EP3026084A1 - Semi-aromatic polyamide resin composition and molded article containing same - Google Patents
Semi-aromatic polyamide resin composition and molded article containing same Download PDFInfo
- Publication number
- EP3026084A1 EP3026084A1 EP14828822.8A EP14828822A EP3026084A1 EP 3026084 A1 EP3026084 A1 EP 3026084A1 EP 14828822 A EP14828822 A EP 14828822A EP 3026084 A1 EP3026084 A1 EP 3026084A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- semi
- aromatic polyamide
- resin composition
- structural unit
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920006012 semi-aromatic polyamide Polymers 0.000 title claims abstract description 206
- 239000011342 resin composition Substances 0.000 title claims abstract description 95
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims abstract description 100
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229920000098 polyolefin Polymers 0.000 claims abstract description 65
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims abstract description 50
- 150000004985 diamines Chemical class 0.000 claims abstract description 39
- 125000000524 functional group Chemical group 0.000 claims abstract description 37
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 34
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 26
- 239000001361 adipic acid Substances 0.000 claims abstract description 25
- 235000011037 adipic acid Nutrition 0.000 claims abstract description 25
- 239000012765 fibrous filler Substances 0.000 claims abstract description 24
- 238000002844 melting Methods 0.000 claims description 50
- 230000008018 melting Effects 0.000 claims description 50
- 229920001577 copolymer Polymers 0.000 claims description 29
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 28
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 23
- 239000004020 conductor Substances 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 15
- 239000004917 carbon fiber Substances 0.000 claims description 15
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 11
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 10
- 239000005977 Ethylene Substances 0.000 claims description 10
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 8
- 239000002041 carbon nanotube Substances 0.000 claims description 8
- 125000005842 heteroatom Chemical group 0.000 claims description 8
- 230000000630 rising effect Effects 0.000 claims description 7
- 150000001336 alkenes Chemical class 0.000 claims description 6
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 125000003172 aldehyde group Chemical group 0.000 claims description 3
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 3
- 125000004185 ester group Chemical group 0.000 claims description 3
- 125000001033 ether group Chemical group 0.000 claims description 3
- 125000000468 ketone group Chemical group 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- -1 aliphatic diamine Chemical class 0.000 abstract description 39
- 239000000446 fuel Substances 0.000 abstract description 29
- 230000004888 barrier function Effects 0.000 abstract description 19
- 238000002347 injection Methods 0.000 abstract description 10
- 239000007924 injection Substances 0.000 abstract description 10
- 239000004952 Polyamide Substances 0.000 description 40
- 229920002647 polyamide Polymers 0.000 description 40
- 238000000465 moulding Methods 0.000 description 29
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 26
- 229920006122 polyamide resin Polymers 0.000 description 26
- 239000000047 product Substances 0.000 description 21
- 239000004711 α-olefin Substances 0.000 description 21
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 20
- 239000007859 condensation product Substances 0.000 description 20
- 239000000523 sample Substances 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 16
- 238000005259 measurement Methods 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 14
- 239000000835 fiber Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 238000006116 polymerization reaction Methods 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 125000003277 amino group Chemical group 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- GAGWMWLBYJPFDD-UHFFFAOYSA-N 2-methyloctane-1,8-diamine Chemical compound NCC(C)CCCCCCN GAGWMWLBYJPFDD-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 238000001746 injection moulding Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 229920006128 poly(nonamethylene terephthalamide) Polymers 0.000 description 7
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical class ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000006011 modification reaction Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 5
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000007822 coupling agent Substances 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000012488 sample solution Substances 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000004566 IR spectroscopy Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 230000003028 elevating effect Effects 0.000 description 4
- 239000002828 fuel tank Substances 0.000 description 4
- CHTHALBTIRVDBM-UHFFFAOYSA-N furan-2,5-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)O1 CHTHALBTIRVDBM-UHFFFAOYSA-N 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 4
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- KOUDKOMXLMXFKX-UHFFFAOYSA-N sodium oxido(oxo)phosphanium hydrate Chemical compound O.[Na+].[O-][PH+]=O KOUDKOMXLMXFKX-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- JCUZDQXWVYNXHD-UHFFFAOYSA-N 2,2,4-trimethylhexane-1,6-diamine Chemical compound NCCC(C)CC(C)(C)CN JCUZDQXWVYNXHD-UHFFFAOYSA-N 0.000 description 3
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 3
- 239000004953 Aliphatic polyamide Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229920003231 aliphatic polyamide Polymers 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 2
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- GBURUDXSBYGPBL-UHFFFAOYSA-N 2,2,3-trimethylhexanedioic acid Chemical compound OC(=O)C(C)(C)C(C)CCC(O)=O GBURUDXSBYGPBL-UHFFFAOYSA-N 0.000 description 2
- WKRCUUPMCASSBN-UHFFFAOYSA-N 2,2-diethylbutanedioic acid Chemical compound CCC(CC)(C(O)=O)CC(O)=O WKRCUUPMCASSBN-UHFFFAOYSA-N 0.000 description 2
- BTUDGPVTCYNYLK-UHFFFAOYSA-N 2,2-dimethylglutaric acid Chemical compound OC(=O)C(C)(C)CCC(O)=O BTUDGPVTCYNYLK-UHFFFAOYSA-N 0.000 description 2
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 2
- JZUMVFMLJGSMRF-UHFFFAOYSA-N 2-Methyladipic acid Chemical compound OC(=O)C(C)CCCC(O)=O JZUMVFMLJGSMRF-UHFFFAOYSA-N 0.000 description 2
- RGHQFGJBVNNZMF-UHFFFAOYSA-N 2-methyldecane-1,10-diamine Chemical compound NCC(C)CCCCCCCCN RGHQFGJBVNNZMF-UHFFFAOYSA-N 0.000 description 2
- OGJZJWVBRMAQBR-UHFFFAOYSA-N 2-methylheptane-1,7-diamine Chemical compound NCC(C)CCCCCN OGJZJWVBRMAQBR-UHFFFAOYSA-N 0.000 description 2
- IHGZNTAZIJXDST-UHFFFAOYSA-N 2-methylnonane-1,9-diamine Chemical compound NCC(C)CCCCCCCN IHGZNTAZIJXDST-UHFFFAOYSA-N 0.000 description 2
- UFMBOFGKHIXOTA-UHFFFAOYSA-N 2-methylterephthalic acid Chemical compound CC1=CC(C(O)=O)=CC=C1C(O)=O UFMBOFGKHIXOTA-UHFFFAOYSA-N 0.000 description 2
- SIKONVOBFDHQST-UHFFFAOYSA-N 2-methylundecane-1,11-diamine Chemical compound NCC(C)CCCCCCCCCN SIKONVOBFDHQST-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 244000154870 Viola adunca Species 0.000 description 2
- 235000005811 Viola adunca Nutrition 0.000 description 2
- 235000013487 Viola odorata Nutrition 0.000 description 2
- 235000002254 Viola papilionacea Nutrition 0.000 description 2
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- NIDNOXCRFUCAKQ-UHFFFAOYSA-N bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2C(O)=O NIDNOXCRFUCAKQ-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 2
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 2
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 2
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- OREAFAJWWJHCOT-UHFFFAOYSA-N dimethylmalonic acid Chemical compound OC(=O)C(C)(C)C(O)=O OREAFAJWWJHCOT-UHFFFAOYSA-N 0.000 description 2
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- DNXDYHALMANNEJ-UHFFFAOYSA-N furan-2,3-dicarboxylic acid Chemical class OC(=O)C=1C=COC=1C(O)=O DNXDYHALMANNEJ-UHFFFAOYSA-N 0.000 description 2
- PWSKHLMYTZNYKO-UHFFFAOYSA-N heptane-1,7-diamine Chemical compound NCCCCCCCN PWSKHLMYTZNYKO-UHFFFAOYSA-N 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012968 metallocene catalyst Substances 0.000 description 2
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000002976 peresters Chemical class 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000003578 releasing effect Effects 0.000 description 2
- 239000011369 resultant mixture Substances 0.000 description 2
- 239000012756 surface treatment agent Substances 0.000 description 2
- PRZSXZWFJHEZBJ-UHFFFAOYSA-N thymol blue Chemical compound C1=C(O)C(C(C)C)=CC(C2(C3=CC=CC=C3S(=O)(=O)O2)C=2C(=CC(O)=C(C(C)C)C=2)C)=C1C PRZSXZWFJHEZBJ-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- BOOBDAVNHSOIDB-UHFFFAOYSA-N (2,3-dichlorobenzoyl) 2,3-dichlorobenzenecarboperoxoate Chemical compound ClC1=CC=CC(C(=O)OOC(=O)C=2C(=C(Cl)C=CC=2)Cl)=C1Cl BOOBDAVNHSOIDB-UHFFFAOYSA-N 0.000 description 1
- GWQOYRSARAWVTC-UHFFFAOYSA-N 1,4-bis(2-tert-butylperoxypropan-2-yl)benzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=C(C(C)(C)OOC(C)(C)C)C=C1 GWQOYRSARAWVTC-UHFFFAOYSA-N 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- ODGCZQFTJDEYNI-UHFFFAOYSA-N 2-methylcyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1(C)C=CCCC1C(O)=O ODGCZQFTJDEYNI-UHFFFAOYSA-N 0.000 description 1
- BUGIFNPYQVKODR-UHFFFAOYSA-N 2-methylhexane-1,6-diamine Chemical compound NCC(C)CCCCN BUGIFNPYQVKODR-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OXLXAPYJCPFBFT-UHFFFAOYSA-L CC1=CC(C)(C=C1)[Zr](Cl)(Cl)C1(C)C=CC(C)=C1 Chemical compound CC1=CC(C)(C=C1)[Zr](Cl)(Cl)C1(C)C=CC(C)=C1 OXLXAPYJCPFBFT-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229920006020 amorphous polyamide Polymers 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 150000002497 iodine compounds Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- TXRPLFBVYIKTSU-UHFFFAOYSA-N pentadecane-1,15-diamine Chemical compound NCCCCCCCCCCCCCCCN TXRPLFBVYIKTSU-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- PFBLRDXPNUJYJM-UHFFFAOYSA-N tert-butyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(C)(C)C PFBLRDXPNUJYJM-UHFFFAOYSA-N 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- MSVPBWBOFXVAJF-UHFFFAOYSA-N tetradecane-1,14-diamine Chemical compound NCCCCCCCCCCCCCCN MSVPBWBOFXVAJF-UHFFFAOYSA-N 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- BPSKTAWBYDTMAN-UHFFFAOYSA-N tridecane-1,13-diamine Chemical compound NCCCCCCCCCCCCCN BPSKTAWBYDTMAN-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/265—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
Definitions
- the present invention relates to a semi-aromatic polyamide resin composition and a molded product containing the same.
- a polyamide typically represented by nylon 6 or nylon 66 is excellent in moldability, mechanical properties and chemical resistance, and widely used as a material for various components of automobiles, industrial materials, clothing, and electric, electronic or industrial applications.
- drastic reduction in the amount of evaporated automobile fuel has been required mainly in the United States. Accordingly, there is a demand for drastic reduction in the amount of fuel evaporation from fuel system parts such as fuel tubes and fuel tube joints.
- the joints are also required to have a high impact resistance to prevent damage from an impact caused by a flying stone or an accident.
- PTL 1 discloses a polyamide resin composition containing a specific PA9T, a maleic anhydride-modified ethylene-butene copolymer as a modified olefin polymer, and glass fiber.
- PA9T used in the resin composition disclosed in PTL 1 contains 2-methyl-1,8-octanediamine as a diamine component in addition to 1,9-nonanediamine. This causes impaired crystallinity, and reduced crystallization rate, and in some cases, insufficient moldability such as the mold releasability in injection molding.
- PA9T has a problem such that toughness, e.g., impact resistance of a molded product, is lower than that of an aliphatic polyamide such as a conventional nylon 12.
- PTL 1 improves the impact resistance strength by blending a modified olefin polymer with the resin composition.
- the present inventors have found that the resin composition has poor moldability in some cases, with insufficient mold releasability or increased viscosity to lower injection flowability.
- An object of the present invention is to provide a semi-aromatic polyamide resin composition excellent in impact resistance, fuel barrier properties, and moldability, and a molded product containing the same.
- the present invention relates to semi-aromatic polyamide resin compositions as set forth below.
- the present invention provides a semi-aromatic polyamide resin composition excellent in impact resistance, fuel barrier properties, and moldability, and a molded product containing the same, for example, a quick connector.
- any range using the term “to” means a range including the boundary values as well as intermediate values.
- the range “A to B” means a range including "A,” “B,” and “intermediate values between A and B.”
- the semi-aromatic polyamide resin composition of the present invention includes a semi-aromatic polyamide (A), a semi-aromatic polyamide (B), and an olefin polymer (C), and preferably further includes a fibrous filler (D) and a conductive material (E).
- the semi-aromatic polyamide resin composition of the present invention achieves both high gas barrier properties and good moldability by blending a semi-aromatic polyamide (B) with low crystallinity but excellent gas barrier properties with a semi-aromatic polyamide (A). Although the reason is not clear, it can be deduced as follows.
- the semi-aromatic polyamide (A) forms a major phase and the semi-aromatic polyamide (B) is finely dispersed therein, and the blend maintains both the excellent moldability of the semi-aromatic polyamide (A) and the excellent effect of the semi-aromatic polyamide (B) for improving gas barrier properties.
- the semi-aromatic polyamide resin composition of the present invention has a melting point of preferably 280°C to 330°C.
- the semi-aromatic polyamide (A) is a semi-aromatic polyamide having a melting point (Tm) of 290°C or higher but not higher than 340°C, as measured by differential scanning calorimetry (hereinafter referred to as DSC). More preferably, the semi-aromatic polyamide has a melting point of 290°C or higher but not higher than 330°C.
- the melting point of the semi-aromatic polyamide (A) of 290°C or higher can improve the heat resistance and the mechanical strength of a semi-aromatic polyamide resin composition.
- the melting point of the semi-aromatic polyamide (A) of 340°C or lower keeps the melting point of the semi-aromatic polyamide resin composition from being excessively high, thereby preventing the thermal decomposition of polymers and various additive materials during the melt polymerization and melt molding.
- the semi-aromatic polyamide (A) is not particularly limited as long as the polyamide has an aromatic group.
- the semi-aromatic polyamide may be a polyamide having a dicarboxylic acid component, such as a structural unit derived from terephthalic acid or isophthalic acid, and a diamine component, or a polyamide having a structural unit derived from a diamine having an aromatic group such as m-xylylenediamine.
- the melting point of the semi-aromatic polyamide (A) can be controlled within the above-mentioned range by adjusting the composition or the like.
- the melting point may be controlled to fall within the above-mentioned range by adjusting the molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from adipic acid to be in the range of 40/60 to 80/20.
- the melting point may be controlled to fall within the above-mentioned range by adjusting the molar ratio of the structural unit derived from 1,9-nonanediamine to the structural unit derived from 2-methyl-1,8-octanediamine to be in the range of 70/30 to 90/10.
- the melting point may be controlled to fall within the above-mentioned range by adjusting the molar ratio of the structural unit derived from 1,6-hexanediamine to the structural unit derived from 2-methyl-1,5-pentanediamine to be in the range of 40/60 to 70/30.
- the melting point may be controlled to fall within the range by adjusting the molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from isophthalic acid to be in the range of 70/30 to 50/50.
- Each of the structural units contained in the semi-aromatic polyamide (A) and the proportions thereof can be identified from the feed ratio used for manufacturing the semi-aromatic polyamide (A), or by known means such as 13 C-NMR measurement or 1 H-NMR measurement.
- the present invention may employ, for example, a semi-aromatic polyamide having a dicarboxylic acid component containing a structural unit derived from terephthalic acid and a structural unit derived from adipic acid and a diamine component (hereinafter, referred to as a semi-aromatic polyamide (A')).
- a semi-aromatic polyamide having a dicarboxylic acid component containing a structural unit derived from terephthalic acid and a structural unit derived from adipic acid and a diamine component
- the semi-aromatic polyamide (A') has excellent moldability, by virtue of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid which are both used as dicarboxylic acid components. Further, the resultant polyamide resin composition has excellent gas barrier properties in comparison with an aliphatic polyamide. Though not clear, the reason can be deduced as follows.
- a semi-aromatic polyamide using such as PA6T or PA9T, which uses terephthalic acid has excellent gas barrier properties in comparison with an aliphatic polyamide by virtue of its aromatic group.
- PA6T or PA9T as a homopolymer may cause the thermal decomposition of polymers and various additive materials during melt polymerization and melt molding due to its excessively high melting point.
- the semi-aromatic polyamide is, therefore, copolymerized with a dicarboxylic acid component such as adipic acid or isophthalic acid, or with an aliphatic diamine such as 2-methyl-1,5-pentanediamine, so as to lower the melting point to about 280°C to 330°C.
- a dicarboxylic acid component such as adipic acid or isophthalic acid
- an aliphatic diamine such as 2-methyl-1,5-pentanediamine
- the semi-aromatic polyamide is a compound having a structural unit derived from a compound having a 2-methyl-1,8-octanediamine side chain or the like, crystallinity of the semi-aromatic polyamide may be impaired due to an increase in the flexibility of the polyamide chain.
- the semi-aromatic polyamide (A') contains a copolymer of adipic acid and terephthalic acid as a dicarboxylic acid, and therefore, the resultant polymer has high linearity. Furthermore, the semi-aromatic polyamide (A') is a copolymer with an isomorphous substitution in which the length of the structural units in the molecular chain direction are similar for those derived from terephthalic acid and those derived from adipic acid. Both of these features enhance crystallinity, so that the semi-aromatic polyamide (A') can have a low melting point without impairing high crystallinity inherent to the polyamide made using terephthalic acid. It is conceivable that a polyamide resin composition excellent in moldability such as mold releasability can be obtained by virtue of the above-mentioned features.
- the molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A') is preferably 40/60 to 80/20, more preferably 40/60 to 70/30, further preferably 50/50 to 70/30, furthermore preferably 60/40 to 70/30.
- the polyamide resin composition has sufficient heat resistance and chemical resistance.
- the molding temperature in injection molding is lowered, so that the amount of gas generated in molding due to the decomposition of an olefin polymer (C) and the like can be reduced. Consequently, excellent moldability can be achieved with reduced mold stains, for example, by gas burn.
- the semi-aromatic polyamide (A') may have a dicarboxylic acid component derived from an acid other than terephthalic acid or adipic acid. Note that the number of moles of the dicarboxylic acid component derived from an acid other than terephthalic acid or adipic acid which are contained in the semi-aromatic polyamide (A') is preferably 5% or less relative to the total number of moles of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid.
- dicarboxylic acids derived from an acid other than terephthalic acid or adipic acid which are contained in the semi-aromatic polyamide (A') include: aromatic dicarboxylic acids such as isophthalic acid, 2-methylterephthalic acid, and naphthalenedicarboxylic acid; furandicarboxylic acids such as 2,5-furandicarboxylic acid; alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid; aliphatic dicarboxylic acids such as malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid; aliphatic dicarboxylic acids having 11 or more carbon
- the diamine component constituting the semi-aromatic polyamide (A') is a component derived from a straight chain aliphatic diamine having 4 to 10 carbon atoms. This is because a highly crystalline semi-aromatic polyamide having low water absorption and high heat resistance can be obtained by the single use of a straight chain aliphatic diamine fulfilling this range.
