EP3026680B1 - Linear actuator and use of same - Google Patents

Linear actuator and use of same Download PDF

Info

Publication number
EP3026680B1
EP3026680B1 EP15193019.5A EP15193019A EP3026680B1 EP 3026680 B1 EP3026680 B1 EP 3026680B1 EP 15193019 A EP15193019 A EP 15193019A EP 3026680 B1 EP3026680 B1 EP 3026680B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
linear actuator
elastomer composite
styrene
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15193019.5A
Other languages
German (de)
French (fr)
Other versions
EP3026680A1 (en
Inventor
Holger Böse
Johannes Ehrlich
Rabih Darwiche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3026680A1 publication Critical patent/EP3026680A1/en
Application granted granted Critical
Publication of EP3026680B1 publication Critical patent/EP3026680B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding

Definitions

  • the invention relates to a linear actuator, the at least one magnetic elastomer composite made of an elastomer and magnetizable particles and an inner and an outer magnetic yoke and at least one coil and / or at least one permanent magnet or at least one switchable hard magnet for generating at least one magnetic circuit, the one Has interruption, contains.
  • the linear actuator is used for the controlled movement, adjustment or adjustment of a wide variety of objects as well as for generating movement in robots as well as for tactile elements.
  • linear motion is to be electrically controlled over a relatively short distance. Such a requirement occurs, for example, when adjusting flaps or optical elements such as mirrors or lighting elements.
  • Another application for such linear drives for short distances concerns the locking or unlocking of Doors, windows, etc.
  • linear movements occur when, for example, an object is to be gripped and then positioned (pick and place).
  • actuators for human-machine interfaces with haptic feedback are increasingly desired, in which a movement can be sensed with the fingers on a user interface, which provides the user with information such. B. conveyed via a successful entry.
  • actuators are required that perform a linear movement over a relatively short path of a few millimeters or centimeters.
  • the path of movement to be covered should be flexible and precise.
  • the stroke of such a linear actuator is to be controlled electrically.
  • piezo actuators In order to adjust mirrors or flaps, electric motors are generally used, which first generate a rotational movement, which is then translated into a linear movement via a gear. This requires a relatively high technical effort for a relatively simple movement.
  • An alternative is to use electromagnetic actuators (voice coil).
  • voice coil voice coil
  • Piezo actuators can position very precisely and also generate large forces, but the travel ranges are too small for the applications mentioned. In order to be able to use piezo actuators for this, travel range enlargers must be integrated, which significantly increases the effort.
  • piezo actuators alone are expensive and also require relatively high electrical control voltages.
  • the present invention solves the problem with the aid of magnetically controllable materials, so-called magnetoactive polymers.
  • Magnetoactive polymers are composite materials made of an elastomer matrix that is filled with magnetic or magnetizable particles. For this reason, they are called magnetic elastomer composites below. When a magnetic field is applied, the material is reversibly stiffened. On the other hand, the magnetic elastomer composite is deformed along the field lines in the magnetic field. Will be in the air gap between two magnetic yoke parts If the magnetic field is generated, a magnetic elastomer composite, which does not bridge the gap in the non-magnetized state, extends in length, so that the bridge is now bridged. This effect is already known.
  • the DE 10 2007 028 663 A1 relates to composites of an elastic and / or thermoplastic-elastic carrier medium and hard magnetic particles which are polarized in a magnetic field, with magnetization remaining after the magnetic field has been switched off.
  • the EP 2 239 837 A1 describes an actuator that can move flexibly and smoothly like muscles, can be operated stably over a long period of time, can generate a strong driving force, has an advantageous sensitivity and has a high energy conversion efficiency.
  • a coil is embedded in a magnetic elastomer, which is obtained by mixing a powder-like ferromagnetic or highly magnetic permeable material is obtained with an elastomer so that the coil can be electrically connected.
  • a magnetic field is generated in and around the coil.
  • the magnetic field penetrates the magnetic elastomer.
  • a deformation force acts on the magnetic elastomer by applying the magnetic force on each section of the magnetic elastomer. In this way, a driving force can be obtained.
  • a linear actuator containing at least one magnetic elastomer composite which contains at least one elastomer and magnetizable particles is provided. Furthermore, the linear actuator contains an inner and an outer magnet yoke and at least one coil and / or at least one permanent magnet or at least one switchable hard magnet for generating at least one magnetic circuit which has an interruption.
  • the magnetic elastomer composite is deformable when the magnetic field is applied or changed in such a way that a linear actuator movement is triggered and the distance of the actuator movement by the Strength of the magnetic field is continuously and / or reversibly controllable.
  • the invention therefore provides a linear actuator which enables such a precisely controllable linear movement.
  • a linear actuator with a special magnetic circuit in which a magnetic elastomer composite is attracted to the magnetic circuit lying on one side, while the other side of the magnetic elastomer composite is freely accessible.
  • the magnetic attraction deforms the magnetic elastomer composite, the deformation and thus also the actuator travel increasing with increasing magnetic field strength or magnetic flux density.
  • the magnetic elastomer composite deforms back.
  • the elastomer acts like an inherent return spring.
  • the magnetic elastomer composite can take various forms in the linear actuator.
  • a preferred embodiment of the invention provides that the magnetic elastomer composite is disc-shaped and the magnetic field is oriented essentially perpendicular to the base thereof and the deformation of the magnetic elastomer composite in the form of a curvature of the magnetic elastomer composite specifies the direction of the actuator movement.
  • the disk-shaped magnetic elastomer composite is connected, for example, to a largely closed cylindrical magnetic circuit consisting of a coil, an inner and an outer yoke. The outer yoke on which the magnetic elastomer composite rests stands out.
  • the magnetic field is switched on, the central part of the magnetic elastomer composite is attracted to the inner yoke, which causes the deformation.
  • the disk-shaped magnetic elastomer composite is reshaped. The strength of the magnetic field determines the degree of deformation.
  • the inner yoke protrudes and the magnetic elastomer composite rests on it.
  • the outer part of the magnetic elastomer composite is attracted to the outer yoke, which causes a corresponding deformation.
  • the disk-shaped magnetic elastomer composite is also deformed here. The strength of the magnetic field in turn determines the Degree of deformation.
  • the magnetic elastomer composite is essentially disk-shaped and has a larger or smaller disk thickness towards the center of the disk, in particular in the form of a curvature outwards or inwards on the side facing the inner yoke, with the Slice thickness changes continuously or gradually.
  • the inner yoke has a concave or convex curvature that essentially corresponds to the shape of the disk. The actuation force is increased by the shape adaptation between the elastomer composite and the inner yoke.
  • the magnetic elastomer composite with at least one mechanical and / or hydraulic element in particular selected from the group consisting of a rod, a stamp, a thread, a hydraulic fluid, a bag filled with liquid or gas, and combinations of which is coupled, via which the deformation can be transferred into a linear movement of the linear actuator.
  • the linear actuator preferably has a coil or a coil and a permanent magnet or a coil and a switchable hard magnet.
  • the magnetic elastomer composite preferably contains at least one elastomer as the matrix material, which is preferably selected from the group consisting of silicone, fluorosilicone, polyurethane (PUR), polynorbornene, natural rubber (NR), styrene-butadiene (SBR), isobutylene-isoprene (IIR), Ethylene-propylene-diene terpolymer (EPDM / EPM), poly-chlorobutadiene (CR), chlorosulfonated polyethylene (CSM), acrylonitrile-butadiene (NBR), hydrogenated acrylonitrile-butadiene (HNBR), a fluororubber such as Viton, a thermoplastic elastomer such as thermoplastic styrene copolymers (styrene-butadiene-styrene (SBS-), styrene-ethylene-butadiene-styrene (SEBS-
  • Magnetic particles are preferably selected from the group consisting of iron, in particular carbonyl iron, cobalt, nickel, iron alloys, in particular iron-cobalt alloys or iron-nickel alloys, iron oxides, in particular magnetite or ferrite, preferably manganese zinc ferrite, aluminum-nickel Cobalt alloys and mixtures thereof selected.
  • the average size of the magnetic particles is preferably less than 100 ⁇ m.
  • the magnetic elastomer composite according to the invention preferably contains magnetizable elements or shaped bodies which differ from the magnetizable particles, the size of the elements or shaped bodies preferably exceeding the size of the particles by a factor of 10, particularly preferably by a factor of 100 .
  • These magnetizable elements increase the magnetic attraction forces on the magnetic elastomer composite.
  • several or many magnetizable elements can also be fastened in or on the magnetic elastomer composite.
  • the magnetizable element or elements can be made of soft magnetic materials, in particular iron, preferably carbonyl iron, cobalt, nickel, iron alloys, preferably iron-cobalt alloys or iron-nickel alloys, iron oxides, preferably magnetite or ferrite, particularly preferably manganese zinc ferrite, or hard magnetic materials, in particular aluminum-nickel-cobalt, neodymium-iron-boron or samarium-cobalt or mixtures thereof.
  • soft magnetic materials in particular iron, preferably carbonyl iron, cobalt, nickel, iron alloys, preferably iron-cobalt alloys or iron-nickel alloys, iron oxides, preferably magnetite or ferrite, particularly preferably manganese zinc ferrite, or hard magnetic materials, in particular aluminum-nickel-cobalt, neodymium-iron-boron or samarium-cobalt or mixtures thereof.
  • the magnetic elastomer composite can also consist of a bellows with concentric folds. Deformation facilitates the deformation in the magnetic field. Another possibility is that the disk-shaped magnetic elastomer composite has a bulge on one side. In this way there is a stronger magnetic attraction in the magnetic field.
  • the inner yoke and / or the coil can have a complementary curvature into which the curvature of magnetic elastomer composites moves. In this way, a stronger deformation movement of the magnetic elastomer composite can take place.
  • the deformation of the magnetic elastomer composite in the magnetic field can be used directly as a linear actuation.
  • the actuation takes place when the magnetic field is switched on, viewed from the outside of the magnetic elastomer composite to the inside.
  • the deformation movement can be transferred to the other side of the magnetic circuit by mechanical transmission.
  • a rod or a stamp is used, which is passed through the inner yoke.
  • a hydraulic medium can be used for this, which transmits the movement of the magnetic elastomer composite to the other side of the magnetic circuit.
  • the mechanical transmission can alternatively also take place through the outer yoke.
  • the magnetic field for controlling the magnetic elastomer composite is usually generated by a coil.
  • the magnetic circuit can also contain a permanent magnet that generates a magnetic field without electrical energy.
  • An additional coil can then either weaken or even compensate or amplify this magnetic field.
  • the permanent magnet defines a basic setting of the linear actuator with a specific deformation of the magnetic elastomer composite.
  • the permanent magnet preferably consists of neodymium-iron-boron or samarium-cobalt.
  • the hard magnet is provided with a permanent magnetization by a magnetic field generated briefly by the coil. In this way, the magnetic elastomer composite is deformed and the linear actuator moves into a defined position. With this arrangement, electrical energy is only required for changing the actuator position by giving the switchable hard magnet a different magnetization.
  • the switchable hard magnet preferably consists of aluminum-nickel-cobalt or a ferrite. Materials with a coercive field strength of less than 100 kA / m and a saturation magnetization of more than 600 mT are preferred for the switchable hard magnet.
  • the linear actuator can also have two magnetic circuits, which can be controlled electrically separately.
  • the magnetic elastomer composite is preferably located between the two magnetic circuits and can optionally be from one or the other magnetic circuit be attracted. Since there is no external access here, the movement of the magnetic elastomer composite will be transferred to the outside by the mechanical or hydraulic transmission already shown.
  • the magnetic elastomer composite can be used to control a change in properties by means of a linear actuator movement, this change in properties resulting, for example, in a change in a surface structure.
  • the change in the structure of the at least one surface causes the surface to be converted into an operating surface.
  • An activation signal generates a magnetic field via a coil, the shape of the magnetic elastomer composite consequently changing and an operating surface becoming visible.
  • the magnetic elastomer composite returns to its original shape, whereby the control surface is converted back to the initial surface. This makes it possible to reversibly form surfaces to cover, for example, switches, sensors, operating elements, etc.
  • the linear actuators according to the invention are used for the controlled movement, adjustment or adjustment of flaps, doors, mirrors, optical elements, in particular radiation sources.
  • the linear actuators can also be used to generate movements in robots and for tactile elements.
  • the first embodiment shows a linear actuator with a magnetic circuit with a coil.
  • the outer yoke on which the magnetic elastomer composite rests is longer than the inner yoke, as a result of which the magnetic circuit between the inner yoke and the disk-shaped magnetic elastomer composite has an interruption ( Figure 1 , Left).
  • a current is applied to the coil, a magnetic field is generated, through which the magnetic elastomer composite is attracted to the inner yoke and thereby deforms ( Figure 1 , right).
  • the strength of the deformation can be continuously controlled by the strength of the applied magnetic field via the coil current.
  • the magnetic field is switched off, the magnetic elastomer composite returns to its original shape.
  • the outer yoke is shorter than the inner yoke.
  • the disc-shaped magnetic elastomer composite rests on the inner yoke ( Figure 2 , Left).
  • the magnetic elastomer composite is attracted to the outer yoke and deforms accordingly ( Figure 2 , right).
  • the third exemplary embodiment again shows a linear actuator with a shorter inner yoke.
  • the magnetic elastomer composite has a bulge on the side facing the inner yoke ( Figure 3 , Left).
  • the magnetic elastomer composite is attracted by the inner yoke with a stronger force than without bulging.
  • the degree of deformation is limited by the bulge ( Figure 3 , right).
  • the inner yoke has a bulge which is complementary to the bulge on the magnetic elastomer composite ( Figure 4 , Left).
  • the bulge on the magnetic elastomer composite can penetrate into the bulge in the inner yoke ( Figure 4 , right).
  • the fifth exemplary embodiment shows a linear actuator with a shorter inner yoke which is traversed by a channel which is sealed at the upper end by a membrane.
  • the space between the magnetic elastomer composite and the inner yoke and the channel are filled with a hydraulic fluid ( Figure 5 , Left).
  • the magnetic elastomer composite deforms in the direction of the inner yoke, displacing the hydraulic fluid from the gap.
  • the hydraulic fluid is pushed up through the channel and deforms the membrane on top ( Figure 5 , right).
  • the channel is only partially filled with a hydraulic fluid.
  • a hydraulic fluid There is a rod above the surface of the liquid ( Figure 6 , Left).
  • the hydraulic fluid pushes the rod up and out of the yoke ( Figure 6 , right).
  • the embodiment according to Fig. 7 shows how the fifth embodiment shows a linear actuator in which the deformation of the magnetic elastomer composite is transmitted upwards by a hydraulic fluid.
  • a magnetic molded body made of magnetic steel attached to the underside of the magnetic elastomer composite greatly increases the attractive force on the inner yoke. Thereby the pressure exerted on the hydraulic fluid also rises, and with it the actuation force.
  • a magnetic molded body is also attached to the magnetic elastomer composite to increase the actuation force.
  • the force is first transmitted hydraulically and then via a rod.
  • the magnetic elastomer composite has the shape of a bellows ( Figure 9 , Left).
  • the bellows unfolds and presses a hydraulic fluid upwards, which in turn deforms a membrane.
  • the magnetic circuit contains, in addition to the electromagnet, an annular switchable hard magnet made of an aluminum-nickel-cobalt alloy, which is initially not magnetized ( Figure 11 , Left).
  • an annular switchable hard magnet made of an aluminum-nickel-cobalt alloy, which is initially not magnetized ( Figure 11 , Left).
  • the hard magnet is magnetized and maintains the magnetization even after the coil current has been switched off ( Figure 11 , right).
  • the deformation of the magnetic elastomer composite, the displacement of the hydraulic fluid upward and the deformation of the membrane above it are retained without further electrical energy having to be supplied through the coil. Only for a change in the actuation state does electrical energy have to be supplied through the coil in order to change the magnetization of the hard magnet.
  • the magnetic circuit contains, in addition to the electromagnet, an annular permanent magnet made of a samarium-cobalt alloy.
  • the magnetic field generated by the permanent magnet deforms the magnetic elastomer composite without supplying electrical energy ( Figure 13 , Left).
  • An additional magnetic field generated by the coil can strengthen the field of the permanent magnet and thus increase the deformation of the magnetic elastomer composite ( Figure 13 , Middle). By reversing the direction of the current in the coil, the additional magnetic field can also weaken the field of the permanent magnet and thus reduce or even cancel out the deformation of the magnetic elastomer composite ( Figure 13 , right).
  • Fig. 14 shows a compact form of a linear actuator with magnetic elastomer composite.
  • the magnetic elastomer composite is conical with a flattened tip ( Fig. 14 , Left).
  • the coil winding has a triangular cross section, which is largely complementary to the conical shape of the magnetic elastomer composite.
  • the magnetic elastomer composite deforms and pushes a short rod upwards ( Fig. 14 , right).
  • relatively high actuation forces can be generated.
  • the linear actuator is constructed similarly to that in the exemplary embodiment according to FIG Fig. 14 .
  • the magnetic elastomer composite here contains a magnetic molded body. This increases the attraction force on the inner yoke and thus the actuation force.
  • the magnetic elastomer composite has the shape of a cylinder. It is located in the linear actuator between a lower and an upper yoke part, but only partially fills the space between the yoke parts ( Fig. 16 , Left).
  • the magnetic elastomer composite is attracted to both yoke parts and extends in length upwards. This pushes a rod up through the inner yoke ( Fig. 16 , right).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)

