WO2022149436A1 - Polyamide composition, molded body, and method for suppressing propagation of device vibration or sound - Google Patents

Polyamide composition, molded body, and method for suppressing propagation of device vibration or sound Download PDF

Info

Publication number
WO2022149436A1
WO2022149436A1 PCT/JP2021/046776 JP2021046776W WO2022149436A1 WO 2022149436 A1 WO2022149436 A1 WO 2022149436A1 JP 2021046776 W JP2021046776 W JP 2021046776W WO 2022149436 A1 WO2022149436 A1 WO 2022149436A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
less
polyamide composition
mass
acid
Prior art date
Application number
PCT/JP2021/046776
Other languages
French (fr)
Japanese (ja)
Inventor
真次 家田
純 三上
巌生 加藤
圭 山内
裕輝 池田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2022573974A priority Critical patent/JPWO2022149436A1/ja
Publication of WO2022149436A1 publication Critical patent/WO2022149436A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a method of suppressing vibration or sound propagation of a polyamide composition, a molded body, and an apparatus.
  • resin materials have been developed as lightweight materials to replace metal materials in parts in various fields such as automobile parts.
  • the resin material when a resin material is applied to parts in an engine room such as an oil pan, a cylinder head cover, and a chain case among automobile parts, the resin material has heat resistance, high rigidity, impact resistance, and the like. Excellent vibration properties are required.
  • Patent Document 1 discloses a method for producing a nylon composite having good vibration damping properties by blending an elastomer with a fiber-blended nylon mixed with glass fiber.
  • the vibration suppressing effect is imparted by adding an elastomer to the resin material, but there is a concern that the strength and elastic modulus of the obtained molded body may decrease.
  • the present invention has been made in view of the above circumstances, is excellent in flexural modulus, tensile strength and appearance when formed into a molded body, and generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
  • a polyamide composition having an excellent vibration damping and noise suppressing effect of the device, and a method for suppressing vibration or sound propagation of a molded body obtained by molding the polyamide composition and a device using the molded body.
  • the tan ⁇ peak temperature of the polyamide composition is 90 ° C. or higher, and the temperature is 90 ° C. or higher.
  • the (B) amorphous polyamide is dispersed in the (A) crystalline polyamide to form a domain.
  • (B) A polyamide composition having an average particle size of 10 nm or more and 1.0 ⁇ m or less of the amorphous polyamide forming the domain.
  • (4) The polyamide composition according to any one of (1) to (3) above, wherein the (A) crystalline polyamide is polyamide 66 or polyamide 610 or polyamide 6.
  • the (B) amorphous polyamide contains a dicarboxylic acid unit containing at least 75 mol% of an isophthalic acid unit and a diamine unit containing at least 50 mol% of a diamine unit having 4 or more and 10 or less carbon atoms.
  • the polyamide composition according to. (9) The polyamide composition according to any one of (1) to (8) above, wherein the melting point Tm2 is 240 ° C. or higher and 260 ° C. or lower. (10) The terminal amount sealed with the sealant per 1 g of at least one polyamide selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide is 30 ⁇ mol equivalent / g or more and 140 ⁇ mol.
  • (11) The polyamide composition according to any one of (1) to (10) above, wherein the polyamide composition has a weight average molecular weight Mw of 15,000 or more and 34,000 or less.
  • (12) The polyamide composition according to any one of (1) to (11) above, wherein the polyamide composition has a molecular weight distribution Mw / Mn of 2.4 or less.
  • the total amount of amino-terminal and carboxy-terminal amounts per 1 g of at least one polyamide selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide is 70 ⁇ mol equivalent / g or more and 145 ⁇ mol.
  • the polyamide composition according to any one of (1) to (12) above which has an equivalent amount / g or less.
  • the bending elastic modulus of a dumbbell having a thickness of 4 mm conforming to ISO178, which is obtained by molding the polyamide composition, at 23 ° C. measured according to ISO178 is 10 GPa or more, and the above (1) to (13). ).
  • the apparatus which comprises using the molded product according to any one of (15) to (20) above, for an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. A method of suppressing vibration or sound propagation.
  • the bending elastic modulus, the tensile strength and the appearance of the molded product are excellent, and the vibration damping of the device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower is achieved. It is possible to provide a polyamide composition having an excellent noise suppression effect.
  • the molded body of the above embodiment is formed by molding the polyamide composition, and is excellent in flexural modulus, tensile strength and appearance, and vibration damping of an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. And excellent noise suppression effect.
  • the method of the above aspect is a method using the molded body, and can attenuate the vibration of a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower, and suppress noise.
  • the present embodiment a mode for carrying out the present invention (hereinafter, abbreviated as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
  • polyamide means a polymer having an amide (-NHCO-) group in the backbone.
  • the polyamide composition of the present embodiment is used for a molded body for suppressing vibration or sound propagation of an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
  • the polyamide composition of the present embodiment contains (A) crystalline polyamide and (B) amorphous polyamide.
  • the content of the (B) amorphous polyamide is 10.0% by mass or more and 50.0% by mass or less with respect to the mass of the total polyamide in the polyamide composition. It is preferably 10.0% by mass or more and 45.0% by mass or less, more preferably 12.5% by mass or more and 45.0% by mass or less, further preferably 15.0% by mass or more and 42.5% by mass or less, and 17.5% by mass. More preferably, it is more preferably mass% or more and 40.0 mass% or less, particularly preferably 20.0 mass% or more and 37.5 mass% or less, and most preferably 22.5 mass% or more and 35.0 mass% or less.
  • the lower limit of the tan ⁇ peak temperature of the polyamide composition of the present embodiment is 90 ° C., preferably 95 ° C., more preferably 100 ° C., and even more preferably 105 ° C.
  • the upper limit of the tan ⁇ peak temperature of the resin composition is preferably 150 ° C., more preferably 140 ° C., and even more preferably 130 ° C.
  • the tan ⁇ peak temperature of the resin composition is 90 ° C. or higher, preferably 95 ° C. or higher and 150 ° C. or lower, more preferably 100 ° C. or higher and 140 ° C. or lower, and even more preferably 105 ° C. or higher and 130 ° C. or lower.
  • the polyamide composition of the present embodiment When the tan ⁇ peak temperature of the polyamide composition of the present embodiment is at least the above lower limit value, the polyamide composition tends to be more excellent in rigidity and strength in a high temperature environment when formed into a molded product. On the other hand, when the tan ⁇ peak temperature of the polyamide composition is not more than the above upper limit value, the molded product obtained from the polyamide composition containing a component typified by a filler tends to have a better surface appearance. be.
  • a method for controlling the tan ⁇ peak temperature of the polyamide composition within the above range for example, a method for controlling the contents of (A) crystalline polyamide and (B) amorphous polyamide within the range described later and the above range, respectively. And so on.
  • the ratio (E2 / E1) of the loss elastic modulus E2 to the storage elastic modulus E1 measured using a viscoelasticity measurement analyzer or the like is tan ⁇ , and the highest temperature is the tan ⁇ peak temperature. More specifically, it can be measured by the method described in Examples described later.
  • the (B) amorphous polyamide is dispersed in the (A) crystalline polyamide to form a domain. That is, it can be said that the amorphous polyamide is finely dispersed in (A) crystalline polyamide and forms a phase-separated structure or a sea-island structure.
  • the amount of the interface forming the domains of (A) crystalline polyamide and (B) amorphous polyamide having different molecular motility is large, and therefore the domain size. Is desirable to be small. Further, in order to exert the vibration damping and noise suppressing effects at low frequencies, the domain size is preferably 10 nm or more.
  • the number average particle size of (A) the amorphous polyamide dispersed in the crystalline polyamide and forming a domain is 10 nm or more and 1.0 ⁇ m or less, preferably 10 nm or more and 500 nm or less. It is more preferably 10 nm or more and 300 nm or less, further preferably 20 nm or more and 100 nm or less, and particularly preferably 30 nm or more and 80 nm or less.
  • the number average particle size (50% cumulative value of the dispersed particle size distribution) of the (B) amorphous polyamide forming the domain can be measured, for example, by using the method described in Examples described later.
  • the polyamide composition of the present embodiment is excellent in flexural modulus, tensile strength and appearance, and vibration damping and vibration damping of an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
  • a molded body having an excellent noise suppression effect can be obtained.
  • the crystalline polyamide is a polyamide having a heat of fusion of crystals of 4 J / g or more when measured at 20 ° C./min by a differential scanning calorimeter.
  • the (A) crystalline polyamide is not specifically limited to the following, but for example, (a) a polyamide obtained by ring-opening polymerization of lactam, (b) a polyamide obtained by self-condensation of ⁇ -aminocarboxylic acid, ( c) Polyamides obtained by condensing diamine and dicarboxylic acid, copolymers thereof and the like can be mentioned. These crystalline polyamides may be used alone or as a mixture of two or more.
  • the lactam of (a) is not limited to the following, and examples thereof include pyrrolidone, caprolactam, undecalactam, and dodecalactam.
  • the ⁇ -aminocarboxylic acid in (b) is not limited to the following, and examples thereof include ⁇ -amino fatty acid, which is a ring-opening compound of lactam with water.
  • lactam or ⁇ -aminocarboxylic acid two or more kinds of monomers may be used in combination and condensed.
  • the diamine (monomer) of (c) is not limited to the following, but for example, ethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, etc.
  • Examples thereof include linear saturated aliphatic diamines having 2 or more and 20 or less carbon atoms such as decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, and tridecamethylenediamine.
  • the diamine constituting the diamine unit having a substituent branched from the main chain is not limited to the following, but is also referred to as, for example, 2-methylpentamethylenediamine (2-methyl-1,5-diaminopentane). ), 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2-methyl-1,8-octanediamine (also referred to as 2-methyloctamethylenediamine), 2,4- Examples thereof include branched chain saturated aliphatic diamines having 3 or more carbon atoms and 20 or less carbon atoms such as dimethyloctamethylenediamine.
  • 2-methylpentamethylenediamine or 2-methyl-1,8-octanediamine is preferable, and 2-methylpentamethylenediamine is more preferable.
  • the polyamide composition tends to be excellent in heat resistance, rigidity and the like.
  • the number of carbon atoms in the diamine unit is preferably 4 or more and 12 or less, and more preferably 4 or more and 10 or less.
  • the number of carbon atoms is at least the above lower limit value, the heat resistance is excellent, while when the number of carbon atoms is at least the above upper limit value, the crystallinity and releasability are excellent.
  • the aliphatic diamine may further contain a trivalent or higher polyvalent aliphatic amine such as bishexamethylenetriamine, if necessary.
  • a trivalent or higher polyvalent aliphatic amine such as bishexamethylenetriamine, if necessary.
  • the diamine only one kind may be used alone, or two or more kinds may be used in combination.
  • the dicarboxylic acid (monomer) of (c) is not limited to the following, but is, for example, an aliphatic dicarboxylic acid such as succinic acid, adipic acid, pimelic acid, sebacic acid, dodecanedioic acid, or tetradecanedioic acid; isophthalic acid.
  • Aromatic dicarboxylic acids such as terephthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodiumsulfoisophthalic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid.
  • the above-mentioned diamine and dicarboxylic acid as monomers may be condensed by one kind alone or two or more kinds in combination, respectively.
  • the crystalline polyamide may further contain a unit derived from a trivalent or higher valent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid, if necessary.
  • a trivalent or higher valent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid, if necessary.
  • the polyvalent carboxylic acid having a trivalent or higher value only one type may be used alone, or two or more types may be used in combination.
  • polyamide 4 poly ⁇ -pyrrolidone
  • polyamide 6 polycaproamide
  • polyamide 11 polyundecaneamide
  • polyamide 12 Polydodecaneamide
  • Polyamide 46 Polytetramethylene adipamide
  • Polyamide 56 Polypentamethylene adipamide
  • Polyamide 66 Polyhexamethylene adipamide
  • Polyamide 610 Polyhexamethylene sebacamide
  • Polyamide 612 polyhexamethylene dodecamide
  • polyamide 4T polytetramethylene terephthalamide
  • polyamide 6T polyhexamethylene terephthalamide
  • polyamide 9T polynonane methylene terephthalamide
  • Polyamide can be mentioned. Among them, polyamide 6, polyamide 46, polyamide 66, or polyamide 610 is preferable, and polyamide 6, polyamide 66, or polyamide 610 is more preferable.
  • Polyamide 66 is considered to be a suitable material for automobile parts because it is excellent in heat resistance, moldability and toughness. Further, a long-chain aliphatic polyamide such as polyamide 610 is preferable because of its excellent chemical resistance.
  • the melting point Tm2 of the crystalline polyamide (A) is preferably 200 ° C. or higher, more preferably 220 ° C. or higher and 295 ° C. or lower, further preferably 230 ° C. or higher and 265 ° C. or lower, particularly preferably 240 ° C. or higher and 260 ° C. or lower, and 250 ° C. or higher. Most preferably, it is 260 ° C. or lower.
  • the melting point Tm2 of the crystalline polyamide (A) is at least the above lower limit value, it tends to be possible to obtain a polyamide composition having better thermal rigidity and the like.
  • the melting point Tm2 of the crystalline polyamide (A) is not more than the above upper limit value, it tends to be possible to further suppress the thermal decomposition of the polyamide composition in the melt processing such as extrusion and molding.
  • the melting point Tm2 is measured using a differential scanning calorimeter (DSC) according to JIS-K7121 as described in the following examples.
  • the content of (A) crystalline polyamide shall be, for example, 50.0% by mass or more and 90.0% by mass or less with respect to the mass of the total polyamide in the polyamide composition. 52.5% by mass or more and 90.0% by mass or less is preferable, 54.0% by mass or more and 90.0% by mass or less is more preferable, and 55.0% by mass or more and 85.0% by mass or less is further preferable. It is more preferably 56.0% by mass or more and 80.0% by mass or less, particularly preferably 57.0% by mass or more and 77.5% by mass or less, and most preferably 57.5% by mass or more and 75.5% by mass or less.
  • Amorphous polyamide refers to a polyamide having a crystallization enthalpy ⁇ H of 15 J / g or less.
  • the crystallization enthalpy of the amorphous polyamide is preferably 10 J / g or less, more preferably 5 J / g or less, and further preferably 0 J / g.
  • the crystallization enthalpy ⁇ H can be measured using, for example, a measuring device such as Diamond-DSC manufactured by PERKIN-ELMER.
  • the amorphous polyamide (B) is not particularly limited as long as the crystallization enthalpy ⁇ H is not more than the above upper limit value, but may be a semi-aromatic polyamide.
  • the amorphous polyamide is a semi-aromatic polyamide, it is preferably a polyamide containing a diamine unit and a dicarboxylic acid unit.
  • the amorphous polyamide contains at least 75 mol% of (BA) dicarboxylic acid units containing at least 75 mol% of isophthalic acid units and at least 50 mol% of diamine units having 4 or more and 10 or less carbon atoms (B) diamine units. It is preferable that the polyamide contains and.
  • the total amount of the isophthalic acid unit and the diamine unit having 4 or more and 10 or less carbon atoms is preferably 75 mol% or more and 100 mol% or less, preferably 90 mol% or less, based on the total amount of all the constituent units of (B) the amorphous polyamide. More than 100 mol% is more preferable, and 100 mol% is further preferable.
  • (B) the ratio of a predetermined monomer unit constituting the amorphous polyamide can be measured by nuclear magnetic resonance spectroscopy (NMR) or the like.
  • the content of the isophthalic acid unit with respect to the total amount of the dicarboxylic acid is preferably 75 mol% or more, more preferably 75 mol% or more and 100 mol% or less, and 90 mol% or more and 100 mol% or less. Is more preferable, and 100 mol% is particularly preferable.
  • a polyamide that simultaneously satisfies mechanical properties, thermal rigidity, fluidity, surface appearance, vibration damping, and noise suppression effect when the content of isophthalic acid unit with respect to the total number of moles of dicarboxylic acid is equal to or higher than the above lower limit.
  • the composition can be obtained.
  • the (BA) dicarboxylic acid unit may contain an aromatic dicarboxylic acid unit, an aliphatic dicarboxylic acid unit, and an alicyclic dicarboxylic acid unit other than the isophthalic acid unit.
  • aromatic dicarboxylic acid unit examples include, but are not limited to, a dicarboxylic acid having a phenyl group and a naphthyl group.
  • the aromatic group of the aromatic dicarboxylic acid may be unsubstituted or have a substituent.
  • the substituent is not particularly limited, and is, for example, an alkyl group having 1 or more and 4 or less carbon atoms, an aryl group having 6 or more and 10 or less carbon atoms, an arylalkyl group having 7 or more and 10 or less carbon atoms, a chloro group, a bromo group and the like.
  • Examples thereof include a halogen group of the above, a silyl group having 1 or more and 6 or less carbon atoms, a sulfonic acid group and a salt thereof (sodium salt, etc.). Specifically, it is not limited to the following, but is not substituted with terephthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodiumsulfoisophthalic acid and the like. Alternatively, an aromatic dicarboxylic acid having 8 or more and 20 or less carbon atoms substituted with a predetermined substituent can be mentioned. Of these, terephthalic acid is preferable. As the aromatic dicarboxylic acid constituting the aromatic dicarboxylic acid unit, only one kind may be used alone, or two or more kinds may be used in combination.
  • the aliphatic dicarboxylic acid constituting the aliphatic dicarboxylic acid unit is not limited to the following, and is, for example, malonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethyl.
  • Glutalic acid 2,2-diethylsuccinic acid, 2,3-diethylglutaric acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, suberic acid, azeline Linear or branched saturated aliphatic dicarboxylic acids having 3 to 20 carbon atoms such as acids, sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, eicosandioic acid, diglycolic acid, etc. Can be mentioned.
  • alicyclic dicarboxylic acid unit The alicyclic dicarboxylic acid constituting the alicyclic dicarboxylic acid unit (hereinafter, also referred to as “alicyclic dicarboxylic acid unit”) is not limited to the following, but for example, the number of carbon atoms in the alicyclic structure is limited. Examples thereof include alicyclic dicarboxylic acids having 3 or more and 10 or less, and alicyclic dicarboxylic acids having an alicyclic structure having 5 or more and 10 or less carbon atoms are preferable.
  • the alicyclic dicarboxylic acid is not limited to the following, and examples thereof include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,3-cyclopentanedicarboxylic acid. Can be mentioned. Of these, 1,4-cyclohexanedicarboxylic acid is preferable.
  • the alicyclic dicarboxylic acid constituting the alicyclic dicarboxylic acid unit only one kind may be used alone, or two or more kinds may be used in combination.
  • the alicyclic group of the alicyclic dicarboxylic acid may be unsubstituted or have a substituent.
  • the substituent is not limited to the following, but for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group and the like having 1 or more carbon atoms 4
  • the following alkyl groups and the like can be mentioned.
  • the dicarboxylic acid unit other than the isophthalic acid unit preferably contains an aromatic dicarboxylic acid unit, and more preferably contains an aromatic dicarboxylic acid having 6 or more and 12 or less carbon atoms.
  • an aromatic dicarboxylic acid unit preferably contains an aromatic dicarboxylic acid having 6 or more and 12 or less carbon atoms.
  • the dicarboxylic acid constituting the (BA) dicarboxylic acid unit is not limited to the compound described as the dicarboxylic acid, but is a compound equivalent to the dicarboxylic acid. May be good.
  • the "compound equivalent to a dicarboxylic acid” refers to a compound having a dicarboxylic acid structure similar to that of the dicarboxylic acid derived from the dicarboxylic acid. Examples of such compounds include, but are not limited to, anhydrides and halides of dicarboxylic acids.
  • the (B) amorphous polyamide may further contain a unit derived from a trivalent or higher valent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid, if necessary.
  • a trivalent or higher valent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid, if necessary.
  • the polyvalent carboxylic acid having a trivalent or higher value only one type may be used alone, or two or more types may be used in combination.
  • the (B) diamine unit constituting the (B) amorphous polyamide preferably contains at least 50 mol% of the diamine unit having 4 or more and 10 or less carbon atoms. Examples thereof include, but are not limited to, an aliphatic diamine unit, an alicyclic diamine unit, and an aromatic diamine unit.
  • the aliphatic diamine constituting the aliphatic diamine unit is not limited to the following, and for example, ethylene diamine, propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, etc.
  • Examples thereof include linear saturated aliphatic diamines having 2 or more and 20 or less carbon atoms such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, and tridecamethylenediamine.
  • alicyclic diamine unit The alicyclic diamine constituting the alicyclic diamine unit (hereinafter, also referred to as “alicyclic diamine”) is not limited to the following, and is, for example, 1,4-cyclohexanediamine, 1,3-. Cyclohexanediamine, 1,3-cyclopentanediamine and the like can be mentioned.
  • aromatic diamine unit The aromatic diamine constituting the aromatic diamine unit is not limited to the following as long as it is a diamine containing an aromatic, and examples thereof include metaxylylenediamine.
  • an aliphatic diamine unit is preferable, a diamine unit having a linear saturated aliphatic group having 4 or more and 10 or less carbon atoms is more preferable, and a diamine unit having a linear saturated aliphatic group having 6 or more and 10 or less carbon atoms is preferable. Further preferred, hexamethylenediamine units are particularly preferred.
  • the polyamide composition tends to be excellent in mechanical properties, particularly water absorption rigidity, thermal rigidity, fluidity, surface appearance, corrosiveness and the like.
  • the diamine only one kind may be used alone, or two or more kinds may be used in combination.
  • polyamide 6I, 6I / 6T, 9I and 10I are preferable, and polyamide 6I is particularly preferable.
  • the amorphous polyamide may further contain a trivalent or higher valent aliphatic amine such as bishexamethylenetriamine, if necessary.
  • the trivalent or higher polyvalent aliphatic amine may be used alone or in combination of two or more.
  • the amorphous polyamide can further contain at least one unit selected from the group consisting of lactam units and aminocarboxylic acid units. By including such a unit, a polyamide having better toughness tends to be obtained.
  • the lactam and the aminocarboxylic acid constituting the lactam unit and the aminocarboxylic acid unit refer to the lactam and the aminocarboxylic acid that can be combined (reduced).
  • lactam and aminocarboxylic acid constituting the lactam unit and the aminocarboxylic acid unit are not limited to the following, but for example, lactam and aminocarboxylic acid having 4 or more and 14 or less carbon atoms are preferable, and 6 or more and 12 carbon atoms are preferable.
  • lactams and aminocarboxylic acids are more preferred.
  • the lactam constituting the lactam unit is not limited to the following, and examples thereof include butyloractam, pivalolactam, ⁇ -caprolactam, caprolactam, enantractam, undecanolactam, laurolactam (dodecanolactam) and the like. Will be. Among them, as the lactam, ⁇ -caprolactam or laurolactam is preferable, and ⁇ -caprolactam is more preferable. The inclusion of such lactam tends to result in a polyamide composition having better toughness.
  • the aminocarboxylic acid constituting the aminocarboxylic acid unit is not limited to the following, and examples thereof include ⁇ -aminocarboxylic acid and ⁇ , ⁇ -amino acids, which are compounds in which lactam is opened.
  • ⁇ -aminocarboxylic acid a linear or branched saturated aliphatic carboxylic acid having 4 to 14 carbon atoms in which the ⁇ position is substituted with an amino group is preferable.
  • Examples of such aminocarboxylic acids include, but are not limited to, 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like.
  • examples of the aminocarboxylic acid include paraaminomethylbenzoic acid and the like.
  • lactam and aminocarboxylic acid constituting the lactam unit and the aminocarboxylic acid unit may be used alone or in combination of two or more.
  • the total ratio (mol%) of the lactam unit and the aminocarboxylic acid unit is preferably 0 mol% or more and 20 mol% or less, more preferably 0 mol% or more and 10 mol% or less, and 0 mol% or more and 5 of the total polyamide. More preferably, it is mol% or less.
  • the total ratio of the lactam unit and the aminocarboxylic acid unit is within the above range, the effect of improving the fluidity or the like tends to be obtained.
  • At least one polyamide selected from the group consisting of (A) crystalline polyamide and (B) amorphous polyamide contained in the polyamide composition of the present embodiment has an end sealed with an end sealant. May be.
  • Such a terminal encapsulant is used when producing a polyamide from the above-mentioned dicarboxylic acid and diamine, and at least one compound selected from the group consisting of lactam and aminocarboxylic acid, which is used as necessary. It can also be added as a molecular weight modifier.
  • terminal encapsulant examples include, but are not limited to, acid anhydrides, monoisocyanates, monoacid halides, monoesters, and monoalcohols.
  • acid anhydride examples include monocarboxylic acid, monoamine, phthalic anhydride and the like. Of these, monocarboxylic acids or monoamines are preferred. Since the ends of the polyamide are sealed with an end sealant, the polyamide composition tends to have better thermal stability. As the end sealant, only one type may be used alone, or two or more types may be used in combination.
  • the monocarboxylic acid that can be used as the terminal encapsulant may be any acid that has reactivity with an amino group that can be present at the terminal of the polyamide.
  • Specific examples of the monocarboxylic acid include, but are not limited to, aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, and aromatic monocarboxylic acids.
  • the aliphatic monocarboxylic acid is not limited to, but is not limited to, for example, formic acid, acetic acid, propionic acid, fatty acid, valeric acid, caproic acid, capric acid, lauric acid, tridecylic acid, myristyl acid, palmitic acid, and the like.
  • Examples thereof include stearic acid, pivalic acid, isobutyl acid and the like.
  • Examples of the alicyclic monocarboxylic acid include, but are not limited to, cyclohexanecarboxylic acid.
  • Examples of the aromatic monocarboxylic acid include, but are not limited to, benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid and the like. These monocarboxylic acids may be used alone or in combination of two or more.
  • the monoamine that can be used as the terminal encapsulant may be any monoamine that has reactivity with a carboxy group that may be present at the terminal of the polyamide.
  • Specific examples of the monoamine include, but are not limited to, aliphatic monoamines, alicyclic monoamines, aromatic monoamines, and the like.
  • the aliphatic amine is not limited to, but is not limited to, for example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine. And so on.
  • alicyclic amine examples include, but are not limited to, cyclohexylamine and dicyclohexylamine.
  • the aromatic amine is not limited to the following, and examples thereof include aniline, toluidine, diphenylamine, and naphthylamine. These monoamines may be used alone or in combination of two or more.
  • Polyamide compositions containing polyamides terminally sealed with an end sealant tend to be excellent in heat resistance, fluidity, toughness, low water absorption, rigidity, corrosion resistance, vibration damping and noise suppression effects. ..
  • the amount of the dicarboxylic acid added and the amount of the diamine added are preferably close to the same molar amount.
  • the molar amount of the entire diamine is preferably 0.9 or more and 1.2 or less with respect to the molar amount of 1 of the total dicarboxylic acid. , 0.95 or more and 1.1 or less are more preferable, and 0.98 or more and 1.05 or less are further preferable.
  • the method for producing a polyamide is not limited to the following, but includes, for example, the following polymerization step (1) or (2).
  • (1) A step of polymerizing a combination of a dicarboxylic acid constituting a dicarboxylic acid unit and a diamine constituting a diamine unit to obtain a polymer.
  • (2) A step of polymerizing one or more selected from the group consisting of lactam constituting a lactam unit and aminocarboxylic acid constituting an aminocarboxylic acid unit to obtain a polymer.
  • a method for producing a polyamide it is preferable to further include an increasing step of increasing the degree of polymerization of the polyamide after the polymerization step. Further, if necessary, after the polymerization step and the ascending step, a sealing step of sealing the ends of the obtained polymer with an end-sealing agent may be included.
  • aqueous solutions or aqueous suspensions selected from the group consisting of a dicarboxylic acid-diamine salt, a mixture of a dicarboxylic acid and a diamine, lactam, and an aminocarboxylic acid are heated and polymerized while maintaining a molten state. (Hereinafter, it may be referred to as "heat melt polymerization method").
  • Hot melt polymerization / solid phase polymerization method A method of increasing the degree of polymerization of a polyamide obtained by a hot melt polymerization method while maintaining a solid state at a temperature below the melting point.
  • a method of polymerizing using a dicarboxylic acid halide component equivalent to a dicarboxylic acid and a diamine component hereinafter, may be referred to as "solution method”).
  • a production method including a hot melt polymerization method is preferable. Further, when producing a polyamide by the hot melt polymerization method, it is preferable to maintain the molten state until the polymerization is completed. In order to maintain the molten state, it is necessary to produce the product under polymerization conditions suitable for polyamide. Examples of the polymerization conditions include the following conditions. First, the polymerization pressure in the hot melt polymerization method is controlled to 14 kg / cm 2 or more and 25 kg / cm 2 or less (gauge pressure), and heating is continued. Next, the pressure is lowered while applying 30 minutes or more until the pressure in the tank reaches atmospheric pressure (gauge pressure is 0 kg / cm 2 ).
  • the polymerization form is not particularly limited, and may be a batch type or a continuous type.
  • the polymerization apparatus used for producing the polyamide is not particularly limited, and a known apparatus can be used. Specific examples of the polymerization apparatus include an autoclave type reactor, a tumbler type reactor, an extruder type reactor (kneader and the like) and the like.
  • a method for producing a polyamide a method for producing a polyamide by a batch-type hot melt polymerization method will be specifically shown, but the method for producing a polyamide is not limited to this.
  • a raw material component of polyamide a combination of a dicarboxylic acid and a diamine, and, if necessary, at least one selected from the group consisting of lactam and aminocarboxylic acid.
  • a aqueous solution is concentrated to about 65% by mass or more and 90% by mass or less in a concentration tank operated at a temperature of 110 ° C. or more and 180 ° C.
  • the pressure is maintained at about 1.2 MPa or more and 2.2 MPa or less (gauge pressure) while removing at least one of the water and gas components. Then, when the temperature reaches about 220 ° C. or higher and 260 ° C. or lower, the pressure is lowered to atmospheric pressure (gauge pressure is 0 MPa).
  • the autoclave is then pressurized with an inert gas such as nitrogen to extrude the polyamide melt from the autoclave as strands.
  • the extruded strands are cooled and cut to obtain polyamide pellets.
  • the polymer terminal of the polyamide ((A) crystalline polyamide and (B) amorphous polyamide) contained in the polyamide composition of the present embodiment is not particularly limited, but is classified into the following 1) to 4) and defined. can do. That is, 1) amino terminal, 2) carboxy terminal, 3) terminal by encapsulant, and 4) other terminal.
  • the amino terminus is a polymer terminus having an amino group (-NH 2 groups) and is derived from a diamine unit.
  • the carboxy terminal is a polymer terminal having a carboxy group (-COOH group) and is derived from a dicarboxylic acid.
  • the end by the encapsulant is the end formed when the encapsulant is added at the time of polymerization.
  • Examples of the encapsulant include end encapsulants described later.
  • the other terminals are polymer ends that are not classified into 1) to 3) described above. Specific examples of the other terminal include a terminal produced by a decarboxylation reaction of an amino terminal, a terminal produced by a decarboxylation reaction from a carboxy terminal, and the like.
  • (A) Weight average molecular weight Mw (A) of crystalline polyamide) (A) A weight average molecular weight can be used as an index of the molecular weight of the crystalline polyamide.
  • the weight average molecular weight (Mw (A)) of the crystalline polyamide is preferably 10,000 or more and 50,000 or less, more preferably 15,000 or more and 45,000 or less, further preferably 20,000 or more and 43,000 or less, and particularly preferably 25,000 or more and 40,000 or less.
  • Mw (A) is in the above range, there is a tendency to obtain a polyamide composition that can simultaneously satisfy mechanical properties, particularly water absorption rigidity, thermal rigidity, fluidity, corrosion resistance and the like.
  • the molded product obtained from the polyamide composition containing a component typified by an inorganic filler has a more excellent surface appearance.
  • Mw (A) The weight average molecular weight (Mw (A)) of the crystalline polyamide can be measured by using GPC.
  • the molecular weight distribution of (A) crystalline polyamide is based on (A) weight average molecular weight of (A) crystalline polyamide (Mw (A)) / (A) number average molecular weight of (A) crystalline polyamide (Mn (A)) as an index.
  • Mw (A) / Mn (A) is preferably 1.0 or more, more preferably 1.8 or more and 2.2 or less, and further preferably 1.9 or more and 2.1 or less.
  • Mw (A) / Mn (A) is in the above range, a polyamide composition having excellent fluidity and the like can be obtained. Further, the molded product obtained from the polyamide composition containing a component typified by an inorganic filler has a more excellent surface appearance.
  • Examples of the method for controlling Mw (A) / Mn (A) within the above range include the methods shown in 1) or 2) below. 1) A method of adding a known polycondensation catalyst such as phosphoric acid or sodium hypophosphite as an additive during thermal melt polymerization of polyamide. 2) In addition to the method of 1) above, a method of controlling polymerization conditions such as heating conditions and depressurizing conditions.
  • a known polycondensation catalyst such as phosphoric acid or sodium hypophosphite
  • Mw (A) / Mn (A) can be calculated using Mw (A) and Mn (A) obtained by using GPC.
  • the sealed terminal amount of (A) crystalline polyamide is preferably 5 ⁇ mol equivalent / g or more and 180 ⁇ mol equivalent / g or less, more preferably 5 ⁇ mol equivalent / g or more and 150 ⁇ mol equivalent / g or less, per 1 g of (A) crystalline polyamide. It is more preferably 10 ⁇ mol equivalent / g or more and 100 ⁇ mol equivalent / g or less, particularly preferably 15 ⁇ mol equivalent / g or more and 80 ⁇ mol equivalent / g or less, and most preferably 20 ⁇ mol equivalent / g or more and 60 ⁇ mol equivalent / g or less.
  • the amount of the sealed end is in the above range, the generation of mold deposit (MD) during molding is suppressed, and the surface appearance, thermal strength, vibration damping and noise suppression effect of the molded product are excellent. It can be a composition.
  • the amount of sealed ends can be measured, for example, by NMR.
  • the lower limit of the melting point Tm2 of the crystalline polyamide (A) is preferably 220 ° C., more preferably 230 ° C., and even more preferably 240 ° C.
  • the upper limit of the melting point Tm2 of the crystalline polyamide (A) is preferably 300 ° C., more preferably 290 ° C., still more preferably 280 ° C., and particularly preferably 270 ° C.
  • the melting point Tm2 of the crystalline polyamide (A) is preferably 220 ° C. or higher and 300 ° C. or lower, more preferably 230 ° C. or higher and 290 ° C.
  • the lower limit of the crystallization enthalpy ⁇ H of the crystalline polyamide is preferably 30 J / g, more preferably 40 J / g, still more preferably 50 J / g, from the viewpoint of mechanical properties, particularly water absorption rigidity and thermal rigidity. , 60 J / g is particularly preferable.
  • the tan ⁇ peak temperature of the crystalline polyamide is preferably 40 ° C. or higher, more preferably 50 ° C. or higher and 110 ° C. or lower, further preferably 60 ° C. or higher and 100 ° C. or lower, particularly preferably 70 ° C. or higher and 95 ° C. or lower, and particularly preferably 80 ° C. Most preferably, it is 90 ° C. or higher and 90 ° C. or lower.
  • the tan ⁇ peak temperature of the crystalline polyamide can be measured by using a viscoelasticity measuring and analyzing device (manufactured by Rheology: DVE-V4) in the same manner as the polyamide composition.
  • (B) Weight average molecular weight Mw (B) of amorphous polyamide) As an index of the molecular weight of (B) amorphous polyamide, (B) weight average molecular weight (Mw (B)) of (B) amorphous polyamide can be used.
  • the weight average molecular weight (Mw (B)) of the amorphous polyamide is preferably 10,000 or more and 50,000 or less, more preferably 10,000 or more and 45,000 or less, further preferably 13,000 or more and 40,000 or less, and further preferably 15,000 or more and 35,000 or less. , 18,000 or more and 30,000 or less are particularly preferable, and 19000 or more and 25,000 or less are most preferable.
  • the weight average molecular weight (Mw (B)) of the (B) amorphous polyamide when the weight average molecular weight (Mw (B)) of the (B) amorphous polyamide is in the above range, the molecular weight can be made smaller than that of the (A) crystalline polyamide, and the molded product is mechanically formed.
  • a polyamide composition excellent in properties, particularly water absorption rigidity, thermal rigidity, fluidity, vibration damping and noise suppression effects can be obtained. Further, the molded product obtained from the polyamide composition containing a component typified by an inorganic filler has a more excellent surface appearance.
  • the weight average molecular weight (Mw (B)) of the amorphous polyamide can be measured by using GPC.
  • Mw (B) / Mn (B) is preferably 1.0 or more and 3.5 or less, more preferably 1.0 or more and 3.0 or less, further preferably 1.7 or more and 2.5 or less, and 1.8 or more and 2 It is more preferably 0.3 or less, particularly preferably 1.9 or more and 2.2 or less, and most preferably 1.9 or more and 2.1 or less.
  • Examples of the method for controlling Mw (B) / Mn (B) within the above range include the methods shown in 1) or 2) below.
  • Mw / Mn molecular weight distribution
  • a high molecular weight distribution indicates a high proportion of polyamide molecules having a three-dimensional structure of the molecule.
  • An excellent polyamide composition can be obtained due to the noise suppression effect.
  • the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler becomes more excellent.
  • the measurement of Mw (B) / Mn (B) can be calculated using Mw (B) and Mn (B) obtained by using GPC.
  • the crystallization enthalpy ⁇ H of the amorphous polyamide is preferably 15 J / g or less, more preferably 10 J / g or less, further preferably 5 J / g or less, and 0 J / g from the viewpoint of vibration attenuation and noise suppression effect. Is particularly preferable.
  • a known method for reducing the crystallinity of the polyamide can be taken and is not particularly limited.
  • the (B) amorphous polyamide may contain 75 mol% or more of the isophthalic acid unit as the (BA) dicarboxylic acid unit in the total dicarboxylic acid units constituting the (B) amorphous polyamide. It is preferable, and it is particularly preferable to contain 100 mol%.
  • the device for measuring the crystallization enthalpy ⁇ H of the amorphous polyamide include Diamond-DSC manufactured by PERKIN-ELMER.
  • the tan ⁇ peak temperature of the amorphous polyamide is preferably 90 ° C. or higher, more preferably 100 ° C. or higher and 160 ° C. or lower, further preferably 110 ° C. or higher and 150 ° C. or lower, particularly preferably 120 ° C. or higher and 145 ° C. or lower, and 130 ° C. or higher. Most preferably, it is °C or more and 140 °C or less.
  • the (B) amorphous polyamide may contain 75 mol% or more of the isophthalic acid unit as the (BA) dicarboxylic acid unit in the total dicarboxylic acid units constituting the (B) amorphous polyamide. It is important and is particularly preferred to contain 100 mol%.