- 80 to 100 mol% of the total diamine components constituting the semi-aromatic polyamide (A') is a component derived from a straight chain aliphatic diamine having 4 to 10 carbon atoms.
- Examples of the straight chain aliphatic diamine having 4 to 10 carbon atoms include 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine and 1,10-decanediamine. These may be used individually or in a mixture thereof.
- the diamine component constituting the semi-aromatic polyamide (A') is preferably a component derived from 1,6-hexanediamine. Preferably 80 to 100 mol% and more preferably 90 to 100 mol% of the total diamine components constituting the semi-aromatic polyamide (A') is the component derived from 1,6-hexanediamine.
- the semi-aromatic polyamide (A') may have a diamine component other than the aliphatic diamine having 4 to 10 carbon atoms.
- the number of moles of the diamine other than the diamine described above is 5% or less relative to the total diamine components contained in the semi-aromatic polyamide (A').
- diamine other than the diamine described above examples include straight chain aliphatic diamines having 11 or more carbon atoms such as 1,11-decanediamine and 1,12-dodecanediamine; chain aliphatic diamines having a side chain such as 2-methyl-1,5-pentanediamine, 2-methyl-1,6-hexanediamine, 2-methyl-1,7-heptanediamine, 2-methyl-1,8-octanediamine, 2-methyl-1,9-nonanediamine, 2-methyl-1,10-decanediamine and 2-methyl-1,11-undecanediamine; aromatic diamines such as meta-xylenediamine; and alicyclic diamines such as 1,4-cyclohexanediamine and 1,3-cyclohexanediamine.
- the intrinsic viscosity [ ⁇ ] of the semi-aromatic polyamide (A) is preferably 0.7 to 1.6 dl/g, more preferably 0.8 to 1.2 dl/g.
- the intrinsic viscosity [ ⁇ ] is measured in 96.5% sulfuric acid at 25°C. With an intrinsic viscosity [ ⁇ ] in this range, it becomes possible to enhance the flowability of the resin composition during molding, and the resultant molded product can have improved mechanical properties.
- the terminal amino group content of the semi-aromatic polyamide (A) is preferably 10 to 400 ⁇ equivalent, more preferably 50 to 400 ⁇ equivalent, furthermore preferably 100 to 400 ⁇ equivalent.
- the presence of a terminal amino group in an amount of 10 ⁇ equivalent or more enables the compatibility with an olefin polymer (C) and the strength at a resin interface to be increased, and the adhesiveness with a fibrous filler (D) and a conductive material (E) to be enhanced, and as a result, the mechanical properties such as impact resistance tend to be improved.
- a terminal amino group in an amount of 400 ⁇ equivalent or lower tends to suppress water absorption at a low level and achieve and excellent long-term heat resistance.
- the amount of the terminal amino group [NH 2 ] of the semi-aromatic polyamide (A) is measured by the following method.
- the semi-aromatic polyamide (A) in an amount of 0.5 to 0.7 g is precisely weighed, and dissolved in 30 mL of m-cresol.
- To the resultant are added 1 to 2 drops of 0.1% thymol blue/m-cresol solution as an indicator, thereby preparing a sample solution.
- the sample solution is titrated with 0.02-N p-toluenesulfonic acid solution until the color changes from yellow to blue violet to thereby measure the terminal amino group content ([NH 2 ], unit: equivalent/g).
- the semi-aromatic polyamide (A) can be manufactured in the same manner as a known manufacturing method for conventional semi-aromatic polyamide.
- the semi-aromatic polyamide (A) can be manufactured by polycondensing a dicarboxylic acid and a diamine in a homogeneous solution. More specifically, a dicarboxylic acid and a diamine are heated in the presence of a catalyst as disclosed in WO03/085029 to obtain a lower condensate, and a shear stress is then applied to the melt of the low-condensation product to thereby polycondense the low-condensation product and obtain a semi-aromatic polyamide.
- the semi-aromatic polyamide (B) contained in the semi-aromatic polyamide resin composition of the present invention has a heat of melting ( ⁇ H) of 0 J/g or more and 5 J/g or less in a temperature rising process (temperature rising rate: 10°C/min) measured by the differential scanning calorimetry (hereinafter, referred to as DSC).
- the heat of melting can be an index of crystallinity of a polyamide resin. Crystallinity is enhanced when the heat of melting increases and is lowered when the heat of melting decreases.
- the heat of melting ( ⁇ H) of the semi-aromatic polyamide (B) is preferably 5 J/g or less, i.e., low crystallinity, which allows for excellent compatibility with the semi-aromatic polyamide (A) and the excellent appearance of a molded product of the resin composition.
- the heat of melting ( ⁇ H) of the semi-aromatic polyamide (B) is preferably 0 J/g.
- the semi-aromatic polyamide (B) is preferably an amorphous resin.
- the heat of melting ( ⁇ H) as used herein is a value determined in accordance with JIS K7122, which is obtained from the area of an exothermic peak due to crystallization in the differential scanning calorimetry chart when scanned at a temperature rising rate of 10°C/min.
- the heat of melting ( ⁇ H) is defined as a value obtained in a first temperature rise without erasing the thermal history.
- the semi-aromatic polyamide (B) is not particularly limited as long as the polyamide has an aromatic group, and examples thereof may include polyamides containing a dicarboxylic acid component, such as a structural unit derived from terephthalic acid or isophthalic acid, and a diamine component, and polyamides containing a structural unit derived from a diamine having an aromatic group such as m-xylylenediamine.
- a dicarboxylic acid component such as a structural unit derived from terephthalic acid or isophthalic acid
- a diamine component such as a structural unit derived from terephthalic acid or isophthalic acid
- polyamides containing a structural unit derived from a diamine having an aromatic group such as m-xylylenediamine.
- Examples of the substantially amorphous polyamides and copolyamides for use as the semi-aromatic polyamide (B) having a heat of melting in the range described above include a polycondensate of isophthalic acid/terephthalic acid/1,6-hexanediamine/bis(3-methyl-4-aminocyclohexyl)methane, a polycondensate of terephthalic acid/2,2,4-trimethyl-1,6-hexanediamine/2,4,4-trimethyl-1,6-hexanediamine, a polycondensate of isophthalic acid/bis(3-methyl-4-aminocyclohexyl)methane/ ⁇ -laurolactam, a polycondensate of isophthalic acid/terephthalic acid/1,6-hexanediamine, a polycondensate of isophthalic acid/2,2,4-trimethyl-1,6-hexanediamine/2,4,4-trimethyl-1,6-hex
- polyamides or copolyamides have excellent gas barrier properties by virtue of a structural unit having a benzene ring.
- the benzene ring of the terephthalic acid component and/or the isophthalic acid component constituting the polycondensate may be substituted with an alkyl group or a halogen atom.
- a polycondensate of isophthalic acid/terephthalic acid/1,6-hexanediamine is more preferable in view of its high effect for improving the gas barrier properties and surface appearance of the resultant molded product.
- These semi-aromatic polyamides (B) may be used in combination.
- the heat of melting of the semi-aromatic polyamide (B) may be adjusted to fall within the above-mentioned range by a known method.
- the molar ratio of the structural unit derived from isophthalic acid is adjusted to preferably 50% or more, more preferably 60% or more, relative to the total moles of the polyamides. This allows the control of the heat of melting of the semi-aromatic polyamide (B) to fall within the range described above.
- Each of the structural units contained in the semi-aromatic polyamide (B) and the proportions thereof can be identified from the feed ratio used for manufacturing the semi-aromatic polyamide (B), or by a known means such as 13 C-NMR measurement or 1 H-NMR measurement.
- the present invention may employ, for example, a semi-aromatic polyamide having a dicarboxylic acid component containing a structural unit derived from isophthalic acid and a diamine component containing a structural unit derived from an aliphatic diamine having 4 to 15 carbon atoms (hereinafter referred to as a semi-aromatic polyamide (B')).
- a semi-aromatic polyamide having a dicarboxylic acid component containing a structural unit derived from isophthalic acid and a diamine component containing a structural unit derived from an aliphatic diamine having 4 to 15 carbon atoms
- the semi-aromatic polyamide (B') has a structural unit derived from isophthalic acid as the dicarboxylic acid component and, by virtue of such structural unit, exhibits excellent gas barrier properties in spite of low crystallinity.
- the semi-aromatic polyamide (B') may contain a different dicarboxylic acid component other than the structural unit derived from isophthalic acid in an amount which does not impair the effects of the present invention.
- the other dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, 2-methyl terephthalic acid, and naphthalene dicarboxylic acid; a furandicarboxylic acid such as 2,5-furandicarboxylic acid; alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid; aliphatic dicarboxylic acids such as malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinate, azelaic acid
- the molar ratio of the structural unit derived from isophthalic acid to the structural unit derived from terephthalic acid in the semi-aromatic polyamide (B') is preferably 60/40 to 100/0, more preferably 60/40 to 90/10.
- the semi-aromatic polyamide (B') can be amorphous and have high compatibility with the semi-aromatic polyamide (A). This enables an enhancement of the impact resistance and the gas barrier properties of the polyamide resin composition.
- the content of the structural unit derived from isophthalic acid, relative to the total dicarboxylic acid components in the semi-aromatic polyamide (B'), is preferably 40 mol% or more, more preferably 50 mol% or more. With the content of the structural unit derived from isophthalic acid relative to the total dicarboxylic acid components in the semi-aromatic polyamide (B'), being 40 mol% or more, the appearance and the gas barrier properties of a molded product becomes excellent.
- the semi-aromatic polyamide (B') includes an aliphatic diamine having 4 to 15 carbon atoms as a diamine component.
- the aliphatic diamine having 4 to 15 carbon atoms include straight chain aliphatic diamines such as 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecadiamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine and 1,15-pentadecanediamine; chain aliphatic diamines having a side chain such as 2-methyl-1,5-pentanediamine, 2-methyl-1,6-hexane diamine, 2-methyl-1,7-heptanediamine, 2-methyl-1,8-octanediamine, 2-methyl-1,9-nonanediamine, 2-methyl-1,10-decanediamine or
- the aliphatic diamine unit having 4 to 15 carbon atoms is more preferably an aliphatic diamine having 4 to 9 carbon atoms.
- Particularly preferred is 1,6-hexanediamine.
- the 1,6-hexanediamine content relative to the total diamine components is 40 mol% to 100 mol%, preferably 60 mol% to 100 mol%.
- a semi-aromatic polyamide (B') having low water absorption and excellent gas barrier properties can be obtained.
- the intrinsic viscosity [ ⁇ ] of the semi-aromatic polyamide (B) is preferably 0.7 to 1.6 dl/g, more preferably 0.8 to 1.2 dl/g.
- the intrinsic viscosity [ ⁇ ] is measured in 96.5% sulfuric acid at 25°C. With an intrinsic viscosity [ ⁇ ] in the range, it becomes possible to enhance the flowability of the resin composition during molding, and the resultant molded product can have improved mechanical properties.
- the terminal amino group content of the semi-aromatic polyamide (B) is preferably 10 to 400 ⁇ equivalent, more preferably 50 to 400 ⁇ equivalent, furthermore preferably 100 to 400 ⁇ equivalent.
- the presence of a terminal amino group in an amount of 10 ⁇ equivalent or more enables the compatibility with an olefin polymer (C) and the strength at a resin interface to be increased, and the adhesiveness with a fibrous filler (D) and a conductive material (E) to be enhanced, and as a result, the mechanical properties such as impact resistance tend to be improved.
- a terminal amino group in an amount of 400 ⁇ equivalent or lower tends to suppress water absorption at a low level and achieve and excellent long-term heat resistance.
- the amount of the terminal amino group [NH 2 ] of the semi-aromatic polyamide (B) is measured by the following method.
- the semi-aromatic polyamide (A) in an amount of 0.5 to 0.7 g is precisely weighed, and dissolved in 30 mL of m-cresol.
- To the resultant are added 1 to 2 drops of 0.1% thymol blue/m-cresol solution as an indicator, thereby preparing a sample solution.
- the sample solution is titrated with 0.02-N p-toluenesulfonic acid solution until the color changes from yellow to blue violet to thereby measure the terminal amino group content ([NH 2 ], unit: ⁇ equivalent/g).
- the semi-aromatic polyamide (B) can be manufactured in the same manner as a known manufacturing method for conventional semi-aromatic polyamide.
- the semi-aromatic polyamide (B) can be manufactured by polycondensing a dicarboxylic acid and a diamine in a homogeneous solution. More specifically, a dicarboxylic acid and a diamine are heated in the presence of a catalyst as disclosed in WO03/085029 to obtain a lower condensate, and a shear stress is then applied to the melt of the low-condensation product to thereby polycondense the low-condensation product and obtain a semi-aromatic polyamide.
- the olefin polymer (C) includes a structural unit having a functional group including a hetero atom (hereinafter simply referred to as "functional group") in an amount of 0.1 to 1.5 parts by mass, preferably 0.5 to 1.2 parts by mass, relative to 100 parts by mass of the olefin polymer (C).
- the functional group preferably contains carbon, hydrogen and oxygen as a hetero atom.
- Specific examples of the functional group include functional groups selected from the group consisting of carboxylic acid groups (including carboxylic anhydride groups), ester groups, ether groups, aldehyde groups and ketone groups.
- the structural unit having a functional group may be introduced by a modification reaction of the olefin polymer.
- the compounds for the modification reaction include unsaturated carboxylic acids and derivatives thereof.
- Specific examples of the unsaturated carboxylic acid or the derivative thereof include unsaturated carboxylic acids or unsaturated dicarboxylic acids such as acrylic acid, methacrylic acid, ⁇ -ethyl acrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, and endcis-bicyclo[2,2,1]hepto-5-ene-2,3-dicarboxylic acid (Nadic acid [trade mark]), and derivatives such as acid halides, amides, imides, acid anhydrides and esters thereof.
- an unsaturated dicarboxylic acid or an anhydride thereof is suitable, and maleic acid, Nadic acid (trade mark) and an acid anhydride thereof are particularly
- a particularly preferred compound for the modification reaction of the olefin polymer is maleic anhydride.
- Maleic anhydride has a relatively high reactivity with an unmodified olefin polymer, and does not easily polymerize with each other, and tends to be stable as a basic structure.
- Various advantages therefore include obtainment of the olefin polymer (C) with stable quality.
- skeletons of the olefin polymer (C) include known polymer skeletons such as ethylene polymers, propylene polymers, butene polymers, and copolymers of these olefins.
- Particularly preferred examples of the skeleton of the olefin polymer (C) include a copolymer of ethylene and an olefin having 3 or more carbon atoms.
- the olefin polymer (C) may be obtained by, for example, the modification reaction of an unmodified olefin polymer with a compound having a corresponding functional group at a specific ratio.
- Preferred examples of the unmodified olefin polymer include ethylene- ⁇ -olefin copolymers.
- the ethylene- ⁇ -olefin copolymer is a copolymer of ethylene and another olefin such as ⁇ -olefin having 3 to 10 carbon atoms, e.g., propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, and 1-decene.
- ⁇ -olefin having 3 to 10 carbon atoms e.g., propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, and 1-decene.
- Specific examples of the ethylene- ⁇ -olefin copolymer include ethylene-propylene copolymers, ethylene-1-butene copolymers, ethylene-1-hexene copolymers, ethylene-1-octene copolymers and ethylene-4-methyl-1-pentene copolymers.
- the ethylene- ⁇ -olefin copolymer preferably includes a structural units derived from ethylene in an amount of 70 to 99.5 mol%, more preferably 80 to 99 mol%, and a structural unit derived from ⁇ -olefin in an amount of 0.5 to 30 mol%, more preferably 1 to 20 mol%.
- a desirable ethylene- ⁇ -olefin copolymer has a melt flow rate (MFR) at 190°C and with a load of 2.16 kg in accordance with ASTM D1238 of 0.01 to 20 g/10 min, preferably 0.05 to 20 g/10 min.
- the method for manufacturing the ethylene- ⁇ -olefin copolymer is not particularly limited, and can be prepared by, for example, a known method using a transition metal catalyst such as a titanium (Ti), vanadium (V), chromium (Cr) or zirconium (Zr)-based catalyst. More specific examples of the manufacturing method include copolymerizing ethylene with one or more ⁇ -olefins having 3 to 10 carbon atoms in the presence of a Ziegler catalyst or a metallocene catalyst including a V compound and an organoaluminum compound. In particular, the manufacturing method using a metallocene catalyst is preferred.
- an olefin copolymer (C) may be manufactured by, for example, a so-called graft modification with a compound having a functional group.
- the graft modification of an ethylene- ⁇ -olefin copolymer may be performed by a known method.
- the method include dissolving an ethylene- ⁇ -olefin copolymer in an organic solvent, and then adding an unsaturated carboxylic acid or a derivative thereof and a radical initiator or the like to the resultant solution for a reaction at a temperature of typically 60 to 350°C, preferably 80 to 190°C, for 0.5 to 15 hours, preferably 1 to 10 hours.
- the organic solvent for dissolving an ethylene- ⁇ -olefin copolymer is not particularly limited, and examples thereof include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, and heptane.
- graft modification method of an ethylene- ⁇ -olefin copolymer examples include a method in which an ethylene- ⁇ -olefin copolymer is reacted with an unsaturated carboxylic acid or a derivative thereof, preferably in the absence of a solvent, with an extruder or the like.
- the reaction conditions in this case may include a reaction temperature of typically equal to or higher than the melting point of the ethylene- ⁇ -olefin copolymer, more specifically 100 to 350°C.
- the reaction time may be set to typically 0.5 to 10 minutes.
- the modification reaction is preferably performed in the presence of a radical initiator.
- the radical initiator include organic peroxides, organic peresters, and azo compounds.
- organic peroxide and the organic perester examples include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di(peroxide benzoate)hexyne-3,1,4-bis(t-butylperoxyisopropyl)benzene, lauroyl peroxide, t-butylperacetate, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3,2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylperbenzoate, t-butylperphenylacetate, t-butylperisobutyrate, t-butylper-sec-octoate, t-butylperpivalate, cumylperpivalate and t-butylperdiethylacetate
- azo compound examples include azobisisobutyronitrile and dimethylazoisobutyrate.
- dialkyl peroxides such as dicumylperoxide, di-t-butylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3,2,5-dimethyl-2,5-di(t-butylperoxy)hexane, and 1,4-bis(t-butylperoxyisopropyl)benzene are preferred.
- the radical initiator is used in a proportion of typically 0.001 to 1 parts by weight relative to 100 parts by weight of the unmodified ethylene- ⁇ -olefin copolymer.
- the modified ethylene- ⁇ -olefin copolymer has a density measured in accordance with JIS K7112 of preferably 0.80 to 0.95 g/cm 3 , more preferably 0.85 to 0.90 g/cm 3 .
- the intrinsic viscosity [ ⁇ ] of the modified ethylene- ⁇ -olefin copolymer measured in decalin (decahydronaphthalene) solution at 135°C is preferably 0.5 to 4.0 dl/g, more preferably 1.0 to 3 dl/g, furthermore preferably 1.5 to 3 dl/g.
- the resin composition of the present invention can exhibit both toughness and melt flowability at a high level.