Description

Die Erfindung betrifft einen Linearaktor, der mindestens einen magnetischen Elastomer-Komposit aus einem Elastomer und magnetisierbaren Partikeln sowie ein inneres und ein äußeres Magnetjoch sowie mindestens eine Spule und/oder mindestens einen Permanentmagneten oder mindestens einen schaltbaren Hartmagneten zur Erzeugung von mindestens einem Magnetkreis, der eine Unterbrechung aufweist, enthält. Der Linearaktor findet Verwendung zum gesteuerten Bewegen, Verstellen oder Justieren unterschiedlichster Gegenstände sowie zur Erzeugung von Bewegung in Robotern sowie für haptisch fühlbare Elemente.The invention relates to a linear actuator, the at least one magnetic elastomer composite made of an elastomer and magnetizable particles and an inner and an outer magnetic yoke and at least one coil and / or at least one permanent magnet or at least one switchable hard magnet for generating at least one magnetic circuit, the one Has interruption, contains. The linear actuator is used for the controlled movement, adjustment or adjustment of a wide variety of objects as well as for generating movement in robots as well as for tactile elements.

In vielen technischen Systemen soll eine Linearbewegung über eine relativ kleine Entfernung elektrisch gesteuert werden. Eine solche Anforderung tritt beispielsweise beim Verstellen von Klappen oder von optischen Elementen wie Spiegeln oder Leuchtelementen auf. Ein weiterer Einsatzfall für solche Linearantriebe für kurze Distanzen betrifft das Verriegeln oder Entriegeln von Türen, Fenstern, etc. Auch in der Robotik treten solche Linearbewegungen auf, wenn etwa ein Objekt gegriffen und anschließend positioniert werden soll (Pick and Place). Schließlich werden vermehrt Aktoren für Mensch-Maschine-Schnittstellen mit haptischer Rückmeldung gewünscht, bei denen mit den Fingern auf einer Bedienoberfläche eine Bewegung erspürt werden kann, die dem Benutzer eine Information z. B. über eine erfolgreiche Eingabe vermittelt.In many technical systems, linear motion is to be electrically controlled over a relatively short distance. Such a requirement occurs, for example, when adjusting flaps or optical elements such as mirrors or lighting elements. Another application for such linear drives for short distances concerns the locking or unlocking of Doors, windows, etc. Also in robotics, such linear movements occur when, for example, an object is to be gripped and then positioned (pick and place). Finally, actuators for human-machine interfaces with haptic feedback are increasingly desired, in which a movement can be sensed with the fingers on a user interface, which provides the user with information such. B. conveyed via a successful entry.

Für diese Anwendungsfälle werden Aktoren benötigt, die eine Linearbewegung über einen relativ kurzen Weg von einigen Millimetern oder Zentimetern ausführen. In der Regel soll der zurückzulegende Weg der Bewegung flexibel vorgegeben und präzise ausgeführt werden können. Der Hub eines solchen Linearaktors soll damit elektrisch gesteuert werden.For these applications, actuators are required that perform a linear movement over a relatively short path of a few millimeters or centimeters. As a rule, the path of movement to be covered should be flexible and precise. The stroke of such a linear actuator is to be controlled electrically.

