluftstroms stromabwärts seiner arbeitsleistenden Entspannung mindestens teilweise in die Hochdrucksäule eingeleitet wird. Die Entspannungsmaschine kann beispielsweise durch eine Expansionsturbine gebildet werden. Sie kann an einen Nachverdichter gekoppelt sein, in dem der erste Teilstrom des HochdruckGesamtluftstroms stromaufwärts seiner arbeitsleistenden Entspannung oder der zweite Teilstrom des Hochdruck-Gesamtluftstroms oder der Hochdruck-Gesamtluftstrom auf einen Druck nachverdichtet wird, der höher als der Gesamtluftdruck ist.
Grundsätzlich kommt das Verfahren der Erfindung mit zwei Kondensator-Verdampfern aus, dem Hochdrucksäulen-Kopfkondensator und dem Niederdrucksäulen- Kopfkondensator. In speziellen Fällen kann es jedoch günstig sein, einen dritten Kondensator-Verdampfer in Form eines Hochdrucksäulen-Sumpfverdampfers zu verwenden. Dort wird Sumpfflüssigkeit der Hochdrucksäule verdampft in indirektem Wärmeaustausch mit kondensierender Luft, die in Form eines dritten Teils des
Hochdruck-Gesamtluftstroms in den Verflüssigungsraum des Hochdrucksäulen- Sumpfverdampfers eingeleitet wird. Die verdampfte Sumpfflüssigkeit wird als aufsteigendes Gas in die Hochdrucksäule eingeleitet und verstärkt dort die
Trennwirkung. Der "dritte Teil" des Hochdruck-Gesamtluftstroms kann durch den arbeitsleistend entspannten ersten Teilstroms oder durch einen Teil davon gebildet werden.
Bei allen Varianten des erfindungsgemäßen Verfahrens kann Energie eingespart werden, indem der zweite Teilstrom der Luft in einem turbinengetriebenen
Nachverdichter auf einen zweiten Luftdruck nachverdichtet werden, der höher als der Gesamtluftdruck ist. Der Nachverdichter (Booster) wird vorzugsweise von der Entspannungsmaschine angetrieben, in welcher der erste Teilstrom der Luft arbeitsleistend entspannt wird.
Günstig ist es außerdem, wenn der zweite Teilstroms (52) des Hochdruck- Gesamtluftstroms (1 1 , 81 1 ) in einer Entspannungsturbine (anstelle der Entspannung in einem Drosselventil) entspannt und dadurch verflüssigt wird und danach in das Destillationssäulen-System eingeleitet wird. Diese Entspannungsturbine
(Flüssigturbine) wird vorzugsweise von einem Generator gebremst, der elektrische Energie erzeugt.
Die energetische Effizienz kann bei dem erfindungsgemäßen Verfahren durch einen Verstärkungskreislauf für die Hochdrucksäule (Patentanspruch 12) oder einen
Verstärkungskreislauf für die Niederdrucksäule (Patentanspruch 13) oder durch eine Kombination dieser beiden Verstärkungskreisläufe weiter verbessert werden
Die Erfindung betrifft außerdem eine Vorrichtung gemäß Patentanspruch 14. Die erfindungsgemäße Vorrichtung kann durch Vorrichtungsmerkmale ergänzt werden, die den Merkmalen der abhängigen Verfahrensansprüche entsprechen. Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Figuren 2 bis 12 schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 2 den Betrieb einer erfindungsgemäßen Luftzerlegungsanlage mit einer Gasturbineneinheit als einzigem Antrieb,
Figuren 3 bis 5 drei Ausführungsformen des Destillationssäulen-Systems eines erfindungsgemäßen Systems,
Figuren 6 und 7 zwei Ausführungsformen einer Kühl- und Verflüssigungseinheit eines erfindungsgemäßen Systems und
Figuren 8 und 9 zwei Ausführungsformen von Luftvorbehandlungs- und Kühl- und
Verflüssigungseinheiten eines erfindungsgemäßen Systems, Figur 10 ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens im
Überblick,
Figur 1 1 und 12 zwei weitere Ausführungsbeispiele der Erfindung mit
Verstärkungskreisläufen. In Figur 2 ist der Teil der Luftzerlegungsanlage, der stromabwärts des Hauptluftverdichters 9 angeordnet ist, lediglich schematisch als Kasten 10 (ASU) dargestellt. Im Inneren dieses Kastens verbirgt sich eine Luftvorbehandlungseinheit, eine Kühl- und Verflüssigungseinheit und ein Destillationssäulen-System. Diese Verfahrensschritte werden in den folgenden Zeichnungen im Detail vorgestellt.
In dem Hauptluftverdichter 9, der mehrere Stufen mit Zwischenkühlung aufweist, wird atmosphärische Luft (AIR) auf einen Gesamtluftdruck verdichtet, der höher als 20 bar ist und in einem konkreten Zahlenbeispiel 37,5 bar beträgt. Der Hochdruck- Gesamtluftstrom 1 1 (HP-AIR), der aus dem Hauptluftverdichter 9 austritt, wird in die Luftzerlegungsanlage im engeren Sinne 10 eingeleitet. Von dort wird ein