- the intrinsic viscosity [ ⁇ ] of the olefin polymer (C) in decalin at 135°C is measured by a conventional method as follows. A sample in an amount of 20 mg is dissolved in 15 ml of decalin, and the specific viscosity ( ⁇ sp) is measured in an atmosphere at 135°C with an Ubbelohde viscometer. To the decalin solution, 5 ml of decalin is further added for dilution, and the specific viscosity is measured in the same manner.
- the dilution and the specific viscosity measurement are further repeated twice, and based on the thus obtained measurements, the " ⁇ sp/C" value is obtained by extrapolating concentration (C) to zero and the obtained value is used as the intrinsic viscosity [ ⁇ ].
- the content of the structural units having a functional group which are contained in the olefin polymer (C) is 0.1 to 1.5 parts by mass, preferably 0.2 to 1.1 parts by mass relative to 100 parts by mass of the olefin polymer (C).
- the content of the structural units having a functional group is excessively small, the effect for improving impact resistance of a resin composition may become low.
- the content of the structural units having a functional group contained in the olefin polymer (C) can be identified from the feed ratio used for reacting the unmodified olefin polymer with a compound having a functional group, or by a known means such as 13 C-NMR measurement or 1 H-NMR measurement.
- NMR measurement conditions are as follows.
- 1 H-NMR measurement can be performed using an ECX400 nuclear magnetic resonance apparatus manufactured by JEOL Ltd. under the following conditions: solvent: deuterated o-dichlorobenzene, sample concentration: 20 mg/0.6 mL, measurement temperature: 120°C, observing nucleus: 1 H (400 MHz), sequence: a single pulse, pulse width: 5.12 ⁇ seconds (45° pulse), repetition time: 7.0 seconds, and cumulative number: 500 or more. Hydrogen of tetramethylsilane is used as the reference chemical shift at 0 ppm. Alternatively, the peak derived from residual hydrogen of deuterated o-dichlorobenzene may be used as the reference chemical shift at 7.10 ppm to obtain similar results. The peaks of 1 H derived from a functional group-containing compound may be assigned by a conventional method.
- 13 C-NMR measurement can be performed using an ECP500 nuclear magnetic resonance apparatus manufactured by JEOL Ltd. under the following conditions: solvent: o-dichlorobenzene/heavy benzene (80/20 vol%) mixture solvent, measurement temperature: 120°C, observing nucleus: 13 C (125 MHz), single pulse proton decoupling, 45° pulse, repetition time: 5.5 seconds, and cumulative number: 10,000 or more, and reference chemical shift: 27.50 ppm.
- solvent o-dichlorobenzene/heavy benzene (80/20 vol%) mixture solvent
- measurement temperature 120°C
- observing nucleus 13 C (125 MHz)
- single pulse proton decoupling 45° pulse
- repetition time 5.5 seconds
- cumulative number 10,000 or more
- reference chemical shift 27.50 ppm.
- the various kinds of signals are assigned by a conventional method, and the quantitative determination can be performed based on the integrated value of signal strength.
- the content of the structural unit having a functional group contained in the olefin polymer (C) may be conveniently measured by the following method.
- the functional group contents of different polymers each having a different functional group content are determined by NMR measurement, and each polymer with the determined functional group content is subjected to infrared spectroscopy (IR).
- IR infrared spectroscopy
- a calibration curve between the intensity ratio of specific peaks of the infrared spectroscopy (IR) spectrum and the functional group content is created.
- the functional group content of any polymer can be determined based on the calibration curve.
- this method is more convenient than the NMR measurement described above, it is basically necessary to create a separate calibration curve based on the type of the base resin and the functional group. For this reason, this method is preferably used, for example, in a process control or the like for producing a resin in a commercial plant.
- the semi-aromatic polyamide resin composition of the present invention may contain a fibrous filler (D).
- the fibrous filler (D) include glass fiber, wholly aromatic polyamide fiber (e.g. polyparaphenylene terephthalamide fiber, polymetaphenylene terephthalamide fiber, polyparaphenylene isophthalamide fiber, polymetaphenylene isophthalamide fiber, and fiber obtained from a condensate of diaminodiphenyl ether and terephthalic acid or isophthalic acid), boron fiber, and liquid crystal polyester fiber.
- One or a plurality of these may be used as the fibrous filler (D).
- at least one of glass fiber and wholly aromatic polyamide fiber is preferred as the fibrous filler (D), since the use thereof further improves the mechanical properties and heat resistance of a molded product obtained from the resin composition.
- the average length of the fibrous filler (D) for use is preferably in a range of 1 ⁇ m to 20 mm, more preferably in a range of 5 ⁇ m to 10 mm, furthermore preferably in a range of 10 ⁇ m to 5 mm, from the viewpoint of maintaining the good moldability and improving the mechanical properties and the heat resistance of the resultant molded product.
- the aspect ratio of the fibrous filler (D) is preferably in a range of 5 to 2,000, more preferably in a range of 30 to 600.
- the fibrous filler (D) is preferably subjected to a surface treatment for improving adhesion to a matrix resin, in particular, the adhesion to polyamide, and substantially improving the mechanical properties of the resultant polyamide resin composition.
- the surface treatment agents include coupling agents such as silane coupling agents, titanium coupling agents, and aluminate coupling agents, and sizing agents.
- the coupling agent suitable for use include aminosilane, epoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, and vinyltrimethoxysilane.
- Preferred examples of the sizing agent for use include epoxy compounds, urethane compounds, carboxylic acid compounds, urethane/maleic acid modified compounds, and urethane/amine modified compounds. These surface treatment agents may be used individually or in combination.
- a coupling agent and a sizing agent are used in combination, the adhesion between the fibrous filler (D) and a matrix resin, particularly a polyamide, is further improved, so that the mechanical properties of the resultant semi-aromatic polyamide resin composition is further enhanced.
- the mass reduction of the surface-treated fibrous filler (D) when heated at 625 ⁇ 20°C for 10 minutes or more is preferably in a range of 0.01 to 8.0 parts by mass, more preferably in a range of 0.1 to 5.0 parts by mass, relative to 100 parts by mass of the surface-treated fibrous filler (D).
- the semi-aromatic polyamide resin composition of the present invention may contain a conductive material (E).
- a conductive material for example, prevents the generation of static sparking of a molded fuel part and imparts a necessary conductivity necessary for electrostatic coating performed after molding into automotive parts.
- the conductive material in the present invention is defined as a material having a volume resistivity of 100 ⁇ cm or less.
- the conductive material (E) examples include carbon fiber, conductive carbon black, carbon fibril, carbon nanotube, metal fiber, metal powder, metal flake, metal oxide powder, and metal-coated fiber.
- the conductive material (E) is at least one member selected from the group consisting of carbon fiber, conductive carbon black, carbon fibril and carbon nanotube, having a low specific gravity and excellent balance between conductivity imparting effect and reinforcing effect.
- the fibrous filler (D) may serve as conductive material (E).
- conductive material E
- carbon fiber, carbon fibril, carbon nanotube, metal fiber, metal-coated fiber may be a fibrous filler (D) as well as a conductive material (E).
- the average fiber length of the carbon fiber in a state before melt kneading is preferably in a range of 1 to 20 mm, more preferably in a range of 3 to 10 mm, furthermore preferably in a range of 5 to 8 mm.
- the aspect ratio of the carbon fiber is preferably in a range of 100 to 5,000, more preferably in a range of 300 to 2,000.
- Examples of the conductive carbon black include the carbon black for conductive use disclosed in WO01/81473 or in Japanese Patent Application Laid-Open No. 2006-213798 .
- a commercially available conductive carbon black such as: KETJEN BLACK EC600JD and EC300J available from Ketjen Black International Co.; VULCAN XC-72 and XC-305 available from Cabot Corporation; PRINTEX XE2B available from Degussa; #5500 and #4500 available from Tokai Carbon Co., Ltd.; and #5400B available from Mitsubishi Chemical Corporation may be used.
- Examples of the carbon fibril include the fine carbon fiber disclosed in WO94/23433 .
- a commercially available carbon fibril such as BN fibril available from Hyperion Catalysis International, Inc. may be used.
- Examples of the carbon nanotube include the multi-layer carbon nanotube disclosed in Japanese Patent No. 3761561 .
- the content of the conductive material (E) for achieving excellent balance between the conductivity and the mechanical properties is preferably in a range of 0.1 to 30 parts by mass, more preferably 0.2 to 25 parts by mass, furthermore preferably 0.3 to 20 parts by mass, relative to 100 parts by mass of the polyamide resin composition.
- the semi-aromatic polyamide resin composition of the present invention may contain, depending on the application, optional additives within a range that does not impair the effects of the present invention.
- optional additives include antioxidants (phenols, amines, sulfur compounds and phosphorus compounds), fillers (clay, silica, alumina, talc, kaolin, quartz, mica and graphite), heat stabilizers (lactone compounds, vitamin E, hydroquinones, copper halides and iodine compounds), light stabilizers (benzotriazoles, triazines, benzophenones, benzoates, hindered amines and oxanilides), other polymers (polyolefins, ethylene-propylene copolymers, olefin copolymers such as ethylene-1-butene copolymers, olefin copolymers such as propylene-1-butene copolymers, polystyrene, polyamides, polycarbonates, polyacetal, polys
- the content of the optional additives in the polyamide resin composition of the present invention varies depending on the type of the components, but it is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, furthermore preferably 0 to 1 parts by mass, relative to 100 parts by mass of the total of the semi-aromatic polyamide (A), the semi-aromatic polyamide (B), the olefin polymer (C), and the fibrous filler (D).
- the semi-aromatic polyamide resin composition of the present invention preferably includes 20 to 60 parts by mass of the semi-aromatic polyamide (A), 5 to 30 parts by mass of the semi-aromatic polyamide (B), 1 to 30 parts by mass of the olefin polymer (C), and 0 to 60 parts by mass, preferably 5 to 60 parts by mass, more preferably 5 to 50 parts by mass of the fibrous filler (D), relative to 100 parts by mass of the total of the semi-aromatic polyamide (A), the semi-aromatic polyamide (B), the olefin polymer (C), and the fibrous filler (D).
- the mass ratio of the semi-aromatic polyamide (B) to the total mass of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B), i.e. the relationship (B)/((A)+(B)), is preferably 0.05 to 0.5, more preferably 0.1 to 0.3 where (A) is the mass of the semi-aromatic polyamide (A), and the (B) is the mass of the semi-aromatic polyamide (B).
- the above ratio of (B) is 0.05 or less, the effect for improving the gas barrier properties of the resultant resin composition tends to be insufficient.
- the above ratio of (B) is 0.5 or more, while the gas barrier properties of the resin composition can be enhanced, but moldability such as injection flowability and releasability may be impaired.
- the mass ratio of the olefin polymer (C), referred to as (C), to the total mass of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B), i.e. the relationship (C)/((A)+(B)), is preferably 0.03 to 0.75, more preferably 0.07 to 0.5 where (A) is the mass of the semi-aromatic polyamide (A), and the (B) is the mass of the semi-aromatic polyamide (B).
- the above ratio of (C) is 0.03 or less, the impact resistance strength of the resultant resin composition may be insufficient.
- a proportion of (C) is 0.75 or more, gas barrier properties, heat resistance, mechanical properties, and moldability tend to be impaired.
- the semi-aromatic polyamide resin composition of the present invention may be manufactured by, for example, a method including the step of mixing the semi-aromatic polyamide (A), the semi-aromatic polyamide (B), and the olefin polymer (C) in the above-mentioned ratios, together with the fibrous filler (D), the conductive material (E), and other components as needed by a known method using a henschel mixer, a V-blender, a ribbon blender, a tumbler blender or the like; and a method further including the steps of melt kneading the above-obtained mixture using a monoaxial extruder, a multiaxial extruder, a kneader, a banbury mixer or the like, and subsequently granulating or grinding the kneaded product.
- a method including the step of mixing the semi-aromatic polyamide (A), the semi-aromatic polyamide (B), and the olefin polymer (C) in
- melt kneading method use can be made of a conventional method, such as the method disclosed in PTL 1.
- Examples of the molded products made of the polyamide resin composition of the present invention include: exterior automotive parts such as a radiator grille, a rear spoiler, a wheel cover, a hubcap, a cowl vent grille, an air outlet louver, an air scoop, a hood bulge, a fender, and a backdoor; interior parts of an automotive engine compartment such as a cylinder head cover, an engine mount, an air intake manifold, a throttle body, an air intake pipe, a radiator tank, a radiator support, a water pump inlet, a water pump outlet, a thermostat housing, a cooling fan, a fan shroud, an oil pan, an oil filter housing, an oil filler cap, an oil level gauge, a timing belt, a timing belt cover, and an engine cover; automotive fuel system parts such as a fuel cap, a fuel filler tube, an automotive fuel tank, a fuel sender module, a fuel cut-off valve, a quick connector, a canister, a fuel delivery pipe, and a fuel
- the polyamide resin composition of the present invention may be preferably used as an automotive fuel tank, a quick connector, a bearing retainer, a fuel tank for general purpose equipment, a fuel cap, a fuel filler neck, a fuel sender module, a hubcap, a fender, or a backdoor, in particular.
- An aspect of the present invention provides the following constitutions.
- Polyamides (A-1) to (A-3), (a-1) to (a-2), and (B-1) were prepared as follows.
- An autoclave having an internal capacity of 13.6 L was charged with 1,787 g (10.8 mol) of terephthalic acid, 2,800 g (24.1 mol) of 1,6-hexane diamine, 1,921 g (13.1 mol) of adipic acid, 5.7 g of sodium hypophosphite monohydrate, and 554 g of distilled water, and then the autoclave was purged with nitrogen. Reaction was initiated by starting the agitation at 190°C, and elevating the internal temperature of the autoclave to 250°C over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.01 MPa.
- the reaction was continued for 1 hour and then the air in the autoclave was discharged to the atmosphere from a spray nozzle disposed at the bottom of the autoclave so as to withdraw a low-condensation product.
- the low-condensation product was then cooled to room temperature, ground to a particle size of 1.5 mm or less by a crusher, and dried at 110°C for 24 hours.
- the resultant low-condensation product had a moisture content of 3,600 ppm and an intrinsic viscosity [ ⁇ ] of 0.14 dl/g.
- the low-condensation product was charged into a shelf-type solid-phase polymerization apparatus, and after purging with nitrogen, the temperature was elevated to 220°C over 1 hour and 30 minutes to start a reaction. The reaction was continued for 1 hour, and then the temperature was cooled to room temperature, thereby obtaining a polyamide.
- the resultant polyamide had an intrinsic viscosity [ ⁇ ] of 0.48 dl/g.
- a polyamide resin was then prepared by melt polymerization using a biaxial extruder with a screw diameter of 30 mm and an L/D of 36, at a barrel preset temperature of 330°C, a screw rotation speed of 200 rpm, and a resin feed rate of 6 Kg/h. The thus prepared polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.9 dl/g and a melting point Tm 1 of 295°C, with a terminal amine content of 180 ⁇ equivalent.
- a polyamide resin was prepared in substantially the same manner as in A-1 except that the amount of terephthalic acid was changed to 2,184 g and the amount of adipic acid was changed to 1,572 g.
- the resultant polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.94 dl/g and a melting point Tm 1 of 310°C.
- a polyamide resin was prepared in substantially the same manner as in A-1 except that the amount of terephthalic acid was changed to 2,482 g and the amount of adipic acid was changed to 1,310 g.
- the resultant polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.90 dl/g and a melting point Tm 1 of 320°C.
- An autoclave having an internal capacity of 13.6 L was charged with 1,708 g (10.3 mol) of terephthalic acid, 2,800 g (24.1 mol) of 1,6-hexane diamine, 516 g (3.1 mol) of isophthalic acid, 1,537 g (10.5 mol) of adipic acid, 5.7 g of sodium hypophosphite monohydrate, and 535 g of distilled water, and then the autoclave was purged with nitrogen. Reaction was initiated by starting the agitation at 190°C, and elevating the internal temperature of the autoclave to 250°C over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa.
- the reaction was continued for 1 hour and then the air in the autoclave was discharged to the atmosphere from a spray nozzle disposed at the bottom of the autoclave so as to withdraw a low-condensation product.
- the low-condensation product was then cooled to room temperature, ground to a particle size of 1.5 mm or less by a crusher, and dried at 110°C for 24 hours.
- the resultant low-condensation product had a moisture content of 4,000 ppm and an intrinsic viscosity [ ⁇ ] of 0.15 dl/g.
- the low-condensation product was charged into a shelf-type solid-phase polymerization apparatus, and after purging with nitrogen, the temperature was elevated to 180°C over 1 hour and 30 minutes to start a reaction.
- the reaction was continued for 1 hour and 30 minutes, and then the temperature was cooled to room temperature, thereby obtaining a polyamide.
- the resultant polyamide had an intrinsic viscosity [ ⁇ ] of 0.20 dl/g.
- a polyamide resin was then prepared by melt polymerization using a biaxial extruder with a screw diameter of 30 mm and an L/D of 36, at a barrel preset temperature of 330°C, a screw rotation speed of 200 rpm, and a resin feed rate of 6 Kg/h.
- the thus prepared polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.91 dl/g and a melting point Tm 1 of 279°C, with a terminal amine content of 170 ⁇ equivalent.
- An autoclave having an internal capacity of 13.6 L was charged with 3,971 g (23.9 mol) of terephthalic acid, 3,051 g (19.3 mol) of 1,9-nonanediamine, 763 g (4.8 mol) of 2-methyl-1,8-octanediamine, 36.5 g (0.3 mol) of benzoic acid, 5.7 g of sodium hypophosphite monohydrate, and 780 g of distilled water, and then the autoclave was purged with nitrogen. Reaction was initiated by starting the agitation at 190°C, and elevating the internal temperature of the autoclave to 250°C over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.03 MPa.
- the reaction was continued for 1 hour and then the air in the autoclave was discharged to the atmosphere from a spray nozzle disposed at the bottom of the autoclave so as to withdraw a low-condensation product.
- the low-condensation product was then cooled to room temperature, ground to a particle size of 1.5 mm or less by a crusher, and dried at 110°C for 24 hours.
- the resultant low-condensation product had a moisture content of 4,100 ppm and an intrinsic viscosity [ ⁇ ] of 0.13 dl/g.
- the low-condensation product was charged into a shelf-type solid-phase polymerization apparatus, and after purging with nitrogen, the temperature was elevated to 180°C over 1 hour and 30 minutes to start a reaction.
- a polyamide resin was then prepared by melt polymerization using a biaxial extruder with a screw diameter of 30 mm and an L/D of 36, at a barrel preset temperature of 340°C, a screw rotation speed of 200 rpm, and a resin feed rate of 5 Kg/h.
- the thus prepared polyamide resin had an intrinsic viscosity [ ⁇ ] of 1.09 dl/g and a melting point Tm 1 of 302°C, with a terminal amine content of 25 ⁇ equivalent.
- An autoclave having an internal capacity of 13.6 L was charged with 1,390 g (8.4 mol) of terephthalic acid, 2,800 g (24.1 mol) of 1,6-hexane diamine, 2,581 g (15.5 mol) of isophthalic acid, 109.5 g (0.9 mol) of benzoic acid, 5.7 g of sodium hypophosphite monohydrate, and 545 g of distilled water, and then the autoclave was purged with nitrogen. Reaction was initiated by starting the agitation at 190°C, and elevating the internal temperature of the autoclave to 250°C over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa.
