EP3026680B1 - Actionneur linéaire et son utilisation - Google Patents

Actionneur linéaire et son utilisation Download PDF

Info

Publication number
EP3026680B1
EP3026680B1 EP15193019.5A EP15193019A EP3026680B1 EP 3026680 B1 EP3026680 B1 EP 3026680B1 EP 15193019 A EP15193019 A EP 15193019A EP 3026680 B1 EP3026680 B1 EP 3026680B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
linear actuator
elastomer composite
styrene
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15193019.5A
Other languages
German (de)
English (en)
Other versions
EP3026680A1 (fr
Inventor
Holger Böse
Johannes Ehrlich
Rabih Darwiche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3026680A1 publication Critical patent/EP3026680A1/fr
Application granted granted Critical
Publication of EP3026680B1 publication Critical patent/EP3026680B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding

Definitions

  • the invention relates to a linear actuator, the at least one magnetic elastomer composite made of an elastomer and magnetizable particles and an inner and an outer magnetic yoke and at least one coil and / or at least one permanent magnet or at least one switchable hard magnet for generating at least one magnetic circuit, the one Has interruption, contains.
  • the linear actuator is used for the controlled movement, adjustment or adjustment of a wide variety of objects as well as for generating movement in robots as well as for tactile elements.
  • linear motion is to be electrically controlled over a relatively short distance. Such a requirement occurs, for example, when adjusting flaps or optical elements such as mirrors or lighting elements.
  • Another application for such linear drives for short distances concerns the locking or unlocking of Doors, windows, etc.
  • linear movements occur when, for example, an object is to be gripped and then positioned (pick and place).
  • actuators for human-machine interfaces with haptic feedback are increasingly desired, in which a movement can be sensed with the fingers on a user interface, which provides the user with information such. B. conveyed via a successful entry.
  • actuators are required that perform a linear movement over a relatively short path of a few millimeters or centimeters.
  • the path of movement to be covered should be flexible and precise.
  • the stroke of such a linear actuator is to be controlled electrically.
  • piezo actuators In order to adjust mirrors or flaps, electric motors are generally used, which first generate a rotational movement, which is then translated into a linear movement via a gear. This requires a relatively high technical effort for a relatively simple movement.
  • An alternative is to use electromagnetic actuators (voice coil).
  • voice coil voice coil
  • Piezo actuators can position very precisely and also generate large forces, but the travel ranges are too small for the applications mentioned. In order to be able to use piezo actuators for this, travel range enlargers must be integrated, which significantly increases the effort.
  • piezo actuators alone are expensive and also require relatively high electrical control voltages.
  • the present invention solves the problem with the aid of magnetically controllable materials, so-called magnetoactive polymers.
  • Magnetoactive polymers are composite materials made of an elastomer matrix that is filled with magnetic or magnetizable particles. For this reason, they are called magnetic elastomer composites below. When a magnetic field is applied, the material is reversibly stiffened. On the other hand, the magnetic elastomer composite is deformed along the field lines in the magnetic field. Will be in the air gap between two magnetic yoke parts If the magnetic field is generated, a magnetic elastomer composite, which does not bridge the gap in the non-magnetized state, extends in length, so that the bridge is now bridged. This effect is already known.
  • the DE 10 2007 028 663 A1 relates to composites of an elastic and / or thermoplastic-elastic carrier medium and hard magnetic particles which are polarized in a magnetic field, with magnetization remaining after the magnetic field has been switched off.
  • the EP 2 239 837 A1 describes an actuator that can move flexibly and smoothly like muscles, can be operated stably over a long period of time, can generate a strong driving force, has an advantageous sensitivity and has a high energy conversion efficiency.
  • a coil is embedded in a magnetic elastomer, which is obtained by mixing a powder-like ferromagnetic or highly magnetic permeable material is obtained with an elastomer so that the coil can be electrically connected.
  • a magnetic field is generated in and around the coil.
  • the magnetic field penetrates the magnetic elastomer.
  • a deformation force acts on the magnetic elastomer by applying the magnetic force on each section of the magnetic elastomer. In this way, a driving force can be obtained.
  • a linear actuator containing at least one magnetic elastomer composite which contains at least one elastomer and magnetizable particles is provided. Furthermore, the linear actuator contains an inner and an outer magnet yoke and at least one coil and / or at least one permanent magnet or at least one switchable hard magnet for generating at least one magnetic circuit which has an interruption.