  • the tan ⁇ peak temperature of the amorphous polyamide can be measured by using, for example, a viscoelasticity measuring and analyzing device (manufactured by Rheology: DVE-V4) in the same manner as the polyamide composition.
  • the terminal amount sealed with the sealant of the amorphous polyamide is preferably 5 ⁇ mol equivalent / g or more and 180 ⁇ mol equivalent / g or less, and 10 ⁇ mol equivalent / g or more and 170 ⁇ mol equivalent per 1 g of the (B) amorphous polyamide.
  • / G or less is more preferable, 30 ⁇ mol equivalent / g or more and 160 ⁇ mol equivalent / g or less is further preferable, 50 ⁇ mol equivalent / g or more and 160 ⁇ mol equivalent / g or less is particularly preferable, and 60 ⁇ mol equivalent / g or more and 160 ⁇ mol equivalent / g or less is most preferable.
  • the amount of the sealed end is in the above range, the generation of mold deposit (MD) during molding is suppressed, and the surface appearance, thermal strength, vibration damping and noise suppression effect of the molded product are excellent. It can be a composition. Further, it is particularly preferable that the amount of terminals sealed with acetic acid is in the above range. The amount of sealed ends can be measured by NMR.
  • the amino terminal amount of (B) amorphous polyamide is preferably 5 ⁇ mol equivalent / g or more and 90 ⁇ mol equivalent / g or less, more preferably 10 ⁇ mol equivalent / g or more and 80 ⁇ mol equivalent / g or less, per 1 g of (B) amorphous polyamide. It is more preferably 10 ⁇ mol equivalent / g or more and 70 ⁇ mol equivalent / g or less, particularly preferably 20 ⁇ mol equivalent / g or more and 60 ⁇ mol equivalent / g or less, and most preferably 30 ⁇ mol equivalent / g or more and 50 ⁇ mol equivalent / g or less.
  • the amount of the amino terminal of the (B) amorphous polyamide is in the above range, the compatibility with the (A) crystalline polyamide can be further improved, and the number average particle size of the domain can be further reduced. .. As a result, it is possible to obtain an excellent polyamide composition due to the effects of discoloration, vibration damping and noise suppression on heat and light when the molded product is formed.
  • the amount of amino terminal can be measured by NMR.
  • the carboxy terminal amount of (B) amorphous polyamide is preferably 20 ⁇ mol equivalent / g or more and 150 ⁇ mol equivalent / g or less, more preferably 30 ⁇ mol equivalent / g or more and 120 ⁇ mol equivalent / g or less, per 1 g of (B) amorphous polyamide. It is more preferably 30 ⁇ mol equivalent / g or more and 100 ⁇ mol equivalent / g or less, particularly preferably 40 ⁇ mol equivalent / g or more and 90 ⁇ mol equivalent / g or less, and most preferably 50 ⁇ mol equivalent / g or more and 80 ⁇ mol equivalent / g or less.
  • the amount of the carboxy terminal of the (B) amorphous polyamide is in the above range, the compatibility with the (A) crystalline polyamide can be further improved, and the number average particle size of the domain can be further reduced. .. As a result, a polyamide composition having excellent fluidity, vibration damping and noise suppressing effects when formed into a molded product can be obtained. In addition, the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler becomes more excellent.
  • the amount of carboxy terminal can be measured by NMR.
  • the total amount of (B) amino-terminal amount and carboxy-terminal amount of (B) amorphous polyamide is preferably 50 ⁇ mol equivalent / g or more and 300 ⁇ mol equivalent / g or less, and 60 ⁇ mol equivalent / g or more and 270 ⁇ mol equivalent per 1 g of (B) amorphous polyamide.
  • / G or less is more preferable, 70 ⁇ mol equivalent / g or more and 250 ⁇ mol equivalent / g or less is further preferable, 80 ⁇ mol equivalent / g or more and 200 ⁇ mol equivalent / g or less is particularly preferable, and 90 ⁇ mol equivalent / g or more and 150 ⁇ mol equivalent / g or less is most preferable.
  • the compatibility with the (A) crystalline polyamide can be further improved, and the number average particle diameter of the domain can be improved. Can be made smaller.
  • the polyamide composition of the present embodiment includes (C) an elastomer, (D) an inorganic filler, (E) carbon black, and (F).
  • lubricants include lubricants, (G) phosphorus-based flame retardants, (H) nucleating agents, (I) heat stabilizers, (J) other polymers, and (K) other additives. Ingredients may be further included.
  • the polyamide composition of the present embodiment may contain (C) an elastomer in addition to (A) crystalline polyamide and (B) amorphous polyamide described above.
  • Examples of the elastomer include polymers showing elastic behavior such as hydrogenated styrene-based thermoplastic elastomers, olefin elastomers, urethane elastomers, and polyester elastomers.
  • Examples of the hydrogenated styrene-based thermoplastic elastomer include hydrogenated block copolymers having a styrene block.
  • the hydrogenated block copolymer is not particularly limited, and examples thereof include an unmodified hydrogenated block copolymer, a modified hydrogenated block copolymer, and a mixture thereof.
  • the hydrogenated block copolymer may be used alone or in combination of two or more.
  • Examples of the olefin elastomer include ethylene propylene elastomer.
  • the molded product obtained by molding the polyamide composition of the present embodiment can exhibit vibration damping and noise suppression effects even if it does not contain an elastomer. Further, as the content of the elastomer increases, the strength and elastic modulus of the molded product may decrease. Therefore, the content of the elastomer is preferably 12% by mass or less, preferably 5% by mass or less, based on the total mass of (A) crystalline polyamide and (B) amorphous polyamide in the polyamide composition. More preferably, it is more preferably mass% or less, further preferably 1 mass% or less, particularly preferably 0.1 mass% or less, and most preferably 0 mass%.
  • the inorganic filler (D) is not limited to the following, but is not limited to, for example, glass fiber, carbon fiber, calcium silicate fiber, potassium titanate fiber, aluminum borate fiber, clay, flake-shaped glass, talc, and the like.
  • Kaolin mica, hydrotalcite, calcium carbonate, magnesium carbonate, zinc carbonate, zinc oxide, calcium monohydrogen phosphate, wollastonite, silica, zeolite, alumina, boehmite, aluminum hydroxide, titanium oxide, silicon oxide, magnesium oxide , Calcium silicate, sodium aluminosilicate, magnesium silicate, Ketjen black, acetylene black, furnace black, carbon nanotubes, graphite, brass, copper, silver, aluminum, nickel, iron, calcium fluoride, montmorillonite, swelling fluorine mica , Apatite and the like.
  • One type of these inorganic fillers may be used alone, or two or more types may be used in combination.
  • glass fiber from the group consisting of glass fiber, carbon fiber, wollastonite, kaolin, mica, talc, calcium carbonate, magnesium carbonate, potassium titanate fiber, aluminum borate fiber and clay.
  • one or more selected are preferred.
  • one or more selected from the group consisting of glass fiber, carbon fiber, wollastonite, kaolin, mica, talc, calcium carbonate and clay is more preferable.
  • the number average fiber diameter (d) is preferably 3 ⁇ m or more and 30 ⁇ m or less, more preferably 3 ⁇ m or more and 20 ⁇ m or less, further preferably 3 ⁇ m or more and 12 ⁇ m or less, and particularly preferably 3 ⁇ m or more and 9 ⁇ m or less. It is preferably 4 ⁇ m or more and 6 ⁇ m or less, most preferably.
  • the cross section may be round or flat.
  • a flat cross section include, but are not limited to, a rectangle, an oval shape close to a rectangle, an ellipse shape, and a cocoon shape having a central portion in the longitudinal direction.
  • the "flattening ratio" in the present specification means a value represented by d2 / d1 when the major axis of the fiber cross section is d2 and the minor axis of the fiber cross section is d1 (a perfect circle is flat). The rate will be about 1).
  • the number average fiber diameter (d) is 3 ⁇ m or more and 30 ⁇ m or less, and the weight average fiber length (d) is particularly high from the viewpoint of imparting excellent mechanical strength to the polyamide composition. It is preferable that l) is 100 ⁇ m or more and 750 ⁇ m or less, and the ratio of the weight average fiber length (l) to the number average fiber diameter (d), that is, the aspect ratio (l / d) is 10 or more and 100 or less. be.
  • the "number average fiber diameter (d)" referred to here is an average value of the major axis (d2) of the fiber cross section, and is obtained by using the calculation method described later.
  • the flatness is preferably 1.5 or more, and 1.5 or more is 10.0.
  • the following is more preferable, 2.5 or more and 10.0 or less are further preferable, more than 3.0 and 6.0 or less are particularly preferable, and 3.1 or more and 6.0 or less are most preferable.
  • the flatness is within the above range, crushing can be more effectively prevented during mixing with other components, kneading, molding, etc., so that the desired effect for the molded body can be more sufficiently obtained. become.
  • the thickness of the glass fiber or carbon fiber having a flatness of 1.5 or more is not limited to the following, but the minor axis d1 of the fiber cross section is 0.5 ⁇ m or more and 25 ⁇ m or less and the major axis d2 of the fiber cross section is 1.25 ⁇ m or more. It is preferably 250 ⁇ m or less. It is more preferable that the minor axis d1 of the fiber cross section is 3.0 ⁇ m or more and 25 ⁇ m or less and the major axis d2 of the fiber cross section is 1.25 ⁇ m or more and 250 ⁇ m or less.
  • the difficulty of spinning the fiber can be more effectively avoided, and the strength of the molded body is not reduced without reducing the contact area with the resin (polyamide). Can be further improved.
  • Glass fiber or carbon fiber having a flatness of 1.5 or more is an orifice plate having a large number of orifices on the bottom surface, which surrounds a plurality of orifice outlets and has a convex edge extending downward from the bottom surface, or an orifice plate.
  • the fiber strands may be used as they are as roving, or may be further obtained in a cutting step and used as chopped glass strands.
  • the "number average fiber diameter (d)" and the “weight average fiber length (l)" in the present specification can be obtained by the following methods.
  • the polyamide composition is placed in an electric furnace to incinerate the contained organic matter.
  • 100 or more glass fibers (or carbon fibers) are arbitrarily selected and observed with a scanning electron microscope (SEM), and the fiber diameter (major axis) of these glass fibers (or carbon fibers) is observed.
  • the number average fiber diameter can be obtained.
  • the weight average fiber length can be obtained by measuring the fiber length using SEM photographs of the above 100 or more glass fibers (or carbon fibers) taken at a magnification of 1000 times.
  • the glass fiber or the carbon fiber may be surface-treated with a silane coupling agent or the like.
  • silane coupling agent include, but are not limited to, aminosilanes, mercaptosilanes, epoxysilanes, vinylsilanes and the like.
  • aminosilanes include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane and the like.
  • Examples of the mercaptosilanes include ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane.
  • These silane coupling agents may be used alone or in combination of two or more. Among them, aminosilanes are preferable as the silane coupling agent.
  • the glass fiber or the carbon fiber may further contain a sizing agent.
  • a sizing agent for example, a copolymer or an epoxy compound containing an unsaturated vinyl monomer containing a carboxylic acid anhydride and an unsaturated vinyl monomer excluding the unsaturated vinyl monomer containing a carboxylic acid anhydride as a constituent unit.
  • These sizing agents may be used alone or in combination of two or more.
  • the sizing agent is a single amount of unsaturated vinyl excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer and the carboxylic acid anhydride-containing unsaturated vinyl monomer.
  • One or more selected from the group consisting of a copolymer containing a body as a constituent unit, an epoxy compound, and a polyurethane resin is preferable. Further, it is selected from the group consisting of a copolymer and a polyurethane resin containing an unsaturated vinyl monomer containing a carboxylic acid anhydride and an unsaturated vinyl monomer excluding the unsaturated vinyl monomer containing a carboxylic acid anhydride as a constituent unit. More than one kind is more preferable.
  • the glass fiber or carbon fiber is continuously produced by applying the above-mentioned sizing agent to the fiber and drying the fiber strand produced by using a known method such as a roller type applicator in the known manufacturing process of the fiber. It is obtained by reacting specifically.
  • the fiber strand may be used as it is as a roving, or may be further obtained in a cutting step and used as a chopped glass strand.
  • the sizing agent preferably imparts (adds) about 0.2% by mass or more and 3% by mass or less as a solid content to the total mass of the glass fiber or carbon fiber, and is 0.3% by mass or more and 2% by mass or less. It is more preferable to add (add) the following degree.
  • the sizing of the fibers can be maintained more effectively.
  • the thermal stability of the obtained polyamide composition is further improved.
  • the strands may be dried after the cutting step or after the strands have been dried.
  • inorganic fillers other than glass fiber and carbon fiber from the viewpoint of improving the strength, rigidity and surface appearance of the molded body, wollastonite, kaolin, mica, talc, calcium carbonate, magnesium carbonate, potassium titanate fiber, hoe Aluminum acid acid fiber or clay is preferred. Wollastonite, kaolin, mica, talc, calcium carbonate or clay are more preferred. Wollastonite, kaolin, mica or talc are more preferred. Wollastonite, mica or talc are particularly preferred. These inorganic fillers may be used alone or in combination of two or more.
  • the average particle size of the inorganic filler other than the glass fiber and the carbon fiber is preferably 0.01 ⁇ m or more and 38 ⁇ m or less, more preferably 0.03 ⁇ m or more and 30 ⁇ m or less, and 0 It is more preferably 0.05 ⁇ m or more and 25 ⁇ m or less, further preferably 0.10 ⁇ m or more and 20 ⁇ m or less, and particularly preferably 0.15 ⁇ m or more and 15 ⁇ m or less.
  • a polyamide composition having better toughness and surface appearance of the molded product can be obtained.
  • an excellent polyamide composition can be obtained in terms of cost, handling surface of powder, and physical properties (fluidity, etc.).
  • the number average particle size (hereinafter, may be simply referred to as "average particle size") is used as the average particle size. If the cross section is not a circle, the maximum value of the length is the (number average) fiber diameter.
  • the above-mentioned preferable range of the number average particle diameter and the following number average particle diameter (d) A numerical range calculated from a preferable range of the aspect ratio (l / d) of the number average particle length (l) with respect to is preferable.
  • the aspect ratio (l / d) of the number average particle length (l) to the number average particle diameter (d) improves the surface appearance of the molded product and is used in injection molding machines and the like. From the viewpoint of preventing wear of the metallic parts, 1.5 or more and 10 or less are preferable, 2.0 or more and 5 or less are more preferable, and 2.5 or more and 4 or less are further preferable.
  • the inorganic filler other than the glass fiber and the carbon fiber may be surface-treated with a silane coupling agent, a titanate-based coupling agent, or the like.
  • a silane coupling agent examples include those similar to those exemplified for the above-mentioned glass fibers and carbon fibers. Among them, aminosilanes are preferable as the silane coupling agent.
  • Such a surface treatment agent may be treated in advance on the surface of the inorganic filler, or may be added when the polyamide and the inorganic filler are mixed. The amount of the surface treatment agent added is preferably 0.05% by mass or more and 1.5% by mass or less with respect to the total mass of the inorganic filler.
  • the content of the inorganic filler is preferably 5% by mass or more and 70% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and 20% by mass or more and 65% by mass or less with respect to the total mass of the polyamide composition. More preferably, it is particularly preferably 20% by mass or more and 60% by mass or less, and most preferably 20% by mass or more and 50% by mass or less.
  • (E) Carbon Black is classified into furnace black, channel black, thermal black, etc. according to its manufacturing method, and is classified into acetylene black, ketjen black, oil black, gas black, etc., depending on the difference in raw materials.
  • the polyamide composition of the present embodiment can be used without particular limitation.
  • the average primary particle size of carbon black is preferably close to the number average particle size of the domains of (A) amorphous polyamide dispersed in (A) crystalline polyamide, and specifically, 10 nm or more. It is more preferably 10 nm or more and 100 nm or less, further preferably 15 nm or more and 60 nm or less, further preferably 15 nm or more and 50 nm or less, and even more preferably 15 nm or more and 40 nm or less. It is particularly preferably 15 nm or more and 30 nm or less. When the average primary particle size is within the above range, the weather resistance, vibration damping, and noise suppression effect of the molded product can be further improved.
  • an image in which carbon black particles are dispersed is obtained by the procedure described in the ATM D3849 standard (standard test method for carbon black-morphological characterization by electron microscopy), and 3 as unit constituent particles from this image. It is a value obtained by measuring the diameters of 000 particles and as the average value of these measured values.
  • the specific surface area of carbon black is preferably in the range of 50 m 2 / g or more and 300 m 2 / g or less (BET adsorption method). When the specific surface area is within the above range, the low warpage property, surface appearance, weather resistance, and gloss retention rate of the molded product can be further improved.
  • the specific surface area of carbon black is a value measured from the amount of nitrogen adsorbed according to JIS K6217.
  • the amount of DBP oil absorbed by carbon black (the amount of dibutyl phthalate absorbed by 100 g of carbon black) is preferably 50 mL / 100 g or more and 150 mL / 100 g or less.
  • the DBP oil absorption amount of carbon black is a value measured according to JIS K6221.
  • the content of carbon black is preferably 0.02% by mass or more and 3.0% by mass or less, more preferably 0.02% by mass or more and 1.0% by mass or less, and 0. It is more preferably 02% by mass or more and 0.8% by mass or less, particularly preferably 0.03% by mass or more and 0.1% by mass or less, and most preferably 0.03% by mass or more and 0.06% by mass or less.
  • the content of carbon black is within the above range, the weather resistance, vibration damping, and noise suppression effect can be further improved without impairing the appearance of the molded product.
  • the (F) lubricant is not particularly limited, and examples thereof include higher fatty acids, higher fatty acid metal salts, higher fatty acid esters, higher fatty acid amides, and the like.
  • the lubricant can also be used as a molding improver.
  • Examples of the higher fatty acid include linear or branched linear or branched saturated or unsaturated aliphatic monocarboxylic acids having 8 or more and 40 or less carbon atoms.
  • Examples of the saturated or unsaturated aliphatic monocarboxylic acid having 8 or more carbon atoms and 40 or less carbon atoms include lauric acid, palmitic acid, stearic acid, behenic acid, and montanic acid.
  • Examples of the branched chain saturated aliphatic monocarboxylic acid having 8 or more carbon atoms and 40 or less carbon atoms include isopalmitic acid and isostearic acid.
  • Examples of the linear unsaturated aliphatic monocarboxylic acid having 8 or more carbon atoms and 40 or less carbon atoms include oleic acid and erucic acid.
  • Examples of the branched chain unsaturated aliphatic monocarboxylic acid having 8 or more carbon atoms and 40 or less carbon atoms include isooleic acid and the like. Among them, stearic acid or montanic acid is preferable as the higher fatty acid.
  • the higher fatty acid metal salt is a metal salt of higher fatty acid.
  • the metal element of the metal salt include Group 1 element, Group 2 element and Group 3 element, zinc, aluminum and the like in the Periodic Table of the Elements.
  • Examples of Group 1 elements in the Periodic Table of the Elements include sodium, potassium and the like.
  • Examples of Group 2 elements in the Periodic Table of the Elements include calcium and magnesium.
  • Examples of Group 3 elements in the Periodic Table of the Elements include scandium and yttrium. Among them, Group 1 and Group 2 elements of the Periodic Table of the Elements, or aluminum is preferable, and sodium, potassium, calcium, magnesium, or aluminum is more preferable.
  • the higher fatty acid metal salt examples include calcium stearate, aluminum stearate, zinc stearate, magnesium stearate, calcium montanate, sodium montanate, calcium palmitate and the like.
  • a metal salt of montanic acid or a metal salt of stearic acid is preferable.
  • the higher fatty acid ester is an esterified product of a higher fatty acid and an alcohol.
  • an ester of an aliphatic carboxylic acid having 8 or more and 40 or less carbon atoms and an aliphatic alcohol having 8 or more and 40 carbon atoms or less is preferable.
  • the aliphatic alcohol having 8 or more carbon atoms and 40 or less carbon atoms include stearyl alcohol, behenyl alcohol, and lauryl alcohol.
  • Specific examples of the higher fatty acid ester include stearyl stearate and behenic behenate.
  • the higher fatty acid amide is an amide compound of a higher fatty acid.
  • the higher fatty acid amide include stearate amide, oleic acid amide, erucate amide, ethylene bisstearyl amide, ethylene bisoleyl amide, N-stearyl steayl amide, N-stearyl erucate amide and the like.
  • Each of these higher fatty acids, higher fatty acid metal salts, higher fatty acid esters and higher fatty acid amides may be used alone or in combination of two or more.
  • the phosphorus-based flame retardant is not particularly limited as long as it is a flame retardant that does not contain a halogen element but contains a phosphorus element.
  • Examples of the phosphorus-based flame retardant include a phosphoric acid ester-based flame retardant, a polyphosphate melamine-based flame retardant, a phosphazen-based flame retardant, a phosphinic acid-based flame retardant, and a red phosphorus-based flame retardant.
  • the phosphorus-based flame retardant is preferably a phosphoric acid ester-based flame retardant, a polyphosphate melamine-based flame retardant, a phosphazen-based flame retardant or a phosphinic acid-based flame retardant, and a phosphinic acid-based flame retardant is particularly preferable. ..
  • phosphinic acid-based flame retardant examples include a phosphinate represented by the following general formula (1) (hereinafter, may be abbreviated as “phosphinate (1)”) and the following general formula (2). ) (Hereinafter, may be abbreviated as “diphosphinate (2)”) and at least one phosphinate selected from the group consisting of condensates thereof may be contained.
  • R 11 and R 12 are independently an alkyl group having 1 or more and 6 or less carbon atoms or an aryl group having 6 or more and 10 or less carbon atoms.
  • M n11 + is an n11-valent metal ion.
  • M is an element belonging to Group 2 or Group 15 of the Periodic Table of the Elements, a transition element, zinc or aluminum.
  • n11 is 2 or 3.
  • a plurality of R 11 and R 12 may be the same or different from each other.
  • R 21 and R 22 are independently alkyl groups having 1 or more and 6 or less carbon atoms or aryl groups having 6 or more and 10 or less carbon atoms.
  • Y 21 is an alkylene group having 1 or more and 10 or less carbon atoms or an arylene group having 6 or more and 10 or less carbon atoms.
  • M'm21 + is an m21-valent metal ion.
  • M' is an element belonging to Group 2 or Group 15 of the Periodic Table of the Elements, a transition element, zinc or aluminum.
  • n21 is an integer of 1 or more and 3 or less. When n21 is 2 or 3, a plurality of R 21 , R 22 and Y 21 may be the same or different from each other.
  • m21 is 2 or 3.
  • x is 1 or 2. When x is 2, a plurality of existing M's may be the same or different.
  • R 11 , R 12 , R 21 and R 22 are independently alkyl groups having 1 or more and 6 or less carbon atoms and aryl groups having 6 or more and 10 or less carbon atoms.
  • a plurality of R 11 and R 12 may be the same or different from each other, but they are preferably the same because they are easy to manufacture.
  • n21 is 2 or 3
  • the plurality of R 21 and R 22 may be the same or different, but they are preferably the same because they are easy to manufacture.
  • the alkyl group may be chain-like or cyclic, but is preferably chain-like.
  • the chain alkyl group may be linear or branched.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group and the like.
  • Examples of the branched alkyl group include 1-methylethyl group, 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylethyl group, 1-methylbutyl group, 2-methylbutyl group and 3-methylbutyl group.
  • aryl group examples include a phenyl group and a naphthyl group.
  • Alkyl groups and aryl groups may have substituents.
  • substituents in the alkyl group include an aryl group having 6 or more and 10 or less carbon atoms.
  • substituent in the aryl group include an alkyl group having 1 or more carbon atoms and 6 or less carbon atoms.
  • alkyl group having a substituent examples include a benzyl group and the like.
  • aryl group having a substituent examples include a tolyl group and a xylyl group.
  • R11, R12 , R21 and R22 an alkyl group having 1 or more carbon atoms and 6 or less carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
  • Y 21 is an alkylene group having 1 or more and 10 or less carbon atoms or an arylene group having 6 or more and 10 or less carbon atoms.
  • n21 is 2 or 3
  • the plurality of Y 21s existing may be the same or different, but they are preferably the same because they are easy to manufacture.
  • the alkylene group may be chain-like or cyclic, but is preferably chain-like.
  • the chain alkylene group may be linear or branched.
  • Examples of the linear alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group and the like.
  • Examples of the branched chain alkylene group include a 1-methylethylene group and a 1-methylpropylene group.
  • Examples of the arylene group include a phenylene group and a naphthylene group.
  • the alkylene group and the arylene group may have a substituent.
  • substituent in the alkylene group include an aryl group having 6 or more and 10 or less carbon atoms.
  • substituent in the arylene group include an alkyl group having 1 or more carbon atoms and 6 or less carbon atoms.
  • alkylene group having a substituent examples include a phenylmethylene group, a phenylethylene group, a phenyltrimethylene group, a phenyltetramethylene group and the like.
  • arylene group having a substituent examples include a methylphenylene group, an ethylphenylene group, a tert-butylphenylene group, a methylnaphthylene group, an ethylnaphthylene group, a tert-butylnaphthylene group and the like.
  • Y21 an alkylene group having 1 or more carbon atoms and 10 or less carbon atoms is preferable, and a methylene group or an ethylene group is more preferable.
  • M and M' M n11 + is an n11-valent metal (M) ion
  • M'm21 + is an m21-valent metal (M') ion.
  • M and M' are independently elements belonging to Group 2 or Group 15 of the Periodic Table of the Elements, transition elements, zinc or aluminum. Examples of the element belonging to the second group of the Periodic Table of the Elements include calcium and magnesium. Examples of the element belonging to Group 15 of the Periodic Table of the Elements include bismuth and the like. Further, when x is 2, a plurality of M's existing may be the same or different, but they are preferably the same because they are easy to manufacture. Among them, as M and M', calcium, zinc or aluminum is preferable, and calcium or aluminum is more preferable.
  • (X) x represents the number of M'and is 1 or 2. x can be appropriately selected depending on the type of M'and the number of diphosphinic acids.
  • n11 represents the number of phosphinic acids and the valence of M, and is 2 or 3. n11 can be appropriately selected depending on the type and valence of M. n21 represents the number of diphosphinic acids and is an integer of 1 or more and 3 or less. n21 can be appropriately selected depending on the type and number of M'.
  • (M21) m21 represents the valence of M'and is 2 or 3.
  • the preferred phosphinate (1) for example, calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, magnesium ethylmethylphosphinate, ethylmethylphosphine.
  • Zinc Ethylmethylphosphinate Calcium diethylphosphinate, Magnesium diethylphosphinate, Aluminum diethylphosphinate, Zinc diethylphosphinate, Calcium methyl-n-propylphosphinate, Magnesium methyl-n-propylphosphinate, Methyl-n -Aluminum propylphosphinate, zinc methyl-n-propylphosphinate, calcium methanedi (methylphosphinic acid), magnesium methanedi (methylphosphinic acid), aluminum methanedi (methylphosphinic acid), zinc methanedi (methylphosphinic acid), benzene-1 , 4- (dimethylphosphinic acid) calcium, benzene-1,4- (dimethylphosphinic acid) magnesium, benzene-1,4- (dimethylphosphinic acid) aluminum, benzene-1,4- (dimethylphosphin
  • the preferred diphosphinate (2) include methanedi (methylphosphinic acid) calcium, methanedi (methylphosphinic acid) magnesium, methanedi (methylphosphinic acid) aluminum, methanedi (methylphosphinic acid) zinc, and benzene-1.
  • 4-di (methylphosphinic acid) calcium, benzene-1,4-di (methylphosphinic acid) magnesium, benzene-1,4-di (methylphosphinic acid) aluminum, benzene-1,4-di (methylphosphinic acid) ) Zinc and the like can be mentioned.
  • the method for producing phosphinates is not particularly limited, and examples thereof include a method for producing phosphinic acid in an aqueous solution using phosphinic acid and a metal carbonate, a metal hydroxide, or a metal oxide. These are essentially monomeric compounds, but depending on the reaction conditions, polymer phosphinates, which are condensates having a degree of condensation of 1 or more and 3 or less depending on the environment, are also included.
  • the content of the phosphorus-based flame retardant is preferably 0.1% by mass or more and 30% by mass or less, and 5% by mass or more and 30% by mass, based on the total mass of (A) crystalline polyamide and (B) amorphous polyamide.
  • the following is more preferable, 10% by mass or more and 29% by mass or less is further preferable, and 15% by mass or more and 29% by mass or less is particularly preferable.
  • the nucleating agent means a substance that can obtain at least one of the following effects (1) to (3) by addition.
  • (1) The effect of raising the crystallization peak temperature of the polyamide composition.
  • (2) The effect of reducing the difference between the extrapolation start temperature and the extrapolation end temperature of the crystallization peak.
  • (3) The effect of making the spherulites of the obtained molded product finer or uniform in size.
  • nucleating agent examples include, but are not limited to, talc, boron nitride, mica, kaolin, silicon nitride, potassium titanate, molybdenum disulfide and the like.
  • the nucleating agent only one type may be used alone, or two or more types may be used in combination.
  • talc or boron nitride is preferable as the nucleating agent from the viewpoint of the effect of the nucleating agent.
  • the number average particle size of the nucleating agent is preferably 0.01 ⁇ m or more and 10 ⁇ m or less.
  • the number average particle size of the nucleating agent can be measured by the following method. First, the molded product is dissolved in a solvent in which polyamide such as formic acid is soluble. Then, for example, 100 or more nucleating agents are arbitrarily selected from the obtained insoluble components. Then, it can be obtained by observing with an optical microscope, a scanning electron microscope, or the like and measuring the particle size.
  • the content of the nucleating agent in the polyamide composition of the present embodiment is preferably 0.001% by mass or more and 1% by mass or less, and 0.001% by mass or more and 0.5% by mass, based on the total mass of the polyamide composition. % Or less is more preferable, and 0.001% by mass or more and 0.09% by mass or less is further preferable.
  • the heat stabilizer is not limited to the following, but is not limited to, for example, a phenol-based heat stabilizer, a phosphorus-based heat stabilizer, an amine-based heat stabilizer, and Group 3, Group 4, and Group 11 to 11 of the Periodic Table of the Elements. Examples thereof include metal salts of Group 14 elements, alkali metals and halides of alkaline earth metals.
  • phenolic heat stabilizer examples include, but are not limited to, hindered phenol compounds.
  • the hindered phenol compound has a property of imparting excellent heat resistance and light resistance to resins and fibers such as polyamide.
  • the hindered phenol compound is not limited to the following, and is, for example, N, N'-hexane-1,6-diylbis [3- (3,5-di-tertbutyl-4-hydroxyphenylpropion). Amid), pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N'-hexamethylenebis (3,5-di-tert-butyl-4) -Hydroxy-hydrocinnamamide), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis ⁇ 2- [3- (3- (3- (3-) tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro [5,5] undecane,
  • the hindered phenol compound includes N, N'-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenylpropionamide). )] Is preferable.
  • the content of the phenol-based heat stabilizer in the polyamide composition is preferably 0.01% by mass or more and 1% by mass or less, preferably 0.1% by mass, based on the total mass of the polyamide composition. More preferably, it is by mass% or more and 1% by mass or less.
  • the content of the phenolic heat stabilizer is within the above range, the heat-resistant aging property of the polyamide composition can be further improved, and the amount of gas generated can be further reduced.
  • the phosphorus-based heat stabilizer is not limited to, but is not limited to, for example, pentaerythritol type phosphite compound, trioctylphosphite, trilaurylphosphite, tridecylphosphite, octyldiphenylphosphite, trisisodecyl.
  • Phenyl diisodecyl phosphite Phenyl diisodecyl phosphite, phenyldi (tridecyl) phosphite, diphenylisooctylphosphite, diphenylisodecylphosphite, diphenyl (tridecyl) phosphite, triphenylphosphite, tris (nonylphenyl) phosphite, tris (2) , 4-Di-tert-butylphenyl) phosphite, tris (2,4-di-tert-butyl-5-methylphenyl) phosphite, tris (butoxyethyl) phosphite, 4,4'-butylidene-bis ( 3-Methyl-6-tert-butylphenyl-tetra-tridecyl) diphosphite, te
  • phosphorus-based heat stabilizers may be used alone or in combination of two or more.
  • phosphorus-based heat stabilizers pentaerythritol-type phosphite compounds and tris (2,4-di-tert-butylphenyl) are used from the viewpoint of further improving the heat-resistant aging property of the polyamide composition and reducing the amount of gas generated.
  • One or more selected from the group consisting of phosphite is preferable.
  • the pentaerythritol-type phosphite compound is not limited to the following, and is, for example, 2,6-di-tert-butyl-4-methylphenyl-phenyl-pentaerythritol diphosphite, 2,6-di-.
  • pentaerythritol-type phosphite compounds may be used alone or in combination of two or more.
  • pentaerythritol-type phosphite compound bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite and bis (2) are used from the viewpoint of reducing the amount of gas generated in the polyamide composition.
  • 6-Di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite bis (2,6-di-tert-amyl-4-methylphenyl) pentaerythritol diphosphite, and bis (2,6) -Di-tert-octyl-4-methylphenyl) pentaerythritol diphosphite is preferably one or more selected from the group consisting of bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphos. Fight is more preferred.
  • the content of the phosphorus-based heat stabilizer in the polyamide composition is preferably 0.01% by mass or more and 1% by mass or less, preferably 0.1% by mass, based on the total mass of the polyamide composition. More preferably, it is by mass% or more and 1% by mass or less.
  • the content of the phosphorus-based heat stabilizer is within the above range, the heat-resistant aging property of the polyamide composition can be further improved, and the amount of gas generated can be further reduced.
  • the amine-based heat stabilizer is not limited to the following, and is, for example, 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetra.
  • Methylpiperidine 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6 6-Tetramethylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4- (ethylcarbamoyloxy) -2,2 , 6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, bis
  • the content of the amine-based heat stabilizer in the polyamide composition is preferably 0.01% by mass or more and 1% by mass or less, preferably 0.1% by mass, based on the total mass of the polyamide composition. More preferably, it is by mass% or more and 1% by mass or less.
  • the content of the amine-based heat stabilizer is within the above range, the heat-resistant aging property of the obtained molded product can be further improved, and the amount of gas generated can be further reduced.
  • the metal salts of the elements of Group 3, Group 4 and Groups 11 to 14 of the Periodic Table of the Elements are not limited as long as they are salts of metals belonging to these groups.
  • a copper salt is preferable from the viewpoint of further improving the heat-resistant aging property of the obtained molded product.
  • the copper salt is not limited to the following, and is, for example, copper halide, copper acetate, copper propionate, copper benzoate, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate, stearic acid.
  • Examples of copper and a copper complex salt in which copper is coordinated with a chelating agent can be mentioned.
  • Examples of the copper halide include copper iodide, cuprous bromide, cupric bromide, and cuprous chloride.
  • Examples of the chelating agent include ethylenediamine and ethylenediaminetetraacetic acid. These copper salts may be used alone or in combination of two or more. Among them, the copper salt is preferably at least one selected from the group consisting of copper iodide, cuprous bromide, cupric bromide, cuprous chloride and copper acetate, and is composed of copper iodide and copper acetate. One or more selected from the group is more preferable.
  • the content of the copper salt in the polyamide composition is 0.01 mass by mass with respect to the total mass of the polyamide ((A) crystalline polyamide and (B) amorphous polyamide). % Or more and 0.60% by mass or less are preferable, and 0.02% by mass or more and 0.40% by mass or less are more preferable.
  • the content of the copper salt is within the above range, the heat-resistant aging property of the polyamide composition can be further improved, and copper precipitation and metal corrosion can be more effectively suppressed.
  • the content concentration of the copper element derived from the above copper salt is 106 parts by mass of the polyamide ((A) crystalline polyamide and (B) amorphous polyamide) from the viewpoint of improving the heat aging property of the polyamide composition.
  • (1 million parts by mass) 10 parts by mass or more and 2000 parts by mass or less are preferable, 30 parts by mass or more and 1500 parts by mass or less are more preferable, and 50 parts by mass or more and 500 parts by mass or less are further preferable.
  • halides of the alkali metal and the alkaline earth metal include, but are not limited to, potassium iodide, potassium bromide, potassium chloride, sodium iodide, sodium chloride and the like.
  • the halides of these alkali metals and alkaline earth metals one type may be used alone, or two or more types may be used in combination.
  • the halide of the alkali metal and the alkaline earth metal one or more selected from the group consisting of potassium iodide and potassium bromide is preferable from the viewpoint of improving heat aging property and suppressing metal corrosion, and iodide. Potassium is more preferred.
  • the content of the alkali metal and alkaline earth metal halides in the polyamide composition is determined by the polyamide ((A) crystalline polyamide and (B) amorphous polyamide). ) With respect to 100 parts by mass, 0.05 parts by mass or more and 20 parts by mass or less are preferable, and 0.2 parts by mass or more and 10 parts by mass or less are more preferable.
  • the content of the halide of the alkali metal and the alkaline earth metal is within the above range, the heat-resistant aging property of the obtained molded body is further improved, and the precipitation of copper and the metal corrosion are suppressed more effectively. be able to.
  • the component of the heat stabilizer described above only one kind may be used alone, or two or more kinds may be used in combination.
  • a mixture of a copper salt and a halide of an alkali metal and an alkaline earth metal is preferable from the viewpoint of further improving the heat aging property of the obtained molded product.
  • the content ratio of the copper salt to the halides of the alkali metal and the alkaline earth metal is preferably 2/1 or more and 40/1 or less as the molar ratio of halogen to copper (halogen / copper), 5/1 or more and 30 /. 1 or less is more preferable.
  • the molar ratio of halogen to copper (halogen / copper) is within the above range, the heat-resistant aging property of the obtained molded product can be further improved. Further, when the molar ratio of halogen to copper (halogen / copper) is at least the above lower limit value, precipitation of copper and metal corrosion can be suppressed more effectively.
  • the other polymer is not particularly limited as long as it is other than polyamide, and examples thereof include polyester, liquid crystal polyester, polyphenylene sulfide, polyphenylene ether, polycarbonate, polyarylate, phenol resin, and epoxy resin. ..
  • polyester include, but are not limited to, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene terephthalate, polyethylene naphthalate and the like.
  • the content of the other polymer is preferably 1% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 20% by mass or less, and 5% by mass or more and 15% by mass or less with respect to the total amount of polyamide in the polyamide composition. Is even more preferable.
  • the content of the other polymer is within the above range, a polyamide composition having excellent heat resistance and releasability can be obtained.