- the reaction was continued for 1 hour and then the air in the autoclave was discharged to the atmosphere from a spray nozzle disposed at the bottom of the autoclave so as to withdraw a low-condensation product.
- the low-condensation product was then cooled to room temperature, ground to a particle size of 1.5 mm or less by a crusher, and dried at 110°C for 24 hours.
- the resultant low-condensation product had a moisture content of 3,000 ppm and an intrinsic viscosity [ ⁇ ] of 0.14 dl/g.
- a polyamide resin was then prepared by melt polymerization using a biaxial extruder with a screw diameter of 30 mm and an L/D of 36, at a barrel preset temperature of 330°C, a screw rotation speed of 200 rpm, and a resin feed rate of 6 Kg/h.
- the thus prepared polyamide resin had a heat of melting ⁇ H of 0 J/g.
- the polyamide resin had an intrinsic viscosity [ ⁇ ] of 0.68 dl/g, and no melting point Tm 1 was observed. Further, the terminal amine content was 270 ⁇ equivalent.
- the moisture content of the resultant low-condensation product was obtained by weighing a sample in an amount of about 0.2 g, and using a Karl Fischer moisture meter, heating the sample at 200°C and measuring the amount of generated moisture (solid vaporization method).
- the melting point Tm 1 of the obtained polyamide was measured in accordance with JIS K7121 as follows. Using a DSC7 manufactured by Perkin-Elemer Corp., the polyamide was held at 350°C for 5 minutes and then cooled to 23°C at a rate of 10°C/min. The temperature was then raised at a rate of 10°C/min. The melting point Tm 1 was defined as the peak top value of the endothermic peak based on the melting under the above-mentioned conditions. The heat of melting ⁇ H was obtained from the area of the exothermic peak of the crystallization in accordance with JIS K7122.
- the olefin polymers (C-1) to (C-2) and (c-1) were prepared as follows.
- a stainless steel autoclave having an internal capacity of 2 liters was fully purged with nitrogen and charged with 912 ml of hexane and 320 ml of 1-butene, and the temperature of the autoclave was elevated to 80°C.
- 0.9 mmol of triisobutylaluminum and 2.0 ml (0.0005 mmol in terms of Zr) of the prepared catalyst solution were injected into the autoclave using ethylene to start the polymerization reaction.
- Ethylene was continuously supplied to maintain the total pressure at 8.0 kg/cm 2 -G, and the polymerization was performed at 80°C for 30 minutes.
- the resultant ethylene-1-butene copolymer had a density of 0.865 g/cm 3 and an MFR (ASTMD1238 standard, at 190°C, load: 2,160 g) of 0.5 g/10 minute, with a 1-butene structural unit content of 4 mol%.
- the resultant ethylene-1-butene copolymer in an amount of 100 parts by weight was mixed with 0.5 parts by weight of maleic anhydride and 0.04 parts by weight of an peroxide (PERHEXYNE 25B, trademark, manufactured by NOF Corporation).
- the resultant mixture was subjected to melt graft modification in a monoaxial extruder at a preset temperature of 230°C to obtain a modified ethylene-1-butene copolymer.
- the amount of the grafted maleic anhydride in the obtained modified ethylene-1-butene copolymer was 0.46wt%.
- the intrinsic viscosity [ ⁇ ] measured in a decalin solution at 135°C was 1.98 dl/g.
- the olefin polymer (C-2) was prepared in substantially the same manner as in the olefin polymer (C-1) except that the amount of maleic anhydride to be added to the unmodified ethylene-1-butene copolymer for modification in the manufacturing of the olefin polymer (C-1) was changed to 1.0 part by weight.
- the amount of maleic anhydride graft modification was 0.98wt%.
- the intrinsic viscosity [ ⁇ ] measured in a decalin solution at 135°C was 1.90 dl/g.
- the olefin polymer (c-1) was prepared in substantially the same manner as in the olefin polymer (C-1).
- the amount of maleic anhydride graft modification was 1.89wt%.
- the intrinsic viscosity [ ⁇ ] measured in a decalin solution at 135°C was 1.78 dl/g.
- composition of an olefin polymer for example, the contents (mol%) of ethylene and an ⁇ -olefin having 3 or more carbon atoms and the content (mass%) of a structural unit having a functional group, was measured by 13 C-NMR.
- the measurement conditions were as follows:
- the density of an ethylene-1-butene copolymer was measured at 23°C, using a density gradient tube in accordance with JIS K7112.
- melt flow rate (MFR) of an ethylene-1-butene copolymer was measured at 190°C with a load of 2.16 kg in accordance with ASTM D1238.
- the unit for MFR is g/10 min.
- the intrinsic viscosity [ ⁇ ] of an olefin polymer was measured in decalin as a solvent at 135°C.
- an acid-denatured polyolefin resin (B) was dissolved in 25 ml of decalin, and the specific viscosity ⁇ sp was then measured in an oil bath at 135°C using an Ubbelohde viscometer.
- the decalin solution was diluted with 5 ml of decalin, the specific viscosity ⁇ sp was then measured in the same manner as described above. The dilution is further repeated twice, and the " ⁇ sp/C" value is obtained by extrapolating concentration (C) to zero, as the intrinsic viscosity [ ⁇ ] (unit: dl/g). (Refer to the following formula).
- ⁇ lim ⁇ SP / C C ⁇ 0
- the resultant mixture of raw materials was then melt kneaded in a biaxial extruder (TEX30 ⁇ , manufactured by Japan Steel Works Ltd.) at a cylinder temperature of (Tm 1 +15)°C, then extruded into a strand, and cooled in a water bath. Then, the strand was fed into a pelletizer to cut and obtain pellets of the resin composition.
- a biaxial extruder TEX30 ⁇ , manufactured by Japan Steel Works Ltd.
- the melting point Tm 2 of the obtained polyamide was measured as follows. Using a DSC7 manufactured by Perkin-Elemer Corp., the temperature of the resin composition was raised at a rate of 10°C/min. The melting point Tm 2 was defined as the peak top value of the endothermic peak based on the melting under the above-mentioned conditions.
- a sample piece with a notch having a thickness of 3.2 mm was prepared using the below-mentioned injection molding machine under the below-mentioned molding conditions.
- the IZOD impact strength of the sample piece was measured at 23 °C and under a relative humidity of 50% in accordance with ASTM D256.
- a sample piece having a length of 64 mm, a width of 6 mm, and a thickness of 0.8 mm was prepared using the below-mentioned injection molding machine under the below-mentioned molding conditions and was allowed to stand in a nitrogen atmosphere at 23°C for 24 hours.
- the sample piece was subjected to a bending test at 23°C and in a relative humidity of 50%, using a bending tester AB5 manufactured by NTESCO, with a span of 26 mm, a bending speed of 5 mm/min to measure the flexural strength and the modulus of elasticity.
- a 100-mm square sample piece with a thickness of 2 mm was prepared using the below-mentioned injection molding machine under the below-mentioned molding conditions, and a disc-shaped sample having a diameter of 45 mm was cut out from the square sample piece.
- the test specimen was placed in a thermostat apparatus (60°C), and the change in the weight of the specimen was measured for evaluating the fuel permeability.
- a 100-mm square sample piece with a thickness of 2 mm obtained by molding in the above-mentioned manner was allowed to stand for 24 hours in an atmosphere where the temperature is 23°C and relative humidity is 50%.
- a DC voltage and current source/monitor 6241A with an ASP probe (4-probe), manufactured by ADC Corp. the surface resistivity at one point in the central portion of the sample piece was then measured in accordance with JIS K7194.
- the flow length (mm) of a resin in the mold was measured using a bar-flow mold with a width of 10 mm and a thickness of 0.5 mm and by injecting under the below-mentioned conditions. The longer the flow length, better is the flowability.
- a sample piece with a length of 64 mm, a width of 6 mm, and a thickness of 0.8 mm was prepared by injection molding using the below-mentioned injection molding machine under the below-mentioned molding conditions.
- the shortest cooling time necessary for easily taking out the molded product without causing deformation of the molded product by a discharge pin, and without suffering from adhesion to the mold on the stationary side or the movable side was determined for measuring the shortest molding cycle (time required for obtaining one molded product).
- the releasability was evaluated as rank A for a molding cycle of less than 16 seconds, rank B for a molding cycle of 16 seconds or more and less than 20 seconds, and rank C for a molding cycle of 20 seconds or more.
- Each of the resin composition of Examples 1 to 8 has a higher melting point and is excellent in all of IZOD impact strength, flexural modulus, flexural strength, fuel permeability, injection flowability, and mold releasing properties. Moreover, the resin composition of Example 5 has a sufficiently low resistance by virtue of the conductive material.
- the resin composition of Comparative Example 1 has poor fuel permeability due to the absence of semi-aromatic polyamide (B).
- the resin composition of Comparative Example 2 has poor injection flowability and mold releasability due to the excessively large content of the semi-aromatic polyamide (B).
- the resin composition of Comparative Example 3 has a low melting point, and poor injection flowability and mold releasability due to the absence of semi-aromatic polyamide (A) and semi-aromatic polyamide (B).
- the resin composition of Comparative Example 4 has small IZOD impact strength due to the absence of olefin polymer (C).
- the resin composition of Comparative Example 5 has poor injection flowability due to the olefin polymer (C) having a large content of the structural unit with a functional group.
- the semi-aromatic polyamide resin composition of the present invention is excellent in impact resistance, fuel barrier properties, and moldability, and is particularly advantageous for molding a quick connector and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
Abstract
Description
- The present invention relates to a semi-aromatic polyamide resin composition and a molded product containing the same.
- A polyamide typically represented by nylon 6 or nylon 66 is excellent in moldability, mechanical properties and chemical resistance, and widely used as a material for various components of automobiles, industrial materials, clothing, and electric, electronic or industrial applications. In recent years, drastic reduction in the amount of evaporated automobile fuel has been required mainly in the United States. Accordingly, there is a demand for drastic reduction in the amount of fuel evaporation from fuel system parts such as fuel tubes and fuel tube joints.
- The joints are also required to have a high impact resistance to prevent damage from an impact caused by a flying stone or an accident.
- To satisfy such requirements, a fuel pipe joint using PA9T having excellent fuel barrier properties has been proposed. PTL 1 discloses a polyamide resin composition containing a specific PA9T, a maleic anhydride-modified ethylene-butene copolymer as a modified olefin polymer, and glass fiber.
- PTL 1
Japanese Patent Application Laid-Open No.2008-179753 - PA9T used in the resin composition disclosed in PTL 1 contains 2-methyl-1,8-octanediamine as a diamine component in addition to 1,9-nonanediamine. This causes impaired crystallinity, and reduced crystallization rate, and in some cases, insufficient moldability such as the mold releasability in injection molding.
- Further, PA9T has a problem such that toughness, e.g., impact resistance of a molded product, is lower than that of an aliphatic polyamide such as a conventional nylon 12. PTL 1 improves the impact resistance strength by blending a modified olefin polymer with the resin composition. However, the present inventors have found that the resin composition has poor moldability in some cases, with insufficient mold releasability or increased viscosity to lower injection flowability.
- An object of the present invention is to provide a semi-aromatic polyamide resin composition excellent in impact resistance, fuel barrier properties, and moldability, and a molded product containing the same.
- The present invention relates to semi-aromatic polyamide resin compositions as set forth below.
- [1] A semi-aromatic polyamide resin composition containing:
- 20 to 60 parts by mass of a semi-aromatic polyamide (A) having a melting point (Tm) of 290°C or higher and 340°C or lower, measured with a differential scanning calorimeter (DSC);
- 5 to 30 parts by mass of a semi-aromatic polyamide (B) having a heat of melting (ΔH) of 0 J/g or more and 5 J/g or less in a temperature rising process (temperature rising rate: 10°C/min) of the differential scanning calorimeter (DSC);
- 1 to 30 parts by mass of an olefin polymer (C) comprising 0.1 to 1.5 parts by mass of a structural unit having a hetero atom-containing functional group; and
- 0 to 60 parts by mass of a fibrous filler (D);
- wherein the total of (A), (B), (C) and (D) is 100 parts by mass.
- [2] The semi-aromatic polyamide resin composition according to [1], wherein the semi-aromatic polyamide (A) contains as dicarboxylic acid components, a structural unit derived from terephthalic acid and a structural unit derived from adipic acid, and as a diamine component, a structural unit derived from a straight chain aliphatic group having 4 to 10 carbon atoms.
- [3] The semi-aromatic polyamide resin composition according to [2], wherein a molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A) is 40/ 60 to 80/20.
- [4] The semi-aromatic polyamide resin composition according to any one of [1] to [3], wherein the semi-aromatic polyamide (B) contains as a dicarboxylic acid component, a structural unit derived from isophthalic acid, and as a diamine component, a structural unit derived from an aliphatic group having 4 to 15 carbon atoms.
- [5] The semi-aromatic polyamide resin composition according to [4], wherein the semi-aromatic polyamide (B) may further contain a structural unit derived from terephthalic acid, and a molar ratio of the structural unit derived from isophthalic acid to the structural unit derived from terephthalic acid is 60/ 40 to 100/0.
- [6] The semi-aromatic polyamide resin composition according to any one of [1] to [5], wherein the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B) fulfills the relationship (B)/((A)+(B)) of 0.05 to 0.5, the (A) being the mass of the semi-aromatic polyamide (A), and the (B) being the mass of the semi-aromatic polyamide (B).
- [7] The semi-aromatic polyamide resin composition according to any one of [1] to [6], wherein 80 to 100 mol% of the total diamine components contained in the semi-aromatic polyamide (A) is a structural unit derived from 1,6-hexanediamine.
- [8] The semi-aromatic polyamide resin composition according to any one of [1] to [7], wherein 40 to 100 mol% of the total diamine components contained in the semi-aromatic polyamide (B) is a structural unit derived from 1,6-hexanediamine.
- [9] The semi-aromatic polyamide resin composition according to any one of [1] to [8], wherein the olefin polymer (C) contains a skeleton derived from a polyolefin, and the skeleton is a copolymer of ethylene and an olefin having 3 or more carbon atoms.
- [10] The semi-aromatic polyamide resin composition according to any one of [1] to [9], wherein: the structural unit having a hetero atom-containing functional group of the olefin polymer (C) comprises a functional group selected from the group consisting of a carboxylic acid group, an ester group, an ether group, an aldehyde group, and a ketone group.
- [11] The semi-aromatic polyamide resin composition according to any one of [1] to [10], wherein the structural unit having a hetero atom-containing functional group of the olefin polymer (C) is a structural unit modified by maleic anhydride.
- [12] The semi-aromatic polyamide resin composition according to any one of [1] to [11], further containing a conductive material (E).
- [13] The semi-aromatic polyamide resin composition according to [12], wherein the conductive material (E) is at least one member selected from the group consisting of carbon fiber, conductive carbon black, carbon fibril and carbon nanotube.
- [14] A molded product including the semi-aromatic polyamide resin composition according to any one of [1] to [13].
- [15] The molded product according to [14], for use as a quick connector.
- The present invention provides a semi-aromatic polyamide resin composition excellent in impact resistance, fuel barrier properties, and moldability, and a molded product containing the same, for example, a quick connector.
- In the present specification and the appended claims, any range using the term "to" means a range including the boundary values as well as intermediate values. For example, the range "A to B" means a range including "A," "B," and "intermediate values between A and B."
- The semi-aromatic polyamide resin composition of the present invention includes a semi-aromatic polyamide (A), a semi-aromatic polyamide (B), and an olefin polymer (C), and preferably further includes a fibrous filler (D) and a conductive material (E).
- The present inventors have found that, the semi-aromatic polyamide resin composition of the present invention achieves both high gas barrier properties and good moldability by blending a semi-aromatic polyamide (B) with low crystallinity but excellent gas barrier properties with a semi-aromatic polyamide (A). Although the reason is not clear, it can be deduced as follows. In the blend of the semi-aromatic polyamide (B) and the semi-aromatic polyamide (A), as apparent from the component ratio described below, the semi-aromatic polyamide (A) forms a major phase and the semi-aromatic polyamide (B) is finely dispersed therein, and the blend maintains both the excellent moldability of the semi-aromatic polyamide (A) and the excellent effect of the semi-aromatic polyamide (B) for improving gas barrier properties.
- In order to prevent the thermal decomposition of polymers and various additive materials during melt polymerization and melt molding, the semi-aromatic polyamide resin composition of the present invention has a melting point of preferably 280°C to 330°C.
- The semi-aromatic polyamide (A) is a semi-aromatic polyamide having a melting point (Tm) of 290°C or higher but not higher than 340°C, as measured by differential scanning calorimetry (hereinafter referred to as DSC). More preferably, the semi-aromatic polyamide has a melting point of 290°C or higher but not higher than 330°C. The melting point of the semi-aromatic polyamide (A) of 290°C or higher can improve the heat resistance and the mechanical strength of a semi-aromatic polyamide resin composition. The melting point of the semi-aromatic polyamide (A) of 340°C or lower keeps the melting point of the semi-aromatic polyamide resin composition from being excessively high, thereby preventing the thermal decomposition of polymers and various additive materials during the melt polymerization and melt molding.
- The semi-aromatic polyamide (A) is not particularly limited as long as the polyamide has an aromatic group. For example, the semi-aromatic polyamide may be a polyamide having a dicarboxylic acid component, such as a structural unit derived from terephthalic acid or isophthalic acid, and a diamine component, or a polyamide having a structural unit derived from a diamine having an aromatic group such as m-xylylenediamine.
- The melting point of the semi-aromatic polyamide (A) can be controlled within the above-mentioned range by adjusting the composition or the like. For example, in the case of a polyamide having respective structural units derived from terephthalic acid, adipic acid and 1,6-hexanediamine, the melting point may be controlled to fall within the above-mentioned range by adjusting the molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from adipic acid to be in the range of 40/60 to 80/20. In the case of a polyamide having respective structural units derived from terephthalic acid, 1,9-nonanediamine, and 2-methyl-1,8-octanediamine, the melting point may be controlled to fall within the above-mentioned range by adjusting the molar ratio of the structural unit derived from 1,9-nonanediamine to the structural unit derived from 2-methyl-1,8-octanediamine to be in the range of 70/30 to 90/10. In the case of a polyamide having respective structural units derived from terephthalic acid, 1,6-hexanediamine, and 2-methyl-1,5-pentanediamine, the melting point may be controlled to fall within the above-mentioned range by adjusting the molar ratio of the structural unit derived from 1,6-hexanediamine to the structural unit derived from 2-methyl-1,5-pentanediamine to be in the range of 40/60 to 70/30. In the case of a polyamide having respective structural units derived from terephthalic acid, isophthalic acid, and 1,6-hexanediamine, the melting point may be controlled to fall within the range by adjusting the molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from isophthalic acid to be in the range of 70/30 to 50/50.
- Each of the structural units contained in the semi-aromatic polyamide (A) and the proportions thereof can be identified from the feed ratio used for manufacturing the semi-aromatic polyamide (A), or by known means such as 13C-NMR measurement or 1H-NMR measurement.