Zum Verstellen von Spiegeln oder Klappen werden in der Regel Elektromotoren eingesetzt, die zunächst eine Rotationsbewegung erzeugen, die anschließend über ein Getriebe in eine Linearbewegung übersetzt wird. Dies verlangt einen relativ hohen technischen Aufwand für eine verhältnismäßig einfache Bewegung. Eine Alternative besteht in der Verwendung von elektromagnetischen Aktoren (Voice Coil). Diese sind jedoch schwer steuerbar und damit in ihrer Positioniergenauigkeit begrenzt. Piezoaktoren können zwar sehr präzise positionieren und dabei auch große Kräfte erzeugen, doch sind die Stellwege für die genannten Anwendungsfälle zu klein. Um Piezoaktoren dafür nutzen zu können, müssen Stellwegsvergrößerer integriert werden, was den Aufwand deutlich erhöht. Außerdem sind Piezoaktoren allein schon teuer und benötigen zudem relativ hohe elektrische Ansteuerspannungen.In order to adjust mirrors or flaps, electric motors are generally used, which first generate a rotational movement, which is then translated into a linear movement via a gear. This requires a relatively high technical effort for a relatively simple movement. An alternative is to use electromagnetic actuators (voice coil). However, these are difficult to control and are therefore limited in their positioning accuracy. Piezo actuators can position very precisely and also generate large forces, but the travel ranges are too small for the applications mentioned. In order to be able to use piezo actuators for this, travel range enlargers must be integrated, which significantly increases the effort. In addition, piezo actuators alone are expensive and also require relatively high electrical control voltages.

Aufgrund dieser Situation besteht ein hoher Bedarf an neuen Aktoren, die die genannte Aufgabe einer präzise gesteuerten Linearbewegung über eine Distanz von einigen Millimetern oder Zentimetern erfüllen können. Die vorliegende Erfindung löst die Aufgabe mit Hilfe von magnetisch steuerbaren Materialien, sogenannten magnetoaktiven Polymeren.Because of this situation, there is a great need for new actuators that can perform the aforementioned task of precisely controlled linear movement over a distance of a few millimeters or centimeters. The present invention solves the problem with the aid of magnetically controllable materials, so-called magnetoactive polymers.

Magnetoaktive Polymere (MAP) sind Kompositmaterialien aus einer Elastomermatrix, die mit magnetischen oder magnetisierbaren Partikeln gefüllt ist. Aus diesem Grund werden sie im Folgenden magnetische Elastomerkomposite genannt. Beim Anlegen eines Magnetfeldes kommt es einerseits zu einer reversiblen Versteifung des Materials. Andererseits entsteht im Magnetfeld eine Verformung des magnetischen Elastomerkomposits entlang der Feldlinien. Wird im Luftspalt zwischen zwei Magnetjochteilen ein Magnetfeld erzeugt, so zieht sich ein magnetischer Elastomerkomposit, der im unmagnetisierten Zustand den Spalt nicht überbrückt, in die Länge, so dass nun eine Überbrückung erfolgt. Dieser Effekt ist bereits bekannt.Magnetoactive polymers (MAP) are composite materials made of an elastomer matrix that is filled with magnetic or magnetizable particles. For this reason, they are called magnetic elastomer composites below. When a magnetic field is applied, the material is reversibly stiffened. On the other hand, the magnetic elastomer composite is deformed along the field lines in the magnetic field. Will be in the air gap between two magnetic yoke parts If the magnetic field is generated, a magnetic elastomer composite, which does not bridge the gap in the non-magnetized state, extends in length, so that the bridge is now bridged. This effect is already known.

Für die Realisierung eines Linearaktors ist diese Bewegung infolge der Verformung aber nicht gut geeignet, da durch die Magnetjochteile beide Seiten des magnetischen Elastomerkomposits nicht zugänglich sind und die Bewegung schlecht kontrolliert werden kann. Weiterhin ist bekannt, dass sich ein ringförmiger magnetischer Elastomerkomposit in einem innen oder außen liegenden Ringspalt zwischen einem Innen- und einem Außenjoch eines Magnetkreises radial ausdehnen und damit den Ringspalt verschließen kann. Auf diese Weise lassen sich ringförmige Ventile realisieren. Eine andere Nutzung dieser Radialausdehnung von magnetischen Elastomerkompositen im Magnetfeld besteht in elektrisch steuerbaren Feststell- und Lösevorrichtungen. Eine solche Vorrichtung wird in der Patentschrift DE 2012 202 418 beschrieben.However, due to the deformation, this movement is not well suited for the realization of a linear actuator, since the magnetic yoke parts make both sides of the magnetic elastomer composite inaccessible and the movement is difficult to control. It is also known that an annular magnetic elastomer composite can expand radially in an inner or outer annular gap between an inner and an outer yoke of a magnetic circuit and thus close the annular gap. In this way, annular valves can be realized. Another use of this radial expansion of magnetic elastomer composites in the magnetic field is in electrically controllable locking and release devices. Such a device is described in the patent DE 2012 202 418 described.

Die DE 10 2007 028 663 A1 betrifft Komposite aus einem elastischen und/oder thermoplastisch-elastischen Trägermedium und hartmagnetischen Partikeln, die in einem Magnetfeld polarisiert werden, wobei nach dem Abschalten des Magnetfeldes eine Magnetisierung zurückbleibt.The DE 10 2007 028 663 A1 relates to composites of an elastic and / or thermoplastic-elastic carrier medium and hard magnetic particles which are polarized in a magnetic field, with magnetization remaining after the magnetic field has been switched off.

In Shunta Kashima et al.: "Novel Soft Actuator Using Magnetorheological Elastomer" (IEEE Transactions on Magnetics, Vol. 48, No. 4, Seiten 1649-1652 ) werden weiche Aktoren beschrieben, die magnetorheologische Elastomere verwenden. Zunächst werden Materialeigenschaften im Magnetisierungsprozess und zur Magnetisierung des magnetischen Elastomers beitragende Hauptfaktoren gezeigt. Im Weiteren wird ein Aktor vorgeschlagen, welcher ein magnetorheologisches Elastomer kombiniert mit einem eingebetteten Elektromagneten enthält. Der Magnetkreis bei angelegtem Strom sowie sein Funktionsprinzip werden erklärt. Schließlich werden die statischen und dynamischen Bewegungen und die dynamische Belastung des Aktors mit Hilfe eines experimentellen Prototypen und einer Messanordnung bestimmt.In Shunta Kashima et al .: "Novel Soft Actuator Using Magnetorheological Elastomer" (IEEE Transactions on Magnetics, Vol. 48, No. 4, pages 1649-1652 ) soft actuators are described that use magnetorheological elastomers. First, material properties in the magnetization process and main factors contributing to the magnetization of the magnetic elastomer are shown. Furthermore, an actuator is proposed which contains a magnetorheological elastomer combined with an embedded electromagnet. The magnetic circuit with current applied and its principle of operation are explained. Finally, the static and dynamic movements and the dynamic load on the actuator are determined using an experimental prototype and a measuring arrangement.

Die EP 2 239 837 A1 beschreibt einen Aktor, der sich flexibel und weich wie Muskeln bewegen kann, stabil über eine lange Zeitspanne betrieben werden kann, eine starke Antriebskraft generieren kann, eine vorteilhafte Empfindlichkeit und eine hohe Energieumwandlungseffizienz aufweist. Eine Spule ist eingebettet in ein magnetisches Elastomer, welches durch Mischen eines Pulver-artigen ferromagnetischen oder hochmagnetischen permeablen Materials mit einem Elastomer erhalten wird, so dass die Spule elektrisch verbunden werden kann. Durch das elektrische Verbinden der Spule wird ein magnetisches Feld in der Spule und um die Spule herum generiert. Das magnetische Feld dringt in das magnetische Elastomer ein. Wenn das magnetische Feld in dem magnetischen Elastomer generiert wird, wirkt eine Deformationskraft auf das magnetische Elastomer, indem die magnetische Kraft auf jeden Abschnitt des magnetischen Elastomers wirkt. Auf diese Weise kann eine Antriebskraft erhalten werden.The EP 2 239 837 A1 describes an actuator that can move flexibly and smoothly like muscles, can be operated stably over a long period of time, can generate a strong driving force, has an advantageous sensitivity and has a high energy conversion efficiency. A coil is embedded in a magnetic elastomer, which is obtained by mixing a powder-like ferromagnetic or highly magnetic permeable material is obtained with an elastomer so that the coil can be electrically connected. By electrically connecting the coil, a magnetic field is generated in and around the coil. The magnetic field penetrates the magnetic elastomer. When the magnetic field is generated in the magnetic elastomer, a deformation force acts on the magnetic elastomer by applying the magnetic force on each section of the magnetic elastomer. In this way, a driving force can be obtained.

Mit den aus dem Stand der Technik bekannten Verformungsmechanismen von magnetischen Elastomerkompositen im Magnetfeld lassen sich keine präzise steuerbaren Linearbewegungen erzeugen.With the deformation mechanisms of magnetic elastomer composites in the magnetic field known from the prior art, precisely controllable linear movements cannot be generated.

Ausgehend hiervon war es Aufgabe der vorliegenden Erfindung, einen Linearaktor bereitzustellen, mit dem eine präzise steuerbare Linearbewegung ausführbar ist, wobei der zurückzulegende Weg flexibel vorgebbar und präzise ausführbar sein soll, so dass der Hub des Linearaktors elektrisch steuerbar ist.Proceeding from this, it was an object of the present invention to provide a linear actuator with which a precisely controllable linear movement can be carried out, the path to be covered being able to be predefined flexibly and precisely, so that the stroke of the linear actuator can be electrically controlled.

Diese Aufgabe wird durch den Linearaktor mit den Merkmalen des Anspruchs 1 gelöst. Die weiteren abhängigen Ansprüche zeigen vorteilhafte Weiterbildungen auf. Erfindungsgemäße Verwendungen werden in den Ansprüchen 14 und 15 angegeben.This object is achieved by the linear actuator with the features of claim 1. The further dependent claims show advantageous developments. Uses according to the invention are specified in claims 14 and 15.

Erfindungsgemäß wird ein Linearaktor enthaltend mindestens einen magnetischen Elastomer-Komposit, der mindestens ein Elastomer und magnetisierbare Partikel enthält, bereitgestellt. Weiterhin enthält der Linearaktor ein inneres und ein äußeres Magnetjoch sowie mindestens eine Spule und/oder mindestens einen Permanentmagneten oder mindestens einen schaltbaren Hartmagneten zur Erzeugung von mindestens einem Magnetkreis, der eine Unterbrechung aufweist. Der magnetische Elastomer-Komposit ist dabei bei Anlegen oder Ändern des Magnetfeldes derart verformbar, dass eine lineare Aktorbewegung ausgelöst wird und die Distanz der Aktorbewegung durch die Stärke des Magnetfeldes kontinuierlich und/oder reversibel steuerbar ist.According to the invention, a linear actuator containing at least one magnetic elastomer composite which contains at least one elastomer and magnetizable particles is provided. Furthermore, the linear actuator contains an inner and an outer magnet yoke and at least one coil and / or at least one permanent magnet or at least one switchable hard magnet for generating at least one magnetic circuit which has an interruption. The magnetic elastomer composite is deformable when the magnetic field is applied or changed in such a way that a linear actuator movement is triggered and the distance of the actuator movement by the Strength of the magnetic field is continuously and / or reversibly controllable.