innenverdichteter Druckstickstoff-Produktstrom 12 (ICGAN - Internally Compressed Gaseous Nitrogen) unter einem Produktdruck abgezogen, der über 60 bar liegt, beispielsweise bei etwa 70 bar. Der Stickstoff-Produktstrom 12 wird in dem
Anwendungsbeispiel zur Unterstützung der Erdölförderung verwendet (to EOR - Enhanced Oil Recovery).
Alle Stufen des Hauptluftverdichters werden über eine gemeinsame Welle angetrieben, die mit der Welle einer Gasturbineneinheit 1 verbunden ist, die einen Gasturbinen- Verdichter 13, eine Gasturbinen-Brennkammer 14, einen Gasturbinen-Expander 15 und - fakultativ - eine Dampferzeugung 16 (HRSG - Heat Recovery Steam Generation). In dem Gasturbinen-Verdichter 13 wird Luft aus der Umgebung (amb) verdichtet; in der Brennkammer 14 wird Erdgas (NG) mit der verdichteten Luft verbrannt. Dem
Verbrennungsgas aus Brennkammer 14 wird in der Dampferzeugung Wärme entzogen; das abgekühlte Verbrennungsgas wird - gegebenenfalls nach Reinigung - wieder in die Umgebung (amb) abgeblasen.
Figur 3 zeigt ein erstes Ausführungsbeispiel für ein Destillationssäulen-System, wie es in der Erfindung eingesetzt wird. Das Destillationssäulen-System weist eine
Hochdrucksäule 202 mit Hochdrucksäulen-Kopfkondensator 204 und eine
Niederdrucksäule 203 mit Niederdrucksäulen-Kopfkondensator 205 auf. Beide
Kopfkondensatoren sind als Kondensator-Verdampfer ausgebildet. Die Betriebsdrücke der Säulen (jeweils am Kopf) betragen in dem Beispiel
- 6 bar in der Hochdrucksäule 202 und - 3,5 bar in der Niederdrucksäule 203.
Ein "erster Teilstrom" 201 (AIR) des Hochdruck-Gesamtluftstroms 1 1 (siehe Figur 2) wird nach arbeitsleistender Entspannung in der Kühl- und Verflüssigungseinheit (siehe Figuren 6 bis 9) unter einem Druck von 6 bar gasförmig in den unteren Bereich der Hochdrucksäule 202 eingeleitet. Ein "zweiter Teilstrom" 206 (JT-AIR = Joule-Thomson Air) des Hochdruck-Gesamtluftstroms wird unter einem Druck von 3,5 bar aus der Kühl- und Verflüssigungseinheit entnommen, in einem Drosselventil 207 auf
Hochdrucksäulendruck entspannt und über Leitung 208 in überwiegend flüssigem Zustand in eine Tasse 209 eingeleitet, die innerhalb der Hochdrucksäule 202 an einer Zwischenstelle angeordnet. Diese Tasse 209 dient als Abscheider (Phasentrenner).
Der gasförmige Anteil aus der Leitung 208 steigt innerhalb der Hochdrucksäule 202 auf; der flüssige Anteil wird mindestens teilweise wieder entnommen und über Leitung 210 und Drosselventil 21 1 in den Verdampfungsraum des Hochdrucksäulen- Kopfkondensators 204 eingeleitet, ebenso wie ein weiterer Flüssigluftstrom 221 , der durch die bei der arbeitsleistenden Entspannung erzeugte geringe Flüssigkeitsmenge gebildet wird. In dem Verdampfungsraum des Hochdrucksäulen-Kopfkondensators 204 erzeugter Dampf wird über Leitung 212 abgezogen und dem unteren Bereich der Niederdrucksäule 203 als aufsteigender Dampf zugeleitet. Gasförmiger Kopfstickstoff 213 aus der Hochdrucksäule 202 wird mindestens zu einem ersten Teil 214 in den Verflüssigungsraum des Hochdrucksäulen-Kopfkondensators 204 eingeleitet und dort mindestens teilweise, vorzugsweise vollständig oder fast vollständig verflüssigt. Dabei wird ein "erster flüssiger Stickstoffstrom" 215 gebildet. Ein erster Teilstrom 216 des ersten flüssigen Stickstoffstroms 215 wird als Rücklaufflüssigkeit auf die
Hochdrucksäule 202 aufgegeben. Ein anderer Teil (der "dritte Teilstrom") 217 des ersten flüssigen Stickstoffstroms 215 wird in einem Unterkühlungs-Gegenströmer 218 abgekühlt und nach Drosselentspannung 219 über Leitung 220 in die Niederdrucksäule 203 eingespeist. (In dem Ausführungsbeispiel der Figur 3 existiert kein "zweiter Teilstrom" des ersten flüssigen Stickstoffstroms 215.)
Die sauerstoffangereicherte Sumpfflüssigkeit 222 der Hochdrucksäule 202 wird im Unterkühlungs-Gegenströmer 218 unterkühlt und über Drosselventil 223 und Leitung 224 in den Verdampfungsraum des Niederdrucksäulen-Kopfkondensators 205 eingeleitet. Ein weiteres Kühlfluid für den Niederdrucksäulen-Kopfkondensator 205 wird durch die Sumpfflüssigkeit 225 der Niederdrucksäule 203 gebildet, die ebenfalls im Unterkühlungs-Gegenströmer 218 unterkühlt, gedrosselt (226) und in den