- The present invention may employ, for example, a semi-aromatic polyamide having a dicarboxylic acid component containing a structural unit derived from terephthalic acid and a structural unit derived from adipic acid and a diamine component (hereinafter, referred to as a semi-aromatic polyamide (A')).
- The semi-aromatic polyamide (A') has excellent moldability, by virtue of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid which are both used as dicarboxylic acid components. Further, the resultant polyamide resin composition has excellent gas barrier properties in comparison with an aliphatic polyamide. Though not clear, the reason can be deduced as follows.
- Generally, a semi-aromatic polyamide using , such as PA6T or PA9T, which uses terephthalic acid has excellent gas barrier properties in comparison with an aliphatic polyamide by virtue of its aromatic group. However, in some cases, use of PA6T or PA9T as a homopolymer may cause the thermal decomposition of polymers and various additive materials during melt polymerization and melt molding due to its excessively high melting point. In practical use, the semi-aromatic polyamide is, therefore, copolymerized with a dicarboxylic acid component such as adipic acid or isophthalic acid, or with an aliphatic diamine such as 2-methyl-1,5-pentanediamine, so as to lower the melting point to about 280°C to 330°C. For example, the melting point of PA9T described in PTL1 is lowered by copolymerization with 2-methyl-1,8-octanediamine. However, when the semi-aromatic polyamide is a compound having a structural unit derived from a compound having a 2-methyl-1,8-octanediamine side chain or the like, crystallinity of the semi-aromatic polyamide may be impaired due to an increase in the flexibility of the polyamide chain.
- On the other hand, the semi-aromatic polyamide (A') contains a copolymer of adipic acid and terephthalic acid as a dicarboxylic acid, and therefore, the resultant polymer has high linearity. Furthermore, the semi-aromatic polyamide (A') is a copolymer with an isomorphous substitution in which the length of the structural units in the molecular chain direction are similar for those derived from terephthalic acid and those derived from adipic acid. Both of these features enhance crystallinity, so that the semi-aromatic polyamide (A') can have a low melting point without impairing high crystallinity inherent to the polyamide made using terephthalic acid. It is conceivable that a polyamide resin composition excellent in moldability such as mold releasability can be obtained by virtue of the above-mentioned features.
- The molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A') is preferably 40/60 to 80/20, more preferably 40/60 to 70/30, further preferably 50/50 to 70/30, furthermore preferably 60/40 to 70/30. With the molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from adipic acid in this range, the polyamide resin composition has sufficient heat resistance and chemical resistance. With the molar ratio in this range, the molding temperature in injection molding is lowered, so that the amount of gas generated in molding due to the decomposition of an olefin polymer (C) and the like can be reduced. Consequently, excellent moldability can be achieved with reduced mold stains, for example, by gas burn.
- The semi-aromatic polyamide (A') may have a dicarboxylic acid component derived from an acid other than terephthalic acid or adipic acid. Note that the number of moles of the dicarboxylic acid component derived from an acid other than terephthalic acid or adipic acid which are contained in the semi-aromatic polyamide (A') is preferably 5% or less relative to the total number of moles of the structural unit derived from terephthalic acid and the structural unit derived from adipic acid. Examples of the dicarboxylic acids derived from an acid other than terephthalic acid or adipic acid which are contained in the semi-aromatic polyamide (A') include: aromatic dicarboxylic acids such as isophthalic acid, 2-methylterephthalic acid, and naphthalenedicarboxylic acid; furandicarboxylic acids such as 2,5-furandicarboxylic acid; alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid; aliphatic dicarboxylic acids such as malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid; aliphatic dicarboxylic acids having 11 or more carbon atoms; and structural units derived from any mixture thereof.
- Preferably the diamine component constituting the semi-aromatic polyamide (A') is a component derived from a straight chain aliphatic diamine having 4 to 10 carbon atoms. This is because a highly crystalline semi-aromatic polyamide having low water absorption and high heat resistance can be obtained by the single use of a straight chain aliphatic diamine fulfilling this range. Preferably 80 to 100 mol% of the total diamine components constituting the semi-aromatic polyamide (A') is a component derived from a straight chain aliphatic diamine having 4 to 10 carbon atoms.
- Examples of the straight chain aliphatic diamine having 4 to 10 carbon atoms include 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine and 1,10-decanediamine. These may be used individually or in a mixture thereof. The diamine component constituting the semi-aromatic polyamide (A') is preferably a component derived from 1,6-hexanediamine. Preferably 80 to 100 mol% and more preferably 90 to 100 mol% of the total diamine components constituting the semi-aromatic polyamide (A') is the component derived from 1,6-hexanediamine.
- The semi-aromatic polyamide (A') may have a diamine component other than the aliphatic diamine having 4 to 10 carbon atoms. Preferably the number of moles of the diamine other than the diamine described above is 5% or less relative to the total diamine components contained in the semi-aromatic polyamide (A'). Examples of the diamine other than the diamine described above include straight chain aliphatic diamines having 11 or more carbon atoms such as 1,11-decanediamine and 1,12-dodecanediamine; chain aliphatic diamines having a side chain such as 2-methyl-1,5-pentanediamine, 2-methyl-1,6-hexanediamine, 2-methyl-1,7-heptanediamine, 2-methyl-1,8-octanediamine, 2-methyl-1,9-nonanediamine, 2-methyl-1,10-decanediamine and 2-methyl-1,11-undecanediamine; aromatic diamines such as meta-xylenediamine; and alicyclic diamines such as 1,4-cyclohexanediamine and 1,3-cyclohexanediamine.
- The intrinsic viscosity [η] of the semi-aromatic polyamide (A) is preferably 0.7 to 1.6 dl/g, more preferably 0.8 to 1.2 dl/g. The intrinsic viscosity [η] is measured in 96.5% sulfuric acid at 25°C. With an intrinsic viscosity [η] in this range, it becomes possible to enhance the flowability of the resin composition during molding, and the resultant molded product can have improved mechanical properties.
- The terminal amino group content of the semi-aromatic polyamide (A) is preferably 10 to 400 µ equivalent, more preferably 50 to 400 µ equivalent, furthermore preferably 100 to 400 µ equivalent. The presence of a terminal amino group in an amount of 10 µ equivalent or more enables the compatibility with an olefin polymer (C) and the strength at a resin interface to be increased, and the adhesiveness with a fibrous filler (D) and a conductive material (E) to be enhanced, and as a result, the mechanical properties such as impact resistance tend to be improved. A terminal amino group in an amount of 400 µ equivalent or lower tends to suppress water absorption at a low level and achieve and excellent long-term heat resistance.
- The amount of the terminal amino group [NH2] of the semi-aromatic polyamide (A) is measured by the following method. The semi-aromatic polyamide (A) in an amount of 0.5 to 0.7 g is precisely weighed, and dissolved in 30 mL of m-cresol. To the resultant are added 1 to 2 drops of 0.1% thymol blue/m-cresol solution as an indicator, thereby preparing a sample solution. The sample solution is titrated with 0.02-N p-toluenesulfonic acid solution until the color changes from yellow to blue violet to thereby measure the terminal amino group content ([NH2], unit: equivalent/g).
- The semi-aromatic polyamide (A) can be manufactured in the same manner as a known manufacturing method for conventional semi-aromatic polyamide. For example, the semi-aromatic polyamide (A) can be manufactured by polycondensing a dicarboxylic acid and a diamine in a homogeneous solution. More specifically, a dicarboxylic acid and a diamine are heated in the presence of a catalyst as disclosed in
WO03/085029 - The semi-aromatic polyamide (B) contained in the semi-aromatic polyamide resin composition of the present invention has a heat of melting (ΔH) of 0 J/g or more and 5 J/g or less in a temperature rising process (temperature rising rate: 10°C/min) measured by the differential scanning calorimetry (hereinafter, referred to as DSC). The heat of melting can be an index of crystallinity of a polyamide resin. Crystallinity is enhanced when the heat of melting increases and is lowered when the heat of melting decreases. The heat of melting (ΔH) of the semi-aromatic polyamide (B) is preferably 5 J/g or less, i.e., low crystallinity, which allows for excellent compatibility with the semi-aromatic polyamide (A) and the excellent appearance of a molded product of the resin composition. The heat of melting (ΔH) of the semi-aromatic polyamide (B) is preferably 0 J/g. Further, the semi-aromatic polyamide (B) is preferably an amorphous resin.
- The heat of melting (ΔH) as used herein is a value determined in accordance with JIS K7122, which is obtained from the area of an exothermic peak due to crystallization in the differential scanning calorimetry chart when scanned at a temperature rising rate of 10°C/min. In the present invention, the heat of melting (ΔH) is defined as a value obtained in a first temperature rise without erasing the thermal history.
- The semi-aromatic polyamide (B) is not particularly limited as long as the polyamide has an aromatic group, and examples thereof may include polyamides containing a dicarboxylic acid component, such as a structural unit derived from terephthalic acid or isophthalic acid, and a diamine component, and polyamides containing a structural unit derived from a diamine having an aromatic group such as m-xylylenediamine.
- Examples of the substantially amorphous polyamides and copolyamides for use as the semi-aromatic polyamide (B) having a heat of melting in the range described above include a polycondensate of isophthalic acid/terephthalic acid/1,6-hexanediamine/bis(3-methyl-4-aminocyclohexyl)methane, a polycondensate of terephthalic acid/2,2,4-trimethyl-1,6-hexanediamine/2,4,4-trimethyl-1,6-hexanediamine, a polycondensate of isophthalic acid/bis(3-methyl-4-aminocyclohexyl)methane/ω-laurolactam, a polycondensate of isophthalic acid/terephthalic acid/1,6-hexanediamine, a polycondensate of isophthalic acid/2,2,4-trimethyl-1,6-hexanediamine/2,4,4-trimethyl-1,6-hexanediamine, a polycondensate of isophthalic acid/terephthalic acid/2,2,4-trimethyl-1,6-hexanediamine/2,4,4-trimethyl-1,6-hexanediamine, a polycondensate of isophthalic acid/bis(3-methyl-4-aminocyclohexyl)methane/ ω-laurolactam, and polycondensates of isophthalic acid/terephthalic acid/other diamine components. These polyamides or copolyamides have excellent gas barrier properties by virtue of a structural unit having a benzene ring. In the semi-aromatic polyamide (B), the benzene ring of the terephthalic acid component and/or the isophthalic acid component constituting the polycondensate may be substituted with an alkyl group or a halogen atom. A polycondensate of isophthalic acid/terephthalic acid/1,6-hexanediamine is more preferable in view of its high effect for improving the gas barrier properties and surface appearance of the resultant molded product. These semi-aromatic polyamides (B) may be used in combination.
- The heat of melting of the semi-aromatic polyamide (B) may be adjusted to fall within the above-mentioned range by a known method. For example, in the case of a polyamide having a structural unit derived from isophthalic acid, the molar ratio of the structural unit derived from isophthalic acid is adjusted to preferably 50% or more, more preferably 60% or more, relative to the total moles of the polyamides. This allows the control of the heat of melting of the semi-aromatic polyamide (B) to fall within the range described above.
- Each of the structural units contained in the semi-aromatic polyamide (B) and the proportions thereof can be identified from the feed ratio used for manufacturing the semi-aromatic polyamide (B), or by a known means such as 13C-NMR measurement or 1H-NMR measurement.
- The present invention may employ, for example, a semi-aromatic polyamide having a dicarboxylic acid component containing a structural unit derived from isophthalic acid and a diamine component containing a structural unit derived from an aliphatic diamine having 4 to 15 carbon atoms (hereinafter referred to as a semi-aromatic polyamide (B')).
- The semi-aromatic polyamide (B') has a structural unit derived from isophthalic acid as the dicarboxylic acid component and, by virtue of such structural unit, exhibits excellent gas barrier properties in spite of low crystallinity.
- The semi-aromatic polyamide (B') may contain a different dicarboxylic acid component other than the structural unit derived from isophthalic acid in an amount which does not impair the effects of the present invention. Examples of the other dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, 2-methyl terephthalic acid, and naphthalene dicarboxylic acid; a furandicarboxylic acid such as 2,5-furandicarboxylic acid; alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid; aliphatic dicarboxylic acids such as malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinate, azelaic acid, sebacic acid and suberic acid; aliphatic dicarboxylic acids having 11 or more carbon atoms; and structural units derived from any mixture thereof. Among them, a structural unit derived from an aromatic dicarboxylic acid is preferred, and a structural unit derived from terephthalic acid is particularly preferred.
- The molar ratio of the structural unit derived from isophthalic acid to the structural unit derived from terephthalic acid in the semi-aromatic polyamide (B') is preferably 60/40 to 100/0, more preferably 60/40 to 90/10. With a molar ratio of the structural unit derived from isophthalic acid to the structural unit derived from terephthalic acid in the above-mentioned range, the semi-aromatic polyamide (B') can be amorphous and have high compatibility with the semi-aromatic polyamide (A). This enables an enhancement of the impact resistance and the gas barrier properties of the polyamide resin composition.
- The content of the structural unit derived from isophthalic acid, relative to the total dicarboxylic acid components in the semi-aromatic polyamide (B'), is preferably 40 mol% or more, more preferably 50 mol% or more. With the content of the structural unit derived from isophthalic acid relative to the total dicarboxylic acid components in the semi-aromatic polyamide (B'), being 40 mol% or more, the appearance and the gas barrier properties of a molded product becomes excellent.
- The semi-aromatic polyamide (B') includes an aliphatic diamine having 4 to 15 carbon atoms as a diamine component. Examples of the aliphatic diamine having 4 to 15 carbon atoms include straight chain aliphatic diamines such as 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecadiamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine and 1,15-pentadecanediamine; chain aliphatic diamines having a side chain such as 2-methyl-1,5-pentanediamine, 2-methyl-1,6-hexane diamine, 2-methyl-1,7-heptanediamine, 2-methyl-1,8-octanediamine, 2-methyl-1,9-nonanediamine, 2-methyl-1,10-decanediamine or 2-methyl-1,11-undecanediamine; and alicyclic diamines such as 1,4-cyclohexanediamine and 1,3-cyclohexanediamine. These may be used individually or in a mixture thereof.
- The aliphatic diamine unit having 4 to 15 carbon atoms is more preferably an aliphatic diamine having 4 to 9 carbon atoms. Particularly preferred is 1,6-hexanediamine. The 1,6-hexanediamine content relative to the total diamine components is 40 mol% to 100 mol%, preferably 60 mol% to 100 mol%. When the content of 1,6-hexanediamine as the diamine component is 40 mol% or more, a semi-aromatic polyamide (B') having low water absorption and excellent gas barrier properties can be obtained.
- The intrinsic viscosity [η] of the semi-aromatic polyamide (B) is preferably 0.7 to 1.6 dl/g, more preferably 0.8 to 1.2 dl/g. The intrinsic viscosity [η] is measured in 96.5% sulfuric acid at 25°C. With an intrinsic viscosity [η] in the range, it becomes possible to enhance the flowability of the resin composition during molding, and the resultant molded product can have improved mechanical properties.
- The terminal amino group content of the semi-aromatic polyamide (B) is preferably 10 to 400 µ equivalent, more preferably 50 to 400 µ equivalent, furthermore preferably 100 to 400 µ equivalent. The presence of a terminal amino group in an amount of 10 µ equivalent or more enables the compatibility with an olefin polymer (C) and the strength at a resin interface to be increased, and the adhesiveness with a fibrous filler (D) and a conductive material (E) to be enhanced, and as a result, the mechanical properties such as impact resistance tend to be improved. A terminal amino group in an amount of 400 µ equivalent or lower tends to suppress water absorption at a low level and achieve and excellent long-term heat resistance.
- The amount of the terminal amino group [NH2] of the semi-aromatic polyamide (B) is measured by the following method. The semi-aromatic polyamide (A) in an amount of 0.5 to 0.7 g is precisely weighed, and dissolved in 30 mL of m-cresol. To the resultant are added 1 to 2 drops of 0.1% thymol blue/m-cresol solution as an indicator, thereby preparing a sample solution. The sample solution is titrated with 0.02-N p-toluenesulfonic acid solution until the color changes from yellow to blue violet to thereby measure the terminal amino group content ([NH2], unit: µ equivalent/g).
- The semi-aromatic polyamide (B) can be manufactured in the same manner as a known manufacturing method for conventional semi-aromatic polyamide. For example, the semi-aromatic polyamide (B) can be manufactured by polycondensing a dicarboxylic acid and a diamine in a homogeneous solution. More specifically, a dicarboxylic acid and a diamine are heated in the presence of a catalyst as disclosed in
WO03/085029 - The olefin polymer (C) includes a structural unit having a functional group including a hetero atom (hereinafter simply referred to as "functional group") in an amount of 0.1 to 1.5 parts by mass, preferably 0.5 to 1.2 parts by mass, relative to 100 parts by mass of the olefin polymer (C). The functional group preferably contains carbon, hydrogen and oxygen as a hetero atom. Specific examples of the functional group include functional groups selected from the group consisting of carboxylic acid groups (including carboxylic anhydride groups), ester groups, ether groups, aldehyde groups and ketone groups.
- The structural unit having a functional group may be introduced by a modification reaction of the olefin polymer. Particularly preferred examples of the compounds for the modification reaction include unsaturated carboxylic acids and derivatives thereof. Specific examples of the unsaturated carboxylic acid or the derivative thereof include unsaturated carboxylic acids or unsaturated dicarboxylic acids such as acrylic acid, methacrylic acid, α-ethyl acrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, and endcis-bicyclo[2,2,1]hepto-5-ene-2,3-dicarboxylic acid (Nadic acid [trade mark]), and derivatives such as acid halides, amides, imides, acid anhydrides and esters thereof. Among them, an unsaturated dicarboxylic acid or an anhydride thereof is suitable, and maleic acid, Nadic acid (trade mark) and an acid anhydride thereof are particularly suitable.
- A particularly preferred compound for the modification reaction of the olefin polymer is maleic anhydride. Maleic anhydride has a relatively high reactivity with an unmodified olefin polymer, and does not easily polymerize with each other, and tends to be stable as a basic structure. Various advantages therefore include obtainment of the olefin polymer (C) with stable quality.
- Examples of skeletons of the olefin polymer (C) include known polymer skeletons such as ethylene polymers, propylene polymers, butene polymers, and copolymers of these olefins. Particularly preferred examples of the skeleton of the olefin polymer (C) include a copolymer of ethylene and an olefin having 3 or more carbon atoms.
- The olefin polymer (C) may be obtained by, for example, the modification reaction of an unmodified olefin polymer with a compound having a corresponding functional group at a specific ratio. Preferred examples of the unmodified olefin polymer include ethylene-α-olefin copolymers.
- The ethylene-α-olefin copolymer is a copolymer of ethylene and another olefin such as α-olefin having 3 to 10 carbon atoms, e.g., propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, and 1-decene. Specific examples of the ethylene-α-olefin copolymer include ethylene-propylene copolymers, ethylene-1-butene copolymers, ethylene-1-hexene copolymers, ethylene-1-octene copolymers and ethylene-4-methyl-1-pentene copolymers. Among them, an ethylene-propylene copolymer, an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer and an ethylene-1-octene copolymer are preferred.
- The ethylene-α-olefin copolymer preferably includes a structural units derived from ethylene in an amount of 70 to 99.5 mol%, more preferably 80 to 99 mol%, and a structural unit derived from α-olefin in an amount of 0.5 to 30 mol%, more preferably 1 to 20 mol%.