  • the polyamide composition of the present embodiment may contain other additives commonly used in the polyamide composition as long as the effects of the polyamide composition of the present embodiment are not impaired.
  • Other additives include, for example, colorants such as pigments and dyes (including colored master batches), flame retardants, fibrillation agents, fluorescent bleaching agents, plasticizing agents, antioxidants, ultraviolet absorbers, antistatic agents, etc. Examples include a fluidity improving agent and a spreading agent.
  • the content of the other additives varies depending on the type, use of the polyamide composition, etc., and therefore the polyamide obtained by the production method of the present embodiment. There is no particular limitation as long as the effect of the composition is not impaired.
  • the method for producing the polyamide composition of the present embodiment is particularly limited as long as it is a production method including a step of melt-kneading the raw material components including (A) crystalline polyamide and (B) amorphous polyamide. is not.
  • a step of melt-kneading the raw material components including (A) crystalline polyamide and (B) amorphous polyamide with an extruder is included, and the set temperature of the extruder is set to the melting peak temperature Tm2 + 30 ° C. of the above-mentioned polyamide composition.
  • the following method is preferable.
  • the raw material component containing polyamide for example, the above-mentioned (A) crystalline polyamide, the above-mentioned (B) amorphous polyamide and other raw materials are mixed by using a tumbler, a Henschel mixer or the like, and melt-kneaded.
  • a method of supplying to a machine and kneading, a method of blending other raw materials from a side feeder into the above (A) crystalline polyamide and the above (B) amorphous polyamide melted by a single-screw or twin-screw extruder, etc. Can be mentioned.
  • all the components may be supplied to the same supply port at once, or the components may be supplied from different supply ports.
  • the melt-kneading temperature is preferably about 250 ° C. or higher and 350 ° C. or lower in terms of resin temperature.
  • the melt-kneading time is preferably about 0.25 minutes or more and 5 minutes or less.
  • the apparatus for performing melt kneading is not particularly limited, and for example, a known melt kneader such as a single-screw or twin-screw extruder, a Banbury mixer, or a mixing roll can be used.
  • the melt kneader it is preferable to use a twin-screw extruder having a screw diameter (D) of 30 mm or more in the same direction. Further, in the twin-screw extruder, the ratio (L / D) of the extruder length (L) to the screw diameter (D) is preferably 35 or more, and more preferably 50 or more.
  • the screw rotation speed (N) is required for efficient kneading so as to have the number average particle size of the domains of (A) amorphous polyamide dispersed in (A) crystalline polyamide. Is preferably 300 rpm or more, and the ratio Q / N of the screw rotation speed (N) and the discharge amount (Q) is preferably 0.5 or more.
  • the inorganic filler is added, in order for the inorganic filler to improve the kneading efficiency, (A) crystalline polyamide and (B) amorphous polyamide are dry-blended and then the upstream side of the twin-screw extruder. It is preferable to supply the material from the supply port and supply the inorganic filler from the first supply port on the downstream side of the twin-screw extruder.
  • the molecular weight, molecular weight distribution, melting point Tm2, terminal amount sealed with a sealant, amino terminal amount and carboxy terminal amount, and bending elastic modulus of the polyamide composition of the present embodiment can have the following configurations, which will be described later. It can be measured by the method described in the Examples.
  • a weight average molecular weight (Mw) can be used as an index of the molecular weight of the polyamide composition.
  • the weight average molecular weight (Mw) of the polyamide composition is preferably 15,000 or more and 50,000 or less, more preferably 15,000 or more and 45,000 or less, further preferably 15,000 or more and 39000 or less, further preferably 15,000 or more and 35,000 or less, and particularly preferably 15,000 or more and 34,000 or less. , 25,000 or more and 32,000 or less are most preferable.
  • the weight average molecular weight (Mw) When the weight average molecular weight (Mw) is in the above range, a polyamide composition excellent in mechanical properties when formed into a molded body, particularly water absorption rigidity, thermal rigidity, fluidity, corrosion resistance and the like can be obtained. Further, the polyamide composition containing a component typified by an inorganic filler has a better surface appearance.
  • Examples of the method for controlling the Mw of the polyamide composition within the above range include the use of (A) crystalline polyamide and (B) amorphous polyamide having a weight average molecular weight in the above range.
  • the measurement of Mw can be measured by using gel permeation chromatography (GPC) as described in the following examples.
  • the molecular weight distribution of the polyamide composition of the present embodiment uses the weight average molecular weight (Mw) / number average molecular weight (Mn) as an index. Measurements of Mw and Mn can be made using gel permeation chromatography (GPC), as described in the Examples below.
  • the lower limit of the weight average molecular weight (Mw) / number average molecular weight (Mn) of the polyamide composition of the present embodiment is preferably 1.0, more preferably 1.2, still more preferably 1.5, and 1.8. Even more preferable, 1.9 is particularly preferable, and 2.0 is most preferable.
  • the upper limit of Mw / Mn of the polyamide composition of the present embodiment is preferably 3.5, more preferably 3.0, still more preferably 2.6, still more preferably 2.4, and 2.2. Particularly preferred, 2.1 is most preferred.
  • the Mw / Mn of the polyamide composition of the present embodiment is preferably 1.0 or more and 3.5 or less, more preferably 1.2 or more and 3.0 or less, still more preferably 1.5 or more and 2.6 or less, and 1.8. More preferably 2.4 or more, more preferably 1.9 or more and 2.2 or less, and most preferably 2.0 or more and 2.1 or less.
  • the proportion of polyamide molecules having a three-dimensional structure of the molecule can be further lowered, and the three-dimensional structure of the molecule can be more preferably prevented during high-temperature processing, and the fluidity can be improved. Can be kept better. This tends to improve the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler.
  • the melting point Tm2 of the polyamide composition is preferably 200 ° C. or higher, more preferably 220 ° C. or higher and 270 ° C. or lower, further preferably 230 ° C. or higher and 265 ° C. or lower, particularly preferably 240 ° C. or higher and 260 ° C. or lower, and 250 ° C. or higher and 260 ° C. or lower. Is the most preferable.
  • the melting point Tm2 of the polyamide composition is at least the above lower limit value, it tends to be possible to obtain a polyamide composition having superior thermal rigidity and the like.
  • the melting point Tm2 of the polyamide composition is not more than the above upper limit value, there is a tendency that thermal decomposition of the polyamide composition in melt processing such as extrusion and molding can be further suppressed.
  • the terminal amount sealed with the encapsulant in the polyamide composition is 0 ⁇ mol equivalent per 1 g of at least one selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide. It can be g or more and 200 ⁇ mol equivalent / g or less, preferably 5 ⁇ mol equivalent / g or more and 180 ⁇ mol equivalent / g or less, 10 ⁇ mol equivalent / g or more and 170 ⁇ mol equivalent / g or less, and 15 ⁇ mol equivalent / g or more and 160 ⁇ mol equivalent / g or less.
  • the amount of the terminal sealed with the sealant is within the above range, the generation of mold deposit (MD) during molding is suppressed, and the surface appearance, thermal rigidity, vibration damping and noise suppression of the molded product are suppressed. A composition having an excellent effect can be obtained.
  • the total amount of amino-terminal amounts and carboxy-terminal amounts in the polyamide composition is 70 ⁇ mol equivalent / g per 1 g of at least one selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide. G or more and 145 ⁇ mol equivalent / g or less are preferable, 80 ⁇ mol equivalent / g or more and 140 ⁇ mol equivalent / g or less are more preferable, 90 ⁇ mol equivalent / g or more and 130 ⁇ mol equivalent / g or less are further preferable, and 100 ⁇ mol equivalent / g or more and 120 ⁇ mol equivalent / g or less are particularly preferable. preferable.
  • the total amount of the amino terminal amount and the carboxy terminal amount in the polyamide composition is in the above range, a polyamide composition having better fluidity and the like can be obtained.
  • the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler becomes more excellent.
  • the ratio of the molar equivalent of the amino terminal to the total molar equivalent of the amino terminal amount and the carboxy terminal amount in the polyamide composition ⁇ amino terminal amount / (amino terminal amount + carboxy terminal amount) ⁇ is 0.25 or more and less than 0.4. It is preferable that it is 0.35 or more and less than 0.4, and more preferably 0.25 or more and less than 0.35.
  • the ratio of the molar equivalent of the amino terminal to the total molar equivalent of the amino-terminal amount and the carboxy-terminal amount is at least the above lower limit value, corrosion of the extruder or the molding machine at the time of molding can be suppressed more effectively.
  • the polyamide composition is excellent in discoloration to heat and light when formed into a molded product. Can be done.
  • the flexural modulus of a dumbbell having a thickness of 4 mm conforming to ISO178, which is formed by molding a polyamide composition, measured according to ISO178 at 23 ° C. is preferably 10 GPa or more, and more preferably 11 GPa or more. , 12 GPa or more is more preferable.
  • the upper limit of the flexural modulus is not particularly limited, but may be, for example, 50 GPa. When the flexural modulus is within the above numerical range, the mechanical properties of the obtained molded product can be improved.
  • the polyamide composition of the present embodiment is suitably used for a molded body for suppressing vibration or sound propagation of an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
  • the molded product of the present embodiment is used to suppress vibration or sound propagation of a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
  • the molded product of the present embodiment is formed by molding the above-mentioned polyamide composition.
  • the method for producing the molded product is not particularly limited, and a known molding method can be used.
  • Known molding methods are not limited to the following, but are not limited to, for example, press molding, injection molding, gas-assisted injection molding, welding molding, extrusion molding, blow molding, film molding, hollow molding, multi-layer molding, and melt spinning. Etc., generally known plastic molding methods can be mentioned.
  • the frequency range of vibration or sound generated by the device is not particularly limited, but is preferably 10 Hz or more and 10000 Hz or less, more preferably 10 Hz or more and 6000 Hz or less, and more preferably 50 Hz or more and 6000 Hz or less. More preferred.
  • the molded product of the present embodiment can particularly effectively suppress vibration or sound in the frequency range within the above range.
  • the molded body of the present embodiment is excellent in the effect of suppressing vibration or sound propagation with respect to a molded body made of a metal such as aluminum or a conventional resin composition, particularly even in a frequency region of 1500 Hz or higher.
  • the vibration suppressing effect exerted by the molded body of the present embodiment is a vibration damping effect. That is, the molded product of the present embodiment can be said to be a vibration damping molded product of an apparatus that generates vibration in a high temperature environment of 80 ° C. or higher and 140 ° C. or lower.
  • vibration suppression here means a method of converting vibration energy into heat energy and attenuating the vibration, and by converting the vibration energy into heat energy in the same frequency region as the vibration source, the resonance point. It is a method of reducing the acceleration in the vibration to attenuate the vibration.
  • the acceleration (m / s 2 ) at the resonance point when the molded body of the present embodiment is used is relative to the acceleration (m / s 2 ) at the resonance point when the molded body of the present embodiment is not used. It is usually reduced to a value of 60% or less, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 15% or less.
  • the sound pressure level (dB) in the frequency range of 1500 Hz or more and 6000 Hz or less when the molded body of the present embodiment is used and the frequency range of 1500 Hz or more and 6000 Hz or less when the molded body of the present embodiment is not used. It can be reduced to a value of usually 60% or less, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 15% or less with respect to the sound pressure level (dB). ..
  • the thickness of the molded product of the present embodiment can be appropriately designed according to the type of the device to be covered, but can be, for example, 1 mm or more and 5 mm or less.
  • the molded body of the present embodiment has good flexural modulus and tensile strength in a high temperature environment of about 80 ° C. or higher and 140 ° C. or lower, and is excellent in vibration damping effect of a device that generates vibration in a high temperature environment.
  • automobile parts include intake system parts, cooling system parts, fuel system parts, interior parts, exterior parts, electrical components, and the like.
  • the automobile intake system component is not particularly limited, and examples thereof include an air intake manifold, an intercooler inlet, an exhaust pipe cover, an inner bush, a bearing retainer, an engine mount, an engine head cover, a resonator, and a throttle body.
  • the automobile cooling system component is not particularly limited, and examples thereof include a chain cover, a thermostat housing, an outlet pipe, a radiator tank, an alternator, and a delivery pipe.
  • the automobile fuel system parts are not particularly limited, and examples thereof include fuel delivery pipes and gasoline tank cases.
  • the automobile interior parts are not particularly limited, and examples thereof include instrumental panels, console boxes, glove boxes, steering wheels, trims, and the like.
  • the automobile exterior parts are not particularly limited, and examples thereof include moldings, lamp housings, front grilles, mudguards, side bumpers, door mirror stays, roof rails, and the like.
  • the automobile electrical components are not particularly limited, and examples thereof include connectors, wire harness connectors, motor components, lamp sockets, sensor in-vehicle switches, combination switches, and the like.
  • the molded body of the present embodiment has good bending elasticity and tensile strength in a high temperature environment of about 80 ° C. or higher and 140 ° C. or lower, and is excellent in the vibration damping effect of a device that generates vibration in a high temperature environment.
  • Electric vehicle field that is, hybrid vehicle (HV), plug-in hybrid vehicle (PHV), electric vehicle (EV), fuel cell vehicle (FCV), etc. equipped with a lithium ion secondary battery and powered by an electric motor.
  • HV hybrid vehicle
  • PGV plug-in hybrid vehicle
  • EV electric vehicle
  • FCV fuel cell vehicle
  • a case for accommodating a motor mount, a power module, a converter, a capacitor, an insulator, a motor terminal block, a battery, an electric compressor, a battery current sensor, a junction block, etc., and particularly a case for an ignition coil of a DLI system can be mentioned.
  • the molded product of the present embodiment has a high surface gloss value.
  • the surface gloss value of the molded product of the present embodiment is preferably 45% or more, more preferably 50% or more, further preferably 65% or more, still more preferably 70% or more.
  • the surface gloss value is a value obtained by measuring a 60-degree gloss according to JIS-K7150 using a gloss meter.
  • the obtained molded body can be used for electric and electronic parts, home appliance parts, OA (Office Automation) equipment parts, portable equipment parts, industrial equipment parts, etc. It can be suitably used as various parts for daily necessities and household goods, and for extrusion applications.
  • the molded body of the present embodiment having an excellent surface appearance is suitably used as an automobile part, an electric and electronic part, a home electric appliance part, an OA equipment part, or a portable equipment part.
  • the electric and electronic components are not particularly limited, and examples thereof include connectors, reflectors for light emitting devices, switches, relays, printed wiring boards, electronic component housings, outlets, noise filters, coil bobbins, motor end caps, and the like.
  • Reflectors for light emitting devices include optical semiconductors such as laser diodes (LDs) in addition to light emitting diodes (LEDs), fott diodes, charge-coupled devices (CCDs), complementary metal oxide semiconductors (CMOS), and other semiconductor packages. Can be widely used in.
  • LDs laser diodes
  • LEDs light emitting diodes
  • CCDs charge-coupled devices
  • CMOS complementary metal oxide semiconductors
  • the portable device component is not particularly limited, and examples thereof include a housing and a structure of a mobile phone, a smartphone, a personal computer, a portable game device, a digital camera, and the like.
  • the industrial equipment parts are not particularly limited, and examples thereof include gears, cams, insulating blocks, valves, power tool parts, agricultural machinery parts, engine covers, and the like.
  • the daily necessities and household items are not particularly limited, and examples thereof include buttons, food containers, office furniture, and the like.
  • the extrusion application is not particularly limited, but is used for, for example, a film, a sheet, a filament, a tube, a rod, a hollow molded body, or the like.
  • the molded product of the present embodiment since the molded product of the present embodiment has an excellent surface appearance, it is also preferably used as a molded product having a coating film formed on the surface of the molded product.
  • the method for forming the coating film is not particularly limited as long as it is a known method, and for example, coating such as a spray method or an electrostatic coating method can be used.
  • the paint used for painting is not particularly limited as long as it is known, and melamine crosslinked type polyester polyol resin paint, acrylic urethane paint and the like can be used.
  • the molded body of the present embodiment is excellent in mechanical strength, toughness, heat resistance, and vibration fatigue resistance, and is therefore suitable as a component material for automobiles, and further is excellent in slidability. , Especially suitable as a component material for gears and bearings. Further, since it is excellent in mechanical strength, toughness, and heat resistance, it is suitable as a component material for electricity and electronics.
  • the method of the present embodiment is a method of suppressing the propagation of vibration or sound of the device, which comprises using the above-mentioned molded product for a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. Is.
  • the molded body by using the molded body, it is possible to effectively suppress the vibration or sound propagation of the device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
  • the molded body those exemplified in the above ⁇ molded body> can be used.
  • the acceleration at the resonance point (m / s 2 ) when the molded body is used is the acceleration (m / s 2 ) at the resonance point when the molded body is not used. ), It can be reduced to a value of usually 60% or less, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 15% or less.
  • the sound pressure level (dB) in the range of the frequency of 1500 Hz or more and 6000 Hz or less when the molded body is used is set to the frequency of 1500 Hz or more and 6000 Hz or less when the molded body is not used.
  • the sound pressure level (dB) in the range of it is usually reduced to a value of 60% or less, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 15% or less. be able to.
  • B-3 Polyamide 6IT-40 (manufactured by Rankses, M
  • C-1 Hydrogenated styrene-based thermoplastic elastomer (modified SEBS) (Asahi Kasei Corporation, Tough Tech (registered trademark) MP10)
  • D-1 Glass fiber (GF) (manufactured by Nippon Electric Glass, trade name "ECS03T275H", number average fiber diameter (average particle size): 10 ⁇ m (round shape), cut length: 3 mm)
  • the average fiber diameter of the glass fiber was measured as follows. First, the polyamide composition was placed in an electric furnace to incinerate the organic substances contained in the polyamide composition. From the residue after the treatment, 100 or more glass fibers arbitrarily selected were observed with a scanning electron microscope (SEM), and the fiber diameters of these glass fibers were measured to determine the number average fiber diameter. ..
  • SEM scanning electron microscope
  • E-1 Carbon black with an average primary particle size of 18 nm
  • F-1 Calcium montanate (manufactured by Clariant, trade name “Licomont CaV102")
  • F-2 Sodium montanate (manufactured by Clariant, trade name "Licomont NaV101”)
  • A-1) Adipic acid (ADA) (manufactured by Wako Pure Chemical Industries, Ltd.)
  • A-2) Isophthalic acid (IPA) manufactured by Wako Pure Chemical Industries, Ltd.
  • the internal temperature was raised to 220 ° C.
  • the autoclave was boosted to 1.8 MPa.
  • the reaction was carried out for 1 hour as it was until the internal temperature reached 245 ° C., while the water vapor was gradually removed and the pressure was maintained at 1.8 MPa.
  • the pressure was reduced over 1 hour.
  • the inside of the autoclave was maintained in a vacuum device under a reduced pressure of 650 torr for 10 minutes.
  • the final internal temperature of the polymerization was 265 ° C. After that, it is pressurized with nitrogen to form a strand from the lower spun (nozzle), water-cooled, cut, discharged in pellet form, dried at 100 ° C.
  • the internal temperature was raised to 220 ° C.
  • the autoclave was boosted to 1.8 MPa.
  • the reaction was carried out for 1 hour as it was until the internal temperature reached 245 ° C., while the water vapor was gradually removed and the pressure was maintained at 1.8 MPa.
  • the pressure was reduced over 30 minutes.
  • the inside of the autoclave was maintained in a vacuum device under a reduced pressure of 650 torr for 10 minutes.
  • the final internal temperature of the polymerization was 265 ° C. After that, it is pressurized with nitrogen to form a strand from the lower spun (nozzle), water-cooled, cut, discharged in pellet form, dried at 100 ° C.
  • the temperature from the upstream supply port to the die is set to the melting point Tm2 + 20 ° C. of each (A) crystalline polyamide manufactured in the above production example, the screw rotation speed is set to 300 rpm, and the discharge rate is set to 400 kg / h. did.
  • (A) crystalline polyamide and (B) amorphous polyamide are supplied from the upstream side supply port of the twin-screw extruder so as to have the types and ratios shown in Table 1 below.
  • Glass fiber was supplied as an inorganic filler from the first supply port on the downstream side of the twin-screw extruder, and the melt-kneaded product extruded from the die head was cooled in a strand shape and pelletized to obtain pellets of a polyamide composition.
  • the obtained pellets of the polyamide composition were dried in a nitrogen stream to reduce the water content in the polyamide composition to 500 ppm or less.
  • the temperature from the upstream supply port to the die is set to the melting point Tm2 + 20 ° C. of each (A) crystalline polyamide manufactured in the above production example, the screw rotation speed is set to 250 rpm, and the discharge rate is set to 25 kg / h. did. It was carried out in the same manner as in Example 1 except that the extruder was changed.
  • the temperature was lowered to 30 ° C. at a temperature lowering rate of 20 ° C./min.
  • the exothermic peak appearing at this time was defined as the crystallization peak
  • the crystallization peak temperature was defined as Tc
  • the crystallization peak area was defined as the crystallization enthalpy ⁇ H (J / g).
  • the temperature was raised from 30 ° C. to 280 ° C. or higher and 300 ° C. or lower depending on the melting point of the sample at a heating rate of 20 ° C./min.
  • the maximum temperature of the endothermic peak (melting peak) that appears at this time was defined as the melting point Tm2 (° C.).
  • Measurement mode Tensile waveform: Sine wave Frequency: 3.5Hz Temperature range: 0 ° C or higher and 180 ° C or lower Temperature rise step: 2 ° C / min Static load: 400g Displacement amplitude: 0.75 ⁇ m
  • the ratio (E2 / E1) of the loss elastic modulus E2 to the storage elastic modulus E1 was defined as tan ⁇ , and the highest temperature was defined as the tan ⁇ peak temperature.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • GPC manufactured by Tosoh Corporation, HLC-8020, hexafluoroisopropanol solvent, PMMA (polymethylmethacrylate) standard sample (converted by Polymer Laboratory)
  • the peak area of 2.47 ppm derived from the adjacent methylene hydrogen of adipic acid and the hydrogen on the adjacent benzene ring carbon of the isophthalic acid unit are derived.
  • the carboxy terminal amount was determined by calculating the integral ratio from the peak area of 8.07 ppm and the peak area of 7.85 ppm derived from hydrogen on the adjacent benzene ring carbon of the terephthalic acid unit.
  • the amount of amino terminal was determined by calculating the integral ratio from the peak area of 2.67-2.69 ppm derived from hydrogen on the adjacent methylene carbon of the hexamethylenediamine group.
  • [NH 2 ] + [COOH] was calculated from the amount of amino terminal ([NH 2 ]) measured as described above and the amount of carboxy terminal ([COOH]).
  • a rectangular cuboid molded body was manufactured as follows.
  • a rectangular cuboid molded body (width: 180 mm, depth 100 mm, height 50 mm, thickness 2 mm) was molded using an injection molding machine (PS-40E, manufactured by Nissei Resin Co., Ltd.).
  • PS-40E manufactured by Nissei Resin Co., Ltd.
  • the injection and holding pressure time was set to 20 seconds
  • the cooling time was set to 15 seconds
  • the mold temperature was set to 100 ° C
  • the cylinder temperature was set to 280 ° C.
  • the height of the resonance point acceleration peak at 23 ° C. and 100 ° C.
  • the resonance point acceleration was measured under the conditions shown below. The temperature at the time of measurement was adjusted by placing a molded body in the central portion of the temperature control cover connected to the hot air generator and blowing hot air onto the molded body. Vibration under each temperature condition where the resonance point acceleration peak height at 23 ° C is 500 m / s 2 or less and the resonance point acceleration peak height at 100 ° C is 100 m / s 2 or less. It was evaluated that the attenuation was good.
  • Vibration generator EMIC, Vibro chamber Accelerometer: EMIC, Accelerometer Temperature: From 23 ° C to 120 ° C
  • Fastening method of molded body Stepped bolt
  • Fastening torque of molded body 10 Nm (M6 standard)
  • Gasket tightening allowance 2 mm
  • Waveform Sine wave (sweep waveform from 50Hz to 1000Hz in 7 minutes)
  • Control acceleration 9.8m / s 2 (1G)
  • Vibration direction Up and down Measurement position: Central part on the temperature control cover
  • the mechanical properties such as tensile strength and flexural modulus, vibration damping effect and noise suppressing effect at 100 ° C. were good, but mold release failure occurred during molding. Further, the flexural modulus at 100 ° C. was greatly reduced, the surface appearance was poor, and the vibration damping effect at 23 ° C. was hardly observed.
  • the surface appearance, tensile strength, mechanical properties such as flexural modulus at 23 ° C, and vibration damping effect at 23 ° C were good, but the vibration damping effect at 100 ° C was almost nonexistent.
  • the noise suppression effect was poor.
  • the bending elastic modulus, the tensile strength and the appearance of the molded product are excellent, and the vibration damping of the device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. And it is possible to provide a polyamide composition having an excellent noise suppressing effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A polyamide composition of the present invention is used in a molded body for suppressing the propagation of vibration or sound from a device that generates vibration or sound in an environment having a temperature of 80-140ºC, the polyamide composition comprising a crystalline polyamide (A) and a non-crystalline polyamide (B), wherein: the content of the non-crystalline polyamide (B) is 10.0-50.0 mass% relative to the mass of all polyamides in the polyamide composition; the tanδ peak temperature of the polyamide composition is 90ºC or higher; the non-crystalline polyamide (B) is dispersed in the crystalline polyamide (A) and forms a domain; and the number average particle size of the non-crystalline polyamide (B) forming the domain is 10 nm to 1.0 µm, inclusive.

Description

ポリアミド組成物、成形体、及び装置の振動又は音の伝搬を抑制する方法Methods for Suppressing Vibration or Sound Propagation of Polyamide Compositions, Molds, and Devices
 本発明は、ポリアミド組成物、成形体、及び装置の振動又は音の伝搬を抑制する方法に関する。
 本願は、2021年1月7日に、日本に出願された特願2021-001392号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method of suppressing vibration or sound propagation of a polyamide composition, a molded body, and an apparatus.
This application claims priority based on Japanese Patent Application No. 2021-001392 filed in Japan on January 7, 2021, and the contents thereof are incorporated herein by reference.
 近年、自動車用部品を始めとする各種分野の部品において、金属材料に代わる軽量材として樹脂材料の開発が進められている。特に、自動車用部品の中でも、オイルパン、シリンダーヘッドカバー、チェーンケース等のエンジンルーム内部品に樹脂材料を適用する場合には、樹脂材料に耐熱性、高剛性、耐衝撃性等に加えて、耐振動性に優れることが要求される。 In recent years, resin materials have been developed as lightweight materials to replace metal materials in parts in various fields such as automobile parts. In particular, when a resin material is applied to parts in an engine room such as an oil pan, a cylinder head cover, and a chain case among automobile parts, the resin material has heat resistance, high rigidity, impact resistance, and the like. Excellent vibration properties are required.
 特許文献1には、ガラス繊維を混入した繊維配合ナイロンに、エラストマーをブレンドした制振性の良好なナイロン複合体の製造方法が開示されている。 Patent Document 1 discloses a method for producing a nylon composite having good vibration damping properties by blending an elastomer with a fiber-blended nylon mixed with glass fiber.
特開昭64-74264号公報Japanese Unexamined Patent Publication No. 64-74264
 特許文献1等に記載されているナイロン複合体では、樹脂材料にエラストマーを添加することで振動抑制効果が付与されるが、得られる成形体の強度や弾性率が低下することが懸念される。 In the nylon composite described in Patent Document 1 and the like, the vibration suppressing effect is imparted by adding an elastomer to the resin material, but there is a concern that the strength and elastic modulus of the obtained molded body may decrease.
 本発明は、上記事情に鑑みてなされたものであって、成形体としたときの曲げ弾性率、引張強度及び外観に優れ、且つ、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動減衰及びノイズ抑制効果に優れるポリアミド組成物、並びに、前記ポリアミド組成物を成形してなる成形体及び前記成形体を用いた装置の振動又は音の伝搬を抑制する方法を提供する。 The present invention has been made in view of the above circumstances, is excellent in flexural modulus, tensile strength and appearance when formed into a molded body, and generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. Provided are a polyamide composition having an excellent vibration damping and noise suppressing effect of the device, and a method for suppressing vibration or sound propagation of a molded body obtained by molding the polyamide composition and a device using the molded body.
 すなわち、本発明は、以下の態様を含む。
(1) 80℃以上140℃以下の環境下で振動又は音を発生する装置の振動又は音の伝搬を抑制するための成形体に用いられるポリアミド組成物であって、
 (A)結晶性ポリアミド及び(B)非晶性ポリアミドを含有し、
 前記(B)非晶性ポリアミドの含有量が、前記ポリアミド組成物中の全ポリアミドの質量に対して10.0質量%以上50.0質量%以下であり、
 前記ポリアミド組成物のtanδピーク温度が90℃以上であり、
 前記(B)非晶性ポリアミドが前記(A)結晶性ポリアミド中に分散し、ドメインを形成し、
 前記ドメインを形成する(B)非晶性ポリアミドの数平均粒子径が10nm以上1.0μm以下である、ポリアミド組成物。
(2) 前記(A)結晶性ポリアミド及び前記(B)非晶性ポリアミドの合計質量に対する、(C)エラストマーの含有量が12質量%以下である、前記(1)に記載のポリアミド組成物。
(3) 前記ポリアミド組成物の総質量に対して、(D)無機充填材を5質量%以上70質量%以下更に含有する、前記(1)又は(2)に記載のポリアミド組成物。
(4) 前記(A)結晶性ポリアミドがポリアミド66又はポリアミド610又はポリアミド6である、前記(1)~(3)のいずれか一項に記載のポリアミド組成物。
(5) 前記(B)非晶性ポリアミドが、イソフタル酸単位を少なくとも75モル%含むジカルボン酸単位と、炭素数4以上10以下のジアミン単位を少なくとも50モル%含むジアミン単位と、を含有する半芳香族非晶性ポリアミドである、前記(1)~(4)のいずれか一項に記載のポリアミド組成物。
(6) 前記(B)非晶性ポリアミドがポリアミド6Iである、前記(1)~(5)のいずれか一項に記載のポリアミド組成物。
(7) 10nm以上の平均一次粒子径を有する(E)カーボンブラックを更に含有する、前記(1)~(6)のいずれか一項に記載のポリアミド組成物。
(8) 高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル及び高級脂肪酸アミドからなる群より選ばれる少なくとも一種の(F)潤滑剤を更に含有する、前記(1)~(7)のいずれか一項に記載のポリアミド組成物。
(9) 融点Tm2が240℃以上260℃以下である、前記(1)~(8)のいずれか一項に記載のポリアミド組成物。
(10) 前記(A)結晶性ポリアミド及び前記(B)非晶性ポリアミドからなる群より選ばれる少なくとも1種のポリアミド1g当たりの封止剤で封止された末端量が30μmol当量/g以上140μmol当量/g以下である、前記(1)~(9)のいずれか一項に記載のポリアミド組成物。
(11) 前記ポリアミド組成物の重量平均分子量Mwが、15000以上34000以下である、前記(1)~(10)のいずれか一項に記載のポリアミド組成物。
(12) 前記ポリアミド組成物の分子量分布Mw/Mnが2.4以下である、前記(1)~(11)のいずれか一項に記載のポリアミド組成物。
(13) 前記(A)結晶性ポリアミド及び前記(B)非晶性ポリアミドからなる群より選ばれる少なくとも1種のポリアミド1g当たりの、アミノ末端量及びカルボキシ末端量の合計が70μmol当量/g以上145μmol当量/g以下である、前記(1)~(12)のいずれか一項に記載のポリアミド組成物。
(14) 前記ポリアミド組成物を成形してなる、ISO178に準拠した厚み4mmのダンベルの、ISO178に準拠して測定された23℃における曲げ弾性率が10GPa以上である、前記(1)~(13)のいずれか一項に記載のポリアミド組成物。
(15) 前記(1)~(14)のいずれか一項に記載のポリアミド組成物を成形してなる、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動又は音の伝搬を抑制するために用いられる成形体。
(16) 前記振動又は音が10Hz以上6000Hz以下である、前記(15)に記載の成形体。
(17) 制振用である、前記(15)又は(16)に記載の成形体。
(18) 前記成形体の厚みが1mm以上5mm以下である、前記(15)~(17)のいずれか一項に記載の成形体。
(19) 前記成形体が、電気自動車部品を含む自動車部品用途である、前記(15)~(18)のいずれか一項に記載の成形体。
(20) 前記成形体が、オイルパン、シリンダーヘッドカバー又はチェーンケースである、前記(15)~(19)のいずれか一項に記載の成形体。
(21) 80℃以上140℃以下の環境下で振動又は音を発生する装置に対して、前記(15)~(20)のいずれか一項に記載の成形体を用いることを含む、前記装置の振動又は音の伝搬を抑制する方法。
That is, the present invention includes the following aspects.
(1) A polyamide composition used for a molded product for suppressing vibration or sound propagation of a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
It contains (A) crystalline polyamide and (B) amorphous polyamide,
The content of the (B) amorphous polyamide is 10.0% by mass or more and 50.0% by mass or less with respect to the mass of the total polyamide in the polyamide composition.
The tan δ peak temperature of the polyamide composition is 90 ° C. or higher, and the temperature is 90 ° C. or higher.
The (B) amorphous polyamide is dispersed in the (A) crystalline polyamide to form a domain.
(B) A polyamide composition having an average particle size of 10 nm or more and 1.0 μm or less of the amorphous polyamide forming the domain.
(2) The polyamide composition according to (1) above, wherein the content of the (C) elastomer is 12% by mass or less with respect to the total mass of the (A) crystalline polyamide and the (B) amorphous polyamide.
(3) The polyamide composition according to (1) or (2) above, further containing 5% by mass or more and 70% by mass or less of the inorganic filler (D) with respect to the total mass of the polyamide composition.
(4) The polyamide composition according to any one of (1) to (3) above, wherein the (A) crystalline polyamide is polyamide 66 or polyamide 610 or polyamide 6.
(5) The (B) amorphous polyamide contains a dicarboxylic acid unit containing at least 75 mol% of an isophthalic acid unit and a diamine unit containing at least 50 mol% of a diamine unit having 4 or more and 10 or less carbon atoms. The polyamide composition according to any one of (1) to (4) above, which is an aromatic amorphous polyamide.
(6) The polyamide composition according to any one of (1) to (5) above, wherein the (B) amorphous polyamide is polyamide 6I.
(7) The polyamide composition according to any one of (1) to (6) above, further containing (E) carbon black having an average primary particle size of 10 nm or more.
(8) Any one of (1) to (7) above, further containing at least one (F) lubricant selected from the group consisting of higher fatty acids, higher fatty acid metal salts, higher fatty acid esters and higher fatty acid amides. The polyamide composition according to.
(9) The polyamide composition according to any one of (1) to (8) above, wherein the melting point Tm2 is 240 ° C. or higher and 260 ° C. or lower.
(10) The terminal amount sealed with the sealant per 1 g of at least one polyamide selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide is 30 μmol equivalent / g or more and 140 μmol. The polyamide composition according to any one of (1) to (9) above, which has an equivalent amount / g or less.
(11) The polyamide composition according to any one of (1) to (10) above, wherein the polyamide composition has a weight average molecular weight Mw of 15,000 or more and 34,000 or less.
(12) The polyamide composition according to any one of (1) to (11) above, wherein the polyamide composition has a molecular weight distribution Mw / Mn of 2.4 or less.
(13) The total amount of amino-terminal and carboxy-terminal amounts per 1 g of at least one polyamide selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide is 70 μmol equivalent / g or more and 145 μmol. The polyamide composition according to any one of (1) to (12) above, which has an equivalent amount / g or less.
(14) The bending elastic modulus of a dumbbell having a thickness of 4 mm conforming to ISO178, which is obtained by molding the polyamide composition, at 23 ° C. measured according to ISO178 is 10 GPa or more, and the above (1) to (13). ). The polyamide composition according to any one of the following items.
(15) Of the vibration or sound of a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower, which is formed by molding the polyamide composition according to any one of (1) to (14) above. A molded body used to suppress propagation.
(16) The molded product according to (15), wherein the vibration or sound is 10 Hz or more and 6000 Hz or less.
(17) The molded product according to (15) or (16) above, which is used for vibration damping.
(18) The molded product according to any one of (15) to (17) above, wherein the thickness of the molded product is 1 mm or more and 5 mm or less.
(19) The molded body according to any one of (15) to (18) above, wherein the molded body is used for automobile parts including electric vehicle parts.
(20) The molded product according to any one of (15) to (19) above, wherein the molded product is an oil pan, a cylinder head cover or a chain case.
(21) The apparatus, which comprises using the molded product according to any one of (15) to (20) above, for an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. A method of suppressing vibration or sound propagation.
 上記態様のポリアミド組成物によれば、成形体としたときの曲げ弾性率、引張強度及び外観に優れ、且つ、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動減衰及びノイズ抑制効果に優れるポリアミド組成物を提供することができる。上記態様の成形体は、前記ポリアミド組成物を成形してなり、曲げ弾性率、引張強度及び外観に優れ、且つ、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動減衰及びノイズ抑制効果に優れる。上記態様の方法は、前記成形体を用いる方法であって、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動を減衰させ、ノイズを抑制することができる。 According to the polyamide composition of the above aspect, the bending elastic modulus, the tensile strength and the appearance of the molded product are excellent, and the vibration damping of the device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower is achieved. It is possible to provide a polyamide composition having an excellent noise suppression effect. The molded body of the above embodiment is formed by molding the polyamide composition, and is excellent in flexural modulus, tensile strength and appearance, and vibration damping of an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. And excellent noise suppression effect. The method of the above aspect is a method using the molded body, and can attenuate the vibration of a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower, and suppress noise.
 以下、本発明を実施するための形態(以下、「本実施形態」と略記する)について詳細に説明する。本発明は、以下の実施の形態に制限されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter, abbreviated as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
 本明細書において、「ポリアミド」とは主鎖中にアミド(-NHCO-)基を有する重合体を意味する。 As used herein, the term "polyamide" means a polymer having an amide (-NHCO-) group in the backbone.
≪ポリアミド組成物≫
 本実施形態のポリアミド組成物は、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動又は音の伝搬を抑制するための成形体に用いられるものである。
≪Polyamide composition≫
The polyamide composition of the present embodiment is used for a molded body for suppressing vibration or sound propagation of an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
 本実施形態のポリアミド組成物は、(A)結晶性ポリアミド及び(B)非晶性ポリアミドを含有する。 The polyamide composition of the present embodiment contains (A) crystalline polyamide and (B) amorphous polyamide.