Die Erfindung stellt daher einen Linearaktor bereit, der eine solche präzise steuerbare Linearbewegung ermöglicht. Hierzu wird ein Linearaktor mit einem speziellen Magnetkreis beschrieben, bei dem ein magnetischer Elastomerkomposit von dem auf einer Seite liegenden Magnetkreis angezogen wird, während die andere Seite des magnetischen Elastomerkomposits frei zugänglich ist. Durch die magnetische Anziehung verformt sich der magnetische Elastomerkomposit, wobei die Verformung und damit auch der Aktorstellweg mit zunehmender Magnetfeldstärke oder magnetischer Flussdichte ansteigen. Beim Abschalten des Magnetfeldes oder bei Reduzierung der Magnetfeldstärke verformt sich der magnetische Elastomerkomposit zurück. Dabei wirkt das Elastomer wie eine inhärente Rückstellfeder.The invention therefore provides a linear actuator which enables such a precisely controllable linear movement. For this purpose, a linear actuator with a special magnetic circuit is described, in which a magnetic elastomer composite is attracted to the magnetic circuit lying on one side, while the other side of the magnetic elastomer composite is freely accessible. The magnetic attraction deforms the magnetic elastomer composite, the deformation and thus also the actuator travel increasing with increasing magnetic field strength or magnetic flux density. When the magnetic field is switched off or the magnetic field strength is reduced, the magnetic elastomer composite deforms back. The elastomer acts like an inherent return spring.

Der magnetische Elastomerkomposit kann in dem Linearaktor verschiedene Formen einnehmen.The magnetic elastomer composite can take various forms in the linear actuator.

Eine bevorzugte Ausführungsform der Erfindung sieht vor, dass der magnetische Elastomer-Komposit scheibenförmig ist und das Magnetfeld im Wesentlichen senkrecht zu dessen Grundfläche ausgerichtet wird und die Verformung des magnetisches Elastomer-Komposits in Form einer Wölbung des magnetisches Elastomer-Komposits die Richtung der Aktorbewegung vorgibt. Der scheibenförmige magnetische Elastomerkomposit ist dabei beispielweise mit einem weitgehend geschlossenen zylindrischen Magnetkreis aus einer Spule, einem Innen- und einem Außenjoch verbunden. Dabei steht das Außenjoch, auf dem der magnetische Elastomerkomposit aufliegt, hervor. Beim Einschalten des Magnetfeldes wird der Mittelteil des magnetischen Elastomerkomposits vom Innenjoch angezogen, wodurch die Verformung entsteht. Beim Abschalten des Magnetfeldes erfolgt eine Rückverformung des scheibenförmigen magnetischen Elastomerkomposits. Die Stärke des Magnetfeldes bestimmt den Grad der Verformung.A preferred embodiment of the invention provides that the magnetic elastomer composite is disc-shaped and the magnetic field is oriented essentially perpendicular to the base thereof and the deformation of the magnetic elastomer composite in the form of a curvature of the magnetic elastomer composite specifies the direction of the actuator movement. The disk-shaped magnetic elastomer composite is connected, for example, to a largely closed cylindrical magnetic circuit consisting of a coil, an inner and an outer yoke. The outer yoke on which the magnetic elastomer composite rests stands out. When the magnetic field is switched on, the central part of the magnetic elastomer composite is attracted to the inner yoke, which causes the deformation. When the magnetic field is switched off, the disk-shaped magnetic elastomer composite is reshaped. The strength of the magnetic field determines the degree of deformation.

In einer anderen bevorzugten Ausführungsform steht das Innenjoch hervor und der magnetische Elastomer-Komposit liegt darauf auf. In diesem Fall wird beim Einschalten des Magnetfeldes der Außenteil des magnetischen Elastomerkomposits vom Außenjoch angezogen, wodurch eine entsprechende Verformung entsteht. Beim Abschalten des Magnetfeldes erfolgt auch hier eine Rückverformung des scheibenförmigen magnetischen Elastomerkomposits. Die Stärke des Magnetfeldes bestimmt wiederum den Grad der Verformung.In another preferred embodiment, the inner yoke protrudes and the magnetic elastomer composite rests on it. In this case, when the magnetic field is switched on, the outer part of the magnetic elastomer composite is attracted to the outer yoke, which causes a corresponding deformation. When the magnetic field is switched off, the disk-shaped magnetic elastomer composite is also deformed here. The strength of the magnetic field in turn determines the Degree of deformation.

Eine weitere bevorzugte Ausführungsform sieht vor, dass der magnetische Elastomer-Komposit im Wesentlichen scheibenförmig ist und zum Zentrum der Scheibe hin eine größere oder kleinere Scheibendicke aufweist, insbesondere in Form einer Wölbung nach außen oder innen auf der dem inneren Joch zugewandten Seite, wobei sich die Scheibendicke stetig oder stufenweise ändert. Dabei ist es bevorzugt, dass das innere Joch eine zur Scheibenform im Wesentlichen korrespondierende konkave oder konvexe Wölbung aufweist. Durch die Formanpassung zwischen dem Elastomer-Komposit und dem inneren Joch wird die Aktuationskraft verstärkt.A further preferred embodiment provides that the magnetic elastomer composite is essentially disk-shaped and has a larger or smaller disk thickness towards the center of the disk, in particular in the form of a curvature outwards or inwards on the side facing the inner yoke, with the Slice thickness changes continuously or gradually. It is preferred that the inner yoke has a concave or convex curvature that essentially corresponds to the shape of the disk. The actuation force is increased by the shape adaptation between the elastomer composite and the inner yoke.

Es ist weiter bevorzugt, dass der magnetische Elastomer-Komposit mit mindestens einem mechanischen und/oder hydraulischen Element, insbesondere ausgewählt aus der Gruppe bestehend aus einer Stange, einem Stempel, einem Faden, einer hydraulischen Flüssigkeit, einem mit Flüssigkeit oder Gas gefüllten Sack sowie Kombinationen hiervon, gekoppelt ist, über die die Verformung in eine lineare Bewegung des Linearaktors übertragbar ist.It is further preferred that the magnetic elastomer composite with at least one mechanical and / or hydraulic element, in particular selected from the group consisting of a rod, a stamp, a thread, a hydraulic fluid, a bag filled with liquid or gas, and combinations of which is coupled, via which the deformation can be transferred into a linear movement of the linear actuator.

Vorzugsweise weist der Linearaktor eine Spule oder eine Spule und einen Permanentmagneten oder eine Spule und einen schaltbaren Hartmagneten auf.The linear actuator preferably has a coil or a coil and a permanent magnet or a coil and a switchable hard magnet.

Der magnetische Elastomerkomposit enthält vorzugsweise als Matrixmaterial mindestens ein Elastomer, das bevorzugt ausgewählt ist aus der Gruppe bestehend aus Silicon, Fluorsilicon, Polyurethan (PUR), Polynorbornen, Naturkautschuk (NR), Styrol-Butadien (SBR), Isobutylen-Isopren (IIR), Ethylen-Propylen-Dien-Terpolymer (EPDM/EPM), Poly-Chlorbutadien (CR), Chlorsulfoniertes Polyethylen (CSM), Acrylnitril-Butadien (NBR), Hydriertes Acrylnitril-Butadien (HNBR), einen Fluorkautschuk wie Viton, ein thermoplastisches Elastomer wie thermoplastische Styrol-Copolymere (Styrol-Butadien-Styrol-(SBS-), Styrol-Ethylen-Butadien-Styrol- (SEBS-), Styrol-Ethylen-Propylen-Styrol-(SEPS-), Styrol-Ethylen-Ethylen-Propylen-Styrol- (SEEPS-) oder Styrol-Isopren-Styrol-(SIS-) Copolymer), teilvernetzte Blends auf Polyolefin-Basis (aus Ethylen-Propylen-Dien-Kautschuk und Polypropylen (EPDM/PP), aus Nitril-Butadien-Kautschuk und Polypropylen (NBR/PP) oder aus Ethylen-Propylen-Dien-Kautschuk und Polyethylen(EPDM/PE)) oder thermoplastische Urethan-Copolymere (aromatisches Hartsegment und Ester-Weichsegment (TPU-ARES), aromatisches Hartsegment und Ether-Weichsegment (TPU-ARET) oder aromatisches Hartsegment und Ester/Ether- Weichsegment (TPU-AREE)) sowie Mischungen, Blends oder Legierungen hiervon.The magnetic elastomer composite preferably contains at least one elastomer as the matrix material, which is preferably selected from the group consisting of silicone, fluorosilicone, polyurethane (PUR), polynorbornene, natural rubber (NR), styrene-butadiene (SBR), isobutylene-isoprene (IIR), Ethylene-propylene-diene terpolymer (EPDM / EPM), poly-chlorobutadiene (CR), chlorosulfonated polyethylene (CSM), acrylonitrile-butadiene (NBR), hydrogenated acrylonitrile-butadiene (HNBR), a fluororubber such as Viton, a thermoplastic elastomer such as thermoplastic styrene copolymers (styrene-butadiene-styrene (SBS-), styrene-ethylene-butadiene-styrene (SEBS-), styrene-ethylene-propylene-styrene (SEPS-), styrene-ethylene-ethylene-propylene- Styrene (SEEPS) or styrene-isoprene-styrene (SIS) copolymer), partially cross-linked blends based on polyolefin (made of ethylene-propylene-diene rubber and polypropylene (EPDM / PP), made of nitrile-butadiene rubber and Polypropylene (NBR / PP) or from ethylene-propylene-diene rubber and polyethylene (EPDM / PE )) or thermoplastic urethane copolymers (aromatic hard segment and ester soft segment (TPU-ARES), aromatic hard segment and ether soft segment (TPU-ARET) or aromatic hard segment and ester / ether soft segment (TPU-AREE)) as well as mixtures, blends or alloys thereof.