- A desirable ethylene-α-olefin copolymer has a melt flow rate (MFR) at 190°C and with a load of 2.16 kg in accordance with ASTM D1238 of 0.01 to 20 g/10 min, preferably 0.05 to 20 g/10 min.
- The method for manufacturing the ethylene-α-olefin copolymer is not particularly limited, and can be prepared by, for example, a known method using a transition metal catalyst such as a titanium (Ti), vanadium (V), chromium (Cr) or zirconium (Zr)-based catalyst. More specific examples of the manufacturing method include copolymerizing ethylene with one or more α-olefins having 3 to 10 carbon atoms in the presence of a Ziegler catalyst or a metallocene catalyst including a V compound and an organoaluminum compound. In particular, the manufacturing method using a metallocene catalyst is preferred.
- From the ethylene-α-olefin copolymer, an olefin copolymer (C) may be manufactured by, for example, a so-called graft modification with a compound having a functional group.
- The graft modification of an ethylene-α-olefin copolymer may be performed by a known method. Examples of the method include dissolving an ethylene-α-olefin copolymer in an organic solvent, and then adding an unsaturated carboxylic acid or a derivative thereof and a radical initiator or the like to the resultant solution for a reaction at a temperature of typically 60 to 350°C, preferably 80 to 190°C, for 0.5 to 15 hours, preferably 1 to 10 hours.
- The organic solvent for dissolving an ethylene-α-olefin copolymer is not particularly limited, and examples thereof include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, and heptane.
- Other examples of the graft modification method of an ethylene-α-olefin copolymer include a method in which an ethylene-α-olefin copolymer is reacted with an unsaturated carboxylic acid or a derivative thereof, preferably in the absence of a solvent, with an extruder or the like. The reaction conditions in this case may include a reaction temperature of typically equal to or higher than the melting point of the ethylene-α-olefin copolymer, more specifically 100 to 350°C. The reaction time may be set to typically 0.5 to 10 minutes.
- In order to achieve an efficient graft modification reaction of an ethylene-α-olefin copolymer with a compound having a functional group such as an unsaturated carboxylic acid, the modification reaction is preferably performed in the presence of a radical initiator. Examples of the radical initiator include organic peroxides, organic peresters, and azo compounds. Examples of the organic peroxide and the organic perester include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di(peroxide benzoate)hexyne-3,1,4-bis(t-butylperoxyisopropyl)benzene, lauroyl peroxide, t-butylperacetate, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3,2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylperbenzoate, t-butylperphenylacetate, t-butylperisobutyrate, t-butylper-sec-octoate, t-butylperpivalate, cumylperpivalate and t-butylperdiethylacetate. Examples of the azo compound include azobisisobutyronitrile and dimethylazoisobutyrate. Among them, dialkyl peroxides such as dicumylperoxide, di-t-butylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3,2,5-dimethyl-2,5-di(t-butylperoxy)hexane, and 1,4-bis(t-butylperoxyisopropyl)benzene are preferred. The radical initiator is used in a proportion of typically 0.001 to 1 parts by weight relative to 100 parts by weight of the unmodified ethylene-α-olefin copolymer.
- The modified ethylene-α-olefin copolymer has a density measured in accordance with JIS K7112 of preferably 0.80 to 0.95 g/cm3, more preferably 0.85 to 0.90 g/cm3.
- Further, the intrinsic viscosity [η] of the modified ethylene-α-olefin copolymer measured in decalin (decahydronaphthalene) solution at 135°C is preferably 0.5 to 4.0 dl/g, more preferably 1.0 to 3 dl/g, furthermore preferably 1.5 to 3 dl/g. With an intrinsic viscosity [η] in the above-mentioned range, the resin composition of the present invention can exhibit both toughness and melt flowability at a high level.
- The intrinsic viscosity [η] of the olefin polymer (C) in decalin at 135°C is measured by a conventional method as follows. A sample in an amount of 20 mg is dissolved in 15 ml of decalin, and the specific viscosity (ηsp) is measured in an atmosphere at 135°C with an Ubbelohde viscometer. To the decalin solution, 5 ml of decalin is further added for dilution, and the specific viscosity is measured in the same manner. The dilution and the specific viscosity measurement are further repeated twice, and based on the thus obtained measurements, the "ηsp/C" value is obtained by extrapolating concentration (C) to zero and the obtained value is used as the intrinsic viscosity [η].
- The content of the structural units having a functional group which are contained in the olefin polymer (C) is 0.1 to 1.5 parts by mass, preferably 0.2 to 1.1 parts by mass relative to 100 parts by mass of the olefin polymer (C). When the content of the structural units having a functional group is excessively small, the effect for improving impact resistance of a resin composition may become low. Lack of the reaction or interaction between the functional group of the olefin polymer (C) and the terminal groups of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B) causes the olefin polymer (C) to easily aggregate and the interfacial strength with the polyamide resin to be decreased, thereby preventing the olefin polymer (C) from easily exhibiting its effect for sufficiently improving the impact resistance. On the other hand, when the amount of the structural units having a functional group is excessively large, the interaction between the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B) becomes enhanced excessively, thereby lowering so that crystallinity and melt flowability, which may result in reduced moldability.
- The content of the structural units having a functional group contained in the olefin polymer (C) can be identified from the feed ratio used for reacting the unmodified olefin polymer with a compound having a functional group, or by a known means such as 13C-NMR measurement or 1H-NMR measurement.
- Specific examples of the NMR measurement conditions are as follows.
- 1H-NMR measurement can be performed using an ECX400 nuclear magnetic resonance apparatus manufactured by JEOL Ltd. under the following conditions: solvent: deuterated o-dichlorobenzene, sample concentration: 20 mg/0.6 mL, measurement temperature: 120°C, observing nucleus: 1H (400 MHz), sequence: a single pulse, pulse width: 5.12 µ seconds (45° pulse), repetition time: 7.0 seconds, and cumulative number: 500 or more. Hydrogen of tetramethylsilane is used as the reference chemical shift at 0 ppm. Alternatively, the peak derived from residual hydrogen of deuterated o-dichlorobenzene may be used as the reference chemical shift at 7.10 ppm to obtain similar results. The peaks of 1H derived from a functional group-containing compound may be assigned by a conventional method.
- 13C-NMR measurement can be performed using an ECP500 nuclear magnetic resonance apparatus manufactured by JEOL Ltd. under the following conditions: solvent: o-dichlorobenzene/heavy benzene (80/20 vol%) mixture solvent, measurement temperature: 120°C, observing nucleus: 13C (125 MHz), single pulse proton decoupling, 45° pulse, repetition time: 5.5 seconds, and cumulative number: 10,000 or more, and reference chemical shift: 27.50 ppm. The various kinds of signals are assigned by a conventional method, and the quantitative determination can be performed based on the integrated value of signal strength.
- Alternatively, the content of the structural unit having a functional group contained in the olefin polymer (C) may be conveniently measured by the following method. The functional group contents of different polymers each having a different functional group content are determined by NMR measurement, and each polymer with the determined functional group content is subjected to infrared spectroscopy (IR). A calibration curve between the intensity ratio of specific peaks of the infrared spectroscopy (IR) spectrum and the functional group content is created. The functional group content of any polymer can be determined based on the calibration curve. Although this method is more convenient than the NMR measurement described above, it is basically necessary to create a separate calibration curve based on the type of the base resin and the functional group. For this reason, this method is preferably used, for example, in a process control or the like for producing a resin in a commercial plant.
- The semi-aromatic polyamide resin composition of the present invention may contain a fibrous filler (D). Examples of the fibrous filler (D) include glass fiber, wholly aromatic polyamide fiber (e.g. polyparaphenylene terephthalamide fiber, polymetaphenylene terephthalamide fiber, polyparaphenylene isophthalamide fiber, polymetaphenylene isophthalamide fiber, and fiber obtained from a condensate of diaminodiphenyl ether and terephthalic acid or isophthalic acid), boron fiber, and liquid crystal polyester fiber. One or a plurality of these may be used as the fibrous filler (D). Among them, at least one of glass fiber and wholly aromatic polyamide fiber is preferred as the fibrous filler (D), since the use thereof further improves the mechanical properties and heat resistance of a molded product obtained from the resin composition.
- The average length of the fibrous filler (D) for use is preferably in a range of 1 µm to 20 mm, more preferably in a range of 5 µm to 10 mm, furthermore preferably in a range of 10 µm to 5 mm, from the viewpoint of maintaining the good moldability and improving the mechanical properties and the heat resistance of the resultant molded product. Further, the aspect ratio of the fibrous filler (D) is preferably in a range of 5 to 2,000, more preferably in a range of 30 to 600.
- The fibrous filler (D) is preferably subjected to a surface treatment for improving adhesion to a matrix resin, in particular, the adhesion to polyamide, and substantially improving the mechanical properties of the resultant polyamide resin composition. Examples of the surface treatment agents include coupling agents such as silane coupling agents, titanium coupling agents, and aluminate coupling agents, and sizing agents. Examples of the coupling agent suitable for use include aminosilane, epoxysilane, methyltrimethoxysilane, methyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, and vinyltrimethoxysilane. Preferred examples of the sizing agent for use include epoxy compounds, urethane compounds, carboxylic acid compounds, urethane/maleic acid modified compounds, and urethane/amine modified compounds. These surface treatment agents may be used individually or in combination. In particular, when a coupling agent and a sizing agent are used in combination, the adhesion between the fibrous filler (D) and a matrix resin, particularly a polyamide, is further improved, so that the mechanical properties of the resultant semi-aromatic polyamide resin composition is further enhanced. The mass reduction of the surface-treated fibrous filler (D) when heated at 625 ± 20°C for 10 minutes or more is preferably in a range of 0.01 to 8.0 parts by mass, more preferably in a range of 0.1 to 5.0 parts by mass, relative to 100 parts by mass of the surface-treated fibrous filler (D).
- The semi-aromatic polyamide resin composition of the present invention may contain a conductive material (E). The inclusion of conductive material (E), for example, prevents the generation of static sparking of a molded fuel part and imparts a necessary conductivity necessary for electrostatic coating performed after molding into automotive parts. The conductive material in the present invention is defined as a material having a volume resistivity of 100 Ω·cm or less.
- Examples of the conductive material (E) include carbon fiber, conductive carbon black, carbon fibril, carbon nanotube, metal fiber, metal powder, metal flake, metal oxide powder, and metal-coated fiber. Preferably the conductive material (E) is at least one member selected from the group consisting of carbon fiber, conductive carbon black, carbon fibril and carbon nanotube, having a low specific gravity and excellent balance between conductivity imparting effect and reinforcing effect.
- In the present invention, the fibrous filler (D) may serve as conductive material (E). For example, carbon fiber, carbon fibril, carbon nanotube, metal fiber, metal-coated fiber may be a fibrous filler (D) as well as a conductive material (E).
- Although any of pitch-based carbon fiber and PAN-based carbon fiber may be used as the carbon fiber, PAN-based carbon fiber is preferred due to excellence in elastic modulus and impact resistance. From the viewpoint of maintaining excellent moldability and improving the mechanical properties and the heat resistance of the resultant molded product, the average fiber length of the carbon fiber in a state before melt kneading is preferably in a range of 1 to 20 mm, more preferably in a range of 3 to 10 mm, furthermore preferably in a range of 5 to 8 mm. The aspect ratio of the carbon fiber is preferably in a range of 100 to 5,000, more preferably in a range of 300 to 2,000.
- Examples of the conductive carbon black include the carbon black for conductive use disclosed in
WO01/81473 2006-213798 - Examples of the carbon fibril include the fine carbon fiber disclosed in
WO94/23433 - Examples of the carbon nanotube include the multi-layer carbon nanotube disclosed in Japanese Patent No.
3761561 - The content of the conductive material (E) for achieving excellent balance between the conductivity and the mechanical properties is preferably in a range of 0.1 to 30 parts by mass, more preferably 0.2 to 25 parts by mass, furthermore preferably 0.3 to 20 parts by mass, relative to 100 parts by mass of the polyamide resin composition.
- The semi-aromatic polyamide resin composition of the present invention may contain, depending on the application, optional additives within a range that does not impair the effects of the present invention. Examples of optional additives include antioxidants (phenols, amines, sulfur compounds and phosphorus compounds), fillers (clay, silica, alumina, talc, kaolin, quartz, mica and graphite), heat stabilizers (lactone compounds, vitamin E, hydroquinones, copper halides and iodine compounds), light stabilizers (benzotriazoles, triazines, benzophenones, benzoates, hindered amines and oxanilides), other polymers (polyolefins, ethylene-propylene copolymers, olefin copolymers such as ethylene-1-butene copolymers, olefin copolymers such as propylene-1-butene copolymers, polystyrene, polyamides, polycarbonates, polyacetal, polysulfone, polyphenylene oxide, fluorine resins, silicone resins and LCP), flame retardants (bromine-based retardants, chlorine-based retardants, phosphorus-based retardants, antimony-based retardants and inorganic-based retardants), fluorescent whitening agents, plasticizers, thickeners, antistatic agents, releasing agents, pigments, nucleating agents, and various known compounding agents.
- The content of the optional additives in the polyamide resin composition of the present invention varies depending on the type of the components, but it is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass, furthermore preferably 0 to 1 parts by mass, relative to 100 parts by mass of the total of the semi-aromatic polyamide (A), the semi-aromatic polyamide (B), the olefin polymer (C), and the fibrous filler (D).
- The semi-aromatic polyamide resin composition of the present invention preferably includes 20 to 60 parts by mass of the semi-aromatic polyamide (A), 5 to 30 parts by mass of the semi-aromatic polyamide (B), 1 to 30 parts by mass of the olefin polymer (C), and 0 to 60 parts by mass, preferably 5 to 60 parts by mass, more preferably 5 to 50 parts by mass of the fibrous filler (D), relative to 100 parts by mass of the total of the semi-aromatic polyamide (A), the semi-aromatic polyamide (B), the olefin polymer (C), and the fibrous filler (D).
- Among them, the mass ratio of the semi-aromatic polyamide (B) to the total mass of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B), i.e. the relationship (B)/((A)+(B)), is preferably 0.05 to 0.5, more preferably 0.1 to 0.3 where (A) is the mass of the semi-aromatic polyamide (A), and the (B) is the mass of the semi-aromatic polyamide (B). When the above ratio of (B) is 0.05 or less, the effect for improving the gas barrier properties of the resultant resin composition tends to be insufficient. When the above ratio of (B) is 0.5 or more, while the gas barrier properties of the resin composition can be enhanced, but moldability such as injection flowability and releasability may be impaired.
- The mass ratio of the olefin polymer (C), referred to as (C), to the total mass of the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B), i.e. the relationship (C)/((A)+(B)), is preferably 0.03 to 0.75, more preferably 0.07 to 0.5 where (A) is the mass of the semi-aromatic polyamide (A), and the (B) is the mass of the semi-aromatic polyamide (B). When the above ratio of (C) is 0.03 or less, the impact resistance strength of the resultant resin composition may be insufficient. When a proportion of (C) is 0.75 or more, gas barrier properties, heat resistance, mechanical properties, and moldability tend to be impaired.
- The semi-aromatic polyamide resin composition of the present invention may be manufactured by, for example, a method including the step of mixing the semi-aromatic polyamide (A), the semi-aromatic polyamide (B), and the olefin polymer (C) in the above-mentioned ratios, together with the fibrous filler (D), the conductive material (E), and other components as needed by a known method using a henschel mixer, a V-blender, a ribbon blender, a tumbler blender or the like; and a method further including the steps of melt kneading the above-obtained mixture using a monoaxial extruder, a multiaxial extruder, a kneader, a banbury mixer or the like, and subsequently granulating or grinding the kneaded product.
- As the melt kneading method, use can be made of a conventional method, such as the method disclosed in PTL 1.
- Examples of the molded products made of the polyamide resin composition of the present invention include: exterior automotive parts such as a radiator grille, a rear spoiler, a wheel cover, a hubcap, a cowl vent grille, an air outlet louver, an air scoop, a hood bulge, a fender, and a backdoor; interior parts of an automotive engine compartment such as a cylinder head cover, an engine mount, an air intake manifold, a throttle body, an air intake pipe, a radiator tank, a radiator support, a water pump inlet, a water pump outlet, a thermostat housing, a cooling fan, a fan shroud, an oil pan, an oil filter housing, an oil filler cap, an oil level gauge, a timing belt, a timing belt cover, and an engine cover; automotive fuel system parts such as a fuel cap, a fuel filler tube, an automotive fuel tank, a fuel sender module, a fuel cut-off valve, a quick connector, a canister, a fuel delivery pipe, and a fuel filler neck; automotive drive train parts such as a shift lever housing and a propeller shaft; automotive chassis parts such as a stabilizer bar linkage rod; automotive functional parts such as a window regulator, a door lock, a door handle, an outside door mirror stay, an accelerator pedal, a pedal module, a seal ring, a bearing, a bearing retainer, a gear, and an actuator; automotive electronic parts such as a wire harness connector, a relay block, a sensor housing, an encapsulation, an ignition coil, and a distributor cap; fuel parts for general-purpose apparatus such as a fuel tank for general-purpose apparatus (a brushcutter, a lawn mower and a chain saw); and electric and electronic parts, such as a connector and an LED reflector. Due to excellence in both of toughness such as impact resistance and elongation and mechanical properties such as tensile strength, as well as in properties such as heat resistance, low water absorption, chemical resistance, and long-term heat resistance, the polyamide resin composition of the present invention may be preferably used as an automotive fuel tank, a quick connector, a bearing retainer, a fuel tank for general purpose equipment, a fuel cap, a fuel filler neck, a fuel sender module, a hubcap, a fender, or a backdoor, in particular.
- An aspect of the present invention provides the following constitutions.
- [1] A semi-aromatic polyamide resin composition including:
- 20 to 60 parts by mass of a semi-aromatic polyamide (A') containing a structural unit derived from terephthalic acid and a structural unit derived from adipic acid as dicarboxylic acid components, and a structural unit derived from a straight chain aliphatic diamine having 4 to 10 carbon atoms as a diamine component;
- 5 to 30 parts by mass of a semi-aromatic polyamide (B') containing a structural unit derived from isophthalic acid as a dicarboxylic acid component, and a structural unit derived from an aliphatic diamine having 4 to 15 carbon atoms as a diamine component;
- 1 to 30 parts by mass of an olefin polymer (C) containing 0.1 to 1.5 parts by mass of a structural unit having a functional group; and
- 5 to 60 parts by mass of a fibrous filler (D)
- (with the proviso that the total of (A'), (B'), (C), and (D) is 100 parts by mass); and a mass ratio (B')/((A')+(B')) is 0.05 to 0.5.
- [2] The semi-aromatic polyamide resin composition according to [1], wherein a molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A') is 40/ 60 to 80/20.
- [3] The semi-aromatic polyamide resin composition according to [1] or [2], wherein the semi-aromatic polyamide (B') has 60 to 100 mol% of the structural units derived from isophthalic acid and 0 to 40 mol% of the structural units derived from terephthalic acid, each relative to the total dicarboxylic acid components contained in the semi-aromatic polyamide (B').
- [4] The semi-aromatic polyamide resin composition according to any one of [1] to [3], wherein 80 to 100 mol% of the total diamine components contained in the semi-aromatic polyamide (A') is the structural unit derived from 1,6-hexanediamine.