Verdampfungsraum des Niederdrucksäulen-Kopfkondensators 205 eingeleitet (227) wird. Außerdem wird Spülflüssigkeit 228 aus dem Hochdrucksäulen-Kopfkondensator 204 in den Verdampfungsraum des Niederdrucksäulen-Kopfkondensators 205 eingespeist. Aus dem Verdampfungsraum des Niederdrucksäulen-Kopfkondensators 205 wird ebenfalls eine Spülflüssigkeit abgezogen (Purge) und verworfen oder auf den überkritischen Druck verdichtet und durch den Hauptwärmetauscher geleitet. In dem Verflüssigungsraum des Niederdrucksäulen-Kopfkondensators 205 wird mindestens ein erster Teil 231 des gasförmigen Kopf Stickstoffs 230 aus der
Niederdrucksäule 203 mindestens teilweise, vorzugsweise vollständig oder fast vollständig verflüssigt. Dabei wird ein zweiter flüssiger Stickstoffstrom 232 gebildet. Ein erster Teilstrom 233 des zweiten flüssigen Stickstoffstroms 232 wird als weitere Rücklaufflüssigkeit auf die Niederdrucksäule 203 aufgegeben. Ein zweiter Teilstrom 234 wird einer Innenverdichtung zugeführt und dabei in einer Pumpe 235 in flüssigem Zustand auf einen Produktdruck gebracht, der zwischen 20 und 100 bar liegt und in dem Beispiel etwa 70 bar beträgt. Der überkritische Stickstoff (ICLIN - Internally Compressed Liquid Nitrogen) wird über Leitung 236 der Kühl- und
Verflüssigungseinheit zugeleitet.
Im Niederdrucksäulen-Kopfkondensator 205 gebildeter Dampf wird über Leitung 240 abgezogen, im Unterkühlungs-Gegenströmer 218 angewärmt und schließlich als Restgas (WASTE) der Kühl- und Verflüssigungseinheit zugeführt.
Über die Leitungen 237 beziehungsweise 238 kann ein Teil des gasförmigen
Kopfstickstoffs aus der Hochdrucksäule 202 beziehungsweise der Niederdrucksäule 203 direkt als gasförmiges Druckprodukt (HPGAN - High Pressure Gaseous Nitrogen / MPGAN - Medium Pressure Gaseous Nitrogen) gewonnen werden, das natürlich noch in der Kühl- und Verflüssigungseinheit auf etwa Umgebungstemperatur angewärmt wird. Bei Bedarf kann außerdem ein dritter Teilstrom 239 des zweiten flüssigen Stickstoffstroms 232 als Flüssigstickstoffprodukt (LIN - Liquid Nitrogen) gewonnen werden. Alternativ zu der Ausführungsform der Figur 3 mit Tasse 209 innerhalb der
Hochdrucksäule 202 kann ein separater Abscheider (Phasentrenner) verwendet werden; der gasförmige Anteil wird dann in die Hochdrucksäule eingeleitet, der flüssige mindestens teilweise in den Verdampfungsraum des Hochdrucksäulen- Kopfkondensators 204.
Während in Figur 3 nur eine einzige Innenverdichtungspumpe 235 verwendet wird, werden in Figur 4 deren zwei eingesetzt. Eine erste Pumpe 335a bringt den zweiten Teilstrom 334 des zweiten flüssigen Stickstoffstroms 232 wie in Figur 3 vom
Niederdrucksäulendruck auf den Produktdruck; dieser Strom umfasst jedoch im
Gegensatz zu Figur 3 nicht das gesamte innenverdichtete Produkt, sondern nur einen Teil. Der Rest des innenverdichteten Stickstoffs wird durch einen zweiten Teilstrom 319 des ersten flüssigen Stickstoffstroms 215 gebildet, der in einer zweiten Pumpe 335b vom Hochdrucksäulendruck auf den Produktdruck gebracht wird. Die beiden
Innenverdichtungsstickstoffströme werden bei 337 zusammengeführt und bilden gemeinsam in Leitung 336 den überkritischen Stickstoff (ICLIN).
Außerdem wird in Figur 4 ein Teil 343 der Flüssigluft aus der Tasse 209 im
Unterkühlungs-Gegenströmer 318 abgekühlt und über Leitung 344 der
Niederdrucksäule 203 an einer Zwischenstelle zugeleitet.
Figur 5 unterscheidet sich von Figur 4 durch einen dritten Kondensator-Verdampfer, den Hochdrucksäulen-Sumpfverdampfer 438. In dessen Verdampfungsraum wird die gasförmige Luft 401 (AIR) vollständig kondensiert. Die dabei gebildete Flüssigkeit 442 wird zusätzlich in die Tasse 209 eingeleitet.
Die Figuren 6 und 7 zeigen zwei Ausführungsformen einer Kühl- und
Verflüssigungseinheit 50, die mit Figur 2 und jedem der Destillationssäulen-Systeme der Figuren 3 bis 6 kombiniert werden können.
In Figur 6 wird der gesamte gereinigte Hochdruck-Gesamtluftstrom 81 1 (siehe Figuren 8 und 9) unter dem Gesamtluftdruck dem warmen Ende eines Hauptwärmetauschers 51 zugeführt, der hier als ein einziger Plattenwärmetauscherblock realisiert ist. Ein erster Teilstrom 56 des Hochdruck-Gesamtluftstroms 81 1 wird bei einer ersten Zwischentemperatur aus dem Hauptwärmetauscher entnommen und einer
Expansionsturbine 57 zugeführt, die einen Nachverdichter 53 antreibt. Die
arbeitsleistend entspannte Luft 58 wird in einen Abscheider (Phasentrenner) 59 eingeleitet. Der größte Teil des arbeitsleistend entspannten ersten Teilstroms 58 wird über Leitung 201 gasförmig in die Hochdrucksäule des Destillationssäulen-Systems eingeleitet; die abgetrennte Flüssigkeit 221 wird wie bei Figur 3 beschrieben behandelt.
