EP3026132A1 - Procédé d'augmentation d'une vitesse de dégazage sur une fusion métallique dans une installation de dégazage sous vide ainsi qu'installation de dégazage sous vide - Google Patents

Procédé d'augmentation d'une vitesse de dégazage sur une fusion métallique dans une installation de dégazage sous vide ainsi qu'installation de dégazage sous vide Download PDF

Info

Publication number
EP3026132A1
EP3026132A1 EP14194975.0A EP14194975A EP3026132A1 EP 3026132 A1 EP3026132 A1 EP 3026132A1 EP 14194975 A EP14194975 A EP 14194975A EP 3026132 A1 EP3026132 A1 EP 3026132A1
Authority
EP
European Patent Office
Prior art keywords
vibration
melt
degassing
vessel
vacuum degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14194975.0A
Other languages
German (de)
English (en)
Inventor
Markus Dorndorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Primetals Technologies Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Austria GmbH filed Critical Primetals Technologies Austria GmbH
Priority to EP14194975.0A priority Critical patent/EP3026132A1/fr
Publication of EP3026132A1 publication Critical patent/EP3026132A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals

Definitions

  • the invention relates to a method for increasing a degassing rate on a metallic melt in a vacuum degassing plant, wherein the metallic melt is in a metallurgical vessel, which is arranged in a degassing of the vacuum degassing and wherein the degassing space is evacuated, the vessel and / or Melt is vibrated, causing agglomeration of gas bubbles in the melt.
  • the invention further relates to a vacuum degassing installation set up for carrying out such a method.
  • Vacuum degassing plants and processes for degassing metallic melts with the introduction of a vibration to support the degassing effect of such plants are already known.
  • the vibrational energy introduced into a metallic melt causes collisions of individual gas bubbles in the melt to take place increasingly and the colliding individual bubbles combine to form a single, enlarged bubble, which due to its size is subject to an increased buoyancy force than the previously smaller individual bubbles.
  • gas bubbles of small diameter in the range of less than 20 microns behave in the melt as suspended particles, which would often remain in the melt due to the low, acting on them buoyancy force. Will such a bubble excited by a vibration, its radius of action increases so that a collision with an adjacent bubble becomes more likely.
  • the object is for the method for increasing a degassing rate of a metallic melt in a vacuum degassing plant, wherein the metallic melt is in a metallurgical vessel, which is arranged in a degassing of the vacuum degassing and wherein the degassing space is evacuated, the vessel and / or causing the melt to vibrate, causing agglomeration of gas bubbles in the melt, by transferring the vibration to the metallic melt via at least one vibrator, which oscillates with a change in a metal melt treatment period Vibration frequency.
  • the method allows excitation of gas bubbles by means of the registered vibration, which can also be greatly different in size. Due to the change in the oscillation frequency of the introduced oscillation during the treatment period of the melt, gas bubbles with different bubble sizes are successively vibrated, thus increasing the probability of collision with adjacent gas bubbles in the melt. This significantly more gas bubbles are excited, as is the case when only a vibration with a single oscillation frequency is induced. As a result, the degassing rate of the melt is significantly increased. The running time of vacuum pumps for degassing the melt can be reduced and the energy required for the degassing process can be reduced.
  • the oscillation frequency in the treatment period is changed within a frequency band, in particular in the range of 10 Hz to 50 kHz.
  • This frequency band has proved to be particularly effective to bring the gas bubbles usually present with their different bubble diameters as possible all for swinging and thus colliding with an adjacent gas bubble. It has been shown that larger gas bubbles tend to couple at low oscillation frequencies f, while smaller gas bubbles tend to couple at high oscillation frequencies f.
  • the bubble size correlates according to current knowledge approximately with the quotient of 1 f ,
  • the oscillation frequency is lowered in the treatment period. It is started by a high oscillation frequency and this, gradually or steadily, lowered to a lower oscillation frequency in order to achieve coupling of the different gas bubbles to the respective optimal excitation oscillation.