 本実施形態のポリアミド組成物において、前記(B)非晶性ポリアミドの含有量が、前記ポリアミド組成物中の全ポリアミドの質量に対して10.0質量%以上50.0質量%以下であり、10.0質量%以上45.0質量%以下が好ましく、12.5質量%以上45.0質量%以下がより好ましく、15.0質量%以上42.5質量%以下がさらに好ましく、17.5質量%以上40.0質量%以下がよりさらに好ましく、20.0質量%以上37.5質量%以下が特に好ましく、22.5質量%以上35.0質量%以下が最も好ましい。(B)非晶性ポリアミドの配合量を上記範囲とすることで、機械的性質、特に熱時剛性、流動性、振動減衰及びノイズ抑制効果等に優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物は、表面外観に優れたものとなる。 In the polyamide composition of the present embodiment, the content of the (B) amorphous polyamide is 10.0% by mass or more and 50.0% by mass or less with respect to the mass of the total polyamide in the polyamide composition. It is preferably 10.0% by mass or more and 45.0% by mass or less, more preferably 12.5% by mass or more and 45.0% by mass or less, further preferably 15.0% by mass or more and 42.5% by mass or less, and 17.5% by mass. More preferably, it is more preferably mass% or more and 40.0 mass% or less, particularly preferably 20.0 mass% or more and 37.5 mass% or less, and most preferably 22.5 mass% or more and 35.0 mass% or less. (B) By setting the blending amount of the amorphous polyamide in the above range, a polyamide composition excellent in mechanical properties, particularly thermal rigidity, fluidity, vibration damping, noise suppression effect and the like can be obtained. Further, the polyamide composition containing a component typified by an inorganic filler has an excellent surface appearance.
 本実施形態のポリアミド組成物のtanδピーク温度の下限値は、90℃であり、95℃が好ましく、100℃がより好ましく、105℃がさらに好ましい。一方、樹脂組成物のtanδピーク温度の上限値は、150℃が好ましく、140℃がより好ましく、130℃がさらに好ましい。
 樹脂組成物のtanδピーク温度は、90℃以上であり、95℃以上150℃以下が好ましく、100℃以上140℃以下がより好ましく、105℃以上130℃以下がさらに好ましい。
 本実施形態のポリアミド組成物のtanδピーク温度が上記下限値以上であることにより、成形体としたときの高温環境下での剛性や強度により優れるポリアミド組成物となる傾向にある。一方、ポリアミド組成物のtanδピーク温度が上記上限値以下であることにより、充填材に代表される成分を含有させたポリアミド組成物から得られる成形体は、表面外観により優れたものとなる傾向にある。
 ポリアミド組成物のtanδピーク温度を上記範囲内に制御する方法としては、例えば、(A)結晶性ポリアミド及び(B)非晶性ポリアミドの含有量を後述する範囲及び上述した範囲にそれぞれ制御する方法等が挙げられる。
 ポリアミド組成物のtanδピーク温度は、粘弾性測定解析装置等を用いて測定した貯蔵弾性率E1に対する損失弾性率E2の比(E2/E1)をtanδとし、最も高い温度をtanδピーク温度とする。より具体的には、後述する実施例に記載の方法で測定することができる。
The lower limit of the tan δ peak temperature of the polyamide composition of the present embodiment is 90 ° C., preferably 95 ° C., more preferably 100 ° C., and even more preferably 105 ° C. On the other hand, the upper limit of the tan δ peak temperature of the resin composition is preferably 150 ° C., more preferably 140 ° C., and even more preferably 130 ° C.
The tan δ peak temperature of the resin composition is 90 ° C. or higher, preferably 95 ° C. or higher and 150 ° C. or lower, more preferably 100 ° C. or higher and 140 ° C. or lower, and even more preferably 105 ° C. or higher and 130 ° C. or lower.
When the tan δ peak temperature of the polyamide composition of the present embodiment is at least the above lower limit value, the polyamide composition tends to be more excellent in rigidity and strength in a high temperature environment when formed into a molded product. On the other hand, when the tan δ peak temperature of the polyamide composition is not more than the above upper limit value, the molded product obtained from the polyamide composition containing a component typified by a filler tends to have a better surface appearance. be.
As a method for controlling the tan δ peak temperature of the polyamide composition within the above range, for example, a method for controlling the contents of (A) crystalline polyamide and (B) amorphous polyamide within the range described later and the above range, respectively. And so on.
For the tanδ peak temperature of the polyamide composition, the ratio (E2 / E1) of the loss elastic modulus E2 to the storage elastic modulus E1 measured using a viscoelasticity measurement analyzer or the like is tanδ, and the highest temperature is the tanδ peak temperature. More specifically, it can be measured by the method described in Examples described later.
 前記(B)非晶性ポリアミドが前記(A)結晶性ポリアミド中に分散し、ドメインを形成している。すなわち、非晶性ポリアミドは、(A)結晶性ポリアミド中に微分散しており、相分離構造又は海島構造を形成しているともいえる。
 振動減衰及びノイズ抑制効果を向上させるためには、分子運動性の異なる(A)結晶性ポリアミド及び(B)非晶性ポリアミドのドメインを形成する界面量が多いことが好適であり、そのためドメインサイズは小さい方が望ましい。また、低い周波数の振動減衰及びノイズ抑制効果を発揮するには10nm以上のドメインサイズであることが好ましい。
 具体的には、(A)結晶性ポリアミド中に分散し、ドメインを形成している(B)非晶性ポリアミドの数平均粒子径は10nm以上1.0μm以下であり、10nm以上500nm以下が好ましく、10nm以上300nm以下がより好ましく、20nm以上100nm以下がよりさらに好ましく、30nm以上80nm以下が特に好ましい。ドメインを形成している(B)非晶性ポリアミドの数平均粒子径が上記数値範囲内であることで、振動減衰及びノイズ抑制効果をより一層向上させることができる。
 ドメインを形成している(B)非晶性ポリアミドの数平均粒子径(分散粒子径分布の50%累計値)は、例えば、後述する実施例に記載の方法を用いて測定することができる。
The (B) amorphous polyamide is dispersed in the (A) crystalline polyamide to form a domain. That is, it can be said that the amorphous polyamide is finely dispersed in (A) crystalline polyamide and forms a phase-separated structure or a sea-island structure.
In order to improve the vibration damping and noise suppression effects, it is preferable that the amount of the interface forming the domains of (A) crystalline polyamide and (B) amorphous polyamide having different molecular motility is large, and therefore the domain size. Is desirable to be small. Further, in order to exert the vibration damping and noise suppressing effects at low frequencies, the domain size is preferably 10 nm or more.
Specifically, the number average particle size of (A) the amorphous polyamide dispersed in the crystalline polyamide and forming a domain is 10 nm or more and 1.0 μm or less, preferably 10 nm or more and 500 nm or less. It is more preferably 10 nm or more and 300 nm or less, further preferably 20 nm or more and 100 nm or less, and particularly preferably 30 nm or more and 80 nm or less. When the number average particle diameter of the (B) amorphous polyamide forming the domain is within the above numerical range, the vibration damping and noise suppressing effects can be further improved.
The number average particle size (50% cumulative value of the dispersed particle size distribution) of the (B) amorphous polyamide forming the domain can be measured, for example, by using the method described in Examples described later.
 本実施形態のポリアミド組成物は、上記構成を有することで、曲げ弾性率、引張強度及び外観に優れ、且つ、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動減衰及びノイズ抑制効果に優れる成形体が得られる。 By having the above-mentioned structure, the polyamide composition of the present embodiment is excellent in flexural modulus, tensile strength and appearance, and vibration damping and vibration damping of an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. A molded body having an excellent noise suppression effect can be obtained.
 以下、本実施形態のポリアミド組成物に含まれる各構成成分について説明する。 Hereinafter, each constituent component contained in the polyamide composition of the present embodiment will be described.
<(A)結晶性ポリアミド>
 結晶性ポリアミドとは、示差走査熱量計によって20℃/minで測定した場合の結晶の融解熱が4J/g以上であるポリアミドである。
<(A) Crystalline polyamide>
The crystalline polyamide is a polyamide having a heat of fusion of crystals of 4 J / g or more when measured at 20 ° C./min by a differential scanning calorimeter.
 (A)結晶性ポリアミドとして具体的には、以下に制限されないが、例えば、(a)ラクタムの開環重合で得られるポリアミド、(b)ω-アミノカルボン酸の自己縮合で得られるポリアミド、(c)ジアミン及びジカルボン酸を縮合することで得られるポリアミド、並びにこれらの共重合物等が挙げられる。これら結晶性ポリアミドは、1種単独で用いてもよく、2種以上の混合物として用いてもよい。 The (A) crystalline polyamide is not specifically limited to the following, but for example, (a) a polyamide obtained by ring-opening polymerization of lactam, (b) a polyamide obtained by self-condensation of ω-aminocarboxylic acid, ( c) Polyamides obtained by condensing diamine and dicarboxylic acid, copolymers thereof and the like can be mentioned. These crystalline polyamides may be used alone or as a mixture of two or more.
 (a)のラクタムは、以下に制限されないが、例えば、ピロリドン、カプロラクタム、ウンデカラクタムやドデカラクタムなどが挙げられる。 The lactam of (a) is not limited to the following, and examples thereof include pyrrolidone, caprolactam, undecalactam, and dodecalactam.
 (b)のω-アミノカルボン酸としては、以下に制限されないが、例えば、上記ラクタムの水による開環化合物であるω-アミノ脂肪酸などが挙げられる。ラクタム又はω-アミノカルボン酸として、それぞれ2種以上の単量体を併用して縮合させてもよい。 The ω-aminocarboxylic acid in (b) is not limited to the following, and examples thereof include ω-amino fatty acid, which is a ring-opening compound of lactam with water. As lactam or ω-aminocarboxylic acid, two or more kinds of monomers may be used in combination and condensed.
 (c)のジアミン(単量体)としては、以下に制限されないが、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミン等の炭素数2以上20以下の直鎖状飽和脂肪族ジアミン等が挙げられる。 The diamine (monomer) of (c) is not limited to the following, but for example, ethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, etc. Examples thereof include linear saturated aliphatic diamines having 2 or more and 20 or less carbon atoms such as decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, and tridecamethylenediamine.
 主鎖から分岐した置換基を持つジアミン単位を構成するジアミンとしては、以下に限定されるものではないが、例えば、2-メチルペンタメチレンジアミン(2-メチル-1,5-ジアミノペンタンともいう。)、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、2-メチル-1,8-オクタンジアミン(2-メチルオクタメチレンジアミンともいう。)、2,4-ジメチルオクタメチレンジアミン等の炭素数3以上20以下の分岐鎖状飽和脂肪族ジアミン等が挙げられる。
 中でも、2-メチルペンタメチレンジアミン又は2-メチル-1,8-オクタンジアミンが好ましく、2-メチルペンタメチレンジアミンがより好ましい。このような脂肪族ジアミンを含むことにより、耐熱性及び剛性等により優れるポリアミド組成物となる傾向にある。
The diamine constituting the diamine unit having a substituent branched from the main chain is not limited to the following, but is also referred to as, for example, 2-methylpentamethylenediamine (2-methyl-1,5-diaminopentane). ), 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 2-methyl-1,8-octanediamine (also referred to as 2-methyloctamethylenediamine), 2,4- Examples thereof include branched chain saturated aliphatic diamines having 3 or more carbon atoms and 20 or less carbon atoms such as dimethyloctamethylenediamine.
Of these, 2-methylpentamethylenediamine or 2-methyl-1,8-octanediamine is preferable, and 2-methylpentamethylenediamine is more preferable. By containing such an aliphatic diamine, the polyamide composition tends to be excellent in heat resistance, rigidity and the like.
 ジアミン単位の炭素数は、4以上12以下が好ましく、4以上10以下がより好ましい。炭素数が上記下限値以上であると、耐熱性により優れ、一方、上記上限値以下であると結晶性、離型性により優れる。 The number of carbon atoms in the diamine unit is preferably 4 or more and 12 or less, and more preferably 4 or more and 10 or less. When the number of carbon atoms is at least the above lower limit value, the heat resistance is excellent, while when the number of carbon atoms is at least the above upper limit value, the crystallinity and releasability are excellent.
 脂肪族ジアミンは、必要に応じて、ビスヘキサメチレントリアミン等の3価以上の多価脂肪族アミンをさらに含んでもよい。
 ジアミンは、1種のみを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
The aliphatic diamine may further contain a trivalent or higher polyvalent aliphatic amine such as bishexamethylenetriamine, if necessary.
As the diamine, only one kind may be used alone, or two or more kinds may be used in combination.
 (c)のジカルボン酸(単量体)としては、以下に制限されないが、例えば、コハク酸、アジピン酸、ピメリン酸、セバシン酸、ドデカン二酸、テトラデカン二酸などの脂肪族ジカルボン酸;イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸等などの芳香族ジカルボン酸;シクロヘキサンジカルボン酸などの脂環式ジカルボン酸などが挙げられる。上記した単量体としてのジアミン及びジカルボン酸は、それぞれ1種単独又は2種以上の併用により縮合させてもよい。
 (A)結晶性ポリアミドは、必要に応じて、トリメリット酸、トリメシン酸、及びピロメリット酸等の3価以上の多価カルボン酸に由来する単位をさらに含んでもよい。3価以上の多価カルボン酸は、1種のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
The dicarboxylic acid (monomer) of (c) is not limited to the following, but is, for example, an aliphatic dicarboxylic acid such as succinic acid, adipic acid, pimelic acid, sebacic acid, dodecanedioic acid, or tetradecanedioic acid; isophthalic acid. , Aromatic dicarboxylic acids such as terephthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodiumsulfoisophthalic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. And so on. The above-mentioned diamine and dicarboxylic acid as monomers may be condensed by one kind alone or two or more kinds in combination, respectively.
(A) The crystalline polyamide may further contain a unit derived from a trivalent or higher valent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid, if necessary. As the polyvalent carboxylic acid having a trivalent or higher value, only one type may be used alone, or two or more types may be used in combination.
 本実施形態のポリアミド組成物に用いられる(A)結晶性ポリアミドとして、具体的には、ポリアミド4(ポリα-ピロリドン)、ポリアミド6(ポリカプロアミド)、ポリアミド11(ポリウンデカンアミド)、ポリアミド12(ポリドデカンアミド)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド56(ポリペンタメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド610(ポリヘキサメチレンセバカミド)、ポリアミド612(ポリヘキサメチレンドデカミド)、ポリアミド4T(ポリテトラメチレンテレフタルアミド)、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、及びポリアミド9T(ポリノナンメチレンテレフタルアミド)、並びにこれらを構成成分として含む共重合ポリアミドが挙げられる。
 中でも、ポリアミド6、ポリアミド46、ポリアミド66、又はポリアミド610が好ましく、ポリアミド6、ポリアミド66、又はポリアミド610がより好ましい。ポリアミド66は、耐熱性、成形性及び靭性に優れていることから、自動車部品に適した材料と考えられる。また、ポリアミド610等の長鎖脂肪族ポリアミドは、耐薬品性に優れ好ましい。
Specific examples of the (A) crystalline polyamide used in the polyamide composition of the present embodiment include polyamide 4 (poly α-pyrrolidone), polyamide 6 (polycaproamide), polyamide 11 (polyundecaneamide), and polyamide 12. (Polydodecaneamide), Polyamide 46 (Polytetramethylene adipamide), Polyamide 56 (Polypentamethylene adipamide), Polyamide 66 (Polyhexamethylene adipamide), Polyamide 610 (Polyhexamethylene sebacamide), Polyamide 612 (polyhexamethylene dodecamide), polyamide 4T (polytetramethylene terephthalamide), polyamide 6T (polyhexamethylene terephthalamide), and polyamide 9T (polynonane methylene terephthalamide), and copolymerization containing these as constituents. Polyamide can be mentioned.
Among them, polyamide 6, polyamide 46, polyamide 66, or polyamide 610 is preferable, and polyamide 6, polyamide 66, or polyamide 610 is more preferable. Polyamide 66 is considered to be a suitable material for automobile parts because it is excellent in heat resistance, moldability and toughness. Further, a long-chain aliphatic polyamide such as polyamide 610 is preferable because of its excellent chemical resistance.
 結晶性ポリアミド(A)の融点Tm2は、200℃以上が好ましく、220℃以上295℃以下がより好ましく、230℃以上265℃以下がさらに好ましく、240℃以上260℃以下が特に好ましく、250℃以上260℃以下が最も好ましい。
 結晶性ポリアミド(A)の融点Tm2が上記下限値以上であることにより、熱時剛性等により優れるポリアミド組成物を得ることができる傾向にある。
 一方、結晶性ポリアミド(A)の融点Tm2が上記上限値以下であることにより、押出、成形等の溶融加工におけるポリアミド組成物の熱分解等をより抑制することができる傾向にある。
 融点Tm2は、下記実施例に記載されるように、JIS-K7121に準じて、示差走査熱量計(DSC)を用いて測定される。
The melting point Tm2 of the crystalline polyamide (A) is preferably 200 ° C. or higher, more preferably 220 ° C. or higher and 295 ° C. or lower, further preferably 230 ° C. or higher and 265 ° C. or lower, particularly preferably 240 ° C. or higher and 260 ° C. or lower, and 250 ° C. or higher. Most preferably, it is 260 ° C. or lower.
When the melting point Tm2 of the crystalline polyamide (A) is at least the above lower limit value, it tends to be possible to obtain a polyamide composition having better thermal rigidity and the like.
On the other hand, when the melting point Tm2 of the crystalline polyamide (A) is not more than the above upper limit value, it tends to be possible to further suppress the thermal decomposition of the polyamide composition in the melt processing such as extrusion and molding.
The melting point Tm2 is measured using a differential scanning calorimeter (DSC) according to JIS-K7121 as described in the following examples.
 本実施形態のポリアミド組成物において、(A)結晶性ポリアミドの含有量は、ポリアミド組成物中の全ポリアミドの質量に対して、例えば、50.0質量%以上90.0質量%以下とすることができ、52.5質量%以上90.0質量%以下が好ましく、54.0質量%以上90.0質量%以下がより好ましく、55.0質量%以上85.0質量%以下がさらに好ましく、56.0質量%以上80.0質量%以下がよりさらに好ましく、57.0質量%以上77.5質量%以下が特に好ましく、57.5質量%以上75.5質量%以下が最も好ましい。
 (A)結晶性ポリアミドの含有量を上記範囲とすることで、成形体としたときの機械的性質、特に熱時剛性、流動性、耐腐食性等に優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物は、成形体としたときの表面外観に優れたものとなる。
In the polyamide composition of the present embodiment, the content of (A) crystalline polyamide shall be, for example, 50.0% by mass or more and 90.0% by mass or less with respect to the mass of the total polyamide in the polyamide composition. 52.5% by mass or more and 90.0% by mass or less is preferable, 54.0% by mass or more and 90.0% by mass or less is more preferable, and 55.0% by mass or more and 85.0% by mass or less is further preferable. It is more preferably 56.0% by mass or more and 80.0% by mass or less, particularly preferably 57.0% by mass or more and 77.5% by mass or less, and most preferably 57.5% by mass or more and 75.5% by mass or less.
(A) By setting the content of the crystalline polyamide in the above range, a polyamide composition having excellent mechanical properties when formed into a molded product, particularly excellent thermal rigidity, fluidity, corrosion resistance and the like can be obtained. Further, the polyamide composition containing a component typified by an inorganic filler has an excellent surface appearance when formed into a molded product.
<(B)非晶性ポリアミド>
 (B)非晶性ポリアミドは、結晶化エンタルピーΔHが15J/g以下のポリアミドを指す。(B)非晶性ポリアミドの結晶化エンタルピーは10J/g以下が好ましく、5J/g以下がより好ましく、0J/gであることがさらに好ましい。結晶化エンタルピーΔHは、例えば、PERKIN-ELMER社製のDiamond-DSC等の測定装置を用いて測定することができる。
 (B)非晶性ポリアミドとしては、結晶化エンタルピーΔHが上記上限値以下のポリアミドであれば特に限定されないが、半芳香族ポリアミドであってよい。
<(B) Amorphous polyamide>
(B) Amorphous polyamide refers to a polyamide having a crystallization enthalpy ΔH of 15 J / g or less. (B) The crystallization enthalpy of the amorphous polyamide is preferably 10 J / g or less, more preferably 5 J / g or less, and further preferably 0 J / g. The crystallization enthalpy ΔH can be measured using, for example, a measuring device such as Diamond-DSC manufactured by PERKIN-ELMER.
The amorphous polyamide (B) is not particularly limited as long as the crystallization enthalpy ΔH is not more than the above upper limit value, but may be a semi-aromatic polyamide.
 (B)非晶性ポリアミドが半芳香族ポリアミドである場合には、ジアミン単位とジカルボン酸単位とを含有するポリアミドであることが好ましい。
 (B)非晶性ポリアミドは、イソフタル酸単位を少なくとも75モル%含む(B-a)ジカルボン酸単位と、炭素数4以上10以下のジアミン単位を少なくとも50モル%含む(B-b)ジアミン単位とを含有するポリアミドであることが好ましい。
 上記イソフタル酸単位及び炭素数4以上10以下のジアミン単位の合計量は、(B)非晶性ポリアミドの全構成単位の総量に対して、75モル%以上100モル%以下が好ましく、90モル%以上100モル%以下がより好ましく、100モル%がさらに好ましい。
 本発明において(B)非晶性ポリアミドを構成する所定の単量体単位の割合は、核磁気共鳴分光法(NMR)等により測定することができる。
(B) When the amorphous polyamide is a semi-aromatic polyamide, it is preferably a polyamide containing a diamine unit and a dicarboxylic acid unit.
(B) The amorphous polyamide contains at least 75 mol% of (BA) dicarboxylic acid units containing at least 75 mol% of isophthalic acid units and at least 50 mol% of diamine units having 4 or more and 10 or less carbon atoms (B) diamine units. It is preferable that the polyamide contains and.
The total amount of the isophthalic acid unit and the diamine unit having 4 or more and 10 or less carbon atoms is preferably 75 mol% or more and 100 mol% or less, preferably 90 mol% or less, based on the total amount of all the constituent units of (B) the amorphous polyamide. More than 100 mol% is more preferable, and 100 mol% is further preferable.
In the present invention, (B) the ratio of a predetermined monomer unit constituting the amorphous polyamide can be measured by nuclear magnetic resonance spectroscopy (NMR) or the like.
[(B-a)ジカルボン酸単位]
 (B-a)ジカルボン酸単位において、ジカルボン酸の総量に対する、イソフタル酸単位の含有量は75モル%以上が好ましく、75モル%以上100モル%以下がより好ましく、90モル%以上100モル%以下がさらに好ましく、100モル%が特に好ましい。
 ジカルボン酸全モル数に対する、イソフタル酸単位の含有量が上記下限値以上であることにより、機械的性質、熱時剛性、流動性、表面外観性、振動減衰及びノイズ抑制効果を同時に満足する、ポリアミド組成物を得ることができる。
[(BA) Dicarboxylic acid unit]
(BA) In the dicarboxylic acid unit, the content of the isophthalic acid unit with respect to the total amount of the dicarboxylic acid is preferably 75 mol% or more, more preferably 75 mol% or more and 100 mol% or less, and 90 mol% or more and 100 mol% or less. Is more preferable, and 100 mol% is particularly preferable.
A polyamide that simultaneously satisfies mechanical properties, thermal rigidity, fluidity, surface appearance, vibration damping, and noise suppression effect when the content of isophthalic acid unit with respect to the total number of moles of dicarboxylic acid is equal to or higher than the above lower limit. The composition can be obtained.
 (B-a)ジカルボン酸単位は、イソフタル酸単位以外の芳香族ジカルボン酸単位、脂肪族ジカルボン酸単位、脂環式ジカルボン酸単位を含有してもよい。 The (BA) dicarboxylic acid unit may contain an aromatic dicarboxylic acid unit, an aliphatic dicarboxylic acid unit, and an alicyclic dicarboxylic acid unit other than the isophthalic acid unit.
(芳香族ジカルボン酸単位)
 イソフタル酸単位以外の芳香族ジカルボン酸単位を構成する芳香族ジカルボン酸としては、以下に限定されるものではないが、例えば、フェニル基、ナフチル基を有するジカルボン酸が挙げられる。芳香族ジカルボン酸の芳香族基は、無置換でも置換基を有していてもよい。
 この置換基としては、特に限定されないが、例えば、炭素数1以上4以下のアルキル基、炭素数6以上10以下のアリール基、炭素数7以上10以下のアリールアルキル基、クロロ基及びブロモ基等のハロゲン基、炭素数1以上6以下のシリル基、スルホン酸基及びその塩(ナトリウム塩等)等が挙げられる。
 具体的には、以下に限定されるものではないが、テレフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸等の無置換又は所定の置換基で置換された炭素数8以上20以下の芳香族ジカルボン酸等が挙げられる。中でも、テレフタル酸が好ましい。
 芳香族ジカルボン酸単位を構成する芳香族ジカルボン酸は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Aromatic dicarboxylic acid unit)
Examples of the aromatic dicarboxylic acid constituting the aromatic dicarboxylic acid unit other than the isophthalic acid unit include, but are not limited to, a dicarboxylic acid having a phenyl group and a naphthyl group. The aromatic group of the aromatic dicarboxylic acid may be unsubstituted or have a substituent.
The substituent is not particularly limited, and is, for example, an alkyl group having 1 or more and 4 or less carbon atoms, an aryl group having 6 or more and 10 or less carbon atoms, an arylalkyl group having 7 or more and 10 or less carbon atoms, a chloro group, a bromo group and the like. Examples thereof include a halogen group of the above, a silyl group having 1 or more and 6 or less carbon atoms, a sulfonic acid group and a salt thereof (sodium salt, etc.).
Specifically, it is not limited to the following, but is not substituted with terephthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodiumsulfoisophthalic acid and the like. Alternatively, an aromatic dicarboxylic acid having 8 or more and 20 or less carbon atoms substituted with a predetermined substituent can be mentioned. Of these, terephthalic acid is preferable.
As the aromatic dicarboxylic acid constituting the aromatic dicarboxylic acid unit, only one kind may be used alone, or two or more kinds may be used in combination.
(脂肪族ジカルボン酸単位)
 脂肪族ジカルボン酸単位を構成する脂肪族ジカルボン酸としては、以下に限定されるものではないが、例えば、マロン酸、ジメチルマロン酸、コハク酸、2,2-ジメチルコハク酸、2,3-ジメチルグルタル酸、2,2-ジエチルコハク酸、2,3-ジエチルグルタル酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、オクタデカン二酸、エイコサン二酸、ジグリコール酸等の炭素数3以上20以下の直鎖状又は分岐鎖状飽和脂肪族ジカルボン酸等が挙げられる。
(Alphatic dicarboxylic acid unit)
The aliphatic dicarboxylic acid constituting the aliphatic dicarboxylic acid unit is not limited to the following, and is, for example, malonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethyl. Glutalic acid, 2,2-diethylsuccinic acid, 2,3-diethylglutaric acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, suberic acid, azeline Linear or branched saturated aliphatic dicarboxylic acids having 3 to 20 carbon atoms such as acids, sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, octadecanedioic acid, eicosandioic acid, diglycolic acid, etc. Can be mentioned.
(脂環式ジカルボン酸単位)
 脂環式ジカルボン酸単位(以下、「脂環式ジカルボン酸単位」ともいう)を構成する脂環式ジカルボン酸としては、以下に限定されるものではないが、例えば、脂環構造の炭素数が3以上10以下の脂環式ジカルボン酸が挙げられ、脂環構造の炭素数が5以上10以下の脂環式ジカルボン酸が好ましい。
 このような脂環式ジカルボン酸としては、以下に限定されるものではないが、例えば、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、及び1,3-シクロペンタンジカルボン酸等が挙げられる。中でも、1,4-シクロヘキサンジカルボン酸が好ましい。
 脂環式ジカルボン酸単位を構成する脂環式ジカルボン酸は、1種のみを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(Alicyclic dicarboxylic acid unit)
The alicyclic dicarboxylic acid constituting the alicyclic dicarboxylic acid unit (hereinafter, also referred to as “alicyclic dicarboxylic acid unit”) is not limited to the following, but for example, the number of carbon atoms in the alicyclic structure is limited. Examples thereof include alicyclic dicarboxylic acids having 3 or more and 10 or less, and alicyclic dicarboxylic acids having an alicyclic structure having 5 or more and 10 or less carbon atoms are preferable.
The alicyclic dicarboxylic acid is not limited to the following, and examples thereof include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,3-cyclopentanedicarboxylic acid. Can be mentioned. Of these, 1,4-cyclohexanedicarboxylic acid is preferable.
As the alicyclic dicarboxylic acid constituting the alicyclic dicarboxylic acid unit, only one kind may be used alone, or two or more kinds may be used in combination.
 脂環式ジカルボン酸の脂環式基は、無置換でも置換基を有していてもよい。置換基としては、以下に限定されるものではないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1以上4以下のアルキル基等が挙げられる。 The alicyclic group of the alicyclic dicarboxylic acid may be unsubstituted or have a substituent. The substituent is not limited to the following, but for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group and the like having 1 or more carbon atoms 4 The following alkyl groups and the like can be mentioned.
 イソフタル酸単位以外のジカルボン酸単位としては、芳香族ジカルボン酸単位を含むことが好ましく、炭素数が6以上12以下である芳香族ジカルボン酸を含むことがより好ましい。
 このようなジカルボン酸を用いることにより、ポリアミド組成物の機械的性質、特に吸水剛性、熱時剛性、流動性、表面外観性、耐腐食性等がより優れる傾向にある。
The dicarboxylic acid unit other than the isophthalic acid unit preferably contains an aromatic dicarboxylic acid unit, and more preferably contains an aromatic dicarboxylic acid having 6 or more and 12 or less carbon atoms.
By using such a dicarboxylic acid, the mechanical properties of the polyamide composition, particularly water absorption rigidity, thermal rigidity, fluidity, surface appearance, corrosion resistance, and the like tend to be more excellent.
 本実施形態のポリアミド組成物において、(B-a)ジカルボン酸単位を構成するジカルボン酸としては、上記ジカルボン酸として記載の化合物に限定されるものではなく、上記ジカルボン酸と等価な化合物であってもよい。
 ここで「ジカルボン酸と等価な化合物」とは、上記ジカルボン酸に由来するジカルボン酸構造と同様のジカルボン酸構造となり得る化合物をいう。このような化合物としては、以下に限定されるものではないが、例えば、ジカルボン酸の無水物及びハロゲン化物等が挙げられる。
In the polyamide composition of the present embodiment, the dicarboxylic acid constituting the (BA) dicarboxylic acid unit is not limited to the compound described as the dicarboxylic acid, but is a compound equivalent to the dicarboxylic acid. May be good.
Here, the "compound equivalent to a dicarboxylic acid" refers to a compound having a dicarboxylic acid structure similar to that of the dicarboxylic acid derived from the dicarboxylic acid. Examples of such compounds include, but are not limited to, anhydrides and halides of dicarboxylic acids.
 また、(B)非晶性ポリアミドは、必要に応じて、トリメリット酸、トリメシン酸、及びピロメリット酸等の3価以上の多価カルボン酸に由来する単位をさらに含んでもよい。
 3価以上の多価カルボン酸は、1種のみを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
Further, the (B) amorphous polyamide may further contain a unit derived from a trivalent or higher valent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid, if necessary.
As for the polyvalent carboxylic acid having a trivalent or higher value, only one type may be used alone, or two or more types may be used in combination.
[(B-b)ジアミン単位]
 (B)非晶性ポリアミドを構成する(B-b)ジアミン単位は、炭素数4以上10以下のジアミン単位を少なくとも50モル%含むことが好ましい。以下に限定されるものではないが、例えば、脂肪族ジアミン単位、脂環式ジアミン単位、芳香族ジアミン単位等が挙げられる。
[(Bb) diamine unit]
The (B) diamine unit constituting the (B) amorphous polyamide preferably contains at least 50 mol% of the diamine unit having 4 or more and 10 or less carbon atoms. Examples thereof include, but are not limited to, an aliphatic diamine unit, an alicyclic diamine unit, and an aromatic diamine unit.
(脂肪族ジアミン単位)
 脂肪族ジアミン単位を構成する脂肪族ジアミンとしては、以下に限定されるものではないが、例えば、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカメチレンジアミン等の炭素数2以上20以下の直鎖状飽和脂肪族ジアミン等が挙げられる。
(Alphatic diamine unit)
The aliphatic diamine constituting the aliphatic diamine unit is not limited to the following, and for example, ethylene diamine, propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, etc. Examples thereof include linear saturated aliphatic diamines having 2 or more and 20 or less carbon atoms such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, and tridecamethylenediamine.
(脂環式ジアミン単位)
 脂環式ジアミン単位を構成する脂環式ジアミン(以下、「脂環式ジアミン」ともいう)としては、以下に限定されるものではないが、例えば、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,3-シクロペンタンジアミン等が挙げられる。
(Alicyclic diamine unit)
The alicyclic diamine constituting the alicyclic diamine unit (hereinafter, also referred to as “alicyclic diamine”) is not limited to the following, and is, for example, 1,4-cyclohexanediamine, 1,3-. Cyclohexanediamine, 1,3-cyclopentanediamine and the like can be mentioned.
(芳香族ジアミン単位)
 芳香族ジアミン単位を構成する芳香族ジアミンとしては、芳香族を含有するジアミンであれば以下に限定されるものではないが、例えば、メタキシリレンジアミン等が挙げられる。
(Aromatic diamine unit)
The aromatic diamine constituting the aromatic diamine unit is not limited to the following as long as it is a diamine containing an aromatic, and examples thereof include metaxylylenediamine.
 中でも、脂肪族ジアミン単位が好ましく、炭素数4以上10以下の直鎖状飽和脂肪族基を有するジアミン単位がより好ましく、炭素数6以上10以下の直鎖状飽和脂肪族基を有するジアミン単位がさらに好ましく、ヘキサメチレンジアミン単位が特に好ましい。
 このようなジアミンを用いることにより、機械的性質、特に吸水剛性、熱時剛性、流動性、表面外観性、腐食性等により優れるポリアミド組成物となる傾向にある。
 ジアミンは、1種のみを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
Among them, an aliphatic diamine unit is preferable, a diamine unit having a linear saturated aliphatic group having 4 or more and 10 or less carbon atoms is more preferable, and a diamine unit having a linear saturated aliphatic group having 6 or more and 10 or less carbon atoms is preferable. Further preferred, hexamethylenediamine units are particularly preferred.
By using such a diamine, the polyamide composition tends to be excellent in mechanical properties, particularly water absorption rigidity, thermal rigidity, fluidity, surface appearance, corrosiveness and the like.
As the diamine, only one kind may be used alone, or two or more kinds may be used in combination.
 (B)非晶性ポリアミドとしては、ポリアミド6I、6I/6T、9I、10Iが好ましく、ポリアミド6Iが特に好ましい。 (B) As the amorphous polyamide, polyamide 6I, 6I / 6T, 9I and 10I are preferable, and polyamide 6I is particularly preferable.
 (B)非晶性ポリアミドは、必要に応じて、ビスヘキサメチレントリアミン等の3価以上の多価脂肪族アミンをさらに含んでもよい。
 3価以上の多価脂肪族アミンは、1種のみ単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(B) The amorphous polyamide may further contain a trivalent or higher valent aliphatic amine such as bishexamethylenetriamine, if necessary.
The trivalent or higher polyvalent aliphatic amine may be used alone or in combination of two or more.
[ラクタム単位及びアミノカルボン酸単位からなる群より選ばれる少なくとも1種の単位]
 (B)非晶性ポリアミドは、ラクタム単位及びアミノカルボン酸単位からなる群より選ばれる少なくとも1種の単位を更に含有することができる。このような単位を含むことにより、靭性により優れるポリアミドが得られる傾向にある。ここでラクタム単位及びアミノカルボン酸単位を構成するラクタム及びアミノカルボン酸とは、重(縮)合可能なラクタム及びアミノカルボン酸をいう。
[At least one unit selected from the group consisting of lactam units and aminocarboxylic acid units]
(B) The amorphous polyamide can further contain at least one unit selected from the group consisting of lactam units and aminocarboxylic acid units. By including such a unit, a polyamide having better toughness tends to be obtained. Here, the lactam and the aminocarboxylic acid constituting the lactam unit and the aminocarboxylic acid unit refer to the lactam and the aminocarboxylic acid that can be combined (reduced).
 ラクタム単位及びアミノカルボン酸単位を構成するラクタム及びアミノカルボン酸としては、以下に限定されるものではないが、例えば、炭素数4以上14以下のラクタム及びアミノカルボン酸が好ましく、炭素数6以上12以下のラクタム及びアミノカルボン酸がより好ましい。 The lactam and aminocarboxylic acid constituting the lactam unit and the aminocarboxylic acid unit are not limited to the following, but for example, lactam and aminocarboxylic acid having 4 or more and 14 or less carbon atoms are preferable, and 6 or more and 12 carbon atoms are preferable. The following lactams and aminocarboxylic acids are more preferred.
 ラクタム単位を構成するラクタムとしては、以下に限定されるものではないが、例えば、ブチロラクタム、ピバロラクタム、ε-カプロラクタム、カプリロラクタム、エナントラクタム、ウンデカノラクタム、ラウロラクタム(ドデカノラクタム)等が挙げられる。
 中でも、ラクタムとしては、ε-カプロラクタム又はラウロラクタムが好ましく、ε-カプロラクタムがより好ましい。このようなラクタムを含むことにより、靭性により優れるポリアミド組成物となる傾向にある。
The lactam constituting the lactam unit is not limited to the following, and examples thereof include butyloractam, pivalolactam, ε-caprolactam, caprolactam, enantractam, undecanolactam, laurolactam (dodecanolactam) and the like. Will be.
Among them, as the lactam, ε-caprolactam or laurolactam is preferable, and ε-caprolactam is more preferable. The inclusion of such lactam tends to result in a polyamide composition having better toughness.
 アミノカルボン酸単位を構成するアミノカルボン酸としては、以下に限定されるものではないが、例えば、ラクタムが開環した化合物であるω-アミノカルボン酸やα,ω-アミノ酸等が挙げられる。
 アミノカルボン酸としては、ω位がアミノ基で置換された炭素数4以上14以下の直鎖状又は分岐鎖状飽和脂肪族カルボン酸が好ましい。このようなアミノカルボン酸としては、以下に限定されるものではないが、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が挙げられる。また、アミノカルボン酸としては、パラアミノメチル安息香酸等も挙げられる。
The aminocarboxylic acid constituting the aminocarboxylic acid unit is not limited to the following, and examples thereof include ω-aminocarboxylic acid and α, ω-amino acids, which are compounds in which lactam is opened.