Als magnetische Partikel werden bevorzugt Partikel ausgewählt aus der Gruppe bestehend aus Eisen, insbesondere Carbonyleisen, Cobalt, Nickel, Eisenlegierungen, insbesondere Eisen-Cobalt-Legierungen oder Eisen-Nickel-Legierungen, Eisenoxiden, insbesondere Magnetit oder Ferrit, bevorzugt Manganzinkferrit, Aluminium-Nickel-Cobalt-Legierungen und Mischungen hiervon ausgewählt. Die mittlere Größe der magnetischen Partikel beträgt vorzugsweise unter 100 µm.Magnetic particles are preferably selected from the group consisting of iron, in particular carbonyl iron, cobalt, nickel, iron alloys, in particular iron-cobalt alloys or iron-nickel alloys, iron oxides, in particular magnetite or ferrite, preferably manganese zinc ferrite, aluminum-nickel Cobalt alloys and mixtures thereof selected. The average size of the magnetic particles is preferably less than 100 μm.

Bei einer weiteren erfindungsgemäßen Variante enthält der erfindungsgemäße magnetische Elastomer-Komposit vorzugsweise sich von den magnetisierbaren Partikeln unterscheidende magnetisierbare Elemente bzw. Formkörper, wobei die Größe der Elemente bzw. Formkörper die Größe der Partikel bevorzugt um den Faktor 10, besonders bevorzugt um den Faktor 100 übersteigt. Diese magnetisierbaren Elemente verstärken die magnetischen Anziehungskräfte auf den magnetischen Elastomerkomposit. Alternativ können auch mehrere oder viele magnetisierbaren Elemente in oder an dem magnetischen Elastomerkomposit befestigt sein. Der oder die magnetisierbaren Elemente können aus weichmagnetischen Materialien, insbesondere Eisen, bevorzugt Carbonyleisen, Cobalt, Nickel, Eisenlegierungen, bevorzugt Eisen-Cobalt-Legierungen oder Eisen-Nickel-Legierungen, Eisenoxiden, bevorzugt Magnetit oder Ferrit, besonders bevorzugt Manganzinkferrit, oder hartmagnetischen Materialien, insbesondere Aluminium-Nickel-Cobalt, Neodym-Eisen-Bor oder Samarium-Cobalt oder Mischungen hiervon bestehen.In a further variant according to the invention, the magnetic elastomer composite according to the invention preferably contains magnetizable elements or shaped bodies which differ from the magnetizable particles, the size of the elements or shaped bodies preferably exceeding the size of the particles by a factor of 10, particularly preferably by a factor of 100 . These magnetizable elements increase the magnetic attraction forces on the magnetic elastomer composite. Alternatively, several or many magnetizable elements can also be fastened in or on the magnetic elastomer composite. The magnetizable element or elements can be made of soft magnetic materials, in particular iron, preferably carbonyl iron, cobalt, nickel, iron alloys, preferably iron-cobalt alloys or iron-nickel alloys, iron oxides, preferably magnetite or ferrite, particularly preferably manganese zinc ferrite, or hard magnetic materials, in particular aluminum-nickel-cobalt, neodymium-iron-boron or samarium-cobalt or mixtures thereof.

Der magnetische Elastomerkomposit kann auch aus einem Faltenbalg mit konzentrischen Falten bestehen. Durch die Entfaltung wird die Verformung im Magnetfeld erleichtert. Eine weitere Möglichkeit besteht darin, dass der scheibenförmige magnetische Elastomerkomposit auf einer Seite eine Auswölbung aufweist. Auf diese Weise kommt es zu einer stärkeren magnetischen Anziehung im Magnetfeld. Außerdem kann das Innenjoch und/oder die Spule eine komplementäre Einwölbung aufweisen, in die sich die Auswölbung magnetischen Elastomerkomposits hineinbewegt. Auf diese Weise kann eine stärkere Verformungsbewegung des magnetischen Elastomerkomposits stattfinden.The magnetic elastomer composite can also consist of a bellows with concentric folds. Deformation facilitates the deformation in the magnetic field. Another possibility is that the disk-shaped magnetic elastomer composite has a bulge on one side. In this way there is a stronger magnetic attraction in the magnetic field. In addition, the inner yoke and / or the coil can have a complementary curvature into which the curvature of magnetic elastomer composites moves. In this way, a stronger deformation movement of the magnetic elastomer composite can take place.

Die Verformung des magnetischen Elastomerkomposits im Magnetfeld kann direkt als Linearaktuation genutzt werden. In diesem Fall erfolgt die Aktuation beim Einschalten des Magnetfeldes von der Außenseite des magnetischen Elastomerkomposits betrachtet nach innen. Die Verformungsbewegung kann jedoch durch eine mechanische Übertragung auf die andere Seite des Magnetkreises transferiert werden. Zur Übertragung wird beispielsweise eine Stange oder ein Stempel eingesetzt, die durch das Innenjoch hindurchgeführt wird. Alternativ kann hierfür auch ein hydraulisches Medium verwendet werden, das die Bewegung des magnetischen Elastomerkomposits auf die andere Seite des Magnetkreises überträgt. Die mechanische Übertragung kann alternativ auch durch das Außenjoch erfolgen.The deformation of the magnetic elastomer composite in the magnetic field can can be used directly as a linear actuation. In this case, the actuation takes place when the magnetic field is switched on, viewed from the outside of the magnetic elastomer composite to the inside. However, the deformation movement can be transferred to the other side of the magnetic circuit by mechanical transmission. For the transmission, for example, a rod or a stamp is used, which is passed through the inner yoke. Alternatively, a hydraulic medium can be used for this, which transmits the movement of the magnetic elastomer composite to the other side of the magnetic circuit. The mechanical transmission can alternatively also take place through the outer yoke.

Das Magnetfeld zum Ansteuern des magnetischen Elastomerkomposits wird in der Regel durch eine Spule erzeugt. Der Magnetkreis kann jedoch auch einen Permanentmagneten enthalten, der ohne elektrische Energie ein Magnetfeld erzeugt. Eine zusätzliche Spule kann dann dieses Magnetfeld wahlweise entweder schwächen oder sogar kompensieren oder verstärken. Durch den Permanentmagneten wird auf diese Weise eine Grundeinstellung des Linearaktors mit einer bestimmten Verformung des magnetischen Elastomerkomposits definiert. Durch die Kompensation des Magnetfeldes des Permanentmagneten durch die Spule wird so das Schaltverhalten gegenüber einem Magnetkreis nur mit Spule umgekehrt. Vorzugsweise besteht der Permanentmagnet aus Neodym-Eisen-Bor oder Samarium-Cobalt.The magnetic field for controlling the magnetic elastomer composite is usually generated by a coil. However, the magnetic circuit can also contain a permanent magnet that generates a magnetic field without electrical energy. An additional coil can then either weaken or even compensate or amplify this magnetic field. In this way, the permanent magnet defines a basic setting of the linear actuator with a specific deformation of the magnetic elastomer composite. By compensating the magnetic field of the permanent magnet by the coil, the switching behavior compared to a magnetic circuit is only reversed with a coil. The permanent magnet preferably consists of neodymium-iron-boron or samarium-cobalt.

Außerdem besteht die Möglichkeit, einen schaltbaren Hartmagneten in den Magnetkreis zu integrieren. In diesem Fall wird der Hartmagnet durch ein kurzzeitig durch die Spule erzeugtes Magnetfeld mit einer bleibenden Magnetisierung versehen. Auf diese Weise wird der magnetische Elastomerkomposit verformt und der Linearaktor bewegt sich in eine definierte Position. Bei dieser Anordnung wird elektrische Energie nur für die Veränderung der Aktorposition benötigt, indem der schaltbare Hartmagnet eine andere Magnetisierung erhält. Vorzugsweise besteht der schaltbare Hartmagnet aus Aluminium-Nickel-Cobalt oder aus einem Ferrit. Bevorzugt werden für den schaltbaren Hartmagneten Materialien mit einer Koerzitivfeldstärke von weniger als 100 kA/m und einer Sättigungsmagnetisierung von mehr als 600 mT.There is also the option of integrating a switchable hard magnet into the magnetic circuit. In this case, the hard magnet is provided with a permanent magnetization by a magnetic field generated briefly by the coil. In this way, the magnetic elastomer composite is deformed and the linear actuator moves into a defined position. With this arrangement, electrical energy is only required for changing the actuator position by giving the switchable hard magnet a different magnetization. The switchable hard magnet preferably consists of aluminum-nickel-cobalt or a ferrite. Materials with a coercive field strength of less than 100 kA / m and a saturation magnetization of more than 600 mT are preferred for the switchable hard magnet.

Schließlich kann der Linearaktor auch zwei Magnetkreise aufweisen, die elektrisch separat angesteuert werden können. In diesem Fall befindet sich der magnetische Elastomerkomposit vorzugsweise zwischen den beiden Magnetkreisen und kann wahlweise von dem einen oder dem anderen Magnetkreis angezogen werden. Da hier keine Zugänglichkeit von außen vorliegt, wird die Bewegung des magnetischen Elastomerkomposits durch die bereits dargestellte mechanische oder hydraulische Übertragung nach außen transferiert werden.Finally, the linear actuator can also have two magnetic circuits, which can be controlled electrically separately. In this case, the magnetic elastomer composite is preferably located between the two magnetic circuits and can optionally be from one or the other magnetic circuit be attracted. Since there is no external access here, the movement of the magnetic elastomer composite will be transferred to the outside by the mechanical or hydraulic transmission already shown.

In einer weiteren Ausführungsform kann der magnetische Elastomerkomposit dazu verwendet werden, eine Eigenschaftsänderung durch eine lineare Aktorbewegung zu steuern, wobei diese Eigenschaftsänderung beispielsweise eine Änderung einer Oberflächenstruktur zur Folge hat. Die Änderung der Struktur der zumindest einen Oberfläche bewirkt, dass sich die Oberfläche in eine Bedienfläche umwandelt. Durch ein Aktivierungssignal wird über eine Spule ein Magnetfeld erzeugt, wobei infolgedessen der magnetische Elastomerkomposit in seiner Form verändert und eine Bedienfläche sichtbar wird. Durch die Deaktivierung des Magnetfeldes geht der magnetische Elastomerkomposit wieder in seine Ausgangsform zurück, wobei sich die Bedienfläche wieder in die anfängliche Oberfläche umwandelt. Damit sind reversibel formbare Oberflächen zur Abdeckung von zum Beispiel Schaltern, Sensoren, Bedienelementen usw. möglich.In a further embodiment, the magnetic elastomer composite can be used to control a change in properties by means of a linear actuator movement, this change in properties resulting, for example, in a change in a surface structure. The change in the structure of the at least one surface causes the surface to be converted into an operating surface. An activation signal generates a magnetic field via a coil, the shape of the magnetic elastomer composite consequently changing and an operating surface becoming visible. By deactivating the magnetic field, the magnetic elastomer composite returns to its original shape, whereby the control surface is converted back to the initial surface. This makes it possible to reversibly form surfaces to cover, for example, switches, sensors, operating elements, etc.