  • the oscillation frequency is changed in the treatment period in the range of a frequency band and that at least a single oscillation frequency is kept the same over a holding period. If many gas bubbles of the same or similar bubble size are present, then such a holding process can lead to a further accelerated degassing of the melt at a specific oscillation frequency at which precisely these gas bubbles preferentially couple to the oscillation.
  • Such an approach is particularly advantageous when mainly gas bubbles with two different bubble diameters are present.
  • the vibration frequencies are introduced over a longer period of time, which decouple to one or the other gas bubbles.
  • the oscillation is transmitted to the vessel and / or the metallic melt via at least two oscillation transmitters, the oscillation transmitters each emitting a different oscillation with a vibration frequency changing in the treatment period of the metallic melt.
  • the oscillation transmitters each emitting a different oscillation with a vibration frequency changing in the treatment period of the metallic melt. This creates areas of simultaneous presence in the melt at a time when different vibrations prevail.
  • an oscillation superimposition of the different oscillation frequencies in the melt also plays a role increasing the degassing rate.
  • the vacuum degassing system according to the invention allows a particularly rapid degassing of the melt and is therefore energy-efficient to operate.
  • At least two vibration sensors are present. This increases the vibration input into the melt and thus the degassing rate of the melt.
  • a separate vibration frequency controller is present per vibration generator.
  • different frequency bands can be traversed at each vibration transmitter, wherein depending on the arrangement of the respective vibration generator, a matching variation of the vibration frequencies can be set in a predetermined frequency band.
  • At least one vibration generator is formed by a rinsing lance immersible in the metallic melt.
  • the Spüllanze stands in no direct contact with the vessel, but only in direct contact with the melt.
  • the position of the rinsing lance as well as its depth of immersion in the melt can be fixed depending on the vessel or variable, in particular be variable during the treatment time of the melt.
  • Inert gas is usually blown into the melt via the rinsing lance, whereby the rising inert gas bubbles are intended to rupture the gas bubbles distributed in the melt with it to the surface of the melt.
  • Such a flushing lance acts in particular in the middle region of the melt on existing gas bubbles.
  • At least one vibration transmitter has a contact jaw carrier with at least one contact jaw for producing a mechanical contact with the metallurgical vessel, wherein the contact jaw carrier is pivotably mounted on the bottom of the degassing space or on the holder via a pivot mechanism such that the at least a contact jaw can be brought into mechanical contact with the vessel and the vibration can be transmitted to the vessel and / or the melt.
  • Such an oscillator acts in particular in the edge region of the melt adjacent to the vessel on existing gas bubbles.
  • a vacuum degassing system which has both a vibration generator in the form of a flushing lance as well as at least one vibration sensor with contact jaw carrier and at least one contact jaw, which can be brought into mechanical contact with the vessel.
  • FIG. 1 shows a first vacuum degassing system 1 in the sectional view with two vibration sensors 2a, 2b.
  • the vacuum degassing system 1 comprises an evacuable degassing chamber 10 for receiving a metallurgical vessel 3, a arranged in the degassing chamber 10 holder 4 for the metallurgical vessel 3 and the two vibration sensors 2a, 2b, which can be coupled in the degassing chamber 10 to the metallurgical vessel 3, in a Treatment period a vibration 100 (see also FIG. 2 ) on the vessel 3 and the metallic located therein Melt 5 to transfer.
  • the vibration sensors 2a, 2b are connected to an oscillation frequency regulator 20, which predetermines the oscillation sensors 2a, 2b a frequency band in which an oscillation frequency of the oscillation 100 can be changed during the treatment period.
  • Each vibration transmitter 2a, 2b has a contact jaw carrier 2a ', 2b', each with three contact jaws 2a '', 2b '' for producing a mechanical contact with the metallurgical vessel 3.
  • the respective contact jaw carrier 2a ', 2b' is pivotally mounted on the bottom 10a of the degassing space 10 via a pivoting mechanism 6a, 6b in such a way that the contact jaws 2a “, 2b” can be brought into mechanical contact with the vessel 3 and the vibration 100 can be brought onto the vessel 3 and the melt 5 is transferable.
  • the contact jaws 2a ", 2b" are not yet in contact with the vessel 3 and no vibration 100 is induced. From the melt 5 in the degassing chamber 10 passing gas 7 is sucked off via a suction 8 to maintain a vacuum in the degassing 10.
  • the vessel 3 is movable here by means of the holder 4 from the degassing chamber 10.