As the aminocarboxylic acid, a linear or branched saturated aliphatic carboxylic acid having 4 to 14 carbon atoms in which the ω position is substituted with an amino group is preferable. Examples of such aminocarboxylic acids include, but are not limited to, 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. Further, examples of the aminocarboxylic acid include paraaminomethylbenzoic acid and the like.
 ラクタム単位及びアミノカルボン酸単位を構成するラクタム及びアミノカルボン酸は、それぞれ1種のみを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The lactam and aminocarboxylic acid constituting the lactam unit and the aminocarboxylic acid unit may be used alone or in combination of two or more.
 ラクタム単位及びアミノカルボン酸単位の合計割合(モル%)は、ポリアミド全体に対して、0モル%以上20モル%以下が好ましく、0モル%以上10モル%以下がより好ましく、0モル%以上5モル%以下がさらに好ましい。
 ラクタム単位及びアミノカルボン酸単位の合計割合が上記範囲であることにより、流動性の向上等の効果が得られる傾向にある。
The total ratio (mol%) of the lactam unit and the aminocarboxylic acid unit is preferably 0 mol% or more and 20 mol% or less, more preferably 0 mol% or more and 10 mol% or less, and 0 mol% or more and 5 of the total polyamide. More preferably, it is mol% or less.
When the total ratio of the lactam unit and the aminocarboxylic acid unit is within the above range, the effect of improving the fluidity or the like tends to be obtained.
<末端封止剤>
 本実施形態のポリアミド組成物に含まれる(A)結晶性ポリアミド及び(B)非晶性ポリアミドからなる群より選ばれる少なくとも1種のポリアミドは末端封止剤により封止された末端を有していてもよい。
 このような末端封止剤は、上述したジカルボン酸とジアミンと、必要に応じて用いられる、ラクタム及びアミノカルボン酸からなる群より選ばれる少なくとも1種の化合物とから、ポリアミドを製造する際に、分子量調節剤としても添加することができる。
<Terminal sealant>
At least one polyamide selected from the group consisting of (A) crystalline polyamide and (B) amorphous polyamide contained in the polyamide composition of the present embodiment has an end sealed with an end sealant. May be.
Such a terminal encapsulant is used when producing a polyamide from the above-mentioned dicarboxylic acid and diamine, and at least one compound selected from the group consisting of lactam and aminocarboxylic acid, which is used as necessary. It can also be added as a molecular weight modifier.
 末端封止剤としては、以下に限定されるものではないが、例えば、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等が挙げられる。酸無水物としては、例えば、モノカルボン酸、モノアミン、無水フタル酸等が挙げられる。
 中でも、モノカルボン酸又はモノアミンが好ましい。ポリアミドの末端が末端封止剤で封鎖されていることにより、熱安定性により優れるポリアミド組成物となる傾向にある。
 末端封止剤は、1種のみを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
Examples of the terminal encapsulant include, but are not limited to, acid anhydrides, monoisocyanates, monoacid halides, monoesters, and monoalcohols. Examples of the acid anhydride include monocarboxylic acid, monoamine, phthalic anhydride and the like.
Of these, monocarboxylic acids or monoamines are preferred. Since the ends of the polyamide are sealed with an end sealant, the polyamide composition tends to have better thermal stability.
As the end sealant, only one type may be used alone, or two or more types may be used in combination.
 末端封止剤として使用できるモノカルボン酸としては、ポリアミドの末端に存在し得るアミノ基との反応性を有するものであればよい。モノカルボン酸として具体的には、以下に限定されるものではないが、例えば、脂肪族モノカルボン酸、脂環式モノカルボン酸、芳香族モノカルボン酸等が挙げられる。
 脂肪族モノカルボン酸としては、以下に限定されるものではないが、例えば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸等が挙げられる。
 脂環式モノカルボン酸としては、以下に限定されるものではないが、例えば、シクロヘキサンカルボン酸等が挙げられる。
 芳香族モノカルボン酸としては、以下に限定されるものではないが、例えば、安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等が挙げられる。
 これらモノカルボン酸は、1種のみを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
The monocarboxylic acid that can be used as the terminal encapsulant may be any acid that has reactivity with an amino group that can be present at the terminal of the polyamide. Specific examples of the monocarboxylic acid include, but are not limited to, aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, and aromatic monocarboxylic acids.
The aliphatic monocarboxylic acid is not limited to, but is not limited to, for example, formic acid, acetic acid, propionic acid, fatty acid, valeric acid, caproic acid, capric acid, lauric acid, tridecylic acid, myristyl acid, palmitic acid, and the like. Examples thereof include stearic acid, pivalic acid, isobutyl acid and the like.
Examples of the alicyclic monocarboxylic acid include, but are not limited to, cyclohexanecarboxylic acid.
Examples of the aromatic monocarboxylic acid include, but are not limited to, benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid and the like.
These monocarboxylic acids may be used alone or in combination of two or more.
 末端封止剤として使用できるモノアミンとしては、ポリアミドの末端に存在し得るカルボキシ基との反応性を有するものであればよい。モノアミンとして具体的には、以下に限定されるものではないが、例えば、脂肪族モノアミン、脂環式モノアミン、芳香族モノアミン等が挙げられる。
 脂肪族アミンとしては、以下に限定されるものではないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等が挙げられる。
 脂環式アミンとしては、以下に限定されるものではないが、例えば、シクロヘキシルアミン、ジシクロヘキシルアミン等が挙げられる。
 芳香族アミンとしては、以下に限定されるものではないが、例えば、アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等が挙げられる。
 これらモノアミンは、1種のみを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
The monoamine that can be used as the terminal encapsulant may be any monoamine that has reactivity with a carboxy group that may be present at the terminal of the polyamide. Specific examples of the monoamine include, but are not limited to, aliphatic monoamines, alicyclic monoamines, aromatic monoamines, and the like.
The aliphatic amine is not limited to, but is not limited to, for example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, and dibutylamine. And so on.
Examples of the alicyclic amine include, but are not limited to, cyclohexylamine and dicyclohexylamine.
The aromatic amine is not limited to the following, and examples thereof include aniline, toluidine, diphenylamine, and naphthylamine.
These monoamines may be used alone or in combination of two or more.
 末端封止剤により末端封止されたポリアミドを含有するポリアミド組成物は、耐熱性、流動性、靭性、低吸水性、剛性、耐腐食性、振動減衰及びノイズ抑制効果に優れている傾向にある。 Polyamide compositions containing polyamides terminally sealed with an end sealant tend to be excellent in heat resistance, fluidity, toughness, low water absorption, rigidity, corrosion resistance, vibration damping and noise suppression effects. ..
<ポリアミドの製造方法>
 各ポリアミドを得る際に、ジカルボン酸の添加量とジアミンの添加量とは、同モル量付近であることが好ましい。重合反応中のジアミンの反応系外への逃散分もモル比においては考慮して、ジカルボン酸全体のモル量1に対して、ジアミン全体のモル量は、0.9以上1.2以下が好ましく、0.95以上1.1以下がより好ましく、0.98以上1.05以下がさらに好ましい。
<Polyamide manufacturing method>
When each polyamide is obtained, the amount of the dicarboxylic acid added and the amount of the diamine added are preferably close to the same molar amount. Considering the amount of diamine released from the reaction system during the polymerization reaction in terms of molar ratio, the molar amount of the entire diamine is preferably 0.9 or more and 1.2 or less with respect to the molar amount of 1 of the total dicarboxylic acid. , 0.95 or more and 1.1 or less are more preferable, and 0.98 or more and 1.05 or less are further preferable.
 ポリアミドの製造方法としては、以下に限定されるものではないが、例えば、以下の(1)又は(2)の重合工程を含む。
 (1)ジカルボン酸単位を構成するジカルボン酸と、ジアミン単位を構成するジアミンとの組み合わせを重合して重合体を得る工程。
 (2)ラクタム単位を構成するラクタム、及び、アミノカルボン酸単位を構成するアミノカルボン酸からなる群より選ばれる1種以上を重合して重合体を得る工程。
The method for producing a polyamide is not limited to the following, but includes, for example, the following polymerization step (1) or (2).
(1) A step of polymerizing a combination of a dicarboxylic acid constituting a dicarboxylic acid unit and a diamine constituting a diamine unit to obtain a polymer.
(2) A step of polymerizing one or more selected from the group consisting of lactam constituting a lactam unit and aminocarboxylic acid constituting an aminocarboxylic acid unit to obtain a polymer.
 また、ポリアミドの製造方法としては、前記重合工程の後に、ポリアミドの重合度を上昇させる上昇工程を、更に含むことが好ましい。また、必要に応じて、前記重合工程及び前記上昇工程の後に、得られた重合体の末端を末端封止剤により封止する封止工程を含んでいてもよい。 Further, as a method for producing a polyamide, it is preferable to further include an increasing step of increasing the degree of polymerization of the polyamide after the polymerization step. Further, if necessary, after the polymerization step and the ascending step, a sealing step of sealing the ends of the obtained polymer with an end-sealing agent may be included.
 ポリアミドの具体的な製造方法としては、例えば、以下の1)~4)に例示するように種々の方法が挙げられる。
 1)ジカルボン酸-ジアミン塩、ジカルボン酸とジアミンとの混合物、ラクタム、及び、アミノカルボン酸からなる群より選ばれる1種以上の水溶液又は水懸濁液を加熱し、溶融状態を維持したまま重合させる方法(以下、「熱溶融重合法」と称する場合がある)。
 2)熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(以下、「熱溶融重合・固相重合法」と称する場合がある)。
 3)ジカルボン酸-ジアミン塩、ジカルボン酸とジアミンとの混合物、ラクタム、及び、アミノカルボン酸からなる群より選ばれる1種以上を、固体状態を維持したまま重合させる方法(以下、「固相重合法」と称する場合がある)。
 4)ジカルボン酸と等価なジカルボン酸ハライド成分と、ジアミン成分とを用いて重合させる方法(以下、「溶液法」と称する場合がある)。
Specific examples of the method for producing the polyamide include various methods as illustrated in 1) to 4) below.
1) One or more aqueous solutions or aqueous suspensions selected from the group consisting of a dicarboxylic acid-diamine salt, a mixture of a dicarboxylic acid and a diamine, lactam, and an aminocarboxylic acid are heated and polymerized while maintaining a molten state. (Hereinafter, it may be referred to as "heat melt polymerization method").
2) A method of increasing the degree of polymerization of a polyamide obtained by a hot melt polymerization method while maintaining a solid state at a temperature below the melting point (hereinafter, may be referred to as "hot melt polymerization / solid phase polymerization method").
3) A method of polymerizing one or more selected from the group consisting of a dicarboxylic acid-diamine salt, a mixture of a dicarboxylic acid and a diamine, lactam, and an aminocarboxylic acid while maintaining a solid state (hereinafter, "solid phase weight"). Sometimes referred to as "legal").
4) A method of polymerizing using a dicarboxylic acid halide component equivalent to a dicarboxylic acid and a diamine component (hereinafter, may be referred to as "solution method").
 中でも、ポリアミドの具体的な製造方法としては、熱溶融重合法を含む製造方法が好ましい。また、熱溶融重合法によりポリアミドを製造する際には、重合が終了するまで、溶融状態を保持することが好ましい。溶融状態を保持するためには、ポリアミドに適した重合条件で製造することが必要となる。重合条件としては、例えば、以下に示す条件等が挙げられる。まず、熱溶融重合法における重合圧力を14kg/cm以上25kg/cm以下(ゲージ圧)に制御し、加熱を続ける。次いで、槽内の圧力が大気圧(ゲージ圧は0kg/cm)になるまで30分間以上かけながら降圧する。 Among them, as a specific method for producing polyamide, a production method including a hot melt polymerization method is preferable. Further, when producing a polyamide by the hot melt polymerization method, it is preferable to maintain the molten state until the polymerization is completed. In order to maintain the molten state, it is necessary to produce the product under polymerization conditions suitable for polyamide. Examples of the polymerization conditions include the following conditions. First, the polymerization pressure in the hot melt polymerization method is controlled to 14 kg / cm 2 or more and 25 kg / cm 2 or less (gauge pressure), and heating is continued. Next, the pressure is lowered while applying 30 minutes or more until the pressure in the tank reaches atmospheric pressure (gauge pressure is 0 kg / cm 2 ).
 ポリアミドの製造方法において、重合形態としては、特に限定されず、バッチ式でもよく、連続式でもよい。
 ポリアミドの製造に用いる重合装置としては、特に限定されるものではなく、公知の装置を用いることができる。重合装置として具体的には、例えば、オートクレーブ型反応器、タンブラー型反応器、押出機型反応器(ニーダー等)等が挙げられる。
In the method for producing a polyamide, the polymerization form is not particularly limited, and may be a batch type or a continuous type.
The polymerization apparatus used for producing the polyamide is not particularly limited, and a known apparatus can be used. Specific examples of the polymerization apparatus include an autoclave type reactor, a tumbler type reactor, an extruder type reactor (kneader and the like) and the like.
 以下、ポリアミドの製造方法として、バッチ式の熱溶融重合法によりポリアミドを製造する方法を具体的に示すが、ポリアミドの製造方法は、これに限定されない。
 まず、ポリアミドの原料成分(ジカルボン酸とジアミンとの組み合わせ、並びに、必要に応じて、ラクタム及びアミノカルボン酸からなる群より選ばれる少なくとも1種)を、約40質量%以上60質量%以下含有する水溶液を調製する。次いで、当該水溶液を110℃以上180℃以下の温度、及び、約0.035MPa以上0.6MPa以下(ゲージ圧)の圧力で操作される濃縮槽で、約65質量%以上90質量%以下に濃縮して濃縮溶液を得る。
 次いで、得られた濃縮溶液をオートクレーブに移し、オートクレーブにおける圧力が約1.2MPa以上2.2MPa以下(ゲージ圧)になるまで加熱を続ける。
 次いで、オートクレーブにおいて、水及びガス成分のうち少なくともいずれか1種の成分を抜きながら圧力を約1.2MPa以上2.2MPa以下(ゲージ圧)に保つ。次いで、温度が約220℃以上260℃以下に達した時点で、大気圧まで降圧する(ゲージ圧は、0MPa)。オートクレーブ内の圧力を大気圧に降圧後、必要に応じて減圧することにより、副生する水を効果的に除くことができる。
 次いで、オートクレーブを窒素等の不活性ガスで加圧し、オートクレーブからポリアミド溶融物をストランドとして押し出す。押し出されたストランドを、冷却、カッティングすることにより、ポリアミドのペレットを得る。
Hereinafter, as a method for producing a polyamide, a method for producing a polyamide by a batch-type hot melt polymerization method will be specifically shown, but the method for producing a polyamide is not limited to this.
First, it contains about 40% by mass or more and 60% by mass or less of a raw material component of polyamide (a combination of a dicarboxylic acid and a diamine, and, if necessary, at least one selected from the group consisting of lactam and aminocarboxylic acid). Prepare an aqueous solution. Next, the aqueous solution is concentrated to about 65% by mass or more and 90% by mass or less in a concentration tank operated at a temperature of 110 ° C. or more and 180 ° C. or less and a pressure of about 0.035 MPa or more and 0.6 MPa or less (gauge pressure). To obtain a concentrated solution.
Then, the obtained concentrated solution is transferred to an autoclave, and heating is continued until the pressure in the autoclave becomes about 1.2 MPa or more and 2.2 MPa or less (gauge pressure).
Next, in the autoclave, the pressure is maintained at about 1.2 MPa or more and 2.2 MPa or less (gauge pressure) while removing at least one of the water and gas components. Then, when the temperature reaches about 220 ° C. or higher and 260 ° C. or lower, the pressure is lowered to atmospheric pressure (gauge pressure is 0 MPa). By reducing the pressure in the autoclave to atmospheric pressure and then reducing the pressure as necessary, water produced as a by-product can be effectively removed.
The autoclave is then pressurized with an inert gas such as nitrogen to extrude the polyamide melt from the autoclave as strands. The extruded strands are cooled and cut to obtain polyamide pellets.
<ポリアミドのポリマー末端>
 本実施形態のポリアミド組成物に含まれるポリアミド((A)結晶性ポリアミド及び(B)非晶性ポリアミド)のポリマー末端としては、特に限定されないが、以下の1)~4)に分類され、定義することができる。
 すなわち、1)アミノ末端、2)カルボキシ末端、3)封止剤による末端、4)その他の末端である。
 1)アミノ末端は、アミノ基(-NH基)を有するポリマー末端であり、ジアミン単位に由来する。
 2)カルボキシ末端は、カルボキシ基(-COOH基)を有するポリマー末端であり、ジカルボン酸に由来する。
 3)封止剤による末端は、重合時に封止剤を添加した場合に形成される末端である。封止剤としては、後述する末端封止剤が挙げられる。
 4)その他の末端は、上述した1)~3)に分類されないポリマー末端である。その他の末端として具体的には、アミノ末端が脱アンモニア反応して生成した末端、カルボキシ末端から脱炭酸反応して生成した末端等が挙げられる。
<Polyamide polymer terminal>
The polymer terminal of the polyamide ((A) crystalline polyamide and (B) amorphous polyamide) contained in the polyamide composition of the present embodiment is not particularly limited, but is classified into the following 1) to 4) and defined. can do.
That is, 1) amino terminal, 2) carboxy terminal, 3) terminal by encapsulant, and 4) other terminal.
1) The amino terminus is a polymer terminus having an amino group (-NH 2 groups) and is derived from a diamine unit.
2) The carboxy terminal is a polymer terminal having a carboxy group (-COOH group) and is derived from a dicarboxylic acid.
3) The end by the encapsulant is the end formed when the encapsulant is added at the time of polymerization. Examples of the encapsulant include end encapsulants described later.
4) The other terminals are polymer ends that are not classified into 1) to 3) described above. Specific examples of the other terminal include a terminal produced by a decarboxylation reaction of an amino terminal, a terminal produced by a decarboxylation reaction from a carboxy terminal, and the like.
<ポリアミドの特性>
[(A)結晶性ポリアミドの特性]
 (A)結晶性ポリアミドの分子量、封止された末端量、融点Tm2、結晶化エンタルピーΔH、及び、tanδピーク温度は、下記構成とすることができ、具体的には下記に示す方法により測定することができる。
<Characteristics of polyamide>
[(A) Characteristics of crystalline polyamide]
(A) The molecular weight of the crystalline polyamide, the sealed terminal amount, the melting point Tm2, the crystallization enthalpy ΔH, and the tan δ peak temperature can have the following configurations, and are specifically measured by the methods shown below. be able to.
((A)結晶性ポリアミドの重量平均分子量Mw(A))
 (A)結晶性ポリアミドの分子量の指標としては、重量平均分子量を利用できる。(A)結晶性ポリアミドの重量平均分子量(Mw(A))は、10000以上50000以下が好ましく、15000以上45000以下がより好ましく、20000以上43000以下がさらに好ましく、25000以上40000以下が特に好ましい。
 Mw(A)が上記範囲であることにより、機械的特性、特に吸水剛性、熱時剛性、流動性、耐腐食性等を同時に満足できるポリアミド組成物が得られる傾向にある。また、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体は、表面外観がより優れたものとなる。
 (A)結晶性ポリアミドの重量平均分子量(Mw(A))の測定は、GPCを用いて測定することができる。
((A) Weight average molecular weight Mw (A) of crystalline polyamide)
(A) A weight average molecular weight can be used as an index of the molecular weight of the crystalline polyamide. (A) The weight average molecular weight (Mw (A)) of the crystalline polyamide is preferably 10,000 or more and 50,000 or less, more preferably 15,000 or more and 45,000 or less, further preferably 20,000 or more and 43,000 or less, and particularly preferably 25,000 or more and 40,000 or less.
When Mw (A) is in the above range, there is a tendency to obtain a polyamide composition that can simultaneously satisfy mechanical properties, particularly water absorption rigidity, thermal rigidity, fluidity, corrosion resistance and the like. Further, the molded product obtained from the polyamide composition containing a component typified by an inorganic filler has a more excellent surface appearance.
(A) The weight average molecular weight (Mw (A)) of the crystalline polyamide can be measured by using GPC.
((A)結晶性ポリアミドの分子量分布)
 (A)結晶性ポリアミドの分子量分布は、(A)結晶性ポリアミドの重量平均分子量(Mw(A))/(A)結晶性ポリアミドの数平均分子量(Mn(A))を指標とする。
 Mw(A)/Mn(A)は、1.0以上が好ましく、1.8以上2.2以下がより好ましく、1.9以上2.1以下がさらに好ましい。
 Mw(A)/Mn(A)が上記範囲であることにより、流動性等に優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体は、表面外観がより優れたものとなる。
((A) Molecular weight distribution of crystalline polyamide)
The molecular weight distribution of (A) crystalline polyamide is based on (A) weight average molecular weight of (A) crystalline polyamide (Mw (A)) / (A) number average molecular weight of (A) crystalline polyamide (Mn (A)) as an index.
Mw (A) / Mn (A) is preferably 1.0 or more, more preferably 1.8 or more and 2.2 or less, and further preferably 1.9 or more and 2.1 or less.
When Mw (A) / Mn (A) is in the above range, a polyamide composition having excellent fluidity and the like can be obtained. Further, the molded product obtained from the polyamide composition containing a component typified by an inorganic filler has a more excellent surface appearance.
 Mw(A)/Mn(A)を上記範囲内に制御する方法としては、例えば、以下の1)又は2)に示す方法等が挙げられる。
 1)ポリアミドの熱溶融重合時の添加物としてリン酸や次亜リン酸ナトリウムのような公知の重縮合触媒を加える方法。
 2)上記1)の方法に加えて、加熱条件や減圧条件のような重合条件を制御する方法。
Examples of the method for controlling Mw (A) / Mn (A) within the above range include the methods shown in 1) or 2) below.
1) A method of adding a known polycondensation catalyst such as phosphoric acid or sodium hypophosphite as an additive during thermal melt polymerization of polyamide.
2) In addition to the method of 1) above, a method of controlling polymerization conditions such as heating conditions and depressurizing conditions.
 Mw(A)/Mn(A)は、GPCを用いて得られたMw(A)、Mn(A)を使用して計算することができる。 Mw (A) / Mn (A) can be calculated using Mw (A) and Mn (A) obtained by using GPC.
((A)結晶性ポリアミドの封止された末端量)
 (A)結晶性ポリアミドの封止された末端量は、(A)結晶性ポリアミド1g当たり、5μmol当量/g以上180μmol当量/g以下が好ましく、5μmol当量/g以上150μmol当量/g以下がより好ましく、10μmol当量/g以上100μmol当量/g以下がさらに好ましく、15μmol当量/g以上80μmol当量/g以下が特に好ましく、20μmol当量/g以上60μmol当量/g以下が最も好ましい。封止された末端量が上記範囲であることにより、成形時のモールドデポジット(MD)の発生が抑制され、成形体としたときの表面外観、熱時強度、振動減衰及びノイズ抑制効果に優れた組成物とすることができる。封止された末端量は、例えば、NMRにより測定することができる。
((A) Sealed terminal amount of crystalline polyamide)
The sealed terminal amount of (A) crystalline polyamide is preferably 5 μmol equivalent / g or more and 180 μmol equivalent / g or less, more preferably 5 μmol equivalent / g or more and 150 μmol equivalent / g or less, per 1 g of (A) crystalline polyamide. It is more preferably 10 μmol equivalent / g or more and 100 μmol equivalent / g or less, particularly preferably 15 μmol equivalent / g or more and 80 μmol equivalent / g or less, and most preferably 20 μmol equivalent / g or more and 60 μmol equivalent / g or less. When the amount of the sealed end is in the above range, the generation of mold deposit (MD) during molding is suppressed, and the surface appearance, thermal strength, vibration damping and noise suppression effect of the molded product are excellent. It can be a composition. The amount of sealed ends can be measured, for example, by NMR.
((A)結晶性ポリアミドの融点Tm2)
 (A)結晶性ポリアミドの融点Tm2の下限値は、220℃が好ましく、230℃がより好ましく、240℃がさらに好ましい。一方、(A)結晶性ポリアミドの融点Tm2の上限値は、300℃が好ましく、290℃がより好ましく、280℃がさらに好ましく、270℃が特に好ましい。
 (A)結晶性ポリアミドの融点Tm2は、220℃以上300℃以下が好ましく、230℃以上290℃以下がより好ましく、240℃以上280℃以下がさらに好ましく、240℃以上270℃以下が特に好ましい。
 (A)結晶性ポリアミドの融点Tm2が上記下限値以上であることにより、ポリアミド組成物から得られる成形体の熱時剛性等がより優れる傾向にある。一方、(A)結晶性ポリアミドの融点Tm2が上記上限値以下であることにより、押出、成形等の溶融加工におけるポリアミド組成物の熱分解等をより抑制することができる傾向にある。
((A) Melting point Tm2 of crystalline polyamide)
The lower limit of the melting point Tm2 of the crystalline polyamide (A) is preferably 220 ° C., more preferably 230 ° C., and even more preferably 240 ° C. On the other hand, the upper limit of the melting point Tm2 of the crystalline polyamide (A) is preferably 300 ° C., more preferably 290 ° C., still more preferably 280 ° C., and particularly preferably 270 ° C.
The melting point Tm2 of the crystalline polyamide (A) is preferably 220 ° C. or higher and 300 ° C. or lower, more preferably 230 ° C. or higher and 290 ° C. or lower, further preferably 240 ° C. or higher and 280 ° C. or lower, and particularly preferably 240 ° C. or higher and 270 ° C. or lower.
(A) When the melting point Tm2 of the crystalline polyamide is at least the above lower limit value, the thermal rigidity of the molded product obtained from the polyamide composition tends to be more excellent. On the other hand, when the melting point Tm2 of (A) crystalline polyamide is not more than the above upper limit value, there is a tendency that thermal decomposition of the polyamide composition in melt processing such as extrusion and molding can be further suppressed.
((A)結晶性ポリアミドの結晶化エンタルピーΔH)
 (A)結晶性ポリアミドの結晶化エンタルピーΔHの下限値は、機械的特性、特に吸水剛性、熱時剛性の観点から、30J/gが好ましく、40J/gがより好ましく、50J/gがさらに好ましく、60J/gが特に好ましい。一方、(A)結晶性ポリアミドの結晶化エンタルピーΔHの上限値は、特に限定されず、高いほど好ましい。
 (A)結晶性ポリアミドの融点Tm2及び結晶化エンタルピーΔHの測定装置としては、例えば、PERKIN-ELMER社製のDiamond-DSC等が挙げられる。
((A) Crystallization enthalpy ΔH of crystalline polyamide)
(A) The lower limit of the crystallization enthalpy ΔH of the crystalline polyamide is preferably 30 J / g, more preferably 40 J / g, still more preferably 50 J / g, from the viewpoint of mechanical properties, particularly water absorption rigidity and thermal rigidity. , 60 J / g is particularly preferable. On the other hand, the upper limit of the crystallization enthalpy ΔH of (A) crystalline polyamide is not particularly limited, and the higher the value, the more preferable.
Examples of the device for measuring the melting point Tm2 and the crystallization enthalpy ΔH of the crystalline polyamide (A) include Diamond-DSC manufactured by PERKIN-ELMER.
((A)結晶性ポリアミドのtanδピーク温度)
 (A)結晶性ポリアミドのtanδピーク温度は、40℃以上が好ましく、50℃以上110℃以下がより好ましく、60℃以上100℃以下がさらに好ましく、70℃以上95℃以下が特に好ましく、80℃以上90℃以下が最も好ましい。
 (A)結晶性ポリアミドのtanδピーク温度が上記下限値以上であることにより、ポリアミド組成物から得られる成形体の吸水剛性、熱時剛性がより優れる傾向にある。
 (A)結晶性ポリアミドのtanδピーク温度は、ポリアミド組成物と同様に、粘弾性測定解析装置等(レオロジ製:DVE-V4)を用いて測定することができる。
((A) Tanδ peak temperature of crystalline polyamide)
(A) The tan δ peak temperature of the crystalline polyamide is preferably 40 ° C. or higher, more preferably 50 ° C. or higher and 110 ° C. or lower, further preferably 60 ° C. or higher and 100 ° C. or lower, particularly preferably 70 ° C. or higher and 95 ° C. or lower, and particularly preferably 80 ° C. Most preferably, it is 90 ° C. or higher and 90 ° C. or lower.
(A) When the tan δ peak temperature of the crystalline polyamide is at least the above lower limit value, the water absorption rigidity and the thermal rigidity of the molded product obtained from the polyamide composition tend to be more excellent.
(A) The tan δ peak temperature of the crystalline polyamide can be measured by using a viscoelasticity measuring and analyzing device (manufactured by Rheology: DVE-V4) in the same manner as the polyamide composition.
[(B)非晶性ポリアミドの特性]
 (B)非晶性ポリアミドの分子量、融点Tm2、結晶化エンタルピーΔH、tanδピーク温度、封止された末端量、アミノ末端量及びカルボキシ末端量は、下記構成とすることができ、具体的には下記に示す方法により測定することができる。
[(B) Characteristics of amorphous polyamide]
(B) The molecular weight, melting point Tm2, crystallization enthalpy ΔH, tan δ peak temperature, sealed terminal amount, amino terminal amount and carboxy terminal amount of the amorphous polyamide can have the following configurations, specifically. It can be measured by the method shown below.
((B)非晶性ポリアミドの重量平均分子量Mw(B))
 (B)非晶性ポリアミドの分子量の指標としては、(B)非晶性ポリアミドの重量平均分子量(Mw(B))を利用できる。
 (B)非晶性ポリアミドの重量平均分子量(Mw(B))は、10000以上50000以下が好ましく、10000以上45000以下がより好ましく、13000以上40000以下がさらに好ましく、15000以上35000以下がよりさらに好ましく、18000以上30000以下が特に好ましく、19000以上25000以下が最も好ましい。
 (A)結晶性ポリアミドに微分散した(B)非晶性ポリアミドのドメインの数平均粒子径を小さくするためには物理的な混錬効率を向上させることが望ましく、溶融状態での溶融粘度を近づけることで数平均粒子径を小さくすることができる。
 ポリアミドの分子構造中に芳香族化合物単位を含有している(B)非晶性ポリアミドは、(A)結晶性ポリアミドと同一分子量であれば溶融粘度が高いため、(B)非晶性ポリアミドは、(A)結晶性ポリアミドより分子量が小さい方が望ましい。
 すなわち、(B)非晶性ポリアミドの重量平均分子量(Mw(B))が上記範囲であることにより、(A)結晶性ポリアミドより分子量が小さくすることができ、成形体としたときの機械的性質、特に吸水剛性、熱時剛性、流動性、振動減衰及びノイズ抑制効果により優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体は、表面外観がより優れたものとなる。
 (B)非晶性ポリアミドの重量平均分子量(Mw(B))の測定は、GPCを用いて測定することができる。
((B) Weight average molecular weight Mw (B) of amorphous polyamide)
As an index of the molecular weight of (B) amorphous polyamide, (B) weight average molecular weight (Mw (B)) of (B) amorphous polyamide can be used.
(B) The weight average molecular weight (Mw (B)) of the amorphous polyamide is preferably 10,000 or more and 50,000 or less, more preferably 10,000 or more and 45,000 or less, further preferably 13,000 or more and 40,000 or less, and further preferably 15,000 or more and 35,000 or less. , 18,000 or more and 30,000 or less are particularly preferable, and 19000 or more and 25,000 or less are most preferable.
In order to reduce the number average particle size of the domains of (A) finely dispersed (B) amorphous polyamide in (A) crystalline polyamide, it is desirable to improve the physical kneading efficiency, and the melt viscosity in the molten state is adjusted. The number average particle size can be reduced by bringing them closer.
Since (B) amorphous polyamide containing an aromatic compound unit in the molecular structure of polyamide has a high melt viscosity if it has the same molecular weight as (A) crystalline polyamide, (B) amorphous polyamide , (A) It is desirable that the molecular weight is smaller than that of crystalline polyamide.
That is, when the weight average molecular weight (Mw (B)) of the (B) amorphous polyamide is in the above range, the molecular weight can be made smaller than that of the (A) crystalline polyamide, and the molded product is mechanically formed. A polyamide composition excellent in properties, particularly water absorption rigidity, thermal rigidity, fluidity, vibration damping and noise suppression effects can be obtained. Further, the molded product obtained from the polyamide composition containing a component typified by an inorganic filler has a more excellent surface appearance.
(B) The weight average molecular weight (Mw (B)) of the amorphous polyamide can be measured by using GPC.
((B)非晶性ポリアミドの分子量分布)
 (B)非晶性ポリアミドの分子量分布は、(B)非晶性ポリアミドの重量平均分子量(Mw(B))/(B)非晶性ポリアミドの数平均分子量(Mn(B))を指標とする。
 Mw(B)/Mn(B)は1.0以上3.5以下が好ましく、1.0以上3.0以下がより好ましく、1.7以上2.5以下がさらに好ましく、1.8以上2.3以下がよりさらに好ましく、1.9以上2.2以下が特に好ましく、1.9以上2.1以下が最も好ましい。
 Mw(B)/Mn(B)が上記範囲であることにより、成形体としたときの流動性、振動減衰及びノイズ抑制効果により優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体は、表面外観がより優れたものとなる。
((B) Molecular weight distribution of amorphous polyamide)
The molecular weight distribution of (B) amorphous polyamide is indexed by (B) weight average molecular weight of (B) amorphous polyamide (Mw (B)) / (B) number average molecular weight of (B) amorphous polyamide (Mn (B)). do.
Mw (B) / Mn (B) is preferably 1.0 or more and 3.5 or less, more preferably 1.0 or more and 3.0 or less, further preferably 1.7 or more and 2.5 or less, and 1.8 or more and 2 It is more preferably 0.3 or less, particularly preferably 1.9 or more and 2.2 or less, and most preferably 1.9 or more and 2.1 or less.
When Mw (B) / Mn (B) is in the above range, a polyamide composition excellent in fluidity, vibration damping and noise suppression effect when formed into a molded product can be obtained. Further, the molded product obtained from the polyamide composition containing a component typified by an inorganic filler has a more excellent surface appearance.
 Mw(B)/Mn(B)を上記範囲内に制御する方法としては、例えば、以下の1)又は2)に示す方法等が挙げられる。
 1)ポリアミドの熱溶融重合時の添加物としてリン酸や次亜リン酸ナトリウムのような公知の重縮合触媒を加える方法。
 2)上記1)の方法に加えて、加熱条件や減圧条件のような重合条件を制御し、できるだけ低温で且つ短時間で重縮合反応を完了させる方法。
Examples of the method for controlling Mw (B) / Mn (B) within the above range include the methods shown in 1) or 2) below.
1) A method of adding a known polycondensation catalyst such as phosphoric acid or sodium hypophosphite as an additive during thermal melt polymerization of polyamide.
2) In addition to the method of 1) above, a method of controlling polymerization conditions such as heating conditions and depressurizing conditions to complete the polycondensation reaction at the lowest possible temperature and in a short time.
 ポリアミドの分子構造中に芳香族化合物単位を含有していると、高分子量化に伴い、分子量分布(Mw/Mn)が高くなる傾向がある。分子量分布が高いことは分子の三次元構造を有するポリアミド分子の割合が高いことを示す。三次元構造を有するポリアミド分子の割合を少なくすることにより、(A)結晶性ポリアミドとの相溶性を高めドメインの数平均粒子径を小さくすることができる。よって、Mw(B)/Mn(B)を上記範囲内に制御することで、高温加工時において分子の三次元構造化の進行をより抑制し、成形体としたときの流動性、振動減衰及びノイズ抑制効果により優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体の表面外観がより優れたものとなる。
 Mw(B)/Mn(B)の測定は、GPCを用いて得られたMw(B)、Mn(B)を使用して計算することができる。
When an aromatic compound unit is contained in the molecular structure of polyamide, the molecular weight distribution (Mw / Mn) tends to increase as the molecular weight increases. A high molecular weight distribution indicates a high proportion of polyamide molecules having a three-dimensional structure of the molecule. By reducing the proportion of polyamide molecules having a three-dimensional structure, it is possible to increase the compatibility with (A) crystalline polyamide and reduce the number average particle size of the domain. Therefore, by controlling Mw (B) / Mn (B) within the above range, the progress of the three-dimensional structuring of the molecule during high-temperature processing is further suppressed, and the fluidity, vibration damping, and vibration damping when the molded body is formed. An excellent polyamide composition can be obtained due to the noise suppression effect. In addition, the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler becomes more excellent.
The measurement of Mw (B) / Mn (B) can be calculated using Mw (B) and Mn (B) obtained by using GPC.
((B)非晶性ポリアミドの結晶化エンタルピーΔH)
 (B)非晶性ポリアミドの結晶化エンタルピーΔHは、振動減衰及びノイズ抑制効果の観点から、15J/g以下が好ましく、10J/g以下がより好ましく、5J/g以下がさらに好ましく、0J/gが特に好ましい。
 (B)非晶性ポリアミドの結晶化エンタルピーΔHを上記範囲内に制御する方法としては、公知のポリアミドの結晶化度を小さくする方法をとることができ、特に限定されない。公知のポリアミドの結晶化度を小さくする方法として具体的には、例えば、ジカルボン酸単位に対するメタ位置換芳香族ジカルボン酸単位比率を高める方法、及び、ジアミン単位に対するメタ位置換芳香族ジアミン単位比率を高める方法が挙げられる。当該観点から、(B)非晶性ポリアミドは、(B-a)ジカルボン酸単位として、(B)非晶性ポリアミドを構成する全ジカルボン酸単位中、イソフタル酸単位を75モル%以上含むことが好ましく、100モル%含むことが特に好ましい。
 (B)非晶性ポリアミドの結晶化エンタルピーΔHの測定装置としては、例えば、PERKIN-ELMER社製のDiamond-DSC等が挙げられる。
((B) Crystallization enthalpy of amorphous polyamide ΔH)
(B) The crystallization enthalpy ΔH of the amorphous polyamide is preferably 15 J / g or less, more preferably 10 J / g or less, further preferably 5 J / g or less, and 0 J / g from the viewpoint of vibration attenuation and noise suppression effect. Is particularly preferable.
(B) As a method for controlling the crystallization enthalpy ΔH of the amorphous polyamide within the above range, a known method for reducing the crystallinity of the polyamide can be taken and is not particularly limited. Specifically, as a method for reducing the crystallinity of the known polyamide, for example, a method for increasing the meta-substituted aromatic dicarboxylic acid unit ratio with respect to the dicarboxylic acid unit, and a method for increasing the meta-substituted aromatic diamine unit ratio with respect to the diamine unit. There is a way to increase it. From this point of view, the (B) amorphous polyamide may contain 75 mol% or more of the isophthalic acid unit as the (BA) dicarboxylic acid unit in the total dicarboxylic acid units constituting the (B) amorphous polyamide. It is preferable, and it is particularly preferable to contain 100 mol%.