  • the magnetic elastomer composite is deformable when the magnetic field is applied or changed in such a way that a linear actuator movement is triggered and the distance of the actuator movement by the Strength of the magnetic field is continuously and / or reversibly controllable.
  • the invention therefore provides a linear actuator which enables such a precisely controllable linear movement.
  • a linear actuator with a special magnetic circuit in which a magnetic elastomer composite is attracted to the magnetic circuit lying on one side, while the other side of the magnetic elastomer composite is freely accessible.
  • the magnetic attraction deforms the magnetic elastomer composite, the deformation and thus also the actuator travel increasing with increasing magnetic field strength or magnetic flux density.
  • the magnetic elastomer composite deforms back.
  • the elastomer acts like an inherent return spring.
  • the magnetic elastomer composite can take various forms in the linear actuator.
  • a preferred embodiment of the invention provides that the magnetic elastomer composite is disc-shaped and the magnetic field is oriented essentially perpendicular to the base thereof and the deformation of the magnetic elastomer composite in the form of a curvature of the magnetic elastomer composite specifies the direction of the actuator movement.
  • the disk-shaped magnetic elastomer composite is connected, for example, to a largely closed cylindrical magnetic circuit consisting of a coil, an inner and an outer yoke. The outer yoke on which the magnetic elastomer composite rests stands out.
  • the magnetic field is switched on, the central part of the magnetic elastomer composite is attracted to the inner yoke, which causes the deformation.
  • the disk-shaped magnetic elastomer composite is reshaped. The strength of the magnetic field determines the degree of deformation.
  • the inner yoke protrudes and the magnetic elastomer composite rests on it.
  • the outer part of the magnetic elastomer composite is attracted to the outer yoke, which causes a corresponding deformation.
  • the disk-shaped magnetic elastomer composite is also deformed here. The strength of the magnetic field in turn determines the Degree of deformation.
  • the magnetic elastomer composite is essentially disk-shaped and has a larger or smaller disk thickness towards the center of the disk, in particular in the form of a curvature outwards or inwards on the side facing the inner yoke, with the Slice thickness changes continuously or gradually.
  • the inner yoke has a concave or convex curvature that essentially corresponds to the shape of the disk. The actuation force is increased by the shape adaptation between the elastomer composite and the inner yoke.
  • the magnetic elastomer composite with at least one mechanical and / or hydraulic element in particular selected from the group consisting of a rod, a stamp, a thread, a hydraulic fluid, a bag filled with liquid or gas, and combinations of which is coupled, via which the deformation can be transferred into a linear movement of the linear actuator.
  • the linear actuator preferably has a coil or a coil and a permanent magnet or a coil and a switchable hard magnet.
  • the magnetic elastomer composite preferably contains at least one elastomer as the matrix material, which is preferably selected from the group consisting of silicone, fluorosilicone, polyurethane (PUR), polynorbornene, natural rubber (NR), styrene-butadiene (SBR), isobutylene-isoprene (IIR), Ethylene-propylene-diene terpolymer (EPDM / EPM), poly-chlorobutadiene (CR), chlorosulfonated polyethylene (CSM), acrylonitrile-butadiene (NBR), hydrogenated acrylonitrile-butadiene (HNBR), a fluororubber such as Viton, a thermoplastic elastomer such as thermoplastic styrene copolymers (styrene-butadiene-styrene (SBS-), styrene-ethylene-butadiene-styrene (SEBS-
  • Magnetic particles are preferably selected from the group consisting of iron, in particular carbonyl iron, cobalt, nickel, iron alloys, in particular iron-cobalt alloys or iron-nickel alloys, iron oxides, in particular magnetite or ferrite, preferably manganese zinc ferrite, aluminum-nickel Cobalt alloys and mixtures thereof selected.
  • the average size of the magnetic particles is preferably less than 100 ⁇ m.
  • the magnetic elastomer composite according to the invention preferably contains magnetizable elements or shaped bodies which differ from the magnetizable particles, the size of the elements or shaped bodies preferably exceeding the size of the particles by a factor of 10, particularly preferably by a factor of 100 .
  • These magnetizable elements increase the magnetic attraction forces on the magnetic elastomer composite.
  • several or many magnetizable elements can also be fastened in or on the magnetic elastomer composite.
  • the magnetizable element or elements can be made of soft magnetic materials, in particular iron, preferably carbonyl iron, cobalt, nickel, iron alloys, preferably iron-cobalt alloys or iron-nickel alloys, iron oxides, preferably magnetite or ferrite, particularly preferably manganese zinc ferrite, or hard magnetic materials, in particular aluminum-nickel-cobalt, neodymium-iron-boron or samarium-cobalt or mixtures thereof.