  • FIG. 2 shows the first vacuum degassing 1 from FIG. 1 with applied to the vessel 3 contact jaws 2a '', 2b ''.
  • the method for increasing the degassing rate on the metallic melt 5 is carried out, the metallic melt 5 being located in the metallurgical vessel 3, which is arranged in the degassing space 10.
  • the degassing chamber 10 is evacuated via the suction 8.
  • the vessel 3 and the melt 5 are subjected to the vibration 100. This causes agglomeration of gas bubbles in the melt 5.
  • the vibration is transmitted via the vibration transmitter 2a, 2b to the metallic melt 5, which emit the vibration 100 with a changing in the treatment period of the metallic melt 5 oscillation frequency.
  • gas bubbles in the melt 5 which have very different sizes, are excited to oscillate and collide with adjacent gas bubbles.
  • FIG. 3 shows a second vacuum degassing system 1 'in the sectional view with a vibration sensor 2 in the form of a Spüllanze over which a purge gas 9 is introduced in the form of inert gas in the melt 5.
  • a vibration sensor 2 in the form of a Spüllanze over which a purge gas 9 is introduced in the form of inert gas in the melt 5.
  • a movable contact jaw 2 '' (see horizontal double arrow) is pressed against the flushing lance, which has a vibration 100 (see FIG. 4 ) transmits to the melt 5.
  • the position of the rinsing lance in the melt 5 is vertically variable (see vertical double arrow).
  • FIG. 4 shows the second vacuum degassing 1 'from FIG. 3 , wherein the contact jaw 2 '' is pressed against the Spüllanze and this thus acts as a vibrator 2 for the melt 5.
  • the degassing chamber 10 here has a removable lid (not shown), so that the vessel 3 can be introduced from above into the degassing chamber 10 and removed again therefrom, for example by means of a ceiling crane, not shown.
  • FIG. 5 shows a third vacuum degassing system 1 '' in the sectional view.
  • the first vibration transmitter 2 is designed in the form of a flushing lance, while the other two vibration transmitter 2a, 2b contact jaw brackets 2a ', 2b', each with three contact jaws 2a '', 2b '', which can be applied from the outside to the vessel 3.
  • a vibration frequency controller 20 for the other two vibrators 2a, 2b, a common further vibration frequency encoder 20 'available.
  • a pressure sensor 11 for detecting the pressure prevailing in the degassing space 10 pressure is present, which is connected to a central unit 12 data technology.
  • the central unit 12 is in particular a data processing unit.
  • the two oscillation frequency controllers 20, 20 ' are also connected to the central unit 12 for data purposes.
  • the central unit 12 detects the pressure data measured by the pressure sensor 11 and determines a suitable oscillation frequency band and suitable holding periods at selected individual oscillation frequencies at which a large amount of gas escapes from the melt 5 into the degassing space 10 according to the pressure data.
  • the determined optimum travel program for the relevant melt 5 is deposited in the central unit and can be used for subsequent melts of the same type.
  • FIG. 6 shows the third vacuum degassing system 1 '' from FIG. 5 with applied contact jaws 2 '', 2a '', 2b ''.
  • the first vibration transmitter 2 is connected to the vibration frequency controller 20, which specifies the oscillation frequency of the first vibration 100 'transmitted by the rinsing lance to the melt 5 and frequency changes in the treatment period.
  • the two further vibration transmitters 2a, 2b are connected to a further vibration frequency regulator 20 ', which specifies a second vibration 100 "different from the first vibration 100' and its frequency response. Due to the superposition of the different vibrations 100 ', 100'', an increased degassing of the melt 5 occurs.
  • FIGS. 1 to 6 The present invention is intended to be described by way of example only. So differently designed vibration generator, degassing, vessels, brackets, etc. and frequency bands can be used without departing from the spirit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
EP14194975.0A 2014-11-26 2014-11-26 Procédé d'augmentation d'une vitesse de dégazage sur une fusion métallique dans une installation de dégazage sous vide ainsi qu'installation de dégazage sous vide Withdrawn EP3026132A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14194975.0A EP3026132A1 (fr) 2014-11-26 2014-11-26 Procédé d'augmentation d'une vitesse de dégazage sur une fusion métallique dans une installation de dégazage sous vide ainsi qu'installation de dégazage sous vide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14194975.0A EP3026132A1 (fr) 2014-11-26 2014-11-26 Procédé d'augmentation d'une vitesse de dégazage sur une fusion métallique dans une installation de dégazage sous vide ainsi qu'installation de dégazage sous vide