Die erfindungsgemäßen Linearaktoren finden Verwendung zum gesteuerten Bewegen, Verstellen oder Justieren von Klappen, Türen, Spiegeln, optischen Elementen, insbesondere Strahlungsquellen. Ebenso können die Linearaktoren zur Erzeugung von Bewegungen in Robotern sowie für haptisch fühlbare Elemente dienen.The linear actuators according to the invention are used for the controlled movement, adjustment or adjustment of flaps, doors, mirrors, optical elements, in particular radiation sources. The linear actuators can also be used to generate movements in robots and for tactile elements.

Anhand der in den nachfolgenden Figuren dargestellten Ausführungsbeispiele soll der erfindungsgemäße Gegenstand näher erläutert werden, ohne diesen auf die hier gezeigten spezifischen Ausführungsformen einschränken zu wollen.The subject according to the invention is intended to be explained in more detail with reference to the exemplary embodiments shown in the following figures, without wishing to restrict it to the specific embodiments shown here.

In der folgenden Legende sind die in den einzelnen Figuren dargestellten Komponenten bezeichnet. Figurenkomponente Bezeichnung Bezugszeichen

Figure imgb0001
Magnetischer Stahl, Jochteil 1
Figure imgb0002
Hydraulisches Medium 2
Figure imgb0003
Magnetischer Elastomerkomposit 3
Figure imgb0004
Spule, Elektromagnet 4
Figure imgb0005
Magnetfeld 5
Figure imgb0006
Permanentmagnet 6
Figure imgb0007
Unmagnetisierter Hartmagnet 7
Figure imgb0008
Magnetisierter Hartmagnet 8
Figure imgb0009
Nicht-magnetisches Material 9
The components shown in the individual figures are identified in the following legend. Figure component designation Reference numerals
Figure imgb0001
Magnetic steel, yoke part 1
Figure imgb0002
Hydraulic medium 2nd
Figure imgb0003
Magnetic elastomer composite 3rd
Figure imgb0004
Coil, electromagnet 4th
Figure imgb0005
Magnetic field 5
Figure imgb0006
Permanent magnet 6
Figure imgb0007
Non-magnetized hard magnet 7
Figure imgb0008
Magnetized hard magnet 8th
Figure imgb0009
Non-magnetic material 9

Die Figuren zeigen:

Fig. 1
einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld
Fig. 2
einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld, wobei das Innenjoch länger als das Außenjoch ist und sich der magnetische Elastomerkomposit durch die Anziehung zum Außenjoch verformt
Fig. 3
einen Linearaktor mit Magnetkreis mit Spule und mit Auswölbung auf magnetischem Elastomer-Komposit
Fig. 4
einen Linearaktor mit Magnetkreis mit Spule und mit Auswölbung auf magnetischem Elastomer-Komposit sowie Einwölbung in Magnetinnenjoch
Fig. 5
einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung auf Membran durch hydraulische Flüssigkeit
Fig. 6
einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung durch hydraulische Flüssigkeit und Stempel
Fig. 7
einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung auf Membran durch hydraulische Flüssigkeit; magnetischer Elastomerkomposit enthält magnetischen Formkörper
Fig. 8
einen Linearaktor mit Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung durch hydraulische Flüssigkeit und Stempel; magnetischer Elastomerkomposit enthält magnetischen Formkörper
Fig. 9
einen Linearaktor mit magnetischem Elastomerkomposit als Faltenbalg, der sich durch das Magnetfeld entfaltet; Übertragung der Bewegung auf Membran durch hydraulische Flüssigkeit
Fig. 10
einen Linearaktor mit magnetischem Elastomerkomposit als Faltenbalg, der sich durch das Magnetfeld entfaltet; Übertragung der Bewegung durch hydraulische Flüssigkeit und Stempel
Fig. 11
einen Linearaktor mit Elektromagnet und schaltbarem Hartmagnet in Magnetkreis; Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung auf Membran durch hydraulische Flüssigkeit
Fig. 12
einen Linearaktor mit Elektromagnet und schaltbarem Hartmagnet in Magnetkreis; Verformung von magnetischem Elastomerkomposit im Magnetfeld und Übertragung der Bewegung durch hydraulische Flüssigkeit und Stempel
Fig. 13
einen Linearaktor mit Elektromagnet und Permanentmagnet in Magnetkreis; Verformung von magnetischem Elastomerkomposit im Magnetfeld
Fig. 14
einen Linearaktor mit Auswölbung von magnetischem Elastomerkomposit und Einwölbung von Magnetkreis einschließlich Elektromagnet auf der zum magnetischen Elastomerkomposit hinweisenden Seite; Übertragung der Bewegung durch Stempel
Fig. 15
einen Linearaktor mit Auswölbung von magnetischem Elastomerkomposit und Einwölbung von Magnetkreis einschließlich Elektromagnet auf der zum magnetischen Elastomerkomposit hinweisenden Seite; magnetischer Elastomerkomposit enthält magnetischen Formkörper; Übertragung der Bewegung durch Stempel.
Fig. 16
einen Linearaktor, bei dem sich der magnetische Elastomerkomposit zwischen zwei Jochteilen befindet, sich im Magnetfeld ausdehnt und dabei die Bewegung durch einen Stempel durch das Innenjoch nach außen überträgt.
The figures show:
Fig. 1
a linear actuator with deformation of magnetic elastomer composite in the magnetic field
Fig. 2
a linear actuator with deformation of magnetic elastomer composite in the magnetic field, the inner yoke being longer than the outer yoke and the magnetic elastomer composite being deformed by the attraction to the outer yoke
Fig. 3
a linear actuator with magnetic circuit with coil and with bulge on magnetic elastomer composite
Fig. 4
a linear actuator with magnetic circuit with coil and with a bulge on a magnetic elastomer composite and a bulge in the inner magnet yoke
Fig. 5
a linear actuator with deformation of magnetic elastomer composite in the magnetic field and transmission of the movement to the membrane by hydraulic fluid
Fig. 6
a linear actuator with deformation of magnetic elastomer composite in the magnetic field and transmission of the movement by hydraulic fluid and stamp
Fig. 7
a linear actuator with deformation of magnetic elastomer composite in the magnetic field and transmission of the movement to the membrane by hydraulic fluid; magnetic elastomer composite contains magnetic shaped bodies
Fig. 8
a linear actuator with deformation of magnetic elastomer composite in the magnetic field and transmission of the movement by hydraulic fluid and stamp; magnetic elastomer composite contains magnetic shaped bodies
Fig. 9
a linear actuator with magnetic elastomer composite as a bellows, which unfolds through the magnetic field; Transfer of motion to membrane by hydraulic fluid
Fig. 10
a linear actuator with magnetic elastomer composite as a bellows, which unfolds through the magnetic field; Transmission of movement by hydraulic fluid and stamp
Fig. 11
a linear actuator with electromagnet and switchable hard magnet in a magnetic circuit; Deformation of magnetic elastomer composite in the magnetic field and transmission of the movement to the membrane by hydraulic fluid
Fig. 12
a linear actuator with electromagnet and switchable hard magnet in a magnetic circuit; Deformation of magnetic elastomer composite in the magnetic field and transmission of the movement by hydraulic fluid and stamp
Fig. 13
a linear actuator with electromagnet and permanent magnet in a magnetic circuit; Deformation of magnetic elastomer composite in the magnetic field
Fig. 14
a linear actuator with bulging of magnetic elastomer composite and bulging of magnetic circuit including electromagnet on the side facing the magnetic elastomer composite; Transfer of movement by stamp
Fig. 15
a linear actuator with bulging of magnetic elastomer composite and bulging of magnetic circuit including electromagnet on the side facing the magnetic elastomer composite; magnetic elastomer composite contains magnetic shaped bodies; Transfer of movement by stamp.
Fig. 16
a linear actuator in which the magnetic elastomer composite is located between two yoke parts, expands in the magnetic field and thereby transmits the movement through a stamp through the inner yoke to the outside.

AusführungsbeispieleEmbodiments

Das erste Ausführungsbeispiel zeigt einen Linearaktor mit einem Magnetkreis mit einer Spule. Das äußere Joch, auf dem der magnetische Elastomerkomposit aufliegt, ist länger als das innere Joch, wodurch der Magnetkreis zwischen dem inneren Joch und dem scheibenförmigen magnetischen Elastomerkomposit eine Unterbrechung aufweist (Figur 1, links). Beim Anlegen eines Stromes in der Spule wird ein Magnetfeld erzeugt, durch welches der magnetische Elastomerkomposit vom inneren Joch angezogen wird und sich dabei verformt (Figur 1, rechts). Die Stärke der Verformung ist durch die Stärke des angelegten Magnetfeldes über den Spulenstrom kontinuierlich steuerbar. Beim Abschalten des Magnetfeldes formt sich der magnetische Elastomerkomposit wieder in seine Ausgangsform zurück.The first embodiment shows a linear actuator with a magnetic circuit with a coil. The outer yoke on which the magnetic elastomer composite rests is longer than the inner yoke, as a result of which the magnetic circuit between the inner yoke and the disk-shaped magnetic elastomer composite has an interruption ( Figure 1 , Left). When a current is applied to the coil, a magnetic field is generated, through which the magnetic elastomer composite is attracted to the inner yoke and thereby deforms ( Figure 1 , right). The strength of the deformation can be continuously controlled by the strength of the applied magnetic field via the coil current. When the magnetic field is switched off, the magnetic elastomer composite returns to its original shape.

Im zweiten Ausführungsbeispiel ist das äußere Joch kürzer als das innere Joch. Dadurch liegt der scheibenförmige magnetische Elastomerkomposit auf dem inneren Joch auf (Figur 2, links). Beim Anlegen des Magnetfeldes wird der magnetische Elastomerkomposit vom äußeren Joch angezogen und verformt sich entsprechend (Figur 2, rechts).In the second embodiment, the outer yoke is shorter than the inner yoke. As a result, the disc-shaped magnetic elastomer composite rests on the inner yoke ( Figure 2 , Left). When the magnetic field is applied, the magnetic elastomer composite is attracted to the outer yoke and deforms accordingly ( Figure 2 , right).