  • soft magnetic materials in particular iron, preferably carbonyl iron, cobalt, nickel, iron alloys, preferably iron-cobalt alloys or iron-nickel alloys, iron oxides, preferably magnetite or ferrite, particularly preferably manganese zinc ferrite, or hard magnetic materials, in particular aluminum-nickel-cobalt, neodymium-iron-boron or samarium-cobalt or mixtures thereof.
  • the magnetic elastomer composite can also consist of a bellows with concentric folds. Deformation facilitates the deformation in the magnetic field. Another possibility is that the disk-shaped magnetic elastomer composite has a bulge on one side. In this way there is a stronger magnetic attraction in the magnetic field.
  • the inner yoke and / or the coil can have a complementary curvature into which the curvature of magnetic elastomer composites moves. In this way, a stronger deformation movement of the magnetic elastomer composite can take place.
  • the deformation of the magnetic elastomer composite in the magnetic field can be used directly as a linear actuation.
  • the actuation takes place when the magnetic field is switched on, viewed from the outside of the magnetic elastomer composite to the inside.
  • the deformation movement can be transferred to the other side of the magnetic circuit by mechanical transmission.
  • a rod or a stamp is used, which is passed through the inner yoke.
  • a hydraulic medium can be used for this, which transmits the movement of the magnetic elastomer composite to the other side of the magnetic circuit.
  • the mechanical transmission can alternatively also take place through the outer yoke.
  • the magnetic field for controlling the magnetic elastomer composite is usually generated by a coil.
  • the magnetic circuit can also contain a permanent magnet that generates a magnetic field without electrical energy.
  • An additional coil can then either weaken or even compensate or amplify this magnetic field.
  • the permanent magnet defines a basic setting of the linear actuator with a specific deformation of the magnetic elastomer composite.
  • the permanent magnet preferably consists of neodymium-iron-boron or samarium-cobalt.
  • the hard magnet is provided with a permanent magnetization by a magnetic field generated briefly by the coil. In this way, the magnetic elastomer composite is deformed and the linear actuator moves into a defined position. With this arrangement, electrical energy is only required for changing the actuator position by giving the switchable hard magnet a different magnetization.
  • the switchable hard magnet preferably consists of aluminum-nickel-cobalt or a ferrite. Materials with a coercive field strength of less than 100 kA / m and a saturation magnetization of more than 600 mT are preferred for the switchable hard magnet.
  • the linear actuator can also have two magnetic circuits, which can be controlled electrically separately.
  • the magnetic elastomer composite is preferably located between the two magnetic circuits and can optionally be from one or the other magnetic circuit be attracted. Since there is no external access here, the movement of the magnetic elastomer composite will be transferred to the outside by the mechanical or hydraulic transmission already shown.
  • the magnetic elastomer composite can be used to control a change in properties by means of a linear actuator movement, this change in properties resulting, for example, in a change in a surface structure.
  • the change in the structure of the at least one surface causes the surface to be converted into an operating surface.
  • An activation signal generates a magnetic field via a coil, the shape of the magnetic elastomer composite consequently changing and an operating surface becoming visible.
  • the magnetic elastomer composite returns to its original shape, whereby the control surface is converted back to the initial surface. This makes it possible to reversibly form surfaces to cover, for example, switches, sensors, operating elements, etc.
  • the linear actuators according to the invention are used for the controlled movement, adjustment or adjustment of flaps, doors, mirrors, optical elements, in particular radiation sources.
  • the linear actuators can also be used to generate movements in robots and for tactile elements.
  • the first embodiment shows a linear actuator with a magnetic circuit with a coil.
  • the outer yoke on which the magnetic elastomer composite rests is longer than the inner yoke, as a result of which the magnetic circuit between the inner yoke and the disk-shaped magnetic elastomer composite has an interruption ( Figure 1 , Left).
  • a current is applied to the coil, a magnetic field is generated, through which the magnetic elastomer composite is attracted to the inner yoke and thereby deforms ( Figure 1 , right).
  • the strength of the deformation can be continuously controlled by the strength of the applied magnetic field via the coil current.
  • the magnetic field is switched off, the magnetic elastomer composite returns to its original shape.