Ein zweiter Teilstrom 52 des Hochdruck-Gesamtluftstroms 81 1 wird bei schon einer zweiten, höheren Zwischentemperatur wieder entnommen und in dem
turbinengetriebenen Nachverdichter (Booster) 53 mit Nachkühler 54 auf etwa 50 bar nachverdichtet. Der nachverdichtete zweite Teilstrom 55 wird wieder in das warme Ende des Hauptwärmetauschers 51 eingeführt, dort bis zum kalten Ende geführt und dort pseudo-verflüssigt. Der überkritische zweite Teilstrom 206 wird auf die in den Figuren 3 bis 6 gezeigte Weise in das Destillationssäulen-System eingeführt.
Der überkritische Innenverdichtungsstickstoff 236/336 (ICLIN) strömt unter dem
Produktdruck dem kalten Ende des Hauptwärmetauschers 51 zu. Dort wird er pseudo- verdampft und auf etwa Umgebungstemperatur angewärmt und schließlich gasförmig als innenverdichtetes Druckstickstoff-Produkt 60 (ICGAN) gewonnen. Auch die gasförmigen Ströme 237, 238 und 241 aus dem Destillationssäulen-System werden im Hauptwärmetauscher 51 auf etwa Umgebungstemperatur angewärmt. Die
angewärmten Stickstoffströme werden als Produkte 61/62 (HPGAN/MPGAN) abgegeben. Der angewärmte Restgasstrom wird teilweise über Leitung 63 in die Umgebung (amb) abgeblasen und teilweise als Regeneriergas in der
Reinigungseinrichtung 802 für die Einsatzluft (siehe Figuren 8 und 9) eingesetzt.
In den Destillationssäulen-Systemen der Figuren 3 bis 5 sind Hochdrucksäule 202 und Niederdrucksäule 203 nebeneinander angeordnet. Steht besonders wenig Grundfläche zur Verfügung ist es aber bei der Erfindung auch möglich, die Säulen ähnlich wie einer klassischen Linde-Doppelsäule übereinander anzuordnen. In diesem Fall sind von unten beginnend die folgenden Apparateteile in einer Linie übereinander platziert:
- Hochdrucksäule 202 (im Falle der Figur 5 mit in die Hochdrucksäule eingebautem Hochdrucksäulen-Sumpfverdampfer 438)
- Hochdrucksäulen-Kopfkondensator 204 - Niederdrucksäule 203
- Niederdrucksäulen-Kopfkondensator 205
Figur 7 unterscheidet sich durch die Leitung 765 von Figur 6. Der zweite Teilstrom 752 des Hochdruck-Gesamtluftstroms wird hier nicht im Hauptwärmetauscher vorgekühlt, sondern durch die Zumischung eines kleinen Teils 765 des kalten ersten Teilstroms 756 vor dem Eintritt in die Turbine 57
In Figur 8 ist neben der Kühl- und Verflüssigungseinheit 50 aus Figur 6 eine erste Ausführungsform einer Luftvorbehandlungseinheit 799 dargestellt. Die Verdichterstufen 804, 806 und 807 und die Kühler 805, 808 des Hauptluftverdichters 9 sind nicht Teil der Luftvorbehandlungseinheit.
Die verdichtete Gesamtluft 800 wird in einer Vorkühleinrichtung 801 auf etwa
Umgebungstemperatur gekühlt und dann in einer Reinigungseinrichtung 802, die Molekularsieb-Adsorber aufweist, gereinigt. Der gereinigte und auf den
Gesamtluftdruck verdichtete Hochdruck-Gesamtluftstroms 81 1 wird in die Kühl- und Verflüssigungseinheit 50 eingeleitet. Grundsätzlich kann die Luftvorbehandlungseinheit 799 unter dem Gesamtluftdruck betrieben werden (siehe Figur 10). Bei den hier verwendeten hohen Luftdrücken ist es jedoch in den meisten Fällen günstiger, die Luftvorbehandlungseinheit wie in Figur 8 dargestellt unter einem niedrigeren Druck zu betreiben, in dem sie zwischen zwei Stufen 806 und 807 des Hauptluftverdichters angeordnet ist. Dadurch wird die
Auslegung von Molekularsieb-Adsorber-Behältern und Umschaltventilen einfacher und die Verluste beim Umschalten der Adsorber sind geringer.
Alle drei Stufen 804, 806, 807 des Hauptluftverdichters 9 des Ausführungsbeispiels werden von einer einzigen Welle angetrieben, die mit der Welle einer
Gasturbineneinheit, eines Gasmotors oder eines anderen Motors verbunden ist.
Zwischen den ersten beiden Stufen 804, 806 ist ein Zwischenkühler 805, hinter die dritte und letzte Stufe ein Nachkühler 808 geschaltet.
Figur 9 unterscheidet dadurch von Figur 8, dass ein Teil 902 der überkritischen Hochdruckluft 901 nicht über Leitung 206 zum Destillationssäulen-System geführt wird, sondern in einem Drosselventil 903 auf einen Zwischendruck entspannt wird, der dem Eintrittsdruck der letzten Stufe 807 des Hauptluftverdichters 9 (plus Leitungsverlusten) entspricht. Er wird im Hauptwärmetauscher 51 vollständig angewärmt und dann dem Eintritt der letzten Stufe 807 des Hauptluftverdichters 9 zugeleitet. Dadurch wird die zur Verdampfung von Innenverdichtungsstickstoff verwendete Hochdruckluftmenge vergrößert. Dies führt zu einer Reduzierung des Enddruckes des Hauptluftverdichters und man kann die Anzahl von Verdichterstufen reduzieren (Kostenvorteil).