Das dritte Ausführungsbespiel zeigt wieder einen Linearaktor mit einem kürzeren Innenjoch. Hier weist der magnetische Elastomerkomposit auf der dem Innenjoch zugewandten Seite eine Auswölbung auf (Figur 3, links). Beim Anlegen des Magnetfeldes wird der magnetische Elastomerkomposit vom Innenjoch mit einer stärkeren Kraft angezogen als ohne Auswölbung. Die Stärke der Verformung ist dagegen durch die Auswölbung eingeschränkt (Figur 3, rechts).The third exemplary embodiment again shows a linear actuator with a shorter inner yoke. Here the magnetic elastomer composite has a bulge on the side facing the inner yoke ( Figure 3 , Left). When the magnetic field is applied, the magnetic elastomer composite is attracted by the inner yoke with a stronger force than without bulging. The degree of deformation is limited by the bulge ( Figure 3 , right).

Im vierten Ausführungsbeispiel weist das Innenjoch eine Einwölbung auf, die sich zur Auswölbung auf dem magnetischen Elastomerkomposit komplementär verhält (Figur 4, links). Beim Anlegen des Magnetfeldes kann deshalb die Auswölbung auf dem magnetischen Elastomerkomposit in die Einwölbung in dem Innenjoch eindringen (Figur 4, rechts).In the fourth exemplary embodiment, the inner yoke has a bulge which is complementary to the bulge on the magnetic elastomer composite ( Figure 4 , Left). When the magnetic field is applied, the bulge on the magnetic elastomer composite can penetrate into the bulge in the inner yoke ( Figure 4 , right).

Das fünfte Ausführungsbeispiel zeigt einen Linearaktor mit einem kürzeren Innenjoch, das von einem Kanal durchzogen wird, der am oberen Ende durch eine Membran abgedichtet wird. Der Zwischenraum zwischen dem magnetischen Elastomerkomposit und dem Innenjoch sowie der Kanal sind mit einer hydraulischen Flüssigkeit gefüllt (Figur 5, links). Beim Anlegen des Magnetfeldes verformt sich der magnetische Elastomerkomposit in Richtung des Innenjoches und verdrängt dabei die hydraulische Flüssigkeit aus dem Zwischenraum. Die hydraulische Flüssigkeit wird durch den Kanal nach oben gedrückt und verformt dabei die oben anliegende Membran (Figur 5, rechts).The fifth exemplary embodiment shows a linear actuator with a shorter inner yoke which is traversed by a channel which is sealed at the upper end by a membrane. The space between the magnetic elastomer composite and the inner yoke and the channel are filled with a hydraulic fluid ( Figure 5 , Left). When the magnetic field is applied, the magnetic elastomer composite deforms in the direction of the inner yoke, displacing the hydraulic fluid from the gap. The hydraulic fluid is pushed up through the channel and deforms the membrane on top ( Figure 5 , right).

Im sechsten Ausführungsbeispiel ist der Kanal nur teilweise mit einer hydraulischen Flüssigkeit gefüllt. Über der Flüssigkeitsoberfläche befindet sich eine Stange (Figur 6, links). Beim Anlegen des Magnetfeldes drückt die hydraulische Flüssigkeit die Stange nach oben und aus dem Joch hinaus (Figur 6, rechts).In the sixth embodiment, the channel is only partially filled with a hydraulic fluid. There is a rod above the surface of the liquid ( Figure 6 , Left). When the magnetic field is applied, the hydraulic fluid pushes the rod up and out of the yoke ( Figure 6 , right).

Das Ausführungsbeispiel gemäß Fig. 7 zeigt wie das fünfte Ausführungsbeispiel einen Linearaktor, bei dem die Verformung des magnetischen Elastomerkomposits durch eine hydraulische Flüssigkeit nach oben übertragen wird. Durch einen auf der Unterseite des magnetischen Elastomerkomposits angebrachten magnetischen Formkörper aus magnetischem Stahl wird die Anziehungskraft auf das Innenjoch stark erhöht. Dadurch steigt auch der auf die hydraulische Flüssigkeit ausgeübte Druck und damit die Aktuationskraft entsprechend.The embodiment according to Fig. 7 shows how the fifth embodiment shows a linear actuator in which the deformation of the magnetic elastomer composite is transmitted upwards by a hydraulic fluid. A magnetic molded body made of magnetic steel attached to the underside of the magnetic elastomer composite greatly increases the attractive force on the inner yoke. Thereby the pressure exerted on the hydraulic fluid also rises, and with it the actuation force.

Im Ausführungsbeispiel gemäß Fig. 8 wird ebenfalls ein magnetischer Formkörper am magnetischen Elastomerkomposit zur Verstärkung der Aktuationskraft angebracht. Hier wird die Kraft jedoch wie im sechsten Ausführungsbeispiel zunächst hydraulisch und dann über eine Stange übertragen.In the embodiment according to Fig. 8 a magnetic molded body is also attached to the magnetic elastomer composite to increase the actuation force. Here, however, as in the sixth exemplary embodiment, the force is first transmitted hydraulically and then via a rod.

Im neunten Ausführungsbeispiel hat der magnetische Elastomerkomposit die Form eines Faltenbalgs (Figur 9, links). Beim Anlegen des Magnetfeldes entfaltet sich der Faltenbalg und drückt eine hydraulische Flüssigkeit nach oben, die wiederum eine Membran verformt.In the ninth embodiment, the magnetic elastomer composite has the shape of a bellows ( Figure 9 , Left). When the magnetic field is applied, the bellows unfolds and presses a hydraulic fluid upwards, which in turn deforms a membrane.

Im Ausführungsbespiel gemäß Fig. 10 wird die hydraulische Flüssigkeit wieder teilweise durch eine Stange ersetzt.In the execution example according to Fig. 10 the hydraulic fluid is partially replaced by a rod.

Im elften Ausführungsbeispiel enthält der Magnetkreis zusätzlich zum Elektromagneten einen ringförmigen schaltbaren Hartmagneten aus einer Aluminium-Nickel-Cobalt-Legierung, der anfangs nicht magnetisiert ist (Figur 11, links). Beim Erzeugen eines Magnetfeldes durch die Spule wird der Hartmagnet magnetisiert und behält die Magnetisierung auch nach Abschalten des Spulenstromes bei (Figur 11, rechts). Damit bleiben die Verformung des magnetischen Elastomerkomposits, die Verschiebung der hydraulischen Flüssigkeit nach oben und die Verformung der darüber liegenden Membran erhalten, ohne dass weitere elektrische Energie durch die Spule zugeführt werden muss. Nur für eine Veränderung des Aktuationszustandes muss elektrische Energie durch die Spule zugeführt werden, um die Magnetisierung des Hartmagneten zu verändern.In the eleventh embodiment, the magnetic circuit contains, in addition to the electromagnet, an annular switchable hard magnet made of an aluminum-nickel-cobalt alloy, which is initially not magnetized ( Figure 11 , Left). When the coil generates a magnetic field, the hard magnet is magnetized and maintains the magnetization even after the coil current has been switched off ( Figure 11 , right). The deformation of the magnetic elastomer composite, the displacement of the hydraulic fluid upward and the deformation of the membrane above it are retained without further electrical energy having to be supplied through the coil. Only for a change in the actuation state does electrical energy have to be supplied through the coil in order to change the magnetization of the hard magnet.

Im Ausführungsbeispiel gemäß Fig. 12 wird die hydraulische Flüssigkeit gegenüber dem elften Ausführungsbeispiel wieder teilweise durch eine Stange ersetzt.In the embodiment according to Fig. 12 the hydraulic fluid is partially replaced by a rod compared to the eleventh embodiment.

Im dreizehnten Ausführungsbeispiel enthält der Magnetkreis zusätzlich zum Elektromagneten einen ringförmigen Permanentmagneten aus einer Samarium-Cobalt-Legierung. Das vom Permanentmagneten erzeugte Magnetfeld verformt den magnetischen Elastomerkomposit ohne Zufuhr von elektrischer Energie (Figur 13, links). Ein zusätzlich von der Spule erzeugtes Magnetfeld kann das Feld des Permanentmagneten verstärken und damit die Verformung des magnetischen Elastomerkomposits vergrößern (Figur 13, Mitte). Durch die Umkehrung der Stromrichtung in der Spule kann das zusätzliche Magnetfeld auch das Feld des Permanentmagneten schwächen und damit die Verformung des magnetischen Elastomerkomposits verringern oder sogar aufheben (Figur 13, rechts).In the thirteenth embodiment, the magnetic circuit contains, in addition to the electromagnet, an annular permanent magnet made of a samarium-cobalt alloy. The magnetic field generated by the permanent magnet deforms the magnetic elastomer composite without supplying electrical energy ( Figure 13 , Left). An additional magnetic field generated by the coil can strengthen the field of the permanent magnet and thus increase the deformation of the magnetic elastomer composite ( Figure 13 , Middle). By reversing the direction of the current in the coil, the additional magnetic field can also weaken the field of the permanent magnet and thus reduce or even cancel out the deformation of the magnetic elastomer composite ( Figure 13 , right).

Das Ausführungsbeispiel gemäß Fig. 14 zeigt eine kompakte Form eines Linearaktors mit magnetischem Elastomerkomposit. Hier ist der magnetische Elastomerkomposit kegelförmig mit abgeflachter Spitze ausgeführt (Fig. 14, links). Die Spulenwicklung weist einen dreiecksförmigen Querschnitt auf, der zur Kegelform des magnetischen Elastomerkomposits weitgehend komplementär ist. Beim Anlegen des Magnetfeldes durch die Spule verformt sich der magnetische Elastomerkomposit und drückt eine kurze Stange nach oben (Fig. 14, rechts). Mit einem solchen Linearaktor können relativ hohe Aktuationskräfte erzeugt werden.The embodiment according to Fig. 14 shows a compact form of a linear actuator with magnetic elastomer composite. Here the magnetic elastomer composite is conical with a flattened tip ( Fig. 14 , Left). The coil winding has a triangular cross section, which is largely complementary to the conical shape of the magnetic elastomer composite. When the magnetic field is applied through the coil, the magnetic elastomer composite deforms and pushes a short rod upwards ( Fig. 14 , right). With such a linear actuator, relatively high actuation forces can be generated.

Im Ausführungsbeispiel gemäß Fig. 15 ist der Linearaktor ähnlich aufgebaut wie im Ausführungsbeispiel gemäß Fig. 14. Der magnetische Elastomerkomposit enthält hier jedoch einen magnetischen Formkörper. Dadurch wird die Anziehungskraft auf das Innenjoch und damit die Aktuationskraft noch einmal verstärkt.In the embodiment according to Fig. 15 the linear actuator is constructed similarly to that in the exemplary embodiment according to FIG Fig. 14 . However, the magnetic elastomer composite here contains a magnetic molded body. This increases the attraction force on the inner yoke and thus the actuation force.