(B) Examples of the device for measuring the crystallization enthalpy ΔH of the amorphous polyamide include Diamond-DSC manufactured by PERKIN-ELMER.
((B)非晶性ポリアミドのtanδピーク温度)
 (B)非晶性ポリアミドのtanδピーク温度は、90℃以上が好ましく、100℃以上160℃以下がより好ましく、110℃以上150℃以下がさらに好ましく、120℃以上145℃以下が特に好ましく、130℃以上140℃以下が最も好ましい。
 (B)非晶性ポリアミドのtanδピーク温度が上記下限値以上であることにより、成形体としたときの吸水剛性、熱時剛性により優れるポリアミド組成物を得ることができる傾向にある。また、ポリアミド組成物のtanδピーク温度が上記上限値以下であることにより、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体の表面外観がより優れたものとなる。
 (B)非晶性ポリアミドのtanδピーク温度を上記範囲内に制御する方法としては、例えば、ジカルボン酸単位に対する芳香族モノマー比率を高める方法等が挙げられる。当該観点から、(B)非晶性ポリアミドは、(B-a)ジカルボン酸単位として、(B)非晶性ポリアミドを構成する全ジカルボン酸単位中、イソフタル酸単位を75モル%以上含むことが重要であり、100モル%含むことが特に好ましい。
 (B)非晶性ポリアミドのtanδピーク温度は、ポリアミド組成物と同様に、例えば、粘弾性測定解析装置等(レオロジ製:DVE-V4)を用いて測定することができる。
((B) Tanδ peak temperature of amorphous polyamide)
(B) The tan δ peak temperature of the amorphous polyamide is preferably 90 ° C. or higher, more preferably 100 ° C. or higher and 160 ° C. or lower, further preferably 110 ° C. or higher and 150 ° C. or lower, particularly preferably 120 ° C. or higher and 145 ° C. or lower, and 130 ° C. or higher. Most preferably, it is ℃ or more and 140 ℃ or less.
(B) When the tan δ peak temperature of the amorphous polyamide is at least the above lower limit value, it tends to be possible to obtain a polyamide composition having better water absorption rigidity and thermal rigidity when formed into a molded product. Further, when the tan δ peak temperature of the polyamide composition is not more than the above upper limit value, the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler becomes more excellent.
(B) As a method of controlling the tan δ peak temperature of the amorphous polyamide within the above range, for example, a method of increasing the ratio of the aromatic monomer to the dicarboxylic acid unit can be mentioned. From this point of view, the (B) amorphous polyamide may contain 75 mol% or more of the isophthalic acid unit as the (BA) dicarboxylic acid unit in the total dicarboxylic acid units constituting the (B) amorphous polyamide. It is important and is particularly preferred to contain 100 mol%.
(B) The tan δ peak temperature of the amorphous polyamide can be measured by using, for example, a viscoelasticity measuring and analyzing device (manufactured by Rheology: DVE-V4) in the same manner as the polyamide composition.
((B)非晶性ポリアミドの封止された末端量)
 (B)非晶性ポリアミドの封止剤で封止された末端量は、(B)非晶性ポリアミド1g当たり、5μmol当量/g以上180μmol当量/g以下が好ましく、10μmol当量/g以上170μmol当量/g以下がより好ましく、30μmol当量/g以上160μmol当量/g以下がさらに好ましく、50μmol当量/g以上160μmol当量/g以下が特に好ましく、60μmol当量/g以上160μmol当量/g以下が最も好ましい。封止された末端量が上記範囲であることにより、成形時のモールドデポジット(MD)の発生が抑制され、成形体としたときの表面外観、熱時強度、振動減衰及びノイズ抑制効果に優れた組成物とすることができる。また、酢酸により封止された末端量が上記範囲であることが特に好ましい。封止された末端量は、NMRにより測定することができる。
((B) Sealed terminal amount of amorphous polyamide)
(B) The terminal amount sealed with the sealant of the amorphous polyamide is preferably 5 μmol equivalent / g or more and 180 μmol equivalent / g or less, and 10 μmol equivalent / g or more and 170 μmol equivalent per 1 g of the (B) amorphous polyamide. / G or less is more preferable, 30 μmol equivalent / g or more and 160 μmol equivalent / g or less is further preferable, 50 μmol equivalent / g or more and 160 μmol equivalent / g or less is particularly preferable, and 60 μmol equivalent / g or more and 160 μmol equivalent / g or less is most preferable. When the amount of the sealed end is in the above range, the generation of mold deposit (MD) during molding is suppressed, and the surface appearance, thermal strength, vibration damping and noise suppression effect of the molded product are excellent. It can be a composition. Further, it is particularly preferable that the amount of terminals sealed with acetic acid is in the above range. The amount of sealed ends can be measured by NMR.
((B)非晶性ポリアミドのアミノ末端量)
 (B)非晶性ポリアミドのアミノ末端量は、(B)非晶性ポリアミド1g当たり、5μmol当量/g以上90μmol当量/g以下が好ましく、10μmol当量/g以上80μmol当量/g以下がより好ましく、10μmol当量/g以上70μmol当量/g以下がさらに好ましく、20μmol当量/g以上60μmol当量/g以下が特に好ましく、30μmol当量/g以上50μmol当量/g以下が最も好ましい。
 (B)非晶性ポリアミドのアミノ末端量が上記範囲であることにより、(A)結晶性ポリアミドとの相溶性をより向上させることができ、ドメインの数平均粒子径をより小さくすることができる。結果として、成形体としたときの熱や光に対する変色、振動減衰及びノイズ抑制効果により優れたポリアミド組成物とすることができる。
 アミノ末端量は、NMRにより測定することができる。
((B) Amino terminal amount of amorphous polyamide)
The amino terminal amount of (B) amorphous polyamide is preferably 5 μmol equivalent / g or more and 90 μmol equivalent / g or less, more preferably 10 μmol equivalent / g or more and 80 μmol equivalent / g or less, per 1 g of (B) amorphous polyamide. It is more preferably 10 μmol equivalent / g or more and 70 μmol equivalent / g or less, particularly preferably 20 μmol equivalent / g or more and 60 μmol equivalent / g or less, and most preferably 30 μmol equivalent / g or more and 50 μmol equivalent / g or less.
When the amount of the amino terminal of the (B) amorphous polyamide is in the above range, the compatibility with the (A) crystalline polyamide can be further improved, and the number average particle size of the domain can be further reduced. .. As a result, it is possible to obtain an excellent polyamide composition due to the effects of discoloration, vibration damping and noise suppression on heat and light when the molded product is formed.
The amount of amino terminal can be measured by NMR.
((B)非晶性ポリアミドのカルボキシ末端量)
 (B)非晶性ポリアミドのカルボキシ末端量は、(B)非晶性ポリアミド1g当たり、20μmol当量/g以上150μmol当量/g以下が好ましく、30μmol当量/g以上120μmol当量/g以下がより好ましく、30μmol当量/g以上100μmol当量/g以下がさらに好ましく、40μmol当量/g以上90μmol当量/g以下が特に好ましく、50μmol当量/g以上80μmol当量/g以下が最も好ましい。
 (B)非晶性ポリアミドのカルボキシ末端量が上記範囲であることにより、(A)結晶性ポリアミドとの相溶性をより向上させることができ、ドメインの数平均粒子径をより小さくすることができる。結果として、成形体としたときの流動性、振動減衰及びノイズ抑制効果により優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体の表面外観がより優れたものとなる。
 カルボキシ末端量は、NMRにより測定することができる。
((B) Amorphous polyamide carboxy terminal amount)
The carboxy terminal amount of (B) amorphous polyamide is preferably 20 μmol equivalent / g or more and 150 μmol equivalent / g or less, more preferably 30 μmol equivalent / g or more and 120 μmol equivalent / g or less, per 1 g of (B) amorphous polyamide. It is more preferably 30 μmol equivalent / g or more and 100 μmol equivalent / g or less, particularly preferably 40 μmol equivalent / g or more and 90 μmol equivalent / g or less, and most preferably 50 μmol equivalent / g or more and 80 μmol equivalent / g or less.
When the amount of the carboxy terminal of the (B) amorphous polyamide is in the above range, the compatibility with the (A) crystalline polyamide can be further improved, and the number average particle size of the domain can be further reduced. .. As a result, a polyamide composition having excellent fluidity, vibration damping and noise suppressing effects when formed into a molded product can be obtained. In addition, the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler becomes more excellent.
The amount of carboxy terminal can be measured by NMR.
((B)非晶性ポリアミドのアミノ末端量及びカルボキシ末端量の合計量)
 (B)非晶性ポリアミドのアミノ末端量及びカルボキシ末端量の合計量は、(B)非晶性ポリアミド1g当たり、50μmol当量/g以上300μmol当量/g以下が好ましく、60μmol当量/g以上270μmol当量/g以下がより好ましく、70μmol当量/g以上250μmol当量/g以下がさらに好ましく、80μmol当量/g以上200μmol当量/g以下が特に好ましく、90μmol当量/g以上150μmol当量/g以下が最も好ましい。
 (B)非晶性ポリアミドのアミノ末端量及びカルボキシ末端量の合計量が上記範囲であることにより、(A)結晶性ポリアミドとの相溶性をより向上させることができ、ドメインの数平均粒子径をより小さくすることができる。結果として、成形体としたときの流動性、振動減衰及びノイズ抑制効果により優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体の表面外観がより優れたものとなる。
((B) Total amount of amino-terminal amount and carboxy-terminal amount of amorphous polyamide)
The total amount of (B) amino-terminal amount and carboxy-terminal amount of (B) amorphous polyamide is preferably 50 μmol equivalent / g or more and 300 μmol equivalent / g or less, and 60 μmol equivalent / g or more and 270 μmol equivalent per 1 g of (B) amorphous polyamide. / G or less is more preferable, 70 μmol equivalent / g or more and 250 μmol equivalent / g or less is further preferable, 80 μmol equivalent / g or more and 200 μmol equivalent / g or less is particularly preferable, and 90 μmol equivalent / g or more and 150 μmol equivalent / g or less is most preferable.
When the total amount of the amino terminal amount and the carboxy terminal amount of the (B) amorphous polyamide is within the above range, the compatibility with the (A) crystalline polyamide can be further improved, and the number average particle diameter of the domain can be improved. Can be made smaller. As a result, a polyamide composition having excellent fluidity, vibration damping and noise suppressing effects when formed into a molded product can be obtained. In addition, the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler becomes more excellent.
<その他成分>
 本実施形態のポリアミド組成物は、上記(A)結晶性ポリアミド及び上記(B)非晶性ポリアミドに加えて、(C)エラストマー、(D)無機充填材、(E)カーボンブラック、(F)潤滑剤、(G)リン系難燃剤、(H)造核剤、(I)熱安定剤、(J)その他のポリマー、及び、(K)その他添加剤からなる群から選ばれる1種以上の成分を更に含んでもよい。
<Other ingredients>
In addition to the above (A) crystalline polyamide and the above (B) amorphous polyamide, the polyamide composition of the present embodiment includes (C) an elastomer, (D) an inorganic filler, (E) carbon black, and (F). One or more selected from the group consisting of lubricants, (G) phosphorus-based flame retardants, (H) nucleating agents, (I) heat stabilizers, (J) other polymers, and (K) other additives. Ingredients may be further included.
[(C)エラストマー]
 本実施形態のポリアミド組成物は、上述した(A)結晶性ポリアミド、及び、(B)非晶性ポリアミドの他に、(C)エラストマーを含むことができる。
[(C) Elastomer]
The polyamide composition of the present embodiment may contain (C) an elastomer in addition to (A) crystalline polyamide and (B) amorphous polyamide described above.
 エラストマーとしては、例えば、水添スチレン系熱可塑性エラストマー、オレフィンエラストマー、ウレタンエラストマー、ポリエステルエラストマー等の弾性的挙動を示すポリマーが挙げられる。
 水添スチレン系熱可塑性エラストマーとしては、スチレンブロックを有する水素添加ブロック共重合体が挙げられる。水素添加ブロック共重合体としては、特に限定されることなく、例えば、未変性水素添加ブロック共重合体、変性水素添加ブロック共重合体、及びこれらの混合物等が挙げられる。水素添加ブロック共重合体は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 オレフィンエラストマーとしては、例えば、エチレンプロピレンエラストマー等が挙げられる。
Examples of the elastomer include polymers showing elastic behavior such as hydrogenated styrene-based thermoplastic elastomers, olefin elastomers, urethane elastomers, and polyester elastomers.
Examples of the hydrogenated styrene-based thermoplastic elastomer include hydrogenated block copolymers having a styrene block. The hydrogenated block copolymer is not particularly limited, and examples thereof include an unmodified hydrogenated block copolymer, a modified hydrogenated block copolymer, and a mixture thereof. The hydrogenated block copolymer may be used alone or in combination of two or more.
Examples of the olefin elastomer include ethylene propylene elastomer.
 本実施形態のポリアミド組成物を成形してなる成形体は、エラストマーを含有しなくても、振動減衰及びノイズ抑制効果を発揮することができる。また、エラストマーの含有量が多くなるほど、成形体の強度や弾性率が低下する虞がある。よって、エラストマーの含有量は、ポリアミド組成物中の(A)結晶性ポリアミド、及び、(B)非晶性ポリアミドの合計質量に対し、12質量%以下が好ましく、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下がさらに好ましく、0.1質量%以下が特に好ましく、0質量%が最も好ましい。 The molded product obtained by molding the polyamide composition of the present embodiment can exhibit vibration damping and noise suppression effects even if it does not contain an elastomer. Further, as the content of the elastomer increases, the strength and elastic modulus of the molded product may decrease. Therefore, the content of the elastomer is preferably 12% by mass or less, preferably 5% by mass or less, based on the total mass of (A) crystalline polyamide and (B) amorphous polyamide in the polyamide composition. More preferably, it is more preferably mass% or less, further preferably 1 mass% or less, particularly preferably 0.1 mass% or less, and most preferably 0 mass%.
[(D)無機充填材]
 (D)無機充填材としては、以下に限定されるものではないが、例えば、ガラス繊維、炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、クレー、フレーク状ガラス、タルク、カオリン、マイカ、ハイドロタルサイト、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ウォラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、ケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ケッチェンブラック、アセチレンブラック、ファーネスブラック、カーボンナノチューブ、グラファイト、黄銅、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、モンモリロナイト、膨潤性フッ素雲母、アパタイト等が挙げられる。これら無機充填材は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 中でも、機械的強度をより一層向上させる観点から、ガラス繊維、炭素繊維、ウォラストナイト、カオリン、マイカ、タルク、炭酸カルシウム、炭酸マグネシウム、チタン酸カリウム繊維、ホウ酸アルミニウム繊維及びクレーからなる群より選択される1種以上が好ましい。また、中でも、ガラス繊維、炭素繊維、ウォラストナイト、カオリン、マイカ、タルク、炭酸カルシウム及びクレーからなる群より選択される1種以上がより好ましい。
[(D) Inorganic filler]
The inorganic filler (D) is not limited to the following, but is not limited to, for example, glass fiber, carbon fiber, calcium silicate fiber, potassium titanate fiber, aluminum borate fiber, clay, flake-shaped glass, talc, and the like. Kaolin, mica, hydrotalcite, calcium carbonate, magnesium carbonate, zinc carbonate, zinc oxide, calcium monohydrogen phosphate, wollastonite, silica, zeolite, alumina, boehmite, aluminum hydroxide, titanium oxide, silicon oxide, magnesium oxide , Calcium silicate, sodium aluminosilicate, magnesium silicate, Ketjen black, acetylene black, furnace black, carbon nanotubes, graphite, brass, copper, silver, aluminum, nickel, iron, calcium fluoride, montmorillonite, swelling fluorine mica , Apatite and the like. One type of these inorganic fillers may be used alone, or two or more types may be used in combination.
Among them, from the viewpoint of further improving mechanical strength, from the group consisting of glass fiber, carbon fiber, wollastonite, kaolin, mica, talc, calcium carbonate, magnesium carbonate, potassium titanate fiber, aluminum borate fiber and clay. One or more selected are preferred. Further, among them, one or more selected from the group consisting of glass fiber, carbon fiber, wollastonite, kaolin, mica, talc, calcium carbonate and clay is more preferable.
 無機充填材がガラス繊維又は炭素繊維である場合、数平均繊維径(d)が3μm以上30μm以下が好ましく、3μm以上20μm以下がより好ましく、3μm以上12μm以下がさらに好ましく、3μm以上9μm以下が特に好ましく、4μm以上6μm以下が最も好ましい。
 数平均繊維径を上記上限値以下とすることにより、靭性、及び成形体の表面外観により優れたポリアミド組成物とすることができる。一方、数平均繊維径を上記下限値以上とすることにより、コスト面及び粉体のハンドリング面と物性(流動性等)とのバランスにより優れたポリアミド組成物が得られる。さらに、数平均繊維径を3μm以上9μm以下とすることにより、振動疲労特性及び摺動性により優れたポリアミド組成物とすることができる。
When the inorganic filler is glass fiber or carbon fiber, the number average fiber diameter (d) is preferably 3 μm or more and 30 μm or less, more preferably 3 μm or more and 20 μm or less, further preferably 3 μm or more and 12 μm or less, and particularly preferably 3 μm or more and 9 μm or less. It is preferably 4 μm or more and 6 μm or less, most preferably.
By setting the number average fiber diameter to the above upper limit value or less, a polyamide composition having better toughness and surface appearance of the molded product can be obtained. On the other hand, by setting the number average fiber diameter to the above lower limit value or more, an excellent polyamide composition can be obtained in terms of cost, handling surface of powder, and physical properties (fluidity, etc.). Further, by setting the number average fiber diameter to 3 μm or more and 9 μm or less, a polyamide composition having excellent vibration fatigue characteristics and slidability can be obtained.
 無機充填材がガラス繊維又は炭素繊維である場合、その断面が真円状でもよく、扁平状でもよい。かかる扁平状の断面としては、以下に制限されないが、例えば、長方形、長方形に近い長円形、楕円形及び長手方向の中央部がくびれた繭型が挙げられる。ここで、本明細書における「扁平率」は、当該繊維断面の長径をd2及び該繊維断面の短径をd1とするとき、d2/d1で表される値をいう(真円状は、扁平率が約1となる)。 When the inorganic filler is glass fiber or carbon fiber, the cross section may be round or flat. Examples of such a flat cross section include, but are not limited to, a rectangle, an oval shape close to a rectangle, an ellipse shape, and a cocoon shape having a central portion in the longitudinal direction. Here, the "flattening ratio" in the present specification means a value represented by d2 / d1 when the major axis of the fiber cross section is d2 and the minor axis of the fiber cross section is d1 (a perfect circle is flat). The rate will be about 1).
 無機充填材がガラス繊維又は炭素繊維である場合、中でも、優れた機械的強度をポリアミド組成物に付与できる観点から、数平均繊維径(d)が3μm以上30μm以下であり、重量平均繊維長(l)が100μm以上750μm以下であり、且つ、数平均繊維径(d)に対する重量平均繊維長(l)の比、すなわち、アスペクト比(l/d)が10以上100以下であるものが好適である。ここでいう「数平均繊維径(d)」は、繊維断面の長径(上記d2)の平均値であり、後述する算出方法を用いて求められる。 When the inorganic filler is glass fiber or carbon fiber, the number average fiber diameter (d) is 3 μm or more and 30 μm or less, and the weight average fiber length (d) is particularly high from the viewpoint of imparting excellent mechanical strength to the polyamide composition. It is preferable that l) is 100 μm or more and 750 μm or less, and the ratio of the weight average fiber length (l) to the number average fiber diameter (d), that is, the aspect ratio (l / d) is 10 or more and 100 or less. be. The "number average fiber diameter (d)" referred to here is an average value of the major axis (d2) of the fiber cross section, and is obtained by using the calculation method described later.
 また、板状成形体の反りを低減させ、並びに、耐熱性、靭性、低吸水性及び耐熱エージング性を向上させる観点から、扁平率は、1.5以上が好ましく、1.5以上10.0以下がより好ましく、2.5以上10.0以下がさらに好ましく、3.0超6.0以下が特に好ましく、3.1以上6.0以下が最も好ましい。扁平率が上記範囲内であることにより、他の成分との混合、混練や成形等の処理の際に、破砕をより効果的に防止でき、成形体にとって所望の効果がより充分に得られるようになる。 Further, from the viewpoint of reducing the warp of the plate-shaped molded body and improving heat resistance, toughness, low water absorption and heat resistance aging property, the flatness is preferably 1.5 or more, and 1.5 or more is 10.0. The following is more preferable, 2.5 or more and 10.0 or less are further preferable, more than 3.0 and 6.0 or less are particularly preferable, and 3.1 or more and 6.0 or less are most preferable. When the flatness is within the above range, crushing can be more effectively prevented during mixing with other components, kneading, molding, etc., so that the desired effect for the molded body can be more sufficiently obtained. become.
 扁平率が1.5以上のガラス繊維や炭素繊維の太さは、以下に制限されないが、該繊維断面の短径d1が0.5μm以上25μm以下及び該繊維断面の長径d2が1.25μm以上250μm以下であることが好ましい。該繊維断面の短径d1が3.0μm以上25μm以下及び該繊維断面の長径d2が1.25μm以上250μm以下であることがより好ましい。短径(d1)及び長径(d2)が上記範囲内あることにより、繊維の紡糸の困難性をより有効に回避でき、且つ、樹脂(ポリアミド)との接触面積を減少させることなく成形体の強度をより向上させることができる。 The thickness of the glass fiber or carbon fiber having a flatness of 1.5 or more is not limited to the following, but the minor axis d1 of the fiber cross section is 0.5 μm or more and 25 μm or less and the major axis d2 of the fiber cross section is 1.25 μm or more. It is preferably 250 μm or less. It is more preferable that the minor axis d1 of the fiber cross section is 3.0 μm or more and 25 μm or less and the major axis d2 of the fiber cross section is 1.25 μm or more and 250 μm or less. By keeping the minor axis (d1) and the major axis (d2) within the above ranges, the difficulty of spinning the fiber can be more effectively avoided, and the strength of the molded body is not reduced without reducing the contact area with the resin (polyamide). Can be further improved.
 扁平率が1.5以上のガラス繊維や炭素繊維は、底面に多数のオリフィスを有するオリフィスプレートにおいて、複数のオリフィス出口を囲み、該底面より下方に延びる凸状縁を設けたオリフィスプレート、又は、単数若しくは複数のオリフィス孔を有するノズルチップの外周部先端から下方に延びる複数の凸状縁を設けた異形断面ガラス繊維紡糸用ノズルチップのいずれかを使用して製造された、扁平率が1.5以上のガラス繊維が好ましい。これらの繊維状強化材は、繊維ストランドをロービングとしてそのまま使用してもよく、さらに切断工程を得て、チョップドガラスストランドとして使用してもよい。 Glass fiber or carbon fiber having a flatness of 1.5 or more is an orifice plate having a large number of orifices on the bottom surface, which surrounds a plurality of orifice outlets and has a convex edge extending downward from the bottom surface, or an orifice plate. 1. Flatness of a nozzle tip for fiberglass spinning with a modified cross section provided with multiple convex edges extending downward from the outer peripheral tip of a nozzle tip having one or more orifice holes. 5 or more glass fibers are preferable. In these fibrous reinforcing materials, the fiber strands may be used as they are as roving, or may be further obtained in a cutting step and used as chopped glass strands.
 また、本明細書における「数平均繊維径(d)」及び「重量平均繊維長(l)」は、以下の方法により求められることができる。まず、ポリアミド組成物を電気炉に入れて、含まれる有機物を焼却処理する。当該処理後の残渣分から、100本以上のガラス繊維(又は炭素繊維)を任意に選択し、走査型電子顕微鏡(SEM)で観察して、これらのガラス繊維(又は炭素繊維)の繊維径(長径)を測定することにより、数平均繊維径を求めることができる。加えて、倍率1000倍で撮影した、上記100本以上のガラス繊維(又は炭素繊維)についてのSEM写真を用いて繊維長を計測することにより、重量平均繊維長を求めることができる。 Further, the "number average fiber diameter (d)" and the "weight average fiber length (l)" in the present specification can be obtained by the following methods. First, the polyamide composition is placed in an electric furnace to incinerate the contained organic matter. From the residue after the treatment, 100 or more glass fibers (or carbon fibers) are arbitrarily selected and observed with a scanning electron microscope (SEM), and the fiber diameter (major axis) of these glass fibers (or carbon fibers) is observed. ), The number average fiber diameter can be obtained. In addition, the weight average fiber length can be obtained by measuring the fiber length using SEM photographs of the above 100 or more glass fibers (or carbon fibers) taken at a magnification of 1000 times.
 また、ガラス繊維又は炭素繊維は、シランカップリング剤等により表面処理を施してもよい。
 シランカップリング剤としては、以下に限定されるものではないが、例えば、アミノシラン類、メルカプトシラン類、エポキシシラン類、ビニルシラン類等が挙げられる。
 アミノシラン類としては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン等が挙げられる。
 メルカプトシラン類としては、例えば、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン等が挙げられる。
 これらシランカップリング剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、シランカップリング剤としては、アミノシラン類が好ましい。
Further, the glass fiber or the carbon fiber may be surface-treated with a silane coupling agent or the like.
Examples of the silane coupling agent include, but are not limited to, aminosilanes, mercaptosilanes, epoxysilanes, vinylsilanes and the like.
Examples of aminosilanes include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane and the like.
Examples of the mercaptosilanes include γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane.
These silane coupling agents may be used alone or in combination of two or more.
Among them, aminosilanes are preferable as the silane coupling agent.
 また、ガラス繊維又は炭素繊維については、さらに、集束剤を含んでもよい。
 集束剤としては、例えば、カルボン酸無水物含有不飽和ビニル単量体とカルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物、ポリウレタン樹脂、アクリル酸のホモポリマー、アクリル酸とその他の共重合性モノマーとのコポリマー、並びに、これらの第1級、第2級及び第3級アミンとの塩等が挙げられる。これら集束剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、得られるポリアミド組成物の機械的強度の観点から、集束剤としては、カルボン酸無水物含有不飽和ビニル単量体とカルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物及びポリウレタン樹脂からなる群より選ばれる1種以上が好ましい。また、カルボン酸無水物含有不飽和ビニル単量体とカルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体及びポリウレタン樹脂からなる群より選ばれる1種以上がより好ましい。
Further, the glass fiber or the carbon fiber may further contain a sizing agent.
As the focusing agent, for example, a copolymer or an epoxy compound containing an unsaturated vinyl monomer containing a carboxylic acid anhydride and an unsaturated vinyl monomer excluding the unsaturated vinyl monomer containing a carboxylic acid anhydride as a constituent unit. , Polyurethane resins, homopolymers of acrylic acid, copolymers of acrylic acid with other copolymerizable monomers, and salts with these primary, secondary and tertiary amines and the like. These sizing agents may be used alone or in combination of two or more.
Above all, from the viewpoint of the mechanical strength of the obtained polyamide composition, the sizing agent is a single amount of unsaturated vinyl excluding the carboxylic acid anhydride-containing unsaturated vinyl monomer and the carboxylic acid anhydride-containing unsaturated vinyl monomer. One or more selected from the group consisting of a copolymer containing a body as a constituent unit, an epoxy compound, and a polyurethane resin is preferable. Further, it is selected from the group consisting of a copolymer and a polyurethane resin containing an unsaturated vinyl monomer containing a carboxylic acid anhydride and an unsaturated vinyl monomer excluding the unsaturated vinyl monomer containing a carboxylic acid anhydride as a constituent unit. More than one kind is more preferable.
 ガラス繊維又は炭素繊維は、公知の当該繊維の製造工程において、ローラー型アプリケーター等の公知の方法を用いて、上記の集束剤を当該繊維に付与して製造した繊維ストランドを乾燥することにより、連続的に反応させて得られる。
 繊維ストランドをロービングとしてそのまま使用してもよく、さらに切断工程を得て、チョップドガラスストランドとして使用してもよい。
 集束剤は、ガラス繊維又は炭素繊維の総質量に対し、固形分率として、0.2質量%以上3質量%以下程度を付与(添加)することが好ましく、0.3質量%以上2質量%以下程度を付与(添加)することがより好ましい。
 集束剤の添加量が、ガラス繊維又は炭素繊維の総質量に対し、固形分率として上記下限値以上であることにより、当該繊維の集束をより効果的に維持することができる。一方、集束剤の添加量が、ガラス繊維又は炭素繊維の総質量に対し、固形分率として上記上限値質量%以下であることにより、得られるポリアミド組成物の熱安定性をより向上させる。
 ストランドの乾燥は切断工程後に行ってもよく、ストランドを乾燥した後に切断してもよい。
The glass fiber or carbon fiber is continuously produced by applying the above-mentioned sizing agent to the fiber and drying the fiber strand produced by using a known method such as a roller type applicator in the known manufacturing process of the fiber. It is obtained by reacting specifically.
The fiber strand may be used as it is as a roving, or may be further obtained in a cutting step and used as a chopped glass strand.
The sizing agent preferably imparts (adds) about 0.2% by mass or more and 3% by mass or less as a solid content to the total mass of the glass fiber or carbon fiber, and is 0.3% by mass or more and 2% by mass or less. It is more preferable to add (add) the following degree.
When the amount of the sizing agent added is not more than the above lower limit as the solid content ratio with respect to the total mass of the glass fiber or the carbon fiber, the sizing of the fibers can be maintained more effectively. On the other hand, when the amount of the sizing agent added is not more than the above upper limit mass% as the solid content ratio with respect to the total mass of the glass fiber or the carbon fiber, the thermal stability of the obtained polyamide composition is further improved.
The strands may be dried after the cutting step or after the strands have been dried.
 ガラス繊維及び炭素繊維以外の無機充填材としては、成形体の強度、剛性や表面外観を向上させる観点から、ウォラストナイト、カオリン、マイカ、タルク、炭酸カルシウム、炭酸マグネシウム、チタン酸カリウム繊維、ホウ酸アルミニウム繊維又はクレーが好ましい。ウォラストナイト、カオリン、マイカ、タルク、炭酸カルシウム又はクレーがより好ましい。ウォラストナイト、カオリン、マイカ又はタルクがさらに好ましい。ウォラストナイト、マイカ又はタルクが特に好ましい。これらの無機充填材は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As inorganic fillers other than glass fiber and carbon fiber, from the viewpoint of improving the strength, rigidity and surface appearance of the molded body, wollastonite, kaolin, mica, talc, calcium carbonate, magnesium carbonate, potassium titanate fiber, hoe Aluminum acid acid fiber or clay is preferred. Wollastonite, kaolin, mica, talc, calcium carbonate or clay are more preferred. Wollastonite, kaolin, mica or talc are more preferred. Wollastonite, mica or talc are particularly preferred. These inorganic fillers may be used alone or in combination of two or more.
 ガラス繊維及び炭素繊維以外の無機充填材の平均粒子径は、靭性、及び成形体の表面外観を向上させる観点から、0.01μm以上38μm以下が好ましく、0.03μm以上30μm以下がより好ましく、0.05μm以上25μm以下がさらに好ましく、0.10μm以上20μm以下がよりさらに好ましく、0.15μm以上15μm以下が特に好ましい。
 上記のガラス繊維及び炭素繊維以外の無機充填材の平均粒子径を上記上限値以下とすることにより、靭性、及び成形体の表面外観により優れたポリアミド組成物とすることができる。一方、平均粒子径を上記下限値以上とすることにより、コスト面及び粉体のハンドリング面と物性(流動性等)とのバランスにより優れたポリアミド組成物が得られる。
The average particle size of the inorganic filler other than the glass fiber and the carbon fiber is preferably 0.01 μm or more and 38 μm or less, more preferably 0.03 μm or more and 30 μm or less, and 0 It is more preferably 0.05 μm or more and 25 μm or less, further preferably 0.10 μm or more and 20 μm or less, and particularly preferably 0.15 μm or more and 15 μm or less.
By setting the average particle size of the inorganic filler other than the glass fiber and the carbon fiber to the above upper limit value or less, a polyamide composition having better toughness and surface appearance of the molded product can be obtained. On the other hand, by setting the average particle size to the above lower limit value or more, an excellent polyamide composition can be obtained in terms of cost, handling surface of powder, and physical properties (fluidity, etc.).
 ガラス繊維及び炭素繊維以外の、ウォラストナイト等の針状の無機充填材に関しては、数平均粒子径(以下、単に「平均粒子径」と称する場合がある)を平均粒子径とする。また、断面が円でない場合は、その長さの最大値を(数平均)繊維径とする。 For needle-shaped inorganic fillers such as wollastonite other than glass fiber and carbon fiber, the number average particle size (hereinafter, may be simply referred to as "average particle size") is used as the average particle size. If the cross section is not a circle, the maximum value of the length is the (number average) fiber diameter.
 針状の無機充填材の数平均粒子長(以下、単に「平均粒子長」と称する場合がある)については、上述の数平均粒子径の好ましい範囲、及び、下記の数平均粒子径(d)に対する数平均粒子長(l)のアスペクト比(l/d)の好ましい範囲から算出される数値範囲が好ましい。 Regarding the number average particle length of the needle-shaped inorganic filler (hereinafter, may be simply referred to as “average particle length”), the above-mentioned preferable range of the number average particle diameter and the following number average particle diameter (d) A numerical range calculated from a preferable range of the aspect ratio (l / d) of the number average particle length (l) with respect to is preferable.
 針状の形状を持つものの、数平均粒子径(d)に対する数平均粒子長(l)のアスペクト比(l/d)に関しては、成形体の表面外観を向上させ、且つ、射出成形機等の金属性パーツの磨耗を防止する観点から、1.5以上10以下が好ましく、2.0以上5以下がより好ましく、2.5以上4以下がさらに好ましい。 Although it has a needle-like shape, the aspect ratio (l / d) of the number average particle length (l) to the number average particle diameter (d) improves the surface appearance of the molded product and is used in injection molding machines and the like. From the viewpoint of preventing wear of the metallic parts, 1.5 or more and 10 or less are preferable, 2.0 or more and 5 or less are more preferable, and 2.5 or more and 4 or less are further preferable.
 また、ガラス繊維及び炭素繊維以外の無機充填材は、シランカップリング剤やチタネート系カップリング剤等を用いて表面処理を施してもよい。
 シランカップリング剤としては、上記ガラス繊維及び炭素繊維において例示されたものと同様のものが挙げられる。
 中でも、シランカップリング剤としては、アミノシラン類が好ましい。
 このような表面処理剤は、予め無機充填材の表面に処理してもよく、ポリアミドと無機充填材とを混合する際に添加してもよい。また、表面処理剤の添加量は、無機充填材の総質量に対して、0.05質量%以上1.5質量%以下が好ましい。
Further, the inorganic filler other than the glass fiber and the carbon fiber may be surface-treated with a silane coupling agent, a titanate-based coupling agent, or the like.
Examples of the silane coupling agent include those similar to those exemplified for the above-mentioned glass fibers and carbon fibers.
Among them, aminosilanes are preferable as the silane coupling agent.
Such a surface treatment agent may be treated in advance on the surface of the inorganic filler, or may be added when the polyamide and the inorganic filler are mixed. The amount of the surface treatment agent added is preferably 0.05% by mass or more and 1.5% by mass or less with respect to the total mass of the inorganic filler.
 無機充填材の含有量は、ポリアミド組成物の総質量に対して、5質量%以上70質量%以下が好ましく、20質量%以上70質量%以下がより好ましく、20質量%以上65質量%以下がさらに好ましく、20質量%以上60質量%以下が特に好ましく、20質量%以上50質量%以下が最も好ましい。
 無機充填材の含有量を、ポリアミド組成物の総質量に対して、上記下限値以上とすることにより、得られる成形体の強度及び剛性をより向上させる効果が発現される。一方、無機充填材の含有量を、ポリアミド組成物の総質量に対して、上記上限値以下とすることにより、押出性及び成形性により優れたポリアミド組成物を得ることができる。
The content of the inorganic filler is preferably 5% by mass or more and 70% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and 20% by mass or more and 65% by mass or less with respect to the total mass of the polyamide composition. More preferably, it is particularly preferably 20% by mass or more and 60% by mass or less, and most preferably 20% by mass or more and 50% by mass or less.
By setting the content of the inorganic filler to be equal to or higher than the above lower limit with respect to the total mass of the polyamide composition, the effect of further improving the strength and rigidity of the obtained molded product is exhibited. On the other hand, by setting the content of the inorganic filler to be equal to or lower than the above upper limit with respect to the total mass of the polyamide composition, a polyamide composition having excellent extrudability and moldability can be obtained.
[(E)カーボンブラック]
 (E)カーボンブラックとしては、その製造方法によりファーネスブラック、チャンネルブラック、サーマルブラック等に分類され、その原料の違いにより、アセチレンブラック、ケッチェンブラック、オイルブラック、ガスブラック等に分類されるが、本実施形態のポリアミド組成物においては特に限定されずに使用することができる。
[(E) Carbon Black]
(E) Carbon black is classified into furnace black, channel black, thermal black, etc. according to its manufacturing method, and is classified into acetylene black, ketjen black, oil black, gas black, etc., depending on the difference in raw materials. The polyamide composition of the present embodiment can be used without particular limitation.
 カーボンブラックの平均一次粒子径は、(A)結晶性ポリアミド中に分散した(B)非晶性ポリアミドのドメインの数平均粒子径に近い方が望ましく、具体的には、10nm以上以上であることが好ましく、10nm以上100nm以下であることがより好ましく、15nm以上60nm以下であることがよりさらに好ましく、15nm以上50nm以下であることがよりさらに好ましく、15nm以上40nm以下であることがよりさらに好ましく、15nm以上30nm以下であることが特に好ましい。平均一次粒子径が上記範囲内であることで、成形体としたときの耐候性、振動減衰及びノイズ抑制効果をより一層向上させることができる。平均一次粒子径は、ASTM D3849規格(カーボンブラックの標準試験法-電子顕微鏡法による形態的特徴付け)に記載の手順によりカーボンブラック粒子が分散した画像を取得し、この画像から単位構成粒子として3,000個の粒子径を測定し、この測定値の平均値として求められる値である。 The average primary particle size of carbon black is preferably close to the number average particle size of the domains of (A) amorphous polyamide dispersed in (A) crystalline polyamide, and specifically, 10 nm or more. It is more preferably 10 nm or more and 100 nm or less, further preferably 15 nm or more and 60 nm or less, further preferably 15 nm or more and 50 nm or less, and even more preferably 15 nm or more and 40 nm or less. It is particularly preferably 15 nm or more and 30 nm or less. When the average primary particle size is within the above range, the weather resistance, vibration damping, and noise suppression effect of the molded product can be further improved. For the average primary particle size, an image in which carbon black particles are dispersed is obtained by the procedure described in the ATM D3849 standard (standard test method for carbon black-morphological characterization by electron microscopy), and 3 as unit constituent particles from this image. It is a value obtained by measuring the diameters of 000 particles and as the average value of these measured values.