In Figur 10 ist ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens in der Gesamtheit dargestellt. Hier werden die Vorkühleinrichtung 801 und die
Reinigungseinrichtung 802 der Luftvorbehandlungseinheit 799 unter dem
Gesamtluftdruck betrieben. Der Hauptluftverdichter 9 weist mehrere Stufen mit Zwischenkühlung auf und wird durch eine einzige Maschine gebildet. Deren Welle wird von einem Elektromotor, einer Dampfturbine, einer Gasturbineneinheit, einem
Gasmotor oder einem anderen Motor, beispielsweise einem Dieselmotor angetrieben.
Die in Figur 10 dargestellte Kühl- und Verflüssigungseinheit 50 entspricht derjenigen von Figur 6, das Destillationssäulen-System 1000 demjenigen von Figur 3. Die Luftvorbehandlungseinheit 799 und der Hauptluftverdichter 9 der Figur 10 kann mit jeder anderen der hier beschriebenen Kühl- und Verflüssigungseinheiten sowie mit jedem anderen der in dieser Anmeldung dargestellten Destillationssäulen-Systeme kombiniert werden. Das Ausführungsbeispiel der Figur 11 basiert auf Figur 10. Es weist eine
Flüssigturbine (dense fluid turbine) 1107 anstelle des Drosselventils 207 auf und ist außerdem mit einem Verstärkungskreislauf ausgestattet.
In der Flüssigturbine 1107 kann ein erheblicher Teil der im zweiten Teilstrom 206 enthaltenen Druckenergie zurückgewonnen und in einem mit der Turbine verbundenen Generator 1171 in elektrische Energie umgewandelt werden. Diese Maßnahme trägt spürbar zu der günstigen energetischen Bilanz des erfindungsgemäßen Verfahrens bei und kann auch bei allen oben beschriebenen Ausführungsbeispielen eingesetzt werden. Umgekehrt können die Ausführungsbeispiele der Figuren 1 1 und 12 auch mit einem Drosselventil anstelle der Flüssigturbine betrieben werden. Der aus dem Verdampfungsraum des Hochdrucksäulen-Kopfkondensators 204 abgezogene Dampf wird hier nur zu einem Teil 1 112 der Niederdrucksäule 203 zugeführt. Der Rest bildet einen Kreislaufstrom 1 172, der in einem einstufigen
Verdichter (Booster) 1 173, der als Kaltverdichter ausgebildet ist, von etwa 3,9 bar auf etwa 6,9 bar verdichtet wird. Der verdichtete Kreislaufstrom 1 174 wird an einer Zwischenstelle in den Hauptwärmetauscher 51 eingeführt und dort bis zum kalten Ende abgekühlt. Der abgekühlte Kreislaufstrom 1 175 wird wieder der Hochdrucksäule 202 am Sumpf zugeleitet und verstärkt den Trennprozess dort. Deshalb wird das Ganze als Verstärkungskreislauf bezeichnet.
Die arbeitsleistende Entspannung des ersten Teilstroms 56 des Hochdruck- Gesamtluftstroms 11 wird in zwei parallel geschalteten Expansionsturbinen 57a, 57b durchgeführt. Die erste Turbine 57a treibt wie gehabt den warmen Nachverdichter 53 für den ersten Teilstrom 752 an, die zweite Turbine 57b den Kaltverdichter 1 173. Die beiden Turbinen 57a, 57b weisen bei dem Ausführungsbeispiel dieselben Ein- und Austrittsparameter bezüglich des Drucks und der Temperatur auf (bei anderen
Ausführungsbeispielen können die Eintrittstemperaturen auch unterschiedlich sein). Figur 12 unterscheidet sich von Figur 1 1 dadurch, dass der Verstärkungskreislauf 1272/1273/1274/1275 nicht vom Verdampfungsraum des Hochdrucksäulen- Kopfkondensators in die Hochdrucksäule, sondern vom Kopf der Niederdrucksäule 203 in den Verflüssigungsraum des Hochdrucksäulen-Kopfkondensators 204 führt.
Dadurch wird der Umsatz am Hochdrucksäulen-Kopfkondensator 204 erhöht und damit die Menge an aufsteigendem Gas 212 für die Niederdrucksäule 203, also der Umsatz in der Niederdrucksäule.
Ähnlich wie in Figur 3 (HPGAN, MPGAN) kann auch bei den Verfahren der Figuren 1 1 und 12 zusätzlich gasförmiges Stickstoffprodukt direkt vom Kopf der Hochdrucksäule 202 und/oder der Niederdrucksäule 203 abgezogen und im Hauptwärmetauscher 51 angewärmt werden.
Die in Figur 1 1 und Figur 12 dargestellten Verstärkungskreisläufe können mit jeder anderen der hier beschriebenen Kühl- und Verflüssigungseinheiten sowie mit jedem anderen der in dieser Anmeldung dargestellten Destillationssäulen-Systeme kombiniert werden.