  • the outer yoke is shorter than the inner yoke.
  • the disc-shaped magnetic elastomer composite rests on the inner yoke ( Figure 2 , Left).
  • the magnetic elastomer composite is attracted to the outer yoke and deforms accordingly ( Figure 2 , right).
  • the third exemplary embodiment again shows a linear actuator with a shorter inner yoke.
  • the magnetic elastomer composite has a bulge on the side facing the inner yoke ( Figure 3 , Left).
  • the magnetic elastomer composite is attracted by the inner yoke with a stronger force than without bulging.
  • the degree of deformation is limited by the bulge ( Figure 3 , right).
  • the inner yoke has a bulge which is complementary to the bulge on the magnetic elastomer composite ( Figure 4 , Left).
  • the bulge on the magnetic elastomer composite can penetrate into the bulge in the inner yoke ( Figure 4 , right).
  • the fifth exemplary embodiment shows a linear actuator with a shorter inner yoke which is traversed by a channel which is sealed at the upper end by a membrane.
  • the space between the magnetic elastomer composite and the inner yoke and the channel are filled with a hydraulic fluid ( Figure 5 , Left).
  • the magnetic elastomer composite deforms in the direction of the inner yoke, displacing the hydraulic fluid from the gap.
  • the hydraulic fluid is pushed up through the channel and deforms the membrane on top ( Figure 5 , right).
  • the channel is only partially filled with a hydraulic fluid.
  • a hydraulic fluid There is a rod above the surface of the liquid ( Figure 6 , Left).
  • the hydraulic fluid pushes the rod up and out of the yoke ( Figure 6 , right).
  • the embodiment according to Fig. 7 shows how the fifth embodiment shows a linear actuator in which the deformation of the magnetic elastomer composite is transmitted upwards by a hydraulic fluid.
  • a magnetic molded body made of magnetic steel attached to the underside of the magnetic elastomer composite greatly increases the attractive force on the inner yoke. Thereby the pressure exerted on the hydraulic fluid also rises, and with it the actuation force.
  • a magnetic molded body is also attached to the magnetic elastomer composite to increase the actuation force.
  • the force is first transmitted hydraulically and then via a rod.
  • the magnetic elastomer composite has the shape of a bellows ( Figure 9 , Left).
  • the bellows unfolds and presses a hydraulic fluid upwards, which in turn deforms a membrane.
  • the magnetic circuit contains, in addition to the electromagnet, an annular switchable hard magnet made of an aluminum-nickel-cobalt alloy, which is initially not magnetized ( Figure 11 , Left).
  • an annular switchable hard magnet made of an aluminum-nickel-cobalt alloy, which is initially not magnetized ( Figure 11 , Left).
  • the hard magnet is magnetized and maintains the magnetization even after the coil current has been switched off ( Figure 11 , right).
  • the deformation of the magnetic elastomer composite, the displacement of the hydraulic fluid upward and the deformation of the membrane above it are retained without further electrical energy having to be supplied through the coil. Only for a change in the actuation state does electrical energy have to be supplied through the coil in order to change the magnetization of the hard magnet.
  • the magnetic circuit contains, in addition to the electromagnet, an annular permanent magnet made of a samarium-cobalt alloy.
  • the magnetic field generated by the permanent magnet deforms the magnetic elastomer composite without supplying electrical energy ( Figure 13 , Left).
  • An additional magnetic field generated by the coil can strengthen the field of the permanent magnet and thus increase the deformation of the magnetic elastomer composite ( Figure 13 , Middle). By reversing the direction of the current in the coil, the additional magnetic field can also weaken the field of the permanent magnet and thus reduce or even cancel out the deformation of the magnetic elastomer composite ( Figure 13 , right).
  • Fig. 14 shows a compact form of a linear actuator with magnetic elastomer composite.
  • the magnetic elastomer composite is conical with a flattened tip ( Fig. 14 , Left).
  • the coil winding has a triangular cross section, which is largely complementary to the conical shape of the magnetic elastomer composite.
  • the magnetic elastomer composite deforms and pushes a short rod upwards ( Fig. 14 , right).
  • relatively high actuation forces can be generated.
  • the linear actuator is constructed similarly to that in the exemplary embodiment according to FIG Fig. 14 .
  • the magnetic elastomer composite here contains a magnetic molded body. This increases the attraction force on the inner yoke and thus the actuation force.
  • the magnetic elastomer composite has the shape of a cylinder. It is located in the linear actuator between a lower and an upper yoke part, but only partially fills the space between the yoke parts ( Fig. 16 , Left).
  • the magnetic elastomer composite is attracted to both yoke parts and extends in length upwards. This pushes a rod up through the inner yoke ( Fig. 16 , right).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Claims (15)