- [5] The semi-aromatic polyamide resin composition according to any one of [1] to [4], wherein 60 to 100 mol% of the total diamine components contained in the semi-aromatic polyamide (B') is 1,6-hexanediamine.
- [6] The semi-aromatic polyamide resin composition according to any one of [1] to [5], wherein the functional group of the olefin polymer (C) is a functional group selected from the group consisting of a carboxylic acid, an ester, an ether, an aldehyde, and a ketone.
- [7] The semi-aromatic polyamide resin composition according to [6], wherein the olefin polymer (C) includes a structural unit derived from maleic anhydride.
- [8] The semi-aromatic polyamide resin composition according to any one of [1] to [7], further including a conductive material (E).
- [9] The semi-aromatic polyamide resin composition according to [8], wherein the conductive material (E) is at least one member selected from the group consisting of carbon fiber, conductive carbon black, carbon fibril and carbon nanotube.
- [10] A molded product containing the semi-aromatic polyamide resin composition according to any one of [1] to [9].
- [11] A quick connector containing the semi-aromatic polyamide resin composition according to any one of [1] to [9].
- With reference to Examples, the present invention is more specifically described as follows. The scope of the present invention, however, is not limited thereto.
- Polyamides (A-1) to (A-3), (a-1) to (a-2), and (B-1) were prepared as follows.
- An autoclave having an internal capacity of 13.6 L was charged with 1,787 g (10.8 mol) of terephthalic acid, 2,800 g (24.1 mol) of 1,6-hexane diamine, 1,921 g (13.1 mol) of adipic acid, 5.7 g of sodium hypophosphite monohydrate, and 554 g of distilled water, and then the autoclave was purged with nitrogen. Reaction was initiated by starting the agitation at 190°C, and elevating the internal temperature of the autoclave to 250°C over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.01 MPa. The reaction was continued for 1 hour and then the air in the autoclave was discharged to the atmosphere from a spray nozzle disposed at the bottom of the autoclave so as to withdraw a low-condensation product. The low-condensation product was then cooled to room temperature, ground to a particle size of 1.5 mm or less by a crusher, and dried at 110°C for 24 hours. The resultant low-condensation product had a moisture content of 3,600 ppm and an intrinsic viscosity [η] of 0.14 dl/g. Subsequently, the low-condensation product was charged into a shelf-type solid-phase polymerization apparatus, and after purging with nitrogen, the temperature was elevated to 220°C over 1 hour and 30 minutes to start a reaction. The reaction was continued for 1 hour, and then the temperature was cooled to room temperature, thereby obtaining a polyamide. The resultant polyamide had an intrinsic viscosity [η] of 0.48 dl/g. A polyamide resin was then prepared by melt polymerization using a biaxial extruder with a screw diameter of 30 mm and an L/D of 36, at a barrel preset temperature of 330°C, a screw rotation speed of 200 rpm, and a resin feed rate of 6 Kg/h. The thus prepared polyamide resin had an intrinsic viscosity [η] of 0.9 dl/g and a melting point Tm1 of 295°C, with a terminal amine content of 180 µ equivalent.
- A polyamide resin was prepared in substantially the same manner as in A-1 except that the amount of terephthalic acid was changed to 2,184 g and the amount of adipic acid was changed to 1,572 g. The resultant polyamide resin had an intrinsic viscosity [η] of 0.94 dl/g and a melting point Tm1 of 310°C.
- A polyamide resin was prepared in substantially the same manner as in A-1 except that the amount of terephthalic acid was changed to 2,482 g and the amount of adipic acid was changed to 1,310 g. The resultant polyamide resin had an intrinsic viscosity [η] of 0.90 dl/g and a melting point Tm1 of 320°C.
- An autoclave having an internal capacity of 13.6 L was charged with 1,708 g (10.3 mol) of terephthalic acid, 2,800 g (24.1 mol) of 1,6-hexane diamine, 516 g (3.1 mol) of isophthalic acid, 1,537 g (10.5 mol) of adipic acid, 5.7 g of sodium hypophosphite monohydrate, and 535 g of distilled water, and then the autoclave was purged with nitrogen. Reaction was initiated by starting the agitation at 190°C, and elevating the internal temperature of the autoclave to 250°C over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa. The reaction was continued for 1 hour and then the air in the autoclave was discharged to the atmosphere from a spray nozzle disposed at the bottom of the autoclave so as to withdraw a low-condensation product. The low-condensation product was then cooled to room temperature, ground to a particle size of 1.5 mm or less by a crusher, and dried at 110°C for 24 hours. The resultant low-condensation product had a moisture content of 4,000 ppm and an intrinsic viscosity [η] of 0.15 dl/g. Subsequently, the low-condensation product was charged into a shelf-type solid-phase polymerization apparatus, and after purging with nitrogen, the temperature was elevated to 180°C over 1 hour and 30 minutes to start a reaction. The reaction was continued for 1 hour and 30 minutes, and then the temperature was cooled to room temperature, thereby obtaining a polyamide. The resultant polyamide had an intrinsic viscosity [η] of 0.20 dl/g. A polyamide resin was then prepared by melt polymerization using a biaxial extruder with a screw diameter of 30 mm and an L/D of 36, at a barrel preset temperature of 330°C, a screw rotation speed of 200 rpm, and a resin feed rate of 6 Kg/h. The thus prepared polyamide resin had an intrinsic viscosity [η] of 0.91 dl/g and a melting point Tm1 of 279°C, with a terminal amine content of 170 µ equivalent.
- An autoclave having an internal capacity of 13.6 L was charged with 3,971 g (23.9 mol) of terephthalic acid, 3,051 g (19.3 mol) of 1,9-nonanediamine, 763 g (4.8 mol) of 2-methyl-1,8-octanediamine, 36.5 g (0.3 mol) of benzoic acid, 5.7 g of sodium hypophosphite monohydrate, and 780 g of distilled water, and then the autoclave was purged with nitrogen. Reaction was initiated by starting the agitation at 190°C, and elevating the internal temperature of the autoclave to 250°C over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.03 MPa. The reaction was continued for 1 hour and then the air in the autoclave was discharged to the atmosphere from a spray nozzle disposed at the bottom of the autoclave so as to withdraw a low-condensation product. The low-condensation product was then cooled to room temperature, ground to a particle size of 1.5 mm or less by a crusher, and dried at 110°C for 24 hours. The resultant low-condensation product had a moisture content of 4,100 ppm and an intrinsic viscosity [η] of 0.13 dl/g. Subsequently, the low-condensation product was charged into a shelf-type solid-phase polymerization apparatus, and after purging with nitrogen, the temperature was elevated to 180°C over 1 hour and 30 minutes to start a reaction. The reaction was continued for 1 hour and 30 minutes, and then the temperature was cooled to room temperature, thereby obtaining a polyamide. The resultant polyamide had an intrinsic viscosity [η] of 0.17 dl/g. A polyamide resin was then prepared by melt polymerization using a biaxial extruder with a screw diameter of 30 mm and an L/D of 36, at a barrel preset temperature of 340°C, a screw rotation speed of 200 rpm, and a resin feed rate of 5 Kg/h. The thus prepared polyamide resin had an intrinsic viscosity [η] of 1.09 dl/g and a melting point Tm1 of 302°C, with a terminal amine content of 25µ equivalent.
- An autoclave having an internal capacity of 13.6 L was charged with 1,390 g (8.4 mol) of terephthalic acid, 2,800 g (24.1 mol) of 1,6-hexane diamine, 2,581 g (15.5 mol) of isophthalic acid, 109.5 g (0.9 mol) of benzoic acid, 5.7 g of sodium hypophosphite monohydrate, and 545 g of distilled water, and then the autoclave was purged with nitrogen. Reaction was initiated by starting the agitation at 190°C, and elevating the internal temperature of the autoclave to 250°C over 3 hours. At this time, the internal pressure of the autoclave was increased to 3.02 MPa. The reaction was continued for 1 hour and then the air in the autoclave was discharged to the atmosphere from a spray nozzle disposed at the bottom of the autoclave so as to withdraw a low-condensation product. The low-condensation product was then cooled to room temperature, ground to a particle size of 1.5 mm or less by a crusher, and dried at 110°C for 24 hours. The resultant low-condensation product had a moisture content of 3,000 ppm and an intrinsic viscosity [η] of 0.14 dl/g. A polyamide resin was then prepared by melt polymerization using a biaxial extruder with a screw diameter of 30 mm and an L/D of 36, at a barrel preset temperature of 330°C, a screw rotation speed of 200 rpm, and a resin feed rate of 6 Kg/h. The thus prepared polyamide resin had a heat of melting ΔH of 0 J/g. The polyamide resin had an intrinsic viscosity [η] of 0.68 dl/g, and no melting point Tm1 was observed. Further, the terminal amine content was 270 µ equivalent.
- The moisture content of the resultant low-condensation product was obtained by weighing a sample in an amount of about 0.2 g, and using a Karl Fischer moisture meter, heating the sample at 200°C and measuring the amount of generated moisture (solid vaporization method).
- The intrinsic viscosity [η] of the resultant polyamide was measured as follows. 0.5 g of the polyamide was dissolved in 50 ml of 96.5% sulfuric acid solution. The flowing time of the resultant solution at 25°C ± 0.05°C was measured using an Ubbelohde viscometer, and intrinsic viscosity was calculated based on the following equation:
- [η]: intrinsic viscosity (dl/g)
- ηSP: specific viscosity
- C: sample concentration (g/dl)
- t: flowing time of sample solution (second)
- t0: flowing time of blank sulfuric acid (second)
- The melting point Tm1 of the obtained polyamide was measured in accordance with JIS K7121 as follows. Using a DSC7 manufactured by Perkin-Elemer Corp., the polyamide was held at 350°C for 5 minutes and then cooled to 23°C at a rate of 10°C/min. The temperature was then raised at a rate of 10°C/min. The melting point Tm1 was defined as the peak top value of the endothermic peak based on the melting under the above-mentioned conditions. The heat of melting ΔH was obtained from the area of the exothermic peak of the crystallization in accordance with JIS K7122.
- The olefin polymers (C-1) to (C-2) and (c-1) were prepared as follows.
- A glass flask fully purged with nitrogen was charged with 0.63 mg of bis(1,3-dimethyl-cyclopentadienyl)zirconium dichloride, and then with 1.57 ml of a toluene solution of methylaminoxane (Al: 0.13 mmol/liter) and 2.43 ml of toluene to obtain a catalyst solution.
- Next, a stainless steel autoclave having an internal capacity of 2 liters was fully purged with nitrogen and charged with 912 ml of hexane and 320 ml of 1-butene, and the temperature of the autoclave was elevated to 80°C. Subsequently, 0.9 mmol of triisobutylaluminum and 2.0 ml (0.0005 mmol in terms of Zr) of the prepared catalyst solution were injected into the autoclave using ethylene to start the polymerization reaction. Ethylene was continuously supplied to maintain the total pressure at 8.0 kg/cm2-G, and the polymerization was performed at 80°C for 30 minutes.
- After terminating the polymerization reaction by introducing a small amount of ethanol into the system, the unreacted ethylene was purged. A white solid was precipitated by feeding the resultant solution into a large excess amount of methanol. The white solid was collected by filtration and dried overnight under reduced pressure to obtain a white solid (ethylene-1-butene copolymer). The resultant ethylene-1-butene copolymer had a density of 0.865 g/cm3 and an MFR (ASTMD1238 standard, at 190°C, load: 2,160 g) of 0.5 g/10 minute, with a 1-butene structural unit content of 4 mol%.
- The resultant ethylene-1-butene copolymer in an amount of 100 parts by weight was mixed with 0.5 parts by weight of maleic anhydride and 0.04 parts by weight of an peroxide (PERHEXYNE 25B, trademark, manufactured by NOF Corporation). The resultant mixture was subjected to melt graft modification in a monoaxial extruder at a preset temperature of 230°C to obtain a modified ethylene-1-butene copolymer. The amount of the grafted maleic anhydride in the obtained modified ethylene-1-butene copolymer was 0.46wt%. The intrinsic viscosity [η] measured in a decalin solution at 135°C was 1.98 dl/g.
- The olefin polymer (C-2) was prepared in substantially the same manner as in the olefin polymer (C-1) except that the amount of maleic anhydride to be added to the unmodified ethylene-1-butene copolymer for modification in the manufacturing of the olefin polymer (C-1) was changed to 1.0 part by weight. The amount of maleic anhydride graft modification was 0.98wt%. The intrinsic viscosity [η] measured in a decalin solution at 135°C was 1.90 dl/g.
- Except that the amount of maleic anhydride to be added to the unmodified ethylene-1-butene copolymer for modification in the manufacturing of the olefin polymer (C-1) was changed to 2.0 parts by weight, the olefin polymer (c-1) was prepared in substantially the same manner as in the olefin polymer (C-1). The amount of maleic anhydride graft modification was 1.89wt%. The intrinsic viscosity [η] measured in a decalin solution at 135°C was 1.78 dl/g.
- The composition of an olefin polymer, for example, the contents (mol%) of ethylene and an α-olefin having 3 or more carbon atoms and the content (mass%) of a structural unit having a functional group, was measured by 13C-NMR. The measurement conditions were as follows:
- Measurement apparatus: nuclear magnetic resonance apparatus (ECP500, manufactured by JEOL Ltd.)
- Observing nucleus: 13C(125MHz)
- Sequence: single pulse proton decoupling
- Pulse width: 4.7 µ seconds (45° pulse)
- Repetition time: 5.5 seconds
- Cumulative number: 10,000 or more
- Solvent: mixture solvent of ortho-dichlorobenzene/deuterated benzene (volume ratio: 80/20)
- Sample concentration: 55 mg/0.6 mL
- Measurement temperature: 120°C
- Reference value of chemical shift: 27.50 ppm
- The density of an ethylene-1-butene copolymer was measured at 23°C, using a density gradient tube in accordance with JIS K7112.
- The melt flow rate (MFR) of an ethylene-1-butene copolymer was measured at 190°C with a load of 2.16 kg in accordance with ASTM D1238. The unit for MFR is g/10 min.
- The intrinsic viscosity [η] of an olefin polymer was measured in decalin as a solvent at 135°C.
- More specifically, about 20 mg of an acid-denatured polyolefin resin (B) was dissolved in 25 ml of decalin, and the specific viscosity ηsp was then measured in an oil bath at 135°C using an Ubbelohde viscometer. The decalin solution was diluted with 5 ml of decalin, the specific viscosity ηsp was then measured in the same manner as described above. The dilution is further repeated twice, and the "ηsp/C" value is obtained by extrapolating concentration (C) to zero, as the intrinsic viscosity [η] (unit: dl/g). (Refer to the following formula).
- Polyamide (A-1) to (A-3) or polyamide (a-1) to (a-2), polyamide (B-1), olefin polymer (C-1) to (C-2) or an olefin polymer (c-1), glass fiber (FT756D, manufactured by Owens Corning Corp., glass fiber length: 3mm, aspect ratio: 300) and carbon fiber (HT-C413, manufactured by Toho Tenax Co., Ltd., carbon fiber length: 6mm, aspect ratio: 1,000) were mixed together at the composition ratio shown in Table 1 with a tumbler blender. The resultant mixture of raw materials was then melt kneaded in a biaxial extruder (TEX30α, manufactured by Japan Steel Works Ltd.) at a cylinder temperature of (Tm1+15)°C, then extruded into a strand, and cooled in a water bath. Then, the strand was fed into a pelletizer to cut and obtain pellets of the resin composition.
- With respect to each of the obtained resin compositions, a sample piece was prepared under the below-mentioned conditions and subjected to the below-mentioned tests. The test results are summarized in Table 1.
- The melting point Tm2 of the obtained polyamide was measured as follows. Using a DSC7 manufactured by Perkin-Elemer Corp., the temperature of the resin composition was raised at a rate of 10°C/min. The melting point Tm2 was defined as the peak top value of the endothermic peak based on the melting under the above-mentioned conditions.
- A sample piece with a notch having a thickness of 3.2 mm was prepared using the below-mentioned injection molding machine under the below-mentioned molding conditions. The IZOD impact strength of the sample piece was measured at 23 °C and under a relative humidity of 50% in accordance with ASTM D256.
- Molding machine: SE50DU manufactured by Sumitomo Heavy Industries Co., Ltd.
- Molding machine cylinder temperature: (Tm2+15)°C
- Mold temperature: 120°C
- A sample piece having a length of 64 mm, a width of 6 mm, and a thickness of 0.8 mm was prepared using the below-mentioned injection molding machine under the below-mentioned molding conditions and was allowed to stand in a nitrogen atmosphere at 23°C for 24 hours. The sample piece was subjected to a bending test at 23°C and in a relative humidity of 50%, using a bending tester AB5 manufactured by NTESCO, with a span of 26 mm, a bending speed of 5 mm/min to measure the flexural strength and the modulus of elasticity.
- Molding machine: TUPARL TR40S3A manufactured by Sodick Plastic Co., Ltd.
- Molding machine cylinder temperature: (Tm2+15)°C
- Mold temperature: 120°C
- A 100-mm square sample piece with a thickness of 2 mm was prepared using the below-mentioned injection molding machine under the below-mentioned molding conditions, and a disc-shaped sample having a diameter of 45 mm was cut out from the square sample piece. An opening of a SUS container (Area of the opening section: 77.07×10-4 m2) having a volume of 20 mL and containing 10 mL of a simulation fuel CE10 (toluene/isooctane/ethanol=45/45/10 vol%) was sealed by setting the disc-shaped sample in the opening, thereby obtaining a test specimen. The test specimen was placed in a thermostat apparatus (60°C), and the change in the weight of the specimen was measured for evaluating the fuel permeability.
- Molding machine: EC75N-2A, manufactured by Toshiba Machine Co., Ltd.
- Molding machine cylinder temperature: (Tm2+15)°C
- Mold temperature: 120°C
- A 100-mm square sample piece with a thickness of 2 mm obtained by molding in the above-mentioned manner was allowed to stand for 24 hours in an atmosphere where the temperature is 23°C and relative humidity is 50%. Using a DC voltage and current source/monitor 6241A with an ASP probe (4-probe), manufactured by ADC Corp., the surface resistivity at one point in the central portion of the sample piece was then measured in accordance with JIS K7194.
- The flow length (mm) of a resin in the mold was measured using a bar-flow mold with a width of 10 mm and a thickness of 0.5 mm and by injecting under the below-mentioned conditions. The longer the flow length, better is the flowability.
- Molding machine: EC75N-2A, manufactured by Toshiba Machine Co., Ltd.
- Preset pressure for injection: 2,000 kg/cm2
- Molding machine cylinder temperature: (Tm2+15)°C
- Mold temperature: 120°C
- A sample piece with a length of 64 mm, a width of 6 mm, and a thickness of 0.8 mm was prepared by injection molding using the below-mentioned injection molding machine under the below-mentioned molding conditions. During the molding, the shortest cooling time necessary for easily taking out the molded product without causing deformation of the molded product by a discharge pin, and without suffering from adhesion to the mold on the stationary side or the movable side, was determined for measuring the shortest molding cycle (time required for obtaining one molded product). The releasability was evaluated as rank A for a molding cycle of less than 16 seconds, rank B for a molding cycle of 16 seconds or more and less than 20 seconds, and rank C for a molding cycle of 20 seconds or more.