Claims

Patentansprüche
Verfahren zur Erzeugung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das eine Hochdrucksäule (202) und eine Niederdrucksäule (203) sowie einen Hochdrucksäulen-Kopfkondensator (204) und einen Niederdrucksäulen-Kopfkondensator (205) aufweist, die beide als
Kondensator-Verdampfer ausgebildet sind, wobei
- die Niederdrucksäule (203) den niedrigsten Betriebsdruck aller Trennsäulen des
Destillationssäulen-Systems aufweist,
- Einsatzluft in einem Hauptluftverdichter (9) auf einen Gesamtluftdruck verdichtet und dabei ein Hochdruck-Gesamtluftstrom (1 1 , 811) gebildet wird,
- der Hauptluftverdichter (9) den einzigen mit externer Energie angetriebenen
Gasverdichter darstellt, der in dem Verfahren verwendet wird,
- ein erster Teilstrom (56) des Hochdruck-Gesamtluftstroms (11 , 811)
arbeitsleistend entspannt (57) und in das Destillationssäulen-System eingeleitet (201) wird,
- ein zweiter Teilstrom (52, 55) des Hochdruck-Gesamtluftstroms (1 1 , 811) in einem Hauptwärmetauscher (51) abgekühlt und mindestens teilweise flüssig in das Destillationssäulen-System eingeleitet (206, 210) wird,
- gasförmiger Kopfstickstoff (213) aus der Hochdrucksäule (202) in dem
Hochdrucksäulen-Kopfkondensator (204) mindestens teilweise verflüssigt wird und dabei ein erster flüssiger Stickstoffstrom (215) gebildet wird,
- ein erster Teilstrom (216) des ersten flüssigen Stickstoffstroms (215) als
Rücklaufflüssigkeit auf die Hochdrucksäule (202) aufgegeben wird,
- gasförmiger Kopfstickstoff (230) aus der Niederdrucksäule (203) in dem
Niederdrucksäulen-Kopfkondensator (205) mindestens teilweise verflüssigt und dabei ein zweiter flüssiger Stickstoffstrom(232) gebildet wird,
- ein erster Teilstrom (233) des zweiten flüssigen Stickstoffstroms (232) als
Rücklaufflüssigkeit auf die Niederdrucksäule (203) aufgegeben wird,
- ein Innenverdichtungsstickstoffstrom, der durch einen zweiten Teilstrom (319) des ersten flüssigen Stickstoffstroms (215) und/oder einen zweiten Teilstrom (234, 334) des zweiten flüssigen Stickst off Stroms (232) gebildet wird, in flüssigem Zustand auf einen Produktdruck gebracht (235, 335a, 335b) wird, der höher als der Betriebsdruck der Hochdrucksäule (202) ist, - der auf den Produktdruck gebrachte Innenverdichtungsstickstoffstrom (236, 336) im Hauptwärmetauscher (51 ) angewärmt und anschließend als gasförmiger Druckstickstoff-Produktstrom (60) unter dem Produktdruck abgezogen wird,
- mindestens ein sauerstoffangereicherter Produktgasstrom (63, 64) aus dem
Destillationssäulen-System abgezogen und im Hauptwärmetauscher (51 ) angewärmt wird und
- alle sauerstoffangereicherten Produktgasströme (63, 64) in gasförmigem Zustand aus dem Destillationssäulen-System abgezogen werden,
dadurch gekennzeichnet, dass
- der Austrittsdruck des ersten Teilstroms (58) des Hochdruck-Gesamtluftstroms
(1 1 , 81 1 ) bei der arbeitsleistenden Entspannung (57) gleich dem Betriebsdruck der Hochdrucksäule oder höher ist,
- die Einsatzluft in dem Hauptluftverdichter (9) auf einen Gesamtluftdruck
verdichtet wird, der mindestens 5 bar über dem Betriebsdruck der
Hochdrucksäule (202) liegt, und
- der Innenverdichtungsstickstoffstrom (234, 236, 319, 334 336) in flüssigem
Zustand auf einen Produktdruck (235, 335a, 335b) gebracht wird, der zwischen 15 und 100 bar liegt.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass mindestens ein Teil (210) des zweiten Teils (206) der Einsatzluft als Kühlfluid in den
Verdampfungsraum des Hochdrucksäulen-Kopfkondensators (204) eingeleitet wird, wobei insbesondere das gesamte Kühlfluid (210, 221 ) für den
Hochdrucksäulen-Kopfkondensator (204) durch Einsatzluft gebildet wird.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der
Hauptluftverdichter (9) eine einzige Antriebseinheit aufweist, die insbesondere durch eine Gasturbineneinheit (1 ), eine Dampfturbine, einen Gasmotor oder einen Dieselmotor gebildet wird.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens ein Teil des zweiten Teilstroms (52, 55) des Hochdruck- Gesamtluftstroms (11 , 81 1 ) nach seiner Abkühlung im Hauptwärmetauscher (51 ) in einer Flüssigturbine arbeitsleistend entspannt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in dem Verdampfungsraum des Hochdrucksäulen-Kopfkondensators (204) erzeugter Dampf (212) in den Sumpfbereich der Niederdrucksäule (203) eingeleitet wird, wobei dieser Dampf insbesondere das gesamte im unteren Abschnitt der
Niederdrucksäule aufsteigende Gas bildet.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein dritter Teilstrom (217) des ersten flüssigen Stickstoffstroms (215) als Rücklauf auf die Niederdrucksäule aufgegeben wird und der Innenverdichtungsstickstoffstrom durch einen zweiten Teilstrom des zweiten flüssigen Stickstoffstroms gebildet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Innenverdichtungsstickstoffstrom (236, 336) durch einen zweiten Teilstrom (319) des ersten flüssigen Stickstoffstroms (215) und einen zweiten Teilstrom (334) des zweiten flüssigen Stickstoffstroms (232) gebildet wird, wobei diese beiden
Teilströme getrennt voneinander auf den Produktdruck gebracht (335a, 335b) werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der erste Teilstrom (58) des Hochdruck-Gesamtluftstroms (1 1 , 81 1 ) stromabwärts seiner arbeitsleistenden Entspannung (57) mindestens teilweise in die
Hochdrucksäule (202) eingeleitet (201) wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Sumpfflüssigkeit der Hochdrucksäule (202) in einem Hochdrucksäulen- Sumpfverdampfer (438) verdampft wird, der als Kondensator-Verdampfer ausgebildet ist, wobei in den Verflüssigungsraum des Hochdrucksäulen- Sumpfverdampfers (438) ein dritter Teil des Hochdruck-Gesamtluftstroms (1 1 , 81 1 ) eingeleitet wird, der insbesondere mindestens zum Teil durch mindestens einen Teil des arbeitsleistend entspannten ersten Teilstroms (401) gebildet wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der zweite Teilstrom (52) des Hochdruck-Gesamtluftstroms ( 1 , 81 1) in einem turbinengetriebenen Nachverdichter (53) auf einen zweiten Luftdruck