 カーボンブラックの比表面積は比表面積が50m/g以上300m/g以下(BET吸着法)の範囲が好ましい。比表面積が上記範囲内であることで、成形体としたときの低ソリ性、表面外観、耐候性、及び光沢保持率をより一層向上させることができる。カーボンブラックの比表面積は、JIS K6217に従い、窒素吸着量から測定される値である。 The specific surface area of carbon black is preferably in the range of 50 m 2 / g or more and 300 m 2 / g or less (BET adsorption method). When the specific surface area is within the above range, the low warpage property, surface appearance, weather resistance, and gloss retention rate of the molded product can be further improved. The specific surface area of carbon black is a value measured from the amount of nitrogen adsorbed according to JIS K6217.
 カーボンブラックのDBP吸油量(カーボンブラック100gが吸収するジブチルフタレートの量)は、50mL/100g以上150mL/100g以下であることが好ましい。DBP吸油量が上記範囲内であることで、成形体としたときの低ソリ性、耐候性、及び光沢保持率をより一層向上させることができる。カーボンブラックのDBP吸油量は、JIS K6221に従い測定される値である。 The amount of DBP oil absorbed by carbon black (the amount of dibutyl phthalate absorbed by 100 g of carbon black) is preferably 50 mL / 100 g or more and 150 mL / 100 g or less. When the DBP oil absorption amount is within the above range, it is possible to further improve the low warpage property, weather resistance, and gloss retention rate when the molded product is formed. The DBP oil absorption amount of carbon black is a value measured according to JIS K6221.
 カーボンブラックの含有量は、ポリアミド組成物の総質量に対して、0.02質量%以上3.0質量%以下が好ましく、0.02質量%以上1.0質量%以下がより好ましく、0.02質量%以上0.8質量%以下がさらに好ましく、0.03質量%以上0.1質量%以下が特に好ましく、0.03質量%以上0.06質量%以下が最も好ましい。カーボンブラックの含有量が上記範囲内であることで、成形体としたときの外観を損なうことなく、耐候性、並びに、振動減衰及びノイズ抑制効果をより一層向上させることができる。 The content of carbon black is preferably 0.02% by mass or more and 3.0% by mass or less, more preferably 0.02% by mass or more and 1.0% by mass or less, and 0. It is more preferably 02% by mass or more and 0.8% by mass or less, particularly preferably 0.03% by mass or more and 0.1% by mass or less, and most preferably 0.03% by mass or more and 0.06% by mass or less. When the content of carbon black is within the above range, the weather resistance, vibration damping, and noise suppression effect can be further improved without impairing the appearance of the molded product.
[(F)潤滑剤]
 (F)潤滑剤としては、特に限定されないが、例えば、高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド等が挙げられる。また、潤滑剤は成形改良剤としても利用できる。(B)非晶性ポリアミドが(A)結晶性ポリアミド中に分散しドメインを形成している、本実施形態のポリアミド組成物に(F)潤滑剤を添加することで、分子運動性をより向上させることができ振動減衰及びノイズ抑制効果をより一層向上させることができる。
[(F) Lubricant]
The (F) lubricant is not particularly limited, and examples thereof include higher fatty acids, higher fatty acid metal salts, higher fatty acid esters, higher fatty acid amides, and the like. The lubricant can also be used as a molding improver. By adding (F) a lubricant to the polyamide composition of the present embodiment in which (B) amorphous polyamide is dispersed in (A) crystalline polyamide to form a domain, molecular motility is further improved. The vibration damping and noise suppression effects can be further improved.
(高級脂肪酸)
 高級脂肪酸としては、例えば、炭素数8以上40以下の直鎖状又は分岐鎖状の、飽和又は不飽和脂肪族モノカルボン酸等が挙げられる。
 炭素数8以上40以下の直鎖状又は分岐鎖状の、飽和又は不飽和脂肪族モノカルボン酸としては、例えば、ラウリン酸、パルミチン酸、ステアリン酸、ベヘン酸、モンタン酸等が挙げられる。
 炭素数8以上40以下の分岐鎖状飽和脂肪族モノカルボン酸としては、例えば、イソパルミチン酸、イソステアリン酸等が挙げられる。
 炭素数8以上40以下の直鎖状不飽和脂肪族モノカルボン酸としては、例えば、オレイン酸、エルカ酸等が挙げられる。
 炭素数8以上40以下の分岐鎖状不飽和脂肪族モノカルボン酸としては、例えば、イソオレイン酸等が挙げられる。
 中でも、高級脂肪酸としては、ステアリン酸又はモンタン酸が好ましい。
(Higher fatty acid)
Examples of the higher fatty acid include linear or branched linear or branched saturated or unsaturated aliphatic monocarboxylic acids having 8 or more and 40 or less carbon atoms.
Examples of the saturated or unsaturated aliphatic monocarboxylic acid having 8 or more carbon atoms and 40 or less carbon atoms include lauric acid, palmitic acid, stearic acid, behenic acid, and montanic acid.
Examples of the branched chain saturated aliphatic monocarboxylic acid having 8 or more carbon atoms and 40 or less carbon atoms include isopalmitic acid and isostearic acid.
Examples of the linear unsaturated aliphatic monocarboxylic acid having 8 or more carbon atoms and 40 or less carbon atoms include oleic acid and erucic acid.
Examples of the branched chain unsaturated aliphatic monocarboxylic acid having 8 or more carbon atoms and 40 or less carbon atoms include isooleic acid and the like.
Among them, stearic acid or montanic acid is preferable as the higher fatty acid.
(高級脂肪酸金属塩)
 高級脂肪酸金属塩とは、高級脂肪酸の金属塩である。
 金属塩の金属元素としては、例えば、元素周期表の第1族元素、第2族元素及び第3族元素、亜鉛、アルミニウム等が挙げられる。
 元素周期表の第1族元素としては、例えば、ナトリウム、カリウム等が挙げられる。
 元素周期表の第2族元素としては、例えば、カルシウム、マグネシウム等が挙げられる。
 元素周期表の第3族元素としては、例えば、スカンジウム、イットリウム等が挙げられる。
 中でも、元素周期表の第1及び2族元素、又は、アルミニウムが好ましく、ナトリウム、カリウム、カルシウム、マグネシウム、又は、アルミニウムがより好ましい。
(Higher fatty acid metal salt)
The higher fatty acid metal salt is a metal salt of higher fatty acid.
Examples of the metal element of the metal salt include Group 1 element, Group 2 element and Group 3 element, zinc, aluminum and the like in the Periodic Table of the Elements.
Examples of Group 1 elements in the Periodic Table of the Elements include sodium, potassium and the like.
Examples of Group 2 elements in the Periodic Table of the Elements include calcium and magnesium.
Examples of Group 3 elements in the Periodic Table of the Elements include scandium and yttrium.
Among them, Group 1 and Group 2 elements of the Periodic Table of the Elements, or aluminum is preferable, and sodium, potassium, calcium, magnesium, or aluminum is more preferable.
 高級脂肪酸金属塩として具体的には、例えば、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、モンタン酸カルシウム、およびモンタン酸ナトリウム、パルミチン酸カルシウム等が挙げられる。
 中でも、高級脂肪酸金属塩としては、モンタン酸の金属塩又はステアリン酸の金属塩が好ましい。
Specific examples of the higher fatty acid metal salt include calcium stearate, aluminum stearate, zinc stearate, magnesium stearate, calcium montanate, sodium montanate, calcium palmitate and the like.
Among them, as the higher fatty acid metal salt, a metal salt of montanic acid or a metal salt of stearic acid is preferable.
(高級脂肪酸エステル)
 高級脂肪酸エステルとは、高級脂肪酸とアルコールとのエステル化物である。
 高級脂肪酸エステルとしては、炭素数8以上40以下の脂肪族カルボン酸と炭素数8以上40以下の脂肪族アルコールとのエステルが好ましい。
 炭素数8以上40以下の脂肪族アルコールとしては、例えば、ステアリルアルコール、ベヘニルアルコール、ラウリルアルコール等が挙げられる。
 高級脂肪酸エステルとして具体的には、例えば、ステアリン酸ステアリル、ベヘン酸ベヘニル等が挙げられる。
(Higher fatty acid ester)
The higher fatty acid ester is an esterified product of a higher fatty acid and an alcohol.
As the higher fatty acid ester, an ester of an aliphatic carboxylic acid having 8 or more and 40 or less carbon atoms and an aliphatic alcohol having 8 or more and 40 carbon atoms or less is preferable.
Examples of the aliphatic alcohol having 8 or more carbon atoms and 40 or less carbon atoms include stearyl alcohol, behenyl alcohol, and lauryl alcohol.
Specific examples of the higher fatty acid ester include stearyl stearate and behenic behenate.
(高級脂肪酸アミド)
 高級脂肪酸アミドとは、高級脂肪酸のアミド化合物である。
 高級脂肪酸アミドとしては、例えば、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、エチレンビスステアリルアミド、エチレンビスオレイルアミド、N-ステアリルステアリン酸アミド、N-ステアリルエルカ酸アミド等が挙げられる。
 これらの高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル及び高級脂肪酸アミドは、それぞれ1種類を単独で用いてもよく、2種類以上を組み合せて用いてもよい。
(Higher fatty acid amide)
The higher fatty acid amide is an amide compound of a higher fatty acid.
Examples of the higher fatty acid amide include stearate amide, oleic acid amide, erucate amide, ethylene bisstearyl amide, ethylene bisoleyl amide, N-stearyl steayl amide, N-stearyl erucate amide and the like.
Each of these higher fatty acids, higher fatty acid metal salts, higher fatty acid esters and higher fatty acid amides may be used alone or in combination of two or more.
[(G)リン系難燃剤]
 (G)リン系難燃剤としては、ハロゲン元素を含有せずリン元素を含む難燃剤であれば、特に限定されるものではない。リン系難燃剤としては、例えば、リン酸エステル系難燃剤、ポリリン酸メラミン系難燃剤、フォスファゼン系難燃剤、ホスフィン酸系難燃剤、赤リン系難燃剤等が挙げられる。
 中でも、リン系難燃剤としては、リン酸エステル系難燃剤、ポリリン酸メラミン系難燃剤、フォスファゼン系難燃剤又はホスフィン酸系難燃剤であることが好ましく、ホスフィン酸系難燃剤であることが特に好ましい。
[(G) Phosphorus flame retardant]
The phosphorus-based flame retardant is not particularly limited as long as it is a flame retardant that does not contain a halogen element but contains a phosphorus element. Examples of the phosphorus-based flame retardant include a phosphoric acid ester-based flame retardant, a polyphosphate melamine-based flame retardant, a phosphazen-based flame retardant, a phosphinic acid-based flame retardant, and a red phosphorus-based flame retardant.
Among them, the phosphorus-based flame retardant is preferably a phosphoric acid ester-based flame retardant, a polyphosphate melamine-based flame retardant, a phosphazen-based flame retardant or a phosphinic acid-based flame retardant, and a phosphinic acid-based flame retardant is particularly preferable. ..
 ホスフィン酸系難燃剤として具体的には、例えば、下記一般式(1)で表されるホスフィン酸塩(以下、「ホスフィン酸塩(1)」と略記する場合がある)、下記一般式(2)で表されるジホスフィン酸塩(以下、「ジホスフィン酸塩(2)」と略記する場合がある)及びこれらの縮合物からなる群より選ばれる少なくとも1種のホスフィン酸塩類を含んでもよい。 Specific examples of the phosphinic acid-based flame retardant include a phosphinate represented by the following general formula (1) (hereinafter, may be abbreviated as "phosphinate (1)") and the following general formula (2). ) (Hereinafter, may be abbreviated as "diphosphinate (2)") and at least one phosphinate selected from the group consisting of condensates thereof may be contained.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R11及びR12はそれぞれ独立に、炭素数1以上6以下のアルキル基又は炭素数6以上10以下のアリール基である。Mn11+はn11価の金属イオンである。Mは元素周期表の第2族若しくは第15族に属する元素、遷移元素、亜鉛又はアルミニウムである。n11は2又は3である。複数存在するR11及びR12はそれぞれ同一であってもよく、異なっていてもよい。
 一般式(2)中、R21及びR22はそれぞれ独立に、炭素数1以上6以下のアルキル基又は炭素数6以上10以下のアリール基である。Y21は、炭素数1以上10以下のアルキレン基又は炭素数6以上10以下のアリーレン基である。M’m21+はm21価の金属イオンである。M’は元素周期表の第2族若しくは第15族に属する元素、遷移元素、亜鉛又はアルミニウムである。n21は1以上3以下の整数である。n21が2又は3である場合、複数存在するR21、R22及びY21はそれぞれ同一であってもよく、異なっていてもよい。m21は2又は3である。xは1又は2である。xが2の場合、複数存在するM’は同一であってもよく、異なっていてもよい。n21、x及びm21は、2×n21=m21×xの関係式を満たす整数である。
In the general formula (1), R 11 and R 12 are independently an alkyl group having 1 or more and 6 or less carbon atoms or an aryl group having 6 or more and 10 or less carbon atoms. M n11 + is an n11-valent metal ion. M is an element belonging to Group 2 or Group 15 of the Periodic Table of the Elements, a transition element, zinc or aluminum. n11 is 2 or 3. A plurality of R 11 and R 12 may be the same or different from each other.
In the general formula (2), R 21 and R 22 are independently alkyl groups having 1 or more and 6 or less carbon atoms or aryl groups having 6 or more and 10 or less carbon atoms. Y 21 is an alkylene group having 1 or more and 10 or less carbon atoms or an arylene group having 6 or more and 10 or less carbon atoms. M'm21 + is an m21-valent metal ion. M'is an element belonging to Group 2 or Group 15 of the Periodic Table of the Elements, a transition element, zinc or aluminum. n21 is an integer of 1 or more and 3 or less. When n21 is 2 or 3, a plurality of R 21 , R 22 and Y 21 may be the same or different from each other. m21 is 2 or 3. x is 1 or 2. When x is 2, a plurality of existing M's may be the same or different. n21, x and m21 are integers satisfying the relational expression of 2 × n21 = m21 × x.
(R11、R12、R21及びR22
 R11、R12、R21及びR22はそれぞれ独立に、炭素数1以上6以下のアルキル基、炭素数6以上10以下のアリール基である。
 複数存在するR11及びR12はそれぞれ同一であってもよく、異なっていてもよいが、製造が容易であることから、同一であることが好ましい。
 また、n21が2又は3である場合、複数存在するR21及びR22はそれぞれ同一であってもよく、異なっていてもよいが、製造が容易であることから、同一であることが好ましい。
(R 11 , R 12 , R 21 and R 22 )
R 11 , R 12 , R 21 and R 22 are independently alkyl groups having 1 or more and 6 or less carbon atoms and aryl groups having 6 or more and 10 or less carbon atoms.
A plurality of R 11 and R 12 may be the same or different from each other, but they are preferably the same because they are easy to manufacture.
When n21 is 2 or 3, the plurality of R 21 and R 22 may be the same or different, but they are preferably the same because they are easy to manufacture.
 アルキル基としては、鎖状であってもよく、環状であってもよいが、鎖状であることが好ましい。鎖状アルキル基としては、直鎖状であってもよく、分岐鎖状であってもよい。
 直鎖状アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。
 分岐鎖状アルキル基としては、例えば、1-メチルエチル基、1-メチルプロピル基、2-メチルプロピル基、1,1-ジメチルエチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、1-メチルペンチル基、2-メチルペンチル基、3-メチル基ペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1,1,2-トリメチルプロピル基等が挙げられる。
The alkyl group may be chain-like or cyclic, but is preferably chain-like. The chain alkyl group may be linear or branched.
Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group and the like.
Examples of the branched alkyl group include 1-methylethyl group, 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylethyl group, 1-methylbutyl group, 2-methylbutyl group and 3-methylbutyl group. , 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methyl group pentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 3,3-dimethylbutyl group, 1- Examples thereof include ethylbutyl group, 2-ethylbutyl group, 1,1,2-trimethylpropyl group and the like.
 アリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。 Examples of the aryl group include a phenyl group and a naphthyl group.
 アルキル基及びアリール基は、置換基を有してもよい。
 アルキル基における置換基としては、例えば、炭素数6以上10以下のアリール基等が挙げられる。
 アリール基における置換基としては、炭素数1以上6以下のアルキル基等が挙げられる。
Alkyl groups and aryl groups may have substituents.
Examples of the substituent in the alkyl group include an aryl group having 6 or more and 10 or less carbon atoms.
Examples of the substituent in the aryl group include an alkyl group having 1 or more carbon atoms and 6 or less carbon atoms.
 置換基を有するアルキル基として具体的には、例えば、ベンジル基等が挙げられる。 Specific examples of the alkyl group having a substituent include a benzyl group and the like.
 置換基を有するアリール基として具体的には、例えば、トリル基、キシリル基等が挙げられる。 Specific examples of the aryl group having a substituent include a tolyl group and a xylyl group.
 中でも、R11、R12、R21及びR22としては、炭素数1以上6以下のアルキル基が好ましく、メチル基又はエチル基がより好ましい。 Among them, as R11, R12 , R21 and R22 , an alkyl group having 1 or more carbon atoms and 6 or less carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
(Y21
 Y21は、炭素数1以上10以下のアルキレン基又は炭素数6以上10以下のアリーレン基である。n21が2又は3である場合、複数存在するY21はそれぞれ同一であってもよく、異なっていてもよいが、製造が容易であることから、同一であることが好ましい。
(Y 21 )
Y 21 is an alkylene group having 1 or more and 10 or less carbon atoms or an arylene group having 6 or more and 10 or less carbon atoms. When n21 is 2 or 3, the plurality of Y 21s existing may be the same or different, but they are preferably the same because they are easy to manufacture.
 アルキレン基としては、鎖状であってもよく、環状であってもよいが、鎖状であることが好ましい。鎖状アルキレン基としては、直鎖状であってもよく、分岐鎖状であってもよい。
 直鎖状アルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
 分岐鎖状アルキレン基としては、例えば、1-メチルエチレン基、1-メチルプロピレン基等が挙げられる。
The alkylene group may be chain-like or cyclic, but is preferably chain-like. The chain alkylene group may be linear or branched.
Examples of the linear alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group and the like.
Examples of the branched chain alkylene group include a 1-methylethylene group and a 1-methylpropylene group.
 アリーレン基としては、例えば、フェニレン基、ナフチレン基等が挙げられる。 Examples of the arylene group include a phenylene group and a naphthylene group.
 アルキレン基及びアリーレン基は、置換基を有してもよい。
 アルキレン基における置換基としては、例えば、炭素数6以上10以下のアリール基等が挙げられる。
 アリーレン基における置換基としては、炭素数1以上6以下のアルキル基等が挙げられる。
The alkylene group and the arylene group may have a substituent.
Examples of the substituent in the alkylene group include an aryl group having 6 or more and 10 or less carbon atoms.
Examples of the substituent in the arylene group include an alkyl group having 1 or more carbon atoms and 6 or less carbon atoms.
 置換基を有するアルキレン基として具体的には、例えば、フェニルメチレン基、フェニルエチレン基、フェニルトリメチレン基、フェニルテトラメチレン基等が挙げられる。 Specific examples of the alkylene group having a substituent include a phenylmethylene group, a phenylethylene group, a phenyltrimethylene group, a phenyltetramethylene group and the like.
 置換基を有するアリーレン基として具体的には、例えば、メチルフェニレン基、エチルフェニレン基、tert-ブチルフェニレン基、メチルナフチレン基、エチルナフチレン基、tert-ブチルナフチレン基等が挙げられる。 Specific examples of the arylene group having a substituent include a methylphenylene group, an ethylphenylene group, a tert-butylphenylene group, a methylnaphthylene group, an ethylnaphthylene group, a tert-butylnaphthylene group and the like.
 中でも、Y21としては、炭素数1以上10以下のアルキレン基が好ましく、メチレン基又はエチレン基がより好ましい。 Among them, as Y21, an alkylene group having 1 or more carbon atoms and 10 or less carbon atoms is preferable, and a methylene group or an ethylene group is more preferable.
(M及びM’)
 Mn11+はn11価の金属(M)イオンであり、M’m21+はm21価の金属(M’)イオンである。
 M及びM’はそれぞれ独立に、元素周期表の第2族若しくは第15族に属する元素、遷移元素、亜鉛又はアルミニウムである。元素周期表の第2族に属する元素としては、例えば、カルシウム、マグネシウム等が挙げられる。元素周期表の第15族に属する元素としては、例えば、ビスマス等が挙げられる。
 また、xが2の場合、複数存在するM’は同一であってもよく、異なっていてもよいが、製造が容易であることから、同一であることが好ましい。
 中でも、M及びM’としては、カルシウム、亜鉛又はアルミニウムが好ましく、カルシウム又はアルミニウムがより好ましい。
(M and M')
M n11 + is an n11-valent metal (M) ion, and M'm21 + is an m21-valent metal (M') ion.
M and M'are independently elements belonging to Group 2 or Group 15 of the Periodic Table of the Elements, transition elements, zinc or aluminum. Examples of the element belonging to the second group of the Periodic Table of the Elements include calcium and magnesium. Examples of the element belonging to Group 15 of the Periodic Table of the Elements include bismuth and the like.
Further, when x is 2, a plurality of M's existing may be the same or different, but they are preferably the same because they are easy to manufacture.
Among them, as M and M', calcium, zinc or aluminum is preferable, and calcium or aluminum is more preferable.
(x)
 xはM’の個数を表し、1又は2である。xは、M’の種類及びジホスフィン酸の数に応じて、適宜選択することができる。
(X)
x represents the number of M'and is 1 or 2. x can be appropriately selected depending on the type of M'and the number of diphosphinic acids.
(n11及びn21)
 n11はホスフィン酸の個数及びMの価数を表し、2又は3である。n11は、Mの種類及び価数に応じて、適宜選択することができる。
 n21はジホスフィン酸の個数を表し、1以上3以下の整数である。n21は、M’の種類及び数に応じて、適宜選択することができる。
(N11 and n21)
n11 represents the number of phosphinic acids and the valence of M, and is 2 or 3. n11 can be appropriately selected depending on the type and valence of M.
n21 represents the number of diphosphinic acids and is an integer of 1 or more and 3 or less. n21 can be appropriately selected depending on the type and number of M'.
(m21)
 m21はM’の価数を表し、2又は3である。
(M21)
m21 represents the valence of M'and is 2 or 3.
 n21、x及びm21は、2×n21=m21×xの関係式を満たす整数である。 N21, x and m21 are integers that satisfy the relational expression of 2 × n21 = m21 × x.
 好ましいホスフィン酸塩(1)として具体的には、例えば、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸マグネシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸マグネシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛、メチル-n-プロピルホスフィン酸カルシウム、メチル-n-プロピルホスフィン酸マグネシウム、メチル-n-プロピルホスフィン酸アルミニウム、メチル-n-プロピルホスフィン酸亜鉛、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン-1,4-(ジメチルホスフィン酸)カルシウム、ベンゼン-1,4-(ジメチルホスフィン酸)マグネシウム、ベンゼン-1,4-(ジメチルホスフィン酸)アルミニウム、ベンゼン-1,4-(ジメチルホスフィン酸)亜鉛、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸マグネシウム、メチルフェニルホスフィン酸アルミニウム、メチルフェニルホスフィン酸亜鉛、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸マグネシウム、ジフェニルホスフィン酸アルミニウム、ジフェニルホスフィン酸亜鉛等が挙げられる。中でも、ホスフィン酸塩(1)としては、難燃性が優れることから、ジメチルホスフィン酸カルシウム又はジメチルホスフィン酸アルミニウムが特に好ましい。 Specifically, as the preferred phosphinate (1), for example, calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, magnesium ethylmethylphosphinate, ethylmethylphosphine. Aluminum Acid, Zinc Ethylmethylphosphinate, Calcium diethylphosphinate, Magnesium diethylphosphinate, Aluminum diethylphosphinate, Zinc diethylphosphinate, Calcium methyl-n-propylphosphinate, Magnesium methyl-n-propylphosphinate, Methyl-n -Aluminum propylphosphinate, zinc methyl-n-propylphosphinate, calcium methanedi (methylphosphinic acid), magnesium methanedi (methylphosphinic acid), aluminum methanedi (methylphosphinic acid), zinc methanedi (methylphosphinic acid), benzene-1 , 4- (dimethylphosphinic acid) calcium, benzene-1,4- (dimethylphosphinic acid) magnesium, benzene-1,4- (dimethylphosphinic acid) aluminum, benzene-1,4- (dimethylphosphinic acid) zinc, methyl Examples thereof include calcium phenylphosphinate, magnesium methylphenylphosphinate, aluminum methylphenylphosphinate, zinc methylphenylphosphinate, calcium diphenylphosphinate, magnesium diphenylphosphinate, aluminum diphenylphosphinate, zinc diphenylphosphinate and the like. Among them, calcium dimethylphosphinate or aluminum dimethylphosphinate is particularly preferable as the phosphinate (1) because of its excellent flame retardancy.
 好ましいジホスフィン酸塩(2)として具体的には、例えば、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン-1,4-ジ(メチルホスフィン酸)カルシウム、ベンゼン-1,4-ジ(メチルホスフィン酸)マグネシウム、ベンゼン-1,4-ジ(メチルホスフィン酸)アルミニウム、ベンゼン-1,4-ジ(メチルホスフィン酸)亜鉛等が挙げられる。 Specific examples of the preferred diphosphinate (2) include methanedi (methylphosphinic acid) calcium, methanedi (methylphosphinic acid) magnesium, methanedi (methylphosphinic acid) aluminum, methanedi (methylphosphinic acid) zinc, and benzene-1. , 4-di (methylphosphinic acid) calcium, benzene-1,4-di (methylphosphinic acid) magnesium, benzene-1,4-di (methylphosphinic acid) aluminum, benzene-1,4-di (methylphosphinic acid) ) Zinc and the like can be mentioned.
 ホスフィン酸塩類の製造方法としては、特に限定されないが、例えば、ホスフィン酸と金属炭酸塩、金属水酸化物又は金属酸化物とを用いて水溶液中で製造する方法が挙げられる。これらは、本質的にモノマー性化合物であるが、反応条件に依存して、環境によっては縮合度が1以上3以下の縮合物であるポリマー性ホスフィン酸塩も含まれる。 The method for producing phosphinates is not particularly limited, and examples thereof include a method for producing phosphinic acid in an aqueous solution using phosphinic acid and a metal carbonate, a metal hydroxide, or a metal oxide. These are essentially monomeric compounds, but depending on the reaction conditions, polymer phosphinates, which are condensates having a degree of condensation of 1 or more and 3 or less depending on the environment, are also included.
 リン系難燃剤の含有量は、(A)結晶性ポリアミド及び(B)非晶性ポリアミドの合計質量に対して、0.1質量%以上30質量%以下が好ましく、5質量%以上30質量%以下がより好ましく、10質量%以上29質量%以下がさらに好ましく、15質量%以上29質量%以下が特に好ましい。
 リン系難燃剤の含有量を上記下限値以上とすることにより、成形体としたときの難燃性により優れるポリアミド組成物を得ることができる。一方、リン系難燃剤量を上記上限値以下とすることにより、ポリアミドの有する性質を損なうことなく、成形体としたときの難燃性により優れるポリアミド組成物を得ることができる。
The content of the phosphorus-based flame retardant is preferably 0.1% by mass or more and 30% by mass or less, and 5% by mass or more and 30% by mass, based on the total mass of (A) crystalline polyamide and (B) amorphous polyamide. The following is more preferable, 10% by mass or more and 29% by mass or less is further preferable, and 15% by mass or more and 29% by mass or less is particularly preferable.
By setting the content of the phosphorus-based flame retardant to the above lower limit value or more, a polyamide composition having better flame retardancy when formed into a molded product can be obtained. On the other hand, by setting the amount of the phosphorus-based flame retardant to the above upper limit value or less, it is possible to obtain a polyamide composition having better flame retardancy when formed into a molded product without impairing the properties of the polyamide.
[(H)造核剤]
 (H)造核剤とは、添加により以下の(1)~(3)のうち少なくともいずれか1つの効果が得られる物質のことを意味する。
 (1)ポリアミド組成物の結晶化ピーク温度を上昇させる効果。
 (2)結晶化ピークの補外開始温度と補外終了温度との差を小さくする効果。
 (3)得られる成形体の球晶を微細化又はサイズの均一化させる効果。
[(H) Nucleating agent]
(H) The nucleating agent means a substance that can obtain at least one of the following effects (1) to (3) by addition.
(1) The effect of raising the crystallization peak temperature of the polyamide composition.
(2) The effect of reducing the difference between the extrapolation start temperature and the extrapolation end temperature of the crystallization peak.
(3) The effect of making the spherulites of the obtained molded product finer or uniform in size.
 造核剤としては、以下に限定されるものではないが、例えば、タルク、窒化ホウ素、マイカ、カオリン、窒化珪素、チタン酸カリウム、二硫化モリブデン等が挙げられる。
 造核剤は、1種類のみを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 中でも、造核剤としては、造核剤効果の観点で、タルク又は窒化ホウ素が好ましい。
Examples of the nucleating agent include, but are not limited to, talc, boron nitride, mica, kaolin, silicon nitride, potassium titanate, molybdenum disulfide and the like.
As the nucleating agent, only one type may be used alone, or two or more types may be used in combination.
Among them, talc or boron nitride is preferable as the nucleating agent from the viewpoint of the effect of the nucleating agent.
 また、造核剤の効果が高いため、造核剤の数平均粒子径は0.01μm以上10μm以下が好ましい。
 造核剤の数平均粒子径は、以下の方法を用いて測定することができる。まず、成形体をギ酸等のポリアミドが可溶な溶媒で溶解する。次いで、得られた不溶成分の中から、例えば、100個以上の造核剤を任意に選択する。次いで、光学顕微鏡や走査型電子顕微鏡等で観察して、粒径を測定することにより求めることができる。
Further, since the effect of the nucleating agent is high, the number average particle size of the nucleating agent is preferably 0.01 μm or more and 10 μm or less.
The number average particle size of the nucleating agent can be measured by the following method. First, the molded product is dissolved in a solvent in which polyamide such as formic acid is soluble. Then, for example, 100 or more nucleating agents are arbitrarily selected from the obtained insoluble components. Then, it can be obtained by observing with an optical microscope, a scanning electron microscope, or the like and measuring the particle size.
 本実施形態のポリアミド組成物中の造核剤の含有量は、ポリアミド組成物の総質量に対して、0.001質量%以上1質量%以下が好ましく、0.001質量%以上0.5質量%以下がより好ましく、0.001質量%以上0.09質量%以下がさらに好ましい。
 造核剤の含有量を、上記下限値以上とすることにより、ポリアミド組成物の耐熱性がより向上する傾向にある、また、造核剤の含有量を、上記上限値以下とすることにより、靭性により優れるポリアミド組成物が得られる。
The content of the nucleating agent in the polyamide composition of the present embodiment is preferably 0.001% by mass or more and 1% by mass or less, and 0.001% by mass or more and 0.5% by mass, based on the total mass of the polyamide composition. % Or less is more preferable, and 0.001% by mass or more and 0.09% by mass or less is further preferable.
By setting the content of the nucleating agent to the above lower limit value or more, the heat resistance of the polyamide composition tends to be further improved, and by setting the content of the nucleating agent to the above upper limit value or less, the heat resistance tends to be further improved. A polyamide composition having better toughness can be obtained.
[(I)熱安定剤]
 (I)熱安定剤としては、以下に制限されないが、例えば、フェノール系熱安定剤、リン系熱安定剤、アミン系熱安定剤、元素周期表の第3族、第4族及び第11~14族の元素の金属塩、アルカリ金属及びアルカリ土類金属のハロゲン化物等が挙げられる。
[(I) Heat stabilizer]
(I) The heat stabilizer is not limited to the following, but is not limited to, for example, a phenol-based heat stabilizer, a phosphorus-based heat stabilizer, an amine-based heat stabilizer, and Group 3, Group 4, and Group 11 to 11 of the Periodic Table of the Elements. Examples thereof include metal salts of Group 14 elements, alkali metals and halides of alkaline earth metals.
(フェノール系熱安定剤)
 フェノール系熱安定剤としては、以下に限定されるものではないが、例えば、ヒンダードフェノール化合物等が挙げられる。ヒンダードフェノール化合物は、ポリアミド等の樹脂や繊維に優れた耐熱性及び耐光性を付与する性質を有する。
(Phenolic heat stabilizer)
Examples of the phenolic heat stabilizer include, but are not limited to, hindered phenol compounds. The hindered phenol compound has a property of imparting excellent heat resistance and light resistance to resins and fibers such as polyamide.
 ヒンダードフェノール化合物としては、以下に限定されるものではないが、例えば、N,N'-へキサン-1,6-ジイルビス[3-(3,5-ジ-tertブチル-4-ヒドロキシフェニルプロピオンアミド)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N'-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸等が挙げられる。
 これらは、ヒンダードフェノール化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 特に、耐熱エージング性向上の観点から、ヒンダードフェノール化合物としては、N,N'-へキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオンアミド)]が好ましい。
The hindered phenol compound is not limited to the following, and is, for example, N, N'-hexane-1,6-diylbis [3- (3,5-di-tertbutyl-4-hydroxyphenylpropion). Amid), pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N'-hexamethylenebis (3,5-di-tert-butyl-4) -Hydroxy-hydrocinnamamide), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis {2- [3- (3- (3- (3-) tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 3,5-di-tert -Butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 1,3,5 -Tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid and the like can be mentioned.
As for these, only one hindered phenol compound may be used alone, or two or more kinds may be used in combination.
In particular, from the viewpoint of improving heat-resistant aging properties, the hindered phenol compound includes N, N'-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenylpropionamide). )] Is preferable.
 フェノール系熱安定剤を用いる場合、ポリアミド組成物中のフェノール系熱安定剤の含有量は、ポリアミド組成物の総質量に対して、0.01質量%以上1質量%以下が好ましく、0.1質量%以上1質量%以下がより好ましい。
 フェノール系熱安定剤の含有量が上記の範囲内の場合、ポリアミド組成物の耐熱エージング性をより一層向上させ、さらにガス発生量をより低減させることができる。
When a phenol-based heat stabilizer is used, the content of the phenol-based heat stabilizer in the polyamide composition is preferably 0.01% by mass or more and 1% by mass or less, preferably 0.1% by mass, based on the total mass of the polyamide composition. More preferably, it is by mass% or more and 1% by mass or less.
When the content of the phenolic heat stabilizer is within the above range, the heat-resistant aging property of the polyamide composition can be further improved, and the amount of gas generated can be further reduced.
(リン系熱安定剤)
 リン系熱安定剤としては、以下に限定されるものではないが、例えば、ペンタエリスリトール型ホスファイト化合物、トリオクチルホスファイト、トリラウリルホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、トリスイソデシルホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニル(トリデシル)ホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチル-5-メチルフェニル)ホスファイト、トリス(ブトキシエチル)ホスファイト、4,4'-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニル-テトラ-トリデシル)ジホスファイト、テトラ(C12~C15混合アルキル)-4,4'-イソプロピリデンジフェニルジホスファイト、4,4'-イソプロピリデンビス(2-tert-ブチルフェニル)-ジ(ノニルフェニル)ホスファイト、トリス(ビフェニル)ホスファイト、テトラ(トリデシル)-1,1,3-トリス(2-メチル-5-tert-ブチル-4-ヒドロキシフェニル)ブタンジホスファイト、テトラ(トリデシル)-4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェニル)ジホスファイト、テトラ(C1~C15混合アルキル)-4,4'-イソプロピリデンジフェニルジホスファイト、トリス(モノ、ジ混合ノニルフェニル)ホスファイト、4,4'-イソプロピリデンビス(2-tert-ブチルフェニル)-ジ(ノニルフェニル)ホスファイト、9,10-ジ-ヒドロ-9-オキサ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)ホスファイト、水素化-4,4'-イソプロピリデンジフェニルポリホスファイト、ビス(オクチルフェニル)-ビス(4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェニル))-1,6-ヘキサノールジホスファイト、ヘキサトリデシル-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ジホスファイト、トリス(4、4'-イソプロピリデンビス(2-tert-ブチルフェニル))ホスファイト、トリス(1,3-ステアロイルオキシイソプロピル)ホスファイト、2、2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、2,2-メチレンビス(3-メチル-4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルホスファイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスファイト、およびテトラキス(2,4-ジ-tert-ブチルフェニル)-4,4'-ビフェニレンジホスファイト等が挙げられる。
 これらリン系熱安定剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、リン系熱安定剤としては、ポリアミド組成物の耐熱エージング性の一層の向上及びガス発生量の低減という観点から、ペンタエリスリトール型ホスファイト化合物及びトリス(2,4-ジ-tert-ブチルフェニル)ホスファイトからなる群より選ばれる1種以上が好ましい。
(Phosphorus heat stabilizer)
The phosphorus-based heat stabilizer is not limited to, but is not limited to, for example, pentaerythritol type phosphite compound, trioctylphosphite, trilaurylphosphite, tridecylphosphite, octyldiphenylphosphite, trisisodecyl. Phenyl diisodecyl phosphite, phenyldi (tridecyl) phosphite, diphenylisooctylphosphite, diphenylisodecylphosphite, diphenyl (tridecyl) phosphite, triphenylphosphite, tris (nonylphenyl) phosphite, tris (2) , 4-Di-tert-butylphenyl) phosphite, tris (2,4-di-tert-butyl-5-methylphenyl) phosphite, tris (butoxyethyl) phosphite, 4,4'-butylidene-bis ( 3-Methyl-6-tert-butylphenyl-tetra-tridecyl) diphosphite, tetra (C12-C15 mixed alkyl) -4,4'-isopropyridene diphenyldiphosphite, 4,4'-isopropyridenebis (2-tert) -Butylphenyl) -di (nonylphenyl) phosphite, tris (biphenyl) phosphite, tetra (tridecyl) -1,1,3-tris (2-methyl-5-tert-butyl-4-hydroxyphenyl) butanji Phosphite, Tetra (Tridecyl) -4,4'-Butylidenebis (3-Methyl-6-tert-butylphenyl) Diphosphite, Tetra (C1-C15 mixed alkyl) -4,4'-Isopropyridene diphenyldiphosphite, Tris (Mono, di-mixed nonylphenyl) phosphite, 4,4'-isopropyridenebis (2-tert-butylphenyl) -di (nonylphenyl) phosphite, 9,10-di-hydro-9-oxa-9- Oxa-10-phosphaphenanthrene-10-oxide, tris (3,5-di-tert-butyl-4-hydroxyphenyl) phosphite, hydrogenation-4,4'-isopropridendiphenylpolyphosphite, bis (Octylphenyl) -bis (4,4'-butylidenebis (3-methyl-6-tert-butylphenyl))-1,6-hexanoldiphosphite, hexatridecyl-1,1,3-tris (2-) Methyl-4-hydroxy-5-tert-butylphenyl) diphosphite, tris (4,4'-isopropylidenebis (2-tert-butylphenyl) L)) Phenylphosphite, Tris (1,3-stearoyloxyisopropyl) Phenylphosphite, 2,2-Methylenebis (4,6-di-tert-butylphenyl) Octylphosphite, 2,2-Methylenebis (3-methyl- 4,6-Di-tert-butylphenyl) 2-ethylhexylphosphite, tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphite, and tetrakis (2, 4-di-tert-butylphenyl) -4,4'-biphenylenediphosphite and the like can be mentioned.