Publications (1)

Publication Number Publication Date
EP3026132A1 true EP3026132A1 (fr) 2016-06-01

Family

ID=52002719

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14194975.0A Withdrawn EP3026132A1 (fr) 2014-11-26 2014-11-26 Procédé d'augmentation d'une vitesse de dégazage sur une fusion métallique dans une installation de dégazage sous vide ainsi qu'installation de dégazage sous vide

Country Status (1)

Country Link
EP (1) EP3026132A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110756780A (zh) * 2019-11-29 2020-02-07 马鞍山市兴隆铸造有限公司 一种避免产生气泡的铸造装置
CN115007840A (zh) * 2022-06-30 2022-09-06 中国航发贵州红林航空动力控制科技有限公司 一种机械铸造用液压振动除气装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT155133B (de) * 1936-07-08 1938-11-25 Alfred Dr Reis Verfahren zur Behandlung von geschmolzenen Metallen und Legierungen mittels Ultraschallwellen.
DD159267A3 (de) 1980-07-07 1983-03-02 Robert Saaber Verfahren und vorrichtung zur vakuumbehandlung von al-schmelze
EP1900456A1 (fr) * 2006-09-18 2008-03-19 Aluwag Ag Disposition pour la fabrication de pieces coulées
DE102013208079A1 (de) * 2013-02-14 2014-08-14 Sms Siemag Ag Verfahren zum Betrieb einer Sauerstoffblaslanze in einem metallurgischen Gefäß und Messsytem zur Ermittlung dabei verwendeter Messsignale

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT155133B (de) * 1936-07-08 1938-11-25 Alfred Dr Reis Verfahren zur Behandlung von geschmolzenen Metallen und Legierungen mittels Ultraschallwellen.
DD159267A3 (de) 1980-07-07 1983-03-02 Robert Saaber Verfahren und vorrichtung zur vakuumbehandlung von al-schmelze
EP1900456A1 (fr) * 2006-09-18 2008-03-19 Aluwag Ag Disposition pour la fabrication de pieces coulées
DE102013208079A1 (de) * 2013-02-14 2014-08-14 Sms Siemag Ag Verfahren zum Betrieb einer Sauerstoffblaslanze in einem metallurgischen Gefäß und Messsytem zur Ermittlung dabei verwendeter Messsignale