nachverdichtet wird, der höher als der Gesamtluftdruck ist. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass mindestens ein Teil des zweiten Teilstroms (52) des Hochdruck-Gesamtluftstroms (11 , 81 1 ) in einer Entspannungsturbine entspannt und dadurch verflüssigt wird und danach in das Destillationssäulen-System eingeleitet wird
Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass
- ein Kreislaufstrom (1 172) aus dem Verdampfungsraum des Hochdrucksäulen-
Kopfkondensators 204 abgezogen, in einem Kreislaufverdichter (1 173), der insbesondere als Kaltverdichter ausgebildet ist, verdichtet wird,
- der verdichtete Kreislaufstrom (1 174) im Hauptwärmetauscher (51 ) abgekühlt und
- der Hochdrucksäule (202) zugeführt wird. 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass
- ein Kreislaufstrom (1272) aus dem oberen Bereich der Niederdrucksäule 203 abgezogen, in einem Kreislaufverdichter (1273), der insbesondere als
Kaltverdichter ausgebildet ist, verdichtet wird,
- der verdichtete Kreislaufstrom (1274) im Hauptwärmetauscher (51 ) abgekühlt und
- dem Hochdrucksäulen-Kopfkondensator (204) zugeführt wird.
14. Vorrichtung zur Erzeugung von Druckstickstoff durch Tieftemperaturzerlegung von Luft mit
- einem Destillationssäulen-System, das eine Hochdrucksäule und eine
Niederdrucksäule, sowie einen Hochdrucksäulen-Kopfkondensator (204) und einen Niederdrucksäulen-Kopfkondensator (205) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind, wobei
- die Niederdrucksäule (203) im Betrieb der Anlage den niedrigsten Betriebsdruck aller Trennsäulen des Destillationssäulen-Systems aufweist,
und mit
- einem Hauptluftverdichter (9) zum Erzeugen eines Hochdruck-Gesamtluftstroms
(1 1 , 81 1 ) durch Verdichten von Einsatzluft auf einen Gesamtluftdruck, wobei - der Hauptluftverdichter (9) den einzigen mit externer Energie angetriebenen Gasverdichter der Vorrichtung darstellt, - Mitteln zum arbeitsleistenden Entspannen (57) ein erster Teilstrom (56) des
Hochdruck-Gesamtluftstroms (1 1 , 81 1 ),
- Mitteln zum Einleiten (201) des arbeitsleistend entspannten ersten Teilstroms
(58) in das Destillationssäulen-System,
- einen Hauptwärmetauscher (51 ) zum Abkühlen eines zweiten Teilstroms (52, 55) des Hochdruck-Gesamtluftstroms (1 1 , 81 1 ),
- Mitteln zum Einleiten (206, 210 des abgekühlten zweiten Teilstroms mindestens teilweise in flüssigem Zustand in das Destillationssäulen-System,
- Mitteln zum Einleiten gasförmigen Kopfstickstoffs (213) aus der Hochdrucksäule (202) in den Verflüssigungsraum des Hochdrucksäulen-Kopfkondensators
(204),
- Mitteln zum Entnehmen eines ersten flüssigen Stickstoffstroms (215) aus dem
Verflüssigungsraum des Hochdrucksäulen-Kopfkondensators (204),
- Mitteln zum Einleiten eines ersten Teilstroms (216) des ersten flüssigen
Stickstoffstroms (215) als Rücklaufflüssigkeit in die Hochdrucksäule (202),
- Mitteln zum Einleiten von Kopfstickstoff (230) aus der Niederdrucksäule (203) in den Verflüssigungsraum des Niederdrucksäulen-Kopfkondensators (205),
- Mitteln zum Entnehmen eines zweiten flüssigen Stickstoffstroms (232) aus dem
Verflüssigungsraum des Niederdrucksäulen-Kopfkondensators (205),
- Mitteln zum Einleiten eines ersten Teilstroms (233) des zweiten flüssigen
Stickstoffstroms (232) als Rücklaufflüssigkeit in die Niederdrucksäule (203),
- Mitteln zur Bildung eines Innenverdichtungsstickstoffstroms durch einen zweiten
Teilstrom (319) des ersten flüssigen Stickstoffstroms (215) und/oder einen zweiten Teilstrom (234, 334) des zweiten flüssigen Stickstoffstroms (232), - Mitteln (235, 335a, 335b) zum Erhöhen des Drucks des
Innenverdichtungsstickstoffstroms in flüssigem Zustand auf einen Produktdruck, der höher als der Betriebsdruck der Hochdrucksäule (202) ist,
- Mitteln zum Anwärmen des auf den Produktdruck gebrachten
Innenverdichtungsstickstoffstroms (236, 336) im Hauptwärmetauscher (51 ) - Mitteln zum Abziehen des angewärmten Innenverdichtungsstickstoffstroms als gasförmiger Druckstickstoff-Produktstrom (60) unter dem Produktdruck,
- Mitteln zum Abziehen mindestens eines sauerstoffangereicherten
Produktgasstroms (63, 64) aus dem Destillationssäulen-System,
- Mitteln zum Anwärmen des sauerstoffangereicherten Produktgasstroms (63, 64) im Hauptwärmetauscher (51 ) und mit - Mitteln zum Abziehen aller sauerstoffangereicherten Produktgasströme (63, 64) in gasförmigem Zustand aus dem Destillationssäulen-System,
dadurch gekennzeichnet, dass
- der Austritt der Mittel zum arbeitsleistenden Entspannen (57) in
Strömungsverbindung (58. 201 , 442) mit der Hochdrucksäule (202) steht,
- der Hauptluftverdichter (9) auf die Verdichtung der Einsatzluft auf einen
Gesamtluftdruck ausgelegt ist, der mindestens 5 bar über dem Betriebsdruck der Hochdrucksäule (202) liegt, und
- die Mittel (235, 335a, 335b) zum Erhöhen des Drucks des
Innenverdichtungsstickstoffstroms (234, 236, 319, 334 336) in flüssigem Zustand zur Druckerhöhung auf einen Produktdruck ausgelegt sind, der zwischen 20 und 100 bar liegt.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Vorrichtung keine Mittel zum Abziehen eines flüssigen sauerstoffangereicherten Produktstroms aus dem Destillationssäulen-System aufweist und insbesondere keine Pumpe, um einen flüssigen sauerstoffangereicherten Strom auf einen erhöhten Druck zu bringen.
EP14744775.9A 2013-08-02 2014-07-29 Verfahren und vorrichtung zur erzeugung von druckstickstoff Withdrawn EP3027988A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14744775.9A EP3027988A2 (de) 2013-08-02 2014-07-29 Verfahren und vorrichtung zur erzeugung von druckstickstoff