  1. Actionneur linéaire contenant au moins un composite élastomère magnétique contenant au moins un élastomère et des particules aimantables, une culasse intérieure et une culasse extérieure, le composite élastomère magnétique reposant sur la culasse intérieure ou extérieure, ainsi qu'au moins une bobine et/ou au moins un aimant permanent et/ou au moins un aimant dur commutable, pour la production d'au moins un circuit magnétique, qui présente une interruption, le composite élastomère magnétique pouvant, lors de l'application ou d'une modification du champ magnétique, subir une déformation telle qu'il en résulte un mouvement linéaire de l'actionneur, et la distance du mouvement de l'actionneur pouvant être commandée, sous l'effet de l'intensité du champ magnétique, d'une manière continue ou réversible.
  2. Actionneur linéaire selon la revendication 1, caractérisé en ce que le champ magnétique agissant sur le composite élastomère magnétique est non homogène.
  3. Actionneur linéaire selon l'une des revendications précédentes, caractérisé en ce que le composite élastomère magnétique a une forme de disque, et le champ magnétique est orienté pour l'essentiel perpendiculairement à sa surface de base, et la déformation du composite élastomère magnétique, sous forme d'une voûte du composite élastomère magnétique, prédéfinit la direction du mouvement de l'actionneur.
  4. Actionneur linéaire selon l'une des revendications précédentes, caractérisé en ce que le composite élastomère magnétique a pour l'essentiel la forme d'un disque, et, en allant vers le centre du disque, présente une épaisseur de disque plus grande ou plus petite, en particulier sous forme d'un renflement vers l'extérieur ou d'une voûte vers l'intérieur sur le côté dirigé vers la culasse intérieure, l'épaisseur du disque variant d'une manière continue ou pas-à-pas.
  5. Actionneur linéaire selon la revendication précédente, caractérisé en ce que la culasse intérieure ou la culasse extérieure présente une voûte concave ou convexe, correspondant pour l'essentiel à la forme du disque.
  6. Actionneur linéaire selon l'une des revendications précédentes, caractérisé en ce que le composite élastomère magnétique est couplé à un élément mécanique et/ou hydraulique, choisi en particulier dans le groupe consistant en une tige, un poinçon, un fil, un fluide hydraulique, un sac rempli d'un liquide ou d'un gaz, ainsi que les combinaisons de ceux-ci, par l'intermédiaire duquel la déformation peut être convertie en un mouvement linéaire de l'actionneur linéaire.
  7. Actionneur linéaire selon l'une des revendications précédentes, caractérisé en ce que l'actionneur linéaire comprend une bobine et un aimant permanent, ou une bobine et un aimant dur commutable, qui de préférence est constitué d'un alliage aluminium-nickel-cobalt, d'une ferrite, ou d'un autre matériau ayant une intensité du champ coercitif inférieure à 100 kA/m et une aimantation à saturation supérieure à 600 mT.
  8. Actionneur linéaire selon l'une des revendications précédentes, caractérisé en ce que l'au moins un élastomère est choisi dans le groupe comprenant la silicone, une fluorosilicone, le polyuréthanne (PUR), le polynorbornène, le caoutchouc naturel (NR), le styrène-butadiène (SBR), l'isobutylène-isoprène (IIR), le terpolymère éthylène-propylène-diène (EPDM/EPM), le poly-chlorobutadiène (CR), le polyéthylène chlorosulfoné (CSM), l'acrylonitrile-butadiène (NBR), l'acrylonitrile-butadiène hydrogéné (HNBR), un caoutchouc fluoré tel que le Viton, un