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU ET AL: "Effects of ultrasonic field and vacuum on degassing of molten aluminum alloy", MATERIALS LETTERS, NORTH HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 61, no. 4-5, 10 January 2007 (2007-01-10), pages 1246 - 1250, XP005825639, ISSN: 0167-577X, DOI: 10.1016/J.MATLET.2006.07.012 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110756780A (zh) * 2019-11-29 2020-02-07 马鞍山市兴隆铸造有限公司 一种避免产生气泡的铸造装置
CN110756780B (zh) * 2019-11-29 2021-08-20 马鞍山市兴隆铸造有限公司 一种避免产生气泡的铸造装置
CN115007840A (zh) * 2022-06-30 2022-09-06 中国航发贵州红林航空动力控制科技有限公司 一种机械铸造用液压振动除气装置
CN115007840B (zh) * 2022-06-30 2024-03-01 中国航发贵州红林航空动力控制科技有限公司 一种机械铸造用液压振动除气装置

Similar Documents

Publication Publication Date Title
EP0597911B1 (fr) Dispositif de production de globules d'alginate
EP1043249B1 (fr) Convoyeur vibrant et procédé pour le transport de silicium en vrac
AT391427B (de) Verfahren und vorrichtung zur erzielung eines optimalen verdichtungsgrades beim verdichten unterschiedlicher materialien
DE69016028T2 (de) Vorrichtung und verfahren zum schneiden eines specimens.
WO2016169800A1 (fr) Dispositif et procédé servant à ébavurer des composants au moyen d'ultrasons
EP2330400B1 (fr) Appareil de mesure de particules, notamment pour l'analyse de grandeurs de grains de matériaux en vrac fins et très fins
DE19752585A1 (de) Vorrichtung und Verfahren zum Verkapseln von mikrobiellen, pflanzlichen und tierischen Zellen bzw. von biologischen und chemischen Substanzen
EP3026132A1 (fr) Procédé d'augmentation d'une vitesse de dégazage sur une fusion métallique dans une installation de dégazage sous vide ainsi qu'installation de dégazage sous vide
DE102013217101A1 (de) Stranggießvorrichtung und Verfahren zur Produktion und/oder Inspektion von metallurgischen Gießprodukten
EP3122463B1 (fr) Procédé pour fragmenter un matériau en forme de barre, en particulier en silicium polycristallin
WO2017092777A1 (fr) Procédé et dispositif de filtration solide-liquide améliorée de gâteaux de filtre
EP0325931A1 (fr) Procédé et dispositif pour l'oscillation d'une lingotière pour la coulée continue
EP2607309A1 (fr) Pièce en silicium polycristallin et procédé de rupture d'un corps en silicium
EP1266546B1 (fr) Traitement de supports de circuits au moyen d'une excitation pulsee
EP3369864A1 (fr) Procédé de détection d'obstacles lors du fonctionnement d'un vibrateur de battage
WO2006007907A1 (fr) Procede et dispositif pour sectionner des plaques en matieres mecaniquement fragiles et non metalliques
DE10134406C1 (de) Verfahren und Vorrichtung zur geregelten Flotation von in einer Flüssigkeit dispergierten Partikeln
WO2012168103A2 (fr) Système de gazéification et utilisation dudit système de gazéification, ainsi que procédé pour maximiser une puissance de gazéification
DE952707C (de) Vorrichtung zum Dispergieren
DE202011108231U1 (de) Vorrichtung zur Festigkeitsprüfung von Substraten
WO2011147702A1 (fr) Procédé et dispositif d'analyse d'un granulat à base de matière minérale fondue
EP3450593A1 (fr) Procédé et dispositif capteur destinés à la détermination à compensation de perturbations de l'application ou de l'enlèvement de matière pendant les processus chimiques humides
AT524995B1 (de) Verfahren und Vorrichtung zur Entfernung von Stützstrukturen aus einem Gegenstand, sowie Verfahren zur Herstellung eines Gegenstands durch additive Fertigung
EP3546430B1 (fr) Dispositif et procédé de surveillance de l'efficacité d'une unité de traitement de l'eau
EP1737584A1 (fr) Procede et dispositif destines a eliminer des liquides de la surface d'une bande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20161110