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13003861 2013-08-02
PCT/EP2014/002074 WO2015014485A2 (de) 2013-08-02 2014-07-29 Verfahren und vorrichtung zur erzeugung von druckstickstoff
EP14744775.9A EP3027988A2 (de) 2013-08-02 2014-07-29 Verfahren und vorrichtung zur erzeugung von druckstickstoff

Publications (1)

Publication Number Publication Date
EP3027988A2 true EP3027988A2 (de) 2016-06-08

Family

ID=48918227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14744775.9A Withdrawn EP3027988A2 (de) 2013-08-02 2014-07-29 Verfahren und vorrichtung zur erzeugung von druckstickstoff

Country Status (4)

Country Link
US (1) US20160161181A1 (de)
EP (1) EP3027988A2 (de)
MX (1) MX2016001221A (de)
WO (1) WO2015014485A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059536A1 (de) * 2015-02-19 2016-08-24 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines Druckstickstoffprodukts
US20200080773A1 (en) * 2018-09-07 2020-03-12 Zhengrong Xu Cryogenic air separation unit with flexible liquid product make
WO2022179748A1 (de) * 2021-02-25 2022-09-01 Linde Gmbh Verfahren und anlage zur bereitstellung von druckstickstoff

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817394A (en) * 1988-02-02 1989-04-04 Erickson Donald C Optimized intermediate height reflux for multipressure air distillation
US5144808A (en) * 1991-02-12 1992-09-08 Liquid Air Engineering Corporation Cryogenic air separation process and apparatus
DE19735154A1 (de) * 1996-10-30 1998-05-07 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
GB9726954D0 (en) * 1997-12-19 1998-02-18 Wickham Michael Air separation
US5906113A (en) * 1998-04-08 1999-05-25 Praxair Technology, Inc. Serial column cryogenic rectification system for producing high purity nitrogen
CN1340687A (zh) * 2000-08-24 2002-03-20 孙克锟 空气分离方法及设备
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
DE102007031759A1 (de) * 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
FR2949846B1 (fr) * 2009-09-10 2012-02-10 Air Liquide Procede et installation de production d'oxygene par distillation d'air
DE102010056560A1 (de) * 2010-08-13 2012-02-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Druckstickstoff durch Tieftemperaturzerlegung von Luft
FR2973487B1 (fr) * 2011-03-31 2018-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de production d'un gaz de l'air sous pression par distillation cryogenique

Also Published As

Publication number Publication date
MX2016001221A (es) 2016-05-24
WO2015014485A3 (de) 2015-09-24
WO2015014485A2 (de) 2015-02-05
US20160161181A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2880267B1 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10139727A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1074805B1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
DE10013073A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2014026738A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
WO2016131545A1 (de) Verfahren und vorrichtung zur gewinnung eines druckstickstoffprodukts
EP2867599A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
EP2520886A1 (de) Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2758734B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP3019803B1 (de) Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch
WO2015003808A2 (de) Verfahren zur erzeugung zumindest eines luftprodukts, luftzerlegungsanlage, verfahren und vorrichtung zur erzeugung elektrischer energie
EP3027988A2 (de) Verfahren und vorrichtung zur erzeugung von druckstickstoff
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP1750074A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2824407A1 (de) Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
EP1199532B1 (de) Drei-Säulen-System zur Tieftemperatur-Zerlegung von Luft
EP4133227A2 (de) Verfahren zur tieftemperaturzerlegung von luft, luftzerlegungsanlage und verbund aus wenigstens zwei luftzerlegungsanlagen
DE4441920C1 (de) Verfahren und Vorrichtung zur Gewinnung von Stickstoff durch Tieftemperaturzerlegung
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
EP4127583B1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2863156A1 (de) Verfahren zur Gewinnung wenigstens eines Luftprodukts in einer Luftbehandlungsanlage und Luftbehandlungsanlage
EP2835506A1 (de) Verfahren zur Erzeugung von elektrischer Energie und Energieerzeugungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151215

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ALEKSEEV, ALEXANDER

Inventor name: GOLOUBEV, DIMITRI

Inventor name: ECKERT, THOMAS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200201