élastomère thermoplastique tel que les copolymères thermoplastiques du styrène (copolymère styrène-butadiène-styrène (SBS), styrène-éthylène-butadiène-styrène (SEBS), styrène-éthylène-propylène-styrène (SEPS), styrène-éthylène-éthylène-propylène-styrène (SEEPS), ou styrène-isoprène-styrène (SIS), les mélanges partiellement réticulés à base de polyoléfine (mélanges de caoutchouc nitrile-butadiène et de polypropylène (NBR/PP), ou caoutchouc éthylène-propylène-diène et polyéthylène (EPDM/PE)), ou les copolymères thermoplastiques de l'uréthanne (segment rigide aromatique et segment souple ester (TPU-ARES), segment rigide aromatique et segment souple éther (TPU/ARET) ou segment rigide aromatique et segment souple ester/éther (TPU/AREE)), ainsi que les mélanges, mélanges intimes ou alliages de ceux-ci.
  9. Actionneur linéaire selon l'une des revendications précédentes, caractérisé en ce que les particules aimantable sont choisies parmi les matériaux constitués de fer, en particulier de fer-carbonyle, de cobalt, de nickel, d'alliages du fer, en particulier d'alliages fer-cobalt ou d'alliages fer-nickel, d'oxydes de fer, en particulier de magnétite ou de ferrite, de préférence de ferrite de manganèse-zinc, d'alliages aluminium-nickel-cobalt et de mélanges de ceux-ci, la granulométrie moyenne étant de préférence inférieure à 100 µm.
  10. Actionneur linéaire selon l'une des revendications précédentes, caractérisé en ce que le composite élastomère magnétique comprend en outre des éléments ou objets moulés aimantables, qui se distinguent des particules aimantables, la granulométrie des éléments étant de préférence de 10 fois, d'une manière particulièrement préférée de 100 fois supérieure à la granulométrie des particules.
  11. Actionneur linéaire selon la revendication 10, caractérisé en ce que les particules aimantables et les éléments ou objets moulés aimantables sont disposés d'une manière isotrope ou anisotrope dans le composite élastomère magnétique.
  12. Actionneur linéaire selon la revendication 10 ou 11, caractérisé en ce que les éléments ou objets moulés aimantables sont constitués de matériaux magnétiques doux, en particulier le fer, de préférence le fer-carbonyle, le cobalt, le nickel, les alliages de fer, de préférence les alliages fer-cobalt ou les alliages fer-nickel, les oxydes de fer, de préférence la magnétite ou la ferrite, d'une manière particulièrement préférée la ferrite de manganèse et de zinc, ou de matériaux magnétiques durs, en particulier l'aluminium-nickel-cobalt, le néodyme-fer-bore ou le samarium-cobalt ou les mélanges de ceux-ci.
  13. Actionneur linéaire selon l'une des revendications précédentes, caractérisé en ce que le composite élastomère magnétique présente la forme d'un soufflet, qui se déploie ou se contracte au moins partiellement sous l'effet de l'application ou d'une modification d'un champ magnétique.
  14. Utilisation de l'actionneur linéaire selon l'une des revendications précédentes pour le mouvement, le réglage ou l'ajustement commandés d'abattants, de portes, de miroir, d'éléments optiques, en particulier de sources de rayonnement.
  15. Utilisation de l'actionneur linéaire selon la revendication 1-13 pour la production de mouvements dans des robots, ainsi que pour des éléments tactiles haptiques.
EP15193019.5A 2014-11-10 2015-11-04 Actionneur linéaire et son utilisation Active EP3026680B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014222832.8A DE102014222832A1 (de) 2014-11-10 2014-11-10 Linearaktor und dessen Verwendung