Im sechszehnten Ausführungsbeispiel gemäß Fig. 16 weist der magnetische Elastomerkomposit die Form eines Zylinders auf. Er befindet sich im Linearaktor zwischen einem unteren und einem oberen Jochteil, füllt aber den Zwischnraum zwischen Jochteilen nur teilweise aus (Fig. 16, links). Beim Anlegen des Magnetfeldes wird der magnetische Elastomerkomposit von beiden Jochteilen angezogen und dehnt sich in seiner Länge nach oben aus. Dadurch wird eine Stange durch das Innenjoch nach oben verschoben (Fig. 16, rechts).In the sixteenth embodiment according to Fig. 16 the magnetic elastomer composite has the shape of a cylinder. It is located in the linear actuator between a lower and an upper yoke part, but only partially fills the space between the yoke parts ( Fig. 16 , Left). When the magnetic field is applied, the magnetic elastomer composite is attracted to both yoke parts and extends in length upwards. This pushes a rod up through the inner yoke ( Fig. 16 , right).

Claims (15)

  1. Linear actuator comprising at least one magnetic elastomer composite comprising at least one elastomer and magnetizable particles, an inner and an outer magnet yoke, wherein the magnetic elastomer composite rests on the inner or outer magnet yoke, and at least one coil and/or at least one permanent magnet and/or at least one switchable hard magnet for generating at least one magnetic circuit which has an interruption, wherein the magnetic elastomer composite is deformable upon application or modification of the magnetic field such that a linear actuator movement is triggered and the distance of the actuator movement is continuously and/or reversibly controllable by the strength of the magnetic field.
  2. Linear actuator according to claim 1, characterized in that the magnetic field acting on the magnetic elastomer composite is inhomogeneous.
  3. Linear actuator according to any one of the preceding claims, characterized in that the magnetic elastomer composite is disc-shaped and the magnetic field is oriented substantially perpendicular to the base surface thereof and the deformation of the magnetic elastomer composite in the form of a curvature of the magnetic elastomer composite prescribes the direction of the actuator movement.
  4. Linear actuator according to any one of the preceding claims, characterized in that the magnetic elastomer composite is substantially disc-shaped and has a larger or smaller disc thickness towards the centre of the disc, in particular in the form of an outward bulge or an inward indentation on the side facing towards the inner yoke, wherein the disc thickness changes continuously or in steps.
  5. Linear actuator according to the preceding claim, characterized in that the inner or the outer yoke has a concave or convex curvature which substantially corresponds to the disc shape.
  6. Linear actuator according to any one of the preceding claims, characterized in that the magnetic elastomer composite is coupled to at least one mechanical and/or hydraulic element, in particular selected from the group consisting of a rod, a ram, a thread, a hydraulic fluid, a fluid-filled or gas-filled bag, and combinations thereof, via which the deformation can be transformed into a linear movement of the linear actuator.
  7. Linear actuator according to any one of the preceding claims, characterized in that the linear actuator has a coil and a permanent magnet or a coil and a switchable hard magnet, which is preferably made of an aluminium-nickel-cobalt alloy, of a ferrite or of another material having a coercive field strength of less than 100 kA/m and a saturation magnetization of more than 600 mT.
  8. Linear actuator according to any one of the preceding claims, characterized in that the at least one elastomer is selected from the group consisting of silicone, fluorosilicone, polyurethane (PUR), polynorbornene, natural rubber (NR), styrene-butadiene (SBR), isobutylene-isoprene (IIR), ethylene-propylene-diene terpolymer (EPDM/EPM), polychlorobutadiene (CR), chlorosulphonated polyethylene (CSM), acrylonitrile-butadiene (NBR), hydrogenated acrylonitrile-butadiene (HNBR), a fluororubber such as Viton, a thermoplastic elastomer such as thermoplastic styrene copolymers (styrene-butadiene-styrene (SBS), styrene-ethylene-butadiene-styrene (SEBS), styrene-ethylene-propylene-styrene (SEPS), styrene-ethylene-ethylene-propylene-styrene (SEEPS) or styrene-isoprene-styrene (SIS) copolymer), partially crosslinked, polyolefin-based blends (of ethylene-propylene-diene rubber and polypropylene (EPDM/PP), of nitrile-butadiene rubber and polypropylene (NBR/PP) or of ethylene-propylene-diene rubber and polyethylene (EPDM/PE)) or thermoplastic urethane copolymers (aromatic hard segment and ester soft segment (TPU-ARES), aromatic hard segment and ether soft segment (TPU-ARET) or aromatic hard segment and ester/ether soft segment (TPU-AREE)), and mixtures, blends or alloys thereof.
  9. Linear actuator according to any one of the preceding claims, characterized in that the magnetizable particles are selected from materials consisting of iron, in particular carbonyl iron, cobalt, nickel, iron alloys, in particular iron-cobalt alloys or iron-nickel alloys, iron oxides, in particular magnetite or ferrite, preferably manganese zinc ferrite, aluminium-nickel-cobalt alloys, and mixtures thereof, wherein the mean particle size is preferably less than 100 µm.
  10. Linear actuator according to any one of the preceding claims, characterized in that the magnetic elastomer composite additionally comprises magnetizable elements or shaped bodies which differ from the magnetizable particles, wherein the size of the elements exceeds the size of the particles preferably by the factor 10, particularly preferably by the factor 100.
  11. Linear actuator according to claim 10, characterized in that the magnetizable particles and the magnetizable elements or shaped bodies are arranged isotropically or anisotropically in the magnetic elastomer composite.
  12. Linear actuator according to claim 10 or 11, characterized in that the magnetizable elements or shaped bodies are made of soft-magnetic materials, in particular iron, preferably carbonyl iron, cobalt, nickel, iron alloys, preferably iron-cobalt alloys or iron-nickel alloys, iron oxides, preferably magnetite or ferrite, particularly preferably manganese zinc ferrite, or hard-magnetic materials, in particular aluminium-nickel-cobalt, neodymium-iron-boron or samarium-cobalt, or mixtures thereof.
  13. Linear actuator according to any one of the preceding claims, characterized in that the magnetic elastomer composite has the shape of a bellows, which at least partially unfolds or folds together upon application or modification of a magnetic field.
  14. Use of the linear actuator according to any one of the preceding claims for the controlled movement, shifting or adjustment of flaps, doors, mirrors, optical elements, in particular radiation sources.
  15. Use of the linear actuator according to any one of claims 1 to 13 for generating movements in robots and also for haptic elements.
EP15193019.5A 2014-11-10 2015-11-04 Linear actuator and use of same Active EP3026680B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014222832.8A DE102014222832A1 (en) 2014-11-10 2014-11-10 Linear actuator and its use

Publications (2)

Publication Number Publication Date
EP3026680A1 EP3026680A1 (en) 2016-06-01
EP3026680B1 true EP3026680B1 (en) 2020-04-29

Family

ID=54476780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15193019.5A Active EP3026680B1 (en) 2014-11-10 2015-11-04 Linear actuator and use of same

Country Status (2)

Country Link
EP (1) EP3026680B1 (en)
DE (1) DE102014222832A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313076A (en) * 2016-12-09 2019-10-08 皇家飞利浦有限公司 Actuator devices and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459126A (en) * 1966-03-21 1969-08-05 Mohawk Data Sciences Corp Control devices employing magnetostrictive materials
DE102004041649B4 (en) * 2004-08-27 2006-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological elastomers and their use
DE102007028663A1 (en) * 2007-06-21 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological composite materials with hard magnetic particles, process for their preparation and their use
US8550222B2 (en) * 2007-08-16 2013-10-08 GM Global Technology Operations LLC Active material based bodies for varying frictional force levels at the interface between two surfaces
JP5267907B2 (en) * 2007-12-28 2013-08-21 国立大学法人九州工業大学 Actuator using magnetic force, driving device using the same, and sensor
DE102011010757B4 (en) * 2011-02-09 2012-09-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetoactive or electroactive composite material, its use and method for influencing biological cells deposited on the magnetoactive or electroactive composite material
DE102012202418A1 (en) 2011-11-04 2013-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adaptive locking and releasing device and their use for the controlled blocking or release of movable components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3026680A1 (en) 2016-06-01
DE102014222832A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
DE102009007209A1 (en) Switchable magnetorheological torque or power transmission device, its use and magnetorheological torque or power transmission method
EP2773883B1 (en) Adaptive locking and releasing device and use thereof for the controlled blocking and releasing of movable components
DE102016203602A1 (en) Electromagnetic actuator and valve
WO2008125306A1 (en) Blocking device having a field-controllable fluid
DE102014108678A1 (en) spool valve
DE102010055831A1 (en) Torque transmission apparatus for e.g. bicycle, has field generation device that generates magnetic field in contact between rolling bearing holder and rolling bearing so as to influence coupling intensity of two coupled components
DE102011078104A1 (en) Electromagnetic operated seat valve of valve arrangement used in pneumatic spring system of motor car, has permanent magnet that is held in closed position by magnetic forces, even when sealing element is set without energizing coil
DE102009035444B4 (en) Solenoid valve and method for operating a solenoid valve
DE202021100223U1 (en) Acoustic device with a deformable shape as a valve
EP3026680B1 (en) Linear actuator and use of same
WO2016074758A1 (en) Vacuum valve
DE102008030258A1 (en) Resonant magnetic actuator system for use in industrial pneumatics
DE102015216766B3 (en) driving device
EP3645449B1 (en) Magnetorheological actuator for a filling unit of a beverage filling system
EP1404011A1 (en) Linear drive
DE102015211940B3 (en) Device with movement-braking means
DE1750415B1 (en) ELECTROMAGNETICALLY ACTUATED CONTROL VALVE
EP0922893A1 (en) Valve
EP3528953B1 (en) Permanent-magnet piston assembly comprising an exoskeleton which holds permanent-magnet arrangements for a pipetting apparatus
DE102014207393B4 (en) Valve
EP3563076A1 (en) Electromagnetic hinged armature valve device
DE102021213261A1 (en) Magnetorheological actuator and rotary control device
DE102017201453A1 (en) Coil assembly, method for its manufacture and valve unit equipped therewith
EP2158421B1 (en) Pivot valve and method for switching a pivot valve
DE10202628A1 (en) Multi-stable positioning/control device e.g. for bistable relay, includes component with permanent magnetic properties arranged in series with interconnected permanent magnetic part-zones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161124

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20191126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012410

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1264528

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012410

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1264528

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 9

Ref country code: DE

Payment date: 20231120

Year of fee payment: 9