These phosphorus-based heat stabilizers may be used alone or in combination of two or more.
Among them, as phosphorus-based heat stabilizers, pentaerythritol-type phosphite compounds and tris (2,4-di-tert-butylphenyl) are used from the viewpoint of further improving the heat-resistant aging property of the polyamide composition and reducing the amount of gas generated. ) One or more selected from the group consisting of phosphite is preferable.
 ペンタエリスリトール型ホスファイト化合物としては、以下に限定されるものではないが、例えば、2,6-ジ-tert-ブチル-4-メチルフェニル-フェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-メチル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2-エチルヘキシル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-イソデシル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ラウリル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-イソトリデシル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ステアリル・ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル・シクロヘキシル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ベンジル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル・エチルセロソルブ-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ブチルカルビトール-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-オクチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ノニルフェニル・ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2,6-ジ-tert-ブチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2,4-ジ-tert-ブチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2,4-ジ-tert-オクチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2-シクロヘキシルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-アミル-4-メチルフェニル-フェニル・ペンタエリストリトールジホスファイト、ビス(2,6-ジ-tert-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、およびビス(2,6-ジ-tert-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。
 これらペンタエリスリトール型ホスファイト化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、ペンタエリスリトール型ホスファイト化合物としては、ポリアミド組成物のガス発生量を低減させる観点から、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、及び、ビス(2、6-ジ-tert-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイトからなる群より選ばれる1種以上が好ましく、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトがより好ましい。
The pentaerythritol-type phosphite compound is not limited to the following, and is, for example, 2,6-di-tert-butyl-4-methylphenyl-phenyl-pentaerythritol diphosphite, 2,6-di-. tert-Butyl-4-methylphenyl-methyl-pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl-2-ethylhexyl-pentaerythritol diphosphite, 2,6-di-tert- Butyl-4-methylphenyl-isodecyl-pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl-lauryl-pentaerythritol diphosphite, 2,6-di-tert-butyl-4- Methylphenyl-isotridecyl-pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl-stearyl pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl cyclohexyl -Pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl-benzyl-pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl ethylcellosolve-pentaerythritol Diphosphite, 2,6-di-tert-butyl-4-methylphenyl-butylcarbitol-pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl-octylphenyl-pentaerythritol di Phosphite, 2,6-di-tert-butyl-4-methylphenyl-nonylphenyl pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, Bis (2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl-2,6-di-tert-butylphenyl-penta Ellisritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl-2,4-di-tert-butylphenyl-pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methyl Phenyl-2,4-di-tert-octylphenyl-pentaerythritol diphosphite, 2,6-di-tert-butyl-4-methylphenyl -2-Cyclohexylphenyl-pentaerythritol diphosphite, 2,6-di-tert-amyl-4-methylphenyl-phenyl pentaeristritol diphosphite, bis (2,6-di-tert-amyl-4) -Methylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-octyl-4-methylphenyl) pentaerythritol diphosphite and the like can be mentioned.
These pentaerythritol-type phosphite compounds may be used alone or in combination of two or more.
Among them, as the pentaerythritol-type phosphite compound, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite and bis (2) are used from the viewpoint of reducing the amount of gas generated in the polyamide composition. , 6-Di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-amyl-4-methylphenyl) pentaerythritol diphosphite, and bis (2,6) -Di-tert-octyl-4-methylphenyl) pentaerythritol diphosphite is preferably one or more selected from the group consisting of bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphos. Fight is more preferred.
 リン系熱安定剤を用いる場合、ポリアミド組成物中のリン系熱安定剤の含有量は、ポリアミド組成物の総質量に対して、0.01質量%以上1質量%以下が好ましく、0.1質量%以上1質量%以下がより好ましい。
 リン系熱安定剤の含有量が上記の範囲内の場合、ポリアミド組成物の耐熱エージング性をより一層向上させ、さらにガス発生量をより低減させることができる。
When a phosphorus-based heat stabilizer is used, the content of the phosphorus-based heat stabilizer in the polyamide composition is preferably 0.01% by mass or more and 1% by mass or less, preferably 0.1% by mass, based on the total mass of the polyamide composition. More preferably, it is by mass% or more and 1% by mass or less.
When the content of the phosphorus-based heat stabilizer is within the above range, the heat-resistant aging property of the polyamide composition can be further improved, and the amount of gas generated can be further reduced.
(アミン系熱安定剤)
 アミン系熱安定剤としては、以下に限定されるものではないが、例えば、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルアセトキシ)-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-(エチルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-テレフタレート、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-エタン、α,α'-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β',β'-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物等が挙げられる。
 これらアミン系熱安定剤は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Amine-based heat stabilizer)
The amine-based heat stabilizer is not limited to the following, and is, for example, 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetra. Methylpiperidine, 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6 6-Tetramethylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4- (ethylcarbamoyloxy) -2,2 , 6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, bis (2,2,6,6-tetramethyl-4-piperidyl) -carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) -oxalate, bis (2,2,6,6-tetra Methyl-4-piperidyl) -malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) -sevacate, bis (2,2,6,6-tetramethyl-4-piperidyl) -adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) -terephthalate, 1,2-bis (2,2,6,6-tetramethyl-4-piperidyloxy) -ethane, α, α'-bis (2,2,6,6-tetramethyl-4-piperidyloxy) -p-xylene, bis (2,2,6,6-tetramethyl-4-piperidyltrilen-2,4-dicarbamate, bis (2,2,6,6-tetramethyl-4-piperidyloxy) 2,2,6,6-tetramethyl-4-piperidyl) -hexamethylene-1,6-dicarbamate, tris (2,2,6,6-tetramethyl-4-piperidyl) -benzene-1,3 5-tricarboxylate, Tris (2,2,6,6-tetramethyl-4-piperidyl) -benzene-1,3,4-tricarboxylate, 1- [2- {3- (3,5-di) -Tert-Butyl-4-hydroxyphenyl) propionyloxy} butyl] -4- [3- (3,5-di-tert-butyl-4-) Hydroxyphenyl) propionyloxy] 2,2,6,6-tetramethylpiperidin, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and β, β , Β', β'-tetramethyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] condensate with diethanol and the like.
These amine-based heat stabilizers may be used alone or in combination of two or more.
 アミン系熱安定剤を用いる場合、ポリアミド組成物中のアミン系熱安定剤の含有量は、ポリアミド組成物の総質量に対して、0.01質量%以上1質量%以下が好ましく、0.1質量%以上1質量%以下がより好ましい。
 アミン系熱安定剤の含有量が上記範囲内であることで、得られる成形体の耐熱エージング性をより一層向上させることができ、さらにガス発生量をより低減させることができる。
When an amine-based heat stabilizer is used, the content of the amine-based heat stabilizer in the polyamide composition is preferably 0.01% by mass or more and 1% by mass or less, preferably 0.1% by mass, based on the total mass of the polyamide composition. More preferably, it is by mass% or more and 1% by mass or less.
When the content of the amine-based heat stabilizer is within the above range, the heat-resistant aging property of the obtained molded product can be further improved, and the amount of gas generated can be further reduced.
(元素周期表の第3族、第4族及び第11~14族の元素の金属塩)
 元素周期表の第3族、第4族及び第11~14族の元素の金属塩としては、これらの族に属する金属の塩であれば何ら制限されることはない。
 中でも、得られる成形体の耐熱エージング性を一層向上させる観点から、銅塩が好ましい。かかる銅塩としては、以下に制限されないが、例えば、ハロゲン化銅、酢酸銅、プロピオン酸銅、安息香酸銅、アジピン酸銅、テレフタル酸銅、イソフタル酸銅、サリチル酸銅、ニコチン酸銅、ステアリン酸銅、キレート剤に銅の配位した銅錯塩が挙げられる。
 ハロゲン化銅としては、例えば、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅等が挙げられる。
 キレート剤としては、例えば、エチレンジアミン、エチレンジアミン四酢酸等が挙げられる。
 これら銅塩は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、銅塩としては、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅及び酢酸銅からなる群より選ばれる1種以上が好ましく、ヨウ化銅及び酢酸銅からなる群より選ばれる1種以上がより好ましい。上記に挙げた好ましい銅塩を用いた場合、耐熱エージング性により優れ、且つ、押出時のスクリューやシリンダー部の金属腐食(以下、単に「金属腐食」とも称する場合がある)をより効果的に抑制できるポリアミド組成物が得られる。
(Metal salts of Group 3 and Group 4 and Group 11-14 elements of the Periodic Table of the Elements)
The metal salts of the elements of Group 3, Group 4 and Groups 11 to 14 of the Periodic Table of the Elements are not limited as long as they are salts of metals belonging to these groups.
Above all, a copper salt is preferable from the viewpoint of further improving the heat-resistant aging property of the obtained molded product. The copper salt is not limited to the following, and is, for example, copper halide, copper acetate, copper propionate, copper benzoate, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate, stearic acid. Examples of copper and a copper complex salt in which copper is coordinated with a chelating agent can be mentioned.
Examples of the copper halide include copper iodide, cuprous bromide, cupric bromide, and cuprous chloride.
Examples of the chelating agent include ethylenediamine and ethylenediaminetetraacetic acid.
These copper salts may be used alone or in combination of two or more.
Among them, the copper salt is preferably at least one selected from the group consisting of copper iodide, cuprous bromide, cupric bromide, cuprous chloride and copper acetate, and is composed of copper iodide and copper acetate. One or more selected from the group is more preferable. When the above-mentioned preferable copper salts are used, they are superior in heat-resistant aging property and more effectively suppress metal corrosion of screws and cylinders during extrusion (hereinafter, may be simply referred to as "metal corrosion"). A possible polyamide composition is obtained.
 熱安定剤として銅塩を用いる場合、ポリアミド組成物中の銅塩の含有量は、ポリアミド((A)結晶性ポリアミド及び(B)非晶性ポリアミド)の総質量に対して、0.01質量%以上0.60質量%以下が好ましく、0.02質量%以上0.40質量%以下がより好ましい。
 銅塩の含有量が上記範囲内の場合、ポリアミド組成物の耐熱エージング性をより一層向上させるとともに、銅の析出や金属腐食をより効果的に抑制することができる。
When a copper salt is used as the heat stabilizer, the content of the copper salt in the polyamide composition is 0.01 mass by mass with respect to the total mass of the polyamide ((A) crystalline polyamide and (B) amorphous polyamide). % Or more and 0.60% by mass or less are preferable, and 0.02% by mass or more and 0.40% by mass or less are more preferable.
When the content of the copper salt is within the above range, the heat-resistant aging property of the polyamide composition can be further improved, and copper precipitation and metal corrosion can be more effectively suppressed.
 また、上記の銅塩に由来する銅元素の含有濃度は、ポリアミド組成物の耐熱エージング性を向上させる観点から、ポリアミド((A)結晶性ポリアミド及び(B)非晶性ポリアミド)10質量部(100万質量部)に対して、10質量部以上2000質量部以下が好ましく、30質量部以上1500質量部以下がより好ましく、50質量部以上500質量部以下がさらに好ましい。 Further, the content concentration of the copper element derived from the above copper salt is 106 parts by mass of the polyamide ((A) crystalline polyamide and (B) amorphous polyamide) from the viewpoint of improving the heat aging property of the polyamide composition. With respect to (1 million parts by mass), 10 parts by mass or more and 2000 parts by mass or less are preferable, 30 parts by mass or more and 1500 parts by mass or less are more preferable, and 50 parts by mass or more and 500 parts by mass or less are further preferable.
(アルカリ金属及びアルカリ土類金属のハロゲン化物)
 アルカリ金属及びアルカリ土類金属のハロゲン化物としては、以下に限定されるものではないが、例えば、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム、塩化ナトリウム等が挙げられる。
 これらアルカリ金属及びアルカリ土類金属のハロゲン化物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 中でも、アルカリ金属及びアルカリ土類金属のハロゲン化物としては、耐熱エージング性の向上及び金属腐食の抑制という観点から、ヨウ化カリウム及び臭化カリウムからなる群より選ばれる1種以上が好ましく、ヨウ化カリウムがより好ましい。
(Halogens of alkali metals and alkaline earth metals)
Examples of the halides of the alkali metal and the alkaline earth metal include, but are not limited to, potassium iodide, potassium bromide, potassium chloride, sodium iodide, sodium chloride and the like.
As the halides of these alkali metals and alkaline earth metals, one type may be used alone, or two or more types may be used in combination.
Among them, as the halide of the alkali metal and the alkaline earth metal, one or more selected from the group consisting of potassium iodide and potassium bromide is preferable from the viewpoint of improving heat aging property and suppressing metal corrosion, and iodide. Potassium is more preferred.
 アルカリ金属及びアルカリ土類金属のハロゲン化物を用いる場合、ポリアミド組成物中のアルカリ金属及びアルカリ土類金属のハロゲン化物の含有量は、ポリアミド((A)結晶性ポリアミド及び(B)非晶性ポリアミド)100質量部に対して、0.05質量部以上20質量部以下が好ましく、0.2質量部以上10質量部以下がより好ましい。
 アルカリ金属及びアルカリ土類金属のハロゲン化物の含有量が上記範囲内であることで、得られる成形体の耐熱エージング性がより一層向上するとともに、銅の析出や金属腐食をより効果的に抑制することができる。
When alkali metal and alkaline earth metal halides are used, the content of the alkali metal and alkaline earth metal halides in the polyamide composition is determined by the polyamide ((A) crystalline polyamide and (B) amorphous polyamide). ) With respect to 100 parts by mass, 0.05 parts by mass or more and 20 parts by mass or less are preferable, and 0.2 parts by mass or more and 10 parts by mass or less are more preferable.
When the content of the halide of the alkali metal and the alkaline earth metal is within the above range, the heat-resistant aging property of the obtained molded body is further improved, and the precipitation of copper and the metal corrosion are suppressed more effectively. be able to.
 上記で説明してきた熱安定剤の成分は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、熱安定剤としては、得られる成形体の耐熱エージング性をより一層向上させる観点から、銅塩と、アルカリ金属及びアルカリ土類金属のハロゲン化物との混合物が好ましい。
As the component of the heat stabilizer described above, only one kind may be used alone, or two or more kinds may be used in combination.
Among them, as the heat stabilizer, a mixture of a copper salt and a halide of an alkali metal and an alkaline earth metal is preferable from the viewpoint of further improving the heat aging property of the obtained molded product.
 銅塩と、アルカリ金属及びアルカリ土類金属のハロゲン化物との含有比は、銅に対するハロゲンのモル比(ハロゲン/銅)として、2/1以上40/1以下が好ましく、5/1以上30/1以下がより好ましい。
 銅に対するハロゲンのモル比(ハロゲン/銅)が上記範囲内であることで、得られる成形体の耐熱エージング性をより一層向上させることができる。
 また、銅に対するハロゲンのモル比(ハロゲン/銅)が上記下限値以上である場合、銅の析出及び金属腐食をより効果的に抑制することができる。一方、銅に対するハロゲンのモル比(ハロゲン/銅)が上記上限値以下である場合、成形体としたときの機械的物性(靭性等)を殆ど損なうことなく、成形機のスクリュー等の腐食をより効果的に防止できる。
The content ratio of the copper salt to the halides of the alkali metal and the alkaline earth metal is preferably 2/1 or more and 40/1 or less as the molar ratio of halogen to copper (halogen / copper), 5/1 or more and 30 /. 1 or less is more preferable.
When the molar ratio of halogen to copper (halogen / copper) is within the above range, the heat-resistant aging property of the obtained molded product can be further improved.
Further, when the molar ratio of halogen to copper (halogen / copper) is at least the above lower limit value, precipitation of copper and metal corrosion can be suppressed more effectively. On the other hand, when the molar ratio of halogen to copper (halogen / copper) is not more than the above upper limit value, the mechanical properties (toughness, etc.) of the molded product are hardly impaired, and the screws of the molding machine are more corroded. Can be effectively prevented.
[(J)その他のポリマー]
 その他のポリマーとしては、ポリアミド以外のものであれば、特に限定されるものではないが、例えば、ポリエステル、液晶ポリエステル、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリカーボネート、ポリアリレート、フェノール樹脂、エポキシ樹脂等が挙げられる。ポリエステルとしては、以下に限定されるものではないが、例えば、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。
[(J) Other polymers]
The other polymer is not particularly limited as long as it is other than polyamide, and examples thereof include polyester, liquid crystal polyester, polyphenylene sulfide, polyphenylene ether, polycarbonate, polyarylate, phenol resin, and epoxy resin. .. Examples of the polyester include, but are not limited to, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene terephthalate, polyethylene naphthalate and the like.
 その他のポリマーの含有量は、ポリアミド組成物中の全ポリアミド量に対し、1質量%以上30質量%以下が好ましく、5質量%以上20質量%以下がより好ましく、5質量%以上15質量%以下がさらに好ましい。その他のポリマーの含有量が上記範囲内であるとにより、耐熱性、離型性に優れるポリアミド組成物とすることができる。 The content of the other polymer is preferably 1% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 20% by mass or less, and 5% by mass or more and 15% by mass or less with respect to the total amount of polyamide in the polyamide composition. Is even more preferable. When the content of the other polymer is within the above range, a polyamide composition having excellent heat resistance and releasability can be obtained.
[(K)その他添加剤]
 本実施形態のポリアミド組成物は、上記の各成分に加えて、本実施形態のポリアミド組成物の効果を損なわない範囲で、ポリアミド組成物に慣用的に用いられるその他添加剤を含んでもよい。その他添加剤としては、例えば、顔料及び染料等の着色剤(着色マスターバッチを含む)、難燃剤、フィブリル化剤、蛍光漂白剤、可塑化剤、酸化防止剤、紫外線吸収剤、帯電防止剤、流動性改良剤、展着剤等が挙げられる。
 本実施形態のポリアミド組成物が、その他添加剤を含有する場合、その他添加剤の含有量は、その種類やポリアミド組成物の用途等によって様々であるため、本実施形態の製造方法で得られるポリアミド組成物の効果を損なわない範囲であれば特に制限されることはない。
[(K) Other additives]
In addition to the above components, the polyamide composition of the present embodiment may contain other additives commonly used in the polyamide composition as long as the effects of the polyamide composition of the present embodiment are not impaired. Other additives include, for example, colorants such as pigments and dyes (including colored master batches), flame retardants, fibrillation agents, fluorescent bleaching agents, plasticizing agents, antioxidants, ultraviolet absorbers, antistatic agents, etc. Examples include a fluidity improving agent and a spreading agent.
When the polyamide composition of the present embodiment contains other additives, the content of the other additives varies depending on the type, use of the polyamide composition, etc., and therefore the polyamide obtained by the production method of the present embodiment. There is no particular limitation as long as the effect of the composition is not impaired.
<ポリアミド組成物の製造方法>
 本実施形態のポリアミド組成物の製造方法としては、上記(A)結晶性ポリアミド及び(B)非晶性ポリアミドを含む原料成分を溶融混練する工程を含む製造方法であれば、特に限定されるものではない。例えば、上記(A)結晶性ポリアミド及び(B)非晶性ポリアミドを含む原料成分を押出機で溶融混練する工程を含み、押出機の設定温度を、上述のポリアミド組成物の融解ピーク温度Tm2+30℃以下とする方法が好ましい。
<Manufacturing method of polyamide composition>
The method for producing the polyamide composition of the present embodiment is particularly limited as long as it is a production method including a step of melt-kneading the raw material components including (A) crystalline polyamide and (B) amorphous polyamide. is not. For example, a step of melt-kneading the raw material components including (A) crystalline polyamide and (B) amorphous polyamide with an extruder is included, and the set temperature of the extruder is set to the melting peak temperature Tm2 + 30 ° C. of the above-mentioned polyamide composition. The following method is preferable.
 ポリアミドを含む原料成分を溶融混練する方法としては、例えば、上記(A)結晶性ポリアミド及び上記(B)非晶性ポリアミドとその他の原料とをタンブラー、ヘンシェルミキサー等を用いて混合し、溶融混練機に供給し混練する方法や、単軸又は2軸押出機で溶融状態にした上記(A)結晶性ポリアミド及び上記(B)非晶性ポリアミドに、サイドフィダーからその他の原料を配合する方法等が挙げられる。 As a method of melt-kneading the raw material component containing polyamide, for example, the above-mentioned (A) crystalline polyamide, the above-mentioned (B) amorphous polyamide and other raw materials are mixed by using a tumbler, a Henschel mixer or the like, and melt-kneaded. A method of supplying to a machine and kneading, a method of blending other raw materials from a side feeder into the above (A) crystalline polyamide and the above (B) amorphous polyamide melted by a single-screw or twin-screw extruder, etc. Can be mentioned.
 ポリアミド組成物を構成する成分を溶融混練機に供給する方法は、すべての構成成分を同一の供給口に一度に供給してもよいし、構成成分をそれぞれ異なる供給口から供給してもよい。 As a method of supplying the components constituting the polyamide composition to the melt kneader, all the components may be supplied to the same supply port at once, or the components may be supplied from different supply ports.
 溶融混練温度は、樹脂温度にして250℃以上350℃以下程度であることが好ましい。
 溶融混練時間は、0.25分間以上5分間以下程度であることが好ましい。
 溶融混練を行う装置としては、特に限定されるものではなく、例えば、単軸又は2軸押出機、バンバリーミキサー、ミキシングロール等の公知の溶融混練機を用いることができる。
The melt-kneading temperature is preferably about 250 ° C. or higher and 350 ° C. or lower in terms of resin temperature.
The melt-kneading time is preferably about 0.25 minutes or more and 5 minutes or less.
The apparatus for performing melt kneading is not particularly limited, and for example, a known melt kneader such as a single-screw or twin-screw extruder, a Banbury mixer, or a mixing roll can be used.
 (A)結晶性ポリアミド中に分散した(B)非晶性ポリアミドのドメインの数平均粒子径を好適なサイズにするには大きな発熱を伴わないで、混錬時に適切なせん断を加えることが必要であり、溶融混練機としては、スクリュー口径(D)が30mm以上の同方向2軸押出機を用いることが好ましい。また、二軸押出機において、スクリュー口径(D)に対する押出機長さ(L)の比(L/D)は35以上であることが好ましく、50以上であることがより好ましい。
 二軸押出機において、(A)結晶性ポリアミド中に分散した(B)非晶性ポリアミドのドメインの数平均粒子径となるように効率的に混錬させるためには、スクリュー回転数(N)は300rpm以上が好ましく、スクリュー回転数(N)と吐出量(Q)の比率Q/Nは0.5以上であることが好ましい。
 また、無機充填材を添加する際は、無機充填材が混錬効率を向上させるため、(A)結晶性ポリアミド及び(B)非晶性ポリアミドを、ドライブレンドした後に二軸押出機の上流側供給口より供給し、二軸押出機の下流側第1供給口より、無機充填材を供給することが好ましい。
In order to make the number average particle size of the domain of (B) amorphous polyamide dispersed in (A) crystalline polyamide suitable, it is necessary to apply appropriate shear during kneading without large heat generation. Therefore, as the melt kneader, it is preferable to use a twin-screw extruder having a screw diameter (D) of 30 mm or more in the same direction. Further, in the twin-screw extruder, the ratio (L / D) of the extruder length (L) to the screw diameter (D) is preferably 35 or more, and more preferably 50 or more.
In a twin-screw extruder, the screw rotation speed (N) is required for efficient kneading so as to have the number average particle size of the domains of (A) amorphous polyamide dispersed in (A) crystalline polyamide. Is preferably 300 rpm or more, and the ratio Q / N of the screw rotation speed (N) and the discharge amount (Q) is preferably 0.5 or more.
Further, when the inorganic filler is added, in order for the inorganic filler to improve the kneading efficiency, (A) crystalline polyamide and (B) amorphous polyamide are dry-blended and then the upstream side of the twin-screw extruder. It is preferable to supply the material from the supply port and supply the inorganic filler from the first supply port on the downstream side of the twin-screw extruder.
<ポリアミド組成物の特性>
 本実施形態のポリアミド組成物の分子量、分子量分布、融点Tm2、封止剤で封止された末端量、アミノ末端量及びカルボキシ末端量、及び曲げ弾性率は、下記構成とすることができ、後述する実施例に記載の方法により測定することができる。
<Characteristics of polyamide composition>
The molecular weight, molecular weight distribution, melting point Tm2, terminal amount sealed with a sealant, amino terminal amount and carboxy terminal amount, and bending elastic modulus of the polyamide composition of the present embodiment can have the following configurations, which will be described later. It can be measured by the method described in the Examples.
[ポリアミド組成物の分子量]
 ポリアミド組成物の分子量の指標としては、重量平均分子量(Mw)を利用できる。ポリアミド組成物の重量平均分子量(Mw)は15000以上50000以下が好ましく、15000以上45000以下がより好ましく、15000以上39000以下がさらに好ましく、15000以上35000以下がよりさらに好ましく、15000以上34000以下が特に好ましく、25000以上32000以下が最も好ましい。
 重量平均分子量(Mw)が上記範囲であることにより、成形体としたときの機械的性質、特に吸水剛性、熱時剛性、流動性、耐腐食性等により優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物は、表面外観により優れたものとなる。
 ポリアミド組成物のMwを上記範囲内に制御する方法としては、(A)結晶性ポリアミド及び(B)非晶性ポリアミドの重量平均分子量が上述した範囲のものを使用すること等が挙げられる。
 Mwの測定は、下記実施例に記載するように、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
[Molecular weight of polyamide composition]
A weight average molecular weight (Mw) can be used as an index of the molecular weight of the polyamide composition. The weight average molecular weight (Mw) of the polyamide composition is preferably 15,000 or more and 50,000 or less, more preferably 15,000 or more and 45,000 or less, further preferably 15,000 or more and 39000 or less, further preferably 15,000 or more and 35,000 or less, and particularly preferably 15,000 or more and 34,000 or less. , 25,000 or more and 32,000 or less are most preferable.
When the weight average molecular weight (Mw) is in the above range, a polyamide composition excellent in mechanical properties when formed into a molded body, particularly water absorption rigidity, thermal rigidity, fluidity, corrosion resistance and the like can be obtained. Further, the polyamide composition containing a component typified by an inorganic filler has a better surface appearance.
Examples of the method for controlling the Mw of the polyamide composition within the above range include the use of (A) crystalline polyamide and (B) amorphous polyamide having a weight average molecular weight in the above range.
The measurement of Mw can be measured by using gel permeation chromatography (GPC) as described in the following examples.
[ポリアミド組成物の分子量分布]
本実施形態のポリアミド組成物の分子量分布は、重量平均分子量(Mw)/数平均分子量(Mn)を指標とする。MwおよびMnの測定は、下記実施例に記載するように、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
 本実施形態のポリアミド組成物の重量平均分子量(Mw)/数平均分子量(Mn)の下限値は、1.0が好ましく、1.2がより好ましく、1.5がさらに好ましく、1.8がよりさらに好ましく、1.9が特に好ましく、2.0が最も好ましい。一方、本実施形態のポリアミド組成物のMw/Mnの上限値は、3.5が好ましく、3.0がより好ましく、2.6がさらに好ましく、2.4がよりさらに好ましく、2.2が特に好ましく、2.1が最も好ましい。
 本実施形態のポリアミド組成物のMw/Mnは1.0以上3.5以下が好ましく、1.2以上3.0以下がより好ましく、1.5以上2.6以下がさらに好ましく、1.8以上2.4以下がよりさらに好ましく、1.9以上2.2以下が特に好ましく、2.0以上2.1以下が最も好ましい。
 Mw/Mnが上記範囲であることにより、流動性等により優れるポリアミド組成物が得られる傾向にある。また、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体は、表面外観性により優れたものとなる傾向にある。
[Molecular weight distribution of polyamide composition]
The molecular weight distribution of the polyamide composition of the present embodiment uses the weight average molecular weight (Mw) / number average molecular weight (Mn) as an index. Measurements of Mw and Mn can be made using gel permeation chromatography (GPC), as described in the Examples below.
The lower limit of the weight average molecular weight (Mw) / number average molecular weight (Mn) of the polyamide composition of the present embodiment is preferably 1.0, more preferably 1.2, still more preferably 1.5, and 1.8. Even more preferable, 1.9 is particularly preferable, and 2.0 is most preferable. On the other hand, the upper limit of Mw / Mn of the polyamide composition of the present embodiment is preferably 3.5, more preferably 3.0, still more preferably 2.6, still more preferably 2.4, and 2.2. Particularly preferred, 2.1 is most preferred.
The Mw / Mn of the polyamide composition of the present embodiment is preferably 1.0 or more and 3.5 or less, more preferably 1.2 or more and 3.0 or less, still more preferably 1.5 or more and 2.6 or less, and 1.8. More preferably 2.4 or more, more preferably 1.9 or more and 2.2 or less, and most preferably 2.0 or more and 2.1 or less.
When Mw / Mn is in the above range, a polyamide composition having better fluidity and the like tends to be obtained. Further, a molded product obtained from a polyamide composition containing a component typified by an inorganic filler tends to have a better surface appearance.
 ポリアミド組成物の重量平均分子量(Mw)/数平均分子量(Mn)を上記範囲内に制御する方法としては、(B)非晶性ポリアミドの重量平均分子量(Mw(B))/数平均分子量(Mn(B))を後述する範囲にする方法等が挙げられる。
 ポリアミド組成物の分子構造中に芳香族化合物単位が含有していると、高分子量化に伴い、分子量分布(Mw/Mn)が高くなる傾向がある。分子量分布が上記範囲内であることで、分子の三次元構造を有するポリアミド分子の割合をより低くすることができ、高温加工時において分子の三次元構造化をより好適に防止でき、流動性をより良好に保つことができる。これにより、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体の表面外観をより良好にすることができる傾向にある。
As a method for controlling the weight average molecular weight (Mw) / number average molecular weight (Mn) of the polyamide composition within the above range, (B) the weight average molecular weight (Mw (B)) / number average molecular weight of the amorphous polyamide (B) Examples thereof include a method of setting Mn (B)) to the range described later.
When an aromatic compound unit is contained in the molecular structure of the polyamide composition, the molecular weight distribution (Mw / Mn) tends to increase as the molecular weight increases. When the molecular weight distribution is within the above range, the proportion of polyamide molecules having a three-dimensional structure of the molecule can be further lowered, and the three-dimensional structure of the molecule can be more preferably prevented during high-temperature processing, and the fluidity can be improved. Can be kept better. This tends to improve the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler.
[ポリアミド組成物の融点Tm2]
 ポリアミド組成物の融点Tm2は、200℃以上が好ましく、220℃以上270℃以下がより好ましく、230℃以上265℃以下がさらに好ましく、240℃以上260℃以下が特に好ましく、250℃以上260℃以下が最も好ましい。
 ポリアミド組成物の融点Tm2が上記下限値以上であることにより、熱時剛性等により優れるポリアミド組成物を得ることができる傾向にある。
 一方、ポリアミド組成物の融点Tm2が上記上限値以下であることにより、押出、成形等の溶融加工におけるポリアミド組成物の熱分解等をより抑制することができる傾向にある。
[Melting point Tm2 of polyamide composition]
The melting point Tm2 of the polyamide composition is preferably 200 ° C. or higher, more preferably 220 ° C. or higher and 270 ° C. or lower, further preferably 230 ° C. or higher and 265 ° C. or lower, particularly preferably 240 ° C. or higher and 260 ° C. or lower, and 250 ° C. or higher and 260 ° C. or lower. Is the most preferable.
When the melting point Tm2 of the polyamide composition is at least the above lower limit value, it tends to be possible to obtain a polyamide composition having superior thermal rigidity and the like.
On the other hand, when the melting point Tm2 of the polyamide composition is not more than the above upper limit value, there is a tendency that thermal decomposition of the polyamide composition in melt processing such as extrusion and molding can be further suppressed.
[封止剤で封止された末端量]
 ポリアミド組成物中の封止剤で封止された末端量は、前記(A)結晶性ポリアミド及び前記(B)非晶性ポリアミドからなる群より選ばれる少なくとも1種のポリアミド1g当たり、0μmol当量/g以上200μmol当量/g以下とすることができ、5μmol当量/g以上180μmol当量/g以下が好ましく、10μmol当量/g以上170μmol当量/g以下がより好ましく、15μmol当量/g以上160μmol当量/g以下がさらに好ましく、20μmol当量/g以上140μmol当量/g以下が特に好ましく、30μmol当量/g以上140μmol当量/g以下が最も好ましい。封止剤で封止された末端量が上記範囲であることにより、成形時のモールドデポジット(MD)の発生が抑制され、成形体としたときの表面外観、熱時剛性、振動減衰及びノイズ抑制効果に優れた組成物とすることができる。
[Terminal amount sealed with sealant]
The terminal amount sealed with the encapsulant in the polyamide composition is 0 μmol equivalent per 1 g of at least one selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide. It can be g or more and 200 μmol equivalent / g or less, preferably 5 μmol equivalent / g or more and 180 μmol equivalent / g or less, 10 μmol equivalent / g or more and 170 μmol equivalent / g or less, and 15 μmol equivalent / g or more and 160 μmol equivalent / g or less. Is more preferable, 20 μmol equivalent / g or more and 140 μmol equivalent / g or less is particularly preferable, and 30 μmol equivalent / g or more and 140 μmol equivalent / g or less is most preferable. When the amount of the terminal sealed with the sealant is within the above range, the generation of mold deposit (MD) during molding is suppressed, and the surface appearance, thermal rigidity, vibration damping and noise suppression of the molded product are suppressed. A composition having an excellent effect can be obtained.
[アミノ末端量及びカルボキシ末端量の合計量]
 ポリアミド組成物中のアミノ末端量及びカルボキシ末端量の合計量は、前記(A)結晶性ポリアミド及び前記(B)非晶性ポリアミドからなる群より選ばれる少なくとも1種のポリアミド1g当たり、70μmol当量/g以上145μmol当量/g以下が好ましく、80μmol当量/g以上140μmol当量/g以下がより好ましく、90μmol当量/g以上130μmol当量/g以下がさらに好ましく、100μmol当量/g以上120μmol当量/g以下が特に好ましい。
 ポリアミド組成物中のアミノ末端量及びカルボキシ末端量の合計量が上記範囲であることにより、流動性等により優れるポリアミド組成物が得られる。また、無機充填材に代表される成分を含有させたポリアミド組成物から得られる成形体の表面外観がより優れたものとなる。
[Total amount of amino terminal amount and carboxy terminal amount]
The total amount of amino-terminal amounts and carboxy-terminal amounts in the polyamide composition is 70 μmol equivalent / g per 1 g of at least one selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide. G or more and 145 μmol equivalent / g or less are preferable, 80 μmol equivalent / g or more and 140 μmol equivalent / g or less are more preferable, 90 μmol equivalent / g or more and 130 μmol equivalent / g or less are further preferable, and 100 μmol equivalent / g or more and 120 μmol equivalent / g or less are particularly preferable. preferable.
When the total amount of the amino terminal amount and the carboxy terminal amount in the polyamide composition is in the above range, a polyamide composition having better fluidity and the like can be obtained. In addition, the surface appearance of the molded product obtained from the polyamide composition containing a component typified by an inorganic filler becomes more excellent.
[アミノ末端量及びカルボキシ末端量の合計量に対するアミノ末端量の比]
 ポリアミド組成物中のアミノ末端量及びカルボキシ末端量の合計モル当量に対するアミノ末端のモル当量の比{アミノ末端量/(アミノ末端量+カルボキシ末端量)}は、0.25以上0.4未満が好ましく、0.35以上0.4未満がより好ましく、0.25以上0.35未満がさらに好ましい。アミノ末端量及びカルボキシ末端量の合計モル当量に対するアミノ末端のモル当量の比が上記下限値以上であることにより、成形時における押出機や成形機の腐食をより効果的に抑制することができる。一方、アミノ末端量及びカルボキシ末端量の合計モル当量に対するアミノ末端のモル当量の比が上記上限値未満であることにより、成形体としたときの熱や光に対する変色により優れるポリアミド組成物とすることができる。
[Ratio of amino terminal amount to total amount of amino terminal amount and carboxy terminal amount]
The ratio of the molar equivalent of the amino terminal to the total molar equivalent of the amino terminal amount and the carboxy terminal amount in the polyamide composition {amino terminal amount / (amino terminal amount + carboxy terminal amount)} is 0.25 or more and less than 0.4. It is preferable that it is 0.35 or more and less than 0.4, and more preferably 0.25 or more and less than 0.35. When the ratio of the molar equivalent of the amino terminal to the total molar equivalent of the amino-terminal amount and the carboxy-terminal amount is at least the above lower limit value, corrosion of the extruder or the molding machine at the time of molding can be suppressed more effectively. On the other hand, when the ratio of the molar equivalent of the amino terminal to the total molar equivalent of the amino terminal amount and the carboxy terminal amount is less than the above upper limit value, the polyamide composition is excellent in discoloration to heat and light when formed into a molded product. Can be done.
[曲げ弾性率]
 ポリアミド組成物を成形してなる、ISO178に準拠した厚み4mmのダンベルの、23℃におけるISO178に準拠して測定された曲げ弾性率が10GPa以上であることが好ましく、11GPa以上であることがより好ましく、12GPa以上であることがさらに好ましい。一方で、曲げ弾性率の