Publications (2)

Publication Number Publication Date
EP3026680A1 EP3026680A1 (fr) 2016-06-01
EP3026680B1 true EP3026680B1 (fr) 2020-04-29

Family

ID=54476780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15193019.5A Active EP3026680B1 (fr) 2014-11-10 2015-11-04 Actionneur linéaire et son utilisation

Country Status (2)

Country Link
EP (1) EP3026680B1 (fr)
DE (1) DE102014222832A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289643B2 (en) * 2016-12-09 2022-03-29 Koninklijke Philips N.V. Actuator device and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459126A (en) * 1966-03-21 1969-08-05 Mohawk Data Sciences Corp Control devices employing magnetostrictive materials
DE102004041649B4 (de) * 2004-08-27 2006-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Elastomere und deren Verwendung
DE102007028663A1 (de) * 2007-06-21 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheologische Kompositmaterialien mit hartmagnetischen Partikeln, Verfahren zu deren Herstellung sowie deren Verwendung
US8550222B2 (en) * 2007-08-16 2013-10-08 GM Global Technology Operations LLC Active material based bodies for varying frictional force levels at the interface between two surfaces
JP5267907B2 (ja) * 2007-12-28 2013-08-21 国立大学法人九州工業大学 磁気力によるアクチュエータ及びそれを用いた駆動装置、並びにセンサ
DE102011010757B4 (de) * 2011-02-09 2012-09-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetoaktives oder elektroaktives Kompositmaterial, dessen Verwendung und Verfahren zur Beeinflussung von auf dem magnetoaktiven oder elektroaktiven Kompositmaterial angelagerten biologischen Zellen
DE102012202418A1 (de) 2011-11-04 2013-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adaptive Feststell-und Lösevorrichtung und deren Verwendung zum gesteuerten Blockieren bzw. Freigeben beweglicher Bauteile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014222832A1 (de) 2016-05-12
EP3026680A1 (fr) 2016-06-01

Similar Documents

Publication Publication Date Title
EP2394068B1 (fr) Dispositif magnétorhéologique commutable pour la transmission de couple ou de force, son utilisation et procédé magnétorhéologique de transmission de couple ou de force
EP3771524A1 (fr) Dispositif de retenue comprenant un fluide magnétorhéologique, robot, machine, dispositif de bouchage de bouteille et procédé de retenue
DE102016203602A1 (de) Elektromagnetischer Aktor und Ventil
DE102014108678A1 (de) Schieberventil
DE102010055831A1 (de) Übertragungsvorrichtung
EP2336619B1 (fr) Soupape avec actionneur
DE202021100223U1 (de) Akustische Vorrichtung mit verformbarer Form als Ventil
DE102009035444B4 (de) Magnetventil und Verfahren zum Betreiben eines Magnetventils
EP3026680B1 (fr) Actionneur linéaire et son utilisation
WO2016074758A1 (fr) Soupape à vide
EP0922893B1 (fr) Soupape
DE102015216766B3 (de) Antriebsvorrichtung
DE102015211940B3 (de) Vorrichtung mit Bewegungsabbremsmitteln
DE102008030258A1 (de) Resonantes magnetisches Aktorsystem zur Verwendung in der Industriepneumatik
EP1404011A1 (fr) Entraînement linéaire
EP3528953B1 (fr) Ensemble piston à aimants permanents muni d'une ossature extérieure logeant des aimants pour un dispositif de piaget
DE1750415B1 (de) Elektromagnetisch betaetigtes steuerventil
WO2019002428A1 (fr) Actionneur magnétorhéologique conçu pour une unité de remplissage d'une installation de conditionnement de boisson
WO2018121901A1 (fr) Dispositif de vanne électromagnétique à armature basculante
DE102014207393B4 (de) Ventil
DE102017201453A1 (de) Spulenbaugruppe, Verfahren zu ihrer Herstellung und damit ausgestattete Ventileinheit
EP2228576A1 (fr) Dispositif de soupape
DE102017211257A1 (de) Elektromagnetischer Antrieb und damit ausgestattetes Ventil
EP2158421B1 (fr) Soupape de commande et procede pour commuter une soupape de commande
DE102015223396A1 (de) Schaltbares Lager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161124

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20191126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012410

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1264528

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012410

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1264528

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 9

Ref country code: DE

Payment date: 20231120

Year of fee payment: 9