- Molding machine: TUPARL TR40S3A manufactured by Sodick Plastic Co., Ltd.
- Molding machine cylinder temperature: (Tm2+15)°C
- Mold temperature: 120°C
- Each of the resin composition of Examples 1 to 8 has a higher melting point and is excellent in all of IZOD impact strength, flexural modulus, flexural strength, fuel permeability, injection flowability, and mold releasing properties. Moreover, the resin composition of Example 5 has a sufficiently low resistance by virtue of the conductive material.
- The resin composition of Comparative Example 1 has poor fuel permeability due to the absence of semi-aromatic polyamide (B). The resin composition of Comparative Example 2 has poor injection flowability and mold releasability due to the excessively large content of the semi-aromatic polyamide (B). The resin composition of Comparative Example 3 has a low melting point, and poor injection flowability and mold releasability due to the absence of semi-aromatic polyamide (A) and semi-aromatic polyamide (B). The resin composition of Comparative Example 4 has small IZOD impact strength due to the absence of olefin polymer (C). The resin composition of Comparative Example 5 has poor injection flowability due to the olefin polymer (C) having a large content of the structural unit with a functional group.
- The semi-aromatic polyamide resin composition of the present invention is excellent in impact resistance, fuel barrier properties, and moldability, and is particularly advantageous for molding a quick connector and the like.
Example | Comparative Example | Reference Example | |||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 4 | 5 | 9T | ||
Semi-aromatic polyamide (A) | A-1 mass% | 49.5 | 44 | 38.5 | - | 44 | - | 44 | 52 | 55 | 22 | - | 56 | 44 | - |
A-2 mass% | - | - | - | 44 | - | - | - | - | - | - | - | - | - | - | |
A-3 mass% | - | - | - | - | - | 44 | - | - | - | - | - | - | - | - | |
Semi-aromatic polyamide | a-1 mass% | - | - | - | - | - | - | - | - | - | - | 55 | - | - | - |
a-2 mass% | - | - | - | - | - | - | - | - | - | - | - | - | - | 65 | |
Semi-aromatic polyamide (B) | B-1 mass% | 5.5 | 11 | 16.5 | 11 | 11 | 11 | 11 | 13 | - | 33 | - | 14 | 11 | - |
[B]/([A]+[B]) | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | - | 0.6 | - | 0.2 | 0.2 | - | |
Denatured olefin polymer (C) | C-1 mass% | 15 | 15 | 15 | 15 | 15 | 15 | - | 5 | 15 | 15 | 15 | - | - | 5 |
C-2 mass% | - | - | - | - | - | - | 15 | - | - | - | - | - | - | - | |
Denatured olefin | c-1 mass% | - | - | - | - | - | - | - | - | - | - | - | - | 15 | - |
[C]/([A]+[B]) | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.08 | - | 0.27 | - | 0.00 | 0.27 | - | |
Filler (D) mass% | 30 | 30 | 30 | 30 | 15 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | |
Conductive material (E) mass% | - | - | - | - | 15 | - | - | - | - | - | - | - | - | - | |
Melting point °c | 294 | 293 | 293 | 307 | 292 | 320 | 293 | 293 | 295 | 289 | 278 | 293 | 292 | 302 | |
IZOD impact strength 23°c J/m | 247 | 253 | 248 | 230 | 273 | 229 | 285 | 140 | 237 | 230 | 265 | 125 | 285 | 132 | |
Flexural modulus/MPa | 6020 | 5880 | 6010 | 6430 | 9670 | 6030 | 5750 | 6950 | 6050 | 6290 | 5770 | 8210 | 5540 | 6830 | |
Flexural strength/MPa | 194 | 187 | 193 | 180 | 237 | 185 | 185 | 240 | 190 | 182 | 189 | 252 | 179 | 239 | |
Fuel Permeability mg/day | 1.58 | 1.28 | 1.20 | 1.09 | 1.35 | 1.01 | 1.25 | 1.05 | 2.29 | 0.90 | 1.24 | 1.01 | 1.24 | 1.89 | |
Surface resistance Ω/cm2 | >107 | >107 | >107 | >107 | 105 | >107 | >107 | >107 | >107 | >107 | >107 | >107 | >107 | >107 | |
Injection flowability mm | 25 | 21 | 18 | 19 | 21 | 28 | 16 | 22 | 35 | 12 | 14 | 39 | 6 | 10 | |
Releasability (moldability) | A | A | A | A | A | A | B | A | A | C | C | A | B | B |
Claims (15)
- A semi-aromatic polyamide resin composition comprising:20 to 60 parts by mass of a semi-aromatic polyamide (A) having a melting point (Tm) of 290°C or higher and 340°C or lower, measured with a differential scanning calorimeter (DSC);5 to 30 parts by mass of a semi-aromatic polyamide (B) having a heat of melting (ΔH) of 0 J/g or more and 5 J/g or less in a temperature rising process (temperature rising rate: 10°C/min) of the differential scanning calorimeter (DSC);1 to 30 parts by mass of an olefin polymer (C) comprising 0.1 to 1.5 parts by mass of a structural unit having a hetero atom-containing functional group; and0 to 60 parts by mass of a fibrous filler (D);wherein total of (A), (B), (C) and (D) is 100 parts by mass.
- The semi-aromatic polyamide resin composition according to claim 1, wherein the semi-aromatic polyamide (A) comprises as dicarboxylic acid components, a structural unit derived from terephthalic acid and a structural unit derived from adipic acid, and as a diamine component, a structural unit derived from a straight chain aliphatic group having 4 to 10 carbon atoms.
- The semi-aromatic polyamide resin composition according to claim 2, wherein a molar ratio of the structural unit derived from terephthalic acid to the structural unit derived from adipic acid contained in the semi-aromatic polyamide (A) is 40/ 60 to 80/20.
- The semi-aromatic polyamide resin composition according to claim 1, wherein the semi-aromatic polyamide (B) comprises as a dicarboxylic acid component, a structural unit derived from isophthalic acid, and as a diamine component, a structural unit derived from an aliphatic group having 4 to 15 carbon atoms.
- The semi-aromatic polyamide resin composition according to claim 4, wherein the semi-aromatic polyamide (B) may further comprise a structural unit derived from terephthalic acid, and a molar ratio of the structural unit derived from isophthalic acid to the structural unit derived from terephthalic acid is 60/ 40 to 100/0.
- The semi-aromatic polyamide resin composition according to claim 1, wherein the semi-aromatic polyamide (A) and the semi-aromatic polyamide (B) fulfills the relationship (B)/((A)+(B)) of 0.05 to 0.5, the (A) being the mass of the semi-aromatic polyamide (A), and the (B) being the mass of the semi-aromatic polyamide (B).
- The semi-aromatic polyamide resin composition according to claim 1, wherein 80 to 100 mol% of the total diamine components contained in the semi-aromatic polyamide (A) is a structural unit derived from 1,6-hexanediamine.
- The semi-aromatic polyamide resin composition according to claim 1, wherein 40 to 100 mol% of the total diamine components contained in the semi-aromatic polyamide (B) is a structural unit derived from 1,6-hexanediamine.
- The semi-aromatic polyamide resin composition according to claim 1, wherein the olefin polymer (C) comprises a skeleton derived from a polyolefin, and the skeleton is a copolymer of ethylene and an olefin having 3 or more carbon atoms.
- The semi-aromatic polyamide resin composition according to claim 1, wherein:the structural unit having a hetero atom-containing functional group of the olefin polymer (C) comprises a functional group selected from the group consisting of a carboxylic acid group, an ester group, an ether group, an aldehyde group, and a ketone group.
- The semi-aromatic polyamide resin composition according to claim 1, wherein the structural unit having a hetero atom-containing functional group of the olefin polymer (C) is a structural unit modified by maleic anhydride.
- The semi-aromatic polyamide resin composition according to claim 1, further comprising a conductive material (E).
- The semi-aromatic polyamide resin composition according to claim 12, wherein the conductive material (E) is at least one member selected from the group consisting of carbon fiber, conductive carbon black, carbon fibril and carbon nanotube.
- A molded product comprising the semi-aromatic polyamide resin composition according to claim 1.
- The molded product according to claim 14, for use as a quick connector.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013155562 | 2013-07-26 | ||
PCT/JP2014/003943 WO2015011935A1 (en) | 2013-07-26 | 2014-07-25 | Semi-aromatic polyamide resin composition and molded article containing same |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3026084A1 true EP3026084A1 (en) | 2016-06-01 |
EP3026084A4 EP3026084A4 (en) | 2017-03-29 |
EP3026084B1 EP3026084B1 (en) | 2020-02-19 |
Family
ID=52392998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14828822.8A Active EP3026084B1 (en) | 2013-07-26 | 2014-07-25 | Semi-aromatic polyamide resin composition and molded article containing same |
Country Status (6)
Country | Link |
---|---|
US (1) | US9732223B2 (en) |
EP (1) | EP3026084B1 (en) |
JP (1) | JP6346181B2 (en) |
KR (1) | KR20160018696A (en) |
CN (1) | CN105377990A (en) |
WO (1) | WO2015011935A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018011131A1 (en) | 2016-07-13 | 2018-01-18 | Ems-Patent Ag | Conductive thermoplastic polyamide moulding compound |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011135018A1 (en) * | 2010-04-29 | 2011-11-03 | Dsm Ip Assets B.V. | Semi-aromatic polyamide |
US10253182B2 (en) | 2013-12-20 | 2019-04-09 | Mitsui Chemicals, Inc. | Semi-aromatic polyamide resin composition and molded article of same |
KR20220065894A (en) | 2014-07-28 | 2022-05-20 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Systems and methods for intraoperative segmentation |
JP6502755B2 (en) * | 2015-06-11 | 2019-04-17 | 三井化学株式会社 | Resin composition for engine support member and engine support member |
JP6725265B2 (en) * | 2016-03-03 | 2020-07-15 | ダイセルポリマー株式会社 | Polyamide resin composition |
CA3075401A1 (en) | 2017-09-28 | 2019-04-04 | Dupont Polymers, Inc. | Polymerization process |
CN109776349B (en) | 2017-11-15 | 2022-02-22 | 财团法人工业技术研究院 | Diamine compound, diamine diacid salt, and method for forming copolymer |
US11248582B2 (en) * | 2017-11-21 | 2022-02-15 | General Electric Company | Multiple material combinations for printed reinforcement structures of rotor blades |
CN112888339B (en) * | 2018-10-22 | 2024-05-28 | 可乐丽粘贴扣带株式会社 | Male molded fastening tape having excellent heat resistance, method for producing same, and method for fixing interior material for automobile using same |
MX2021006663A (en) | 2018-12-06 | 2021-07-07 | Basf Se | Polyamide composition. |
JP7554485B2 (en) * | 2019-04-26 | 2024-09-20 | ユニチカ株式会社 | Polyamide resin composition and molded article obtained by molding the same |
CN112592582B (en) * | 2019-10-01 | 2024-01-02 | 尤尼吉可株式会社 | Polyamide resin composition, molded article comprising same, and in-vehicle camera component |
US20220411581A1 (en) * | 2019-11-29 | 2022-12-29 | Toyobo Co., Ltd. | Semi-aromatic polyamide resin composition and metal-plated molded body |
WO2021200007A1 (en) * | 2020-03-31 | 2021-10-07 | 三井化学株式会社 | Semi-aromatic polyamide resin composition and molded articles therefrom |
CN111440437A (en) * | 2020-04-29 | 2020-07-24 | 泉州永聚兴塑胶原料有限公司 | Acid-alkali-resistant high-flame-retardant polyamide composite material and preparation method thereof |
WO2022180051A1 (en) * | 2021-02-23 | 2022-09-01 | Solvay Specialty Polymers Usa, Llc | Polyamide compositions with functionalized polyolefin and mobile electronic device components containing them |
JP2023005732A (en) * | 2021-06-29 | 2023-01-18 | 旭化成株式会社 | Resin composition and molded article |
CN115894900A (en) * | 2021-08-05 | 2023-04-04 | 上海凯赛生物技术股份有限公司 | Polyamide copolymer PA6IT and preparation method thereof |
WO2024048508A1 (en) * | 2022-09-02 | 2024-03-07 | 三井化学株式会社 | Polyamide resin composition, metal/resin joined body and method for producing same, bus bar unit, drive unit, and mobile object |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090098325A1 (en) * | 2005-03-18 | 2009-04-16 | Kuraray Co. Ltd. | Semi-aromatic polyamide resin |
JP2013067705A (en) * | 2011-09-21 | 2013-04-18 | Unitika Ltd | Polyamide resin composition and molded product molded using the same |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3187161B2 (en) * | 1992-10-05 | 2001-07-11 | 三井化学株式会社 | connector |
US5405904A (en) * | 1992-10-05 | 1995-04-11 | Mitsui Petrochemical Industries, Ltd. | Connectors |
US5591382A (en) | 1993-03-31 | 1997-01-07 | Hyperion Catalysis International Inc. | High strength conductive polymers |
JPH0790178A (en) * | 1993-09-21 | 1995-04-04 | Mitsubishi Chem Corp | Polyamide resin composition |
JPH11222553A (en) * | 1998-02-06 | 1999-08-17 | Ube Ind Ltd | Aromatic polyamide resin composition |
US20030134980A1 (en) | 1998-10-23 | 2003-07-17 | Ryuichi Hayashi | Polyamide composition for molding |
JP2000129122A (en) * | 1998-10-23 | 2000-05-09 | Yazaki Corp | Polyamide composition for molding |
WO2001081473A1 (en) | 2000-04-26 | 2001-11-01 | Asahi Kasei Kabushiki Kaisha | Conductive resin composition and process for producing the same |
DE50113321D1 (en) * | 2001-03-15 | 2008-01-10 | Ems Chemie Ag | Filled, thermoplastic polyamide molding compounds with improved properties |
JPWO2003085029A1 (en) | 2002-04-05 | 2005-08-11 | 三井化学株式会社 | Resin composition for light-emitting diode reflector |
JP3761561B1 (en) | 2004-03-31 | 2006-03-29 | 株式会社物産ナノテク研究所 | Fine carbon fiber with various structures |
JP4725118B2 (en) | 2005-02-02 | 2011-07-13 | 三菱化学株式会社 | Conductive polyamide resin composition |
DE602006008866D1 (en) * | 2005-08-08 | 2009-10-15 | Mitsubishi Gas Chemical Co | Fuel-impermeable thermoplastic resin compositions and articles |
JP4983135B2 (en) * | 2005-08-08 | 2012-07-25 | 三菱瓦斯化学株式会社 | Thermoplastic resin composition molded article with excellent barrier properties |
JP5270106B2 (en) * | 2006-12-26 | 2013-08-21 | 株式会社クラレ | Polyamide resin composition and molded article comprising the same |
EP2325260B1 (en) * | 2009-11-23 | 2016-04-27 | Ems-Patent Ag | Semi-aromatic moulding masses and their applications |
CN103328574B (en) | 2011-01-17 | 2015-11-25 | 可乐丽股份有限公司 | Resin combination and comprise its products formed |
-
2014
- 2014-07-25 WO PCT/JP2014/003943 patent/WO2015011935A1/en active Application Filing
- 2014-07-25 JP JP2015528159A patent/JP6346181B2/en active Active
- 2014-07-25 US US14/906,990 patent/US9732223B2/en active Active
- 2014-07-25 CN CN201480038529.0A patent/CN105377990A/en active Pending
- 2014-07-25 EP EP14828822.8A patent/EP3026084B1/en active Active
- 2014-07-25 KR KR1020167000335A patent/KR20160018696A/en active Search and Examination
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090098325A1 (en) * | 2005-03-18 | 2009-04-16 | Kuraray Co. Ltd. | Semi-aromatic polyamide resin |
JP2013067705A (en) * | 2011-09-21 | 2013-04-18 | Unitika Ltd | Polyamide resin composition and molded product molded using the same |
Non-Patent Citations (1)
Title |
---|
See also references of WO2015011935A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018011131A1 (en) | 2016-07-13 | 2018-01-18 | Ems-Patent Ag | Conductive thermoplastic polyamide moulding compound |
US11041047B2 (en) | 2016-07-13 | 2021-06-22 | Ems-Patent Ag | Conductive thermoplastic polyamide molding compound |
Also Published As
Publication number | Publication date |
---|---|
JP6346181B2 (en) | 2018-06-20 |
US20160168381A1 (en) | 2016-06-16 |
US9732223B2 (en) | 2017-08-15 |
JPWO2015011935A1 (en) | 2017-03-02 |
EP3026084B1 (en) | 2020-02-19 |
EP3026084A4 (en) | 2017-03-29 |
WO2015011935A1 (en) | 2015-01-29 |
KR20160018696A (en) | 2016-02-17 |
CN105377990A (en) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3026084B1 (en) | Semi-aromatic polyamide resin composition and molded article containing same | |
EP3085738B1 (en) | Semi-aromatic polyamide resin composition and molded article of same | |
KR102221899B1 (en) | Polyamide composition and molded article | |
JP2016138163A (en) | Semi-aromatic polyamide resin, and molded article including the same | |
KR101500824B1 (en) | Polyamide and polyamide composition | |
WO2019035484A1 (en) | Semi-aromatic polyamide resin composition and molded body thereof | |
JP5760405B2 (en) | Polyamide resin composition and molded article comprising the same | |
JP3467518B2 (en) | Conductive resin composition and molded article for automotive parts | |
US20120184664A1 (en) | Hydrolysis-resistant polyamides | |
JP2016169290A (en) | Polyamide resin composition for aiming nut of vehicle lighting fixture, and aiming nut containing the same | |
JP5965230B2 (en) | Polyamide resin composition and molded product | |
JP5572923B2 (en) | Cable housing | |
JP7370455B2 (en) | Semi-aromatic polyamide resin composition and molded product thereof | |
WO2024166844A1 (en) | Polyamide resin composition for insert molding, metal resin composite body and method for producing same | |
JPH05170990A (en) | Resin composition | |
KR100622718B1 (en) | The composition of polyamide resin for micrcellular foaming prcess | |
JP2001234064A (en) | Composition comprising thermoplastic resin | |
WO2022149436A1 (en) | Polyamide composition, molded body, and method for suppressing propagation of device vibration or sound | |
JPH11210461A (en) | Automobile radiator tank part made of polyketone resin | |
JP2001234062A (en) | Composition comprising polyamide resin | |
JP2021161125A (en) | Polyamide resin composition, and method for manufacturing pellet and molding | |
JP2024010978A (en) | Polyamide composition and molded body | |
JP2023141970A (en) | Polyamide resin composition, and molded body thereof | |
JP2001234060A (en) | Thermoplastic resin composition | |
JP2021161210A (en) | Pellet and method for manufacturing molding using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160111 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08K 7/02 20060101ALI20170216BHEP Ipc: C08L 77/06 20060101AFI20170216BHEP Ipc: C08L 23/26 20060101ALI20170216BHEP |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170224 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180529 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191010 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014061309 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1234932 Country of ref document: AT Kind code of ref document: T Effective date: 20200315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200519 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200619 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200712 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1234932 Country of ref document: AT Kind code of ref document: T Effective date: 20200219 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014061309 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20201120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200725 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200725 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200725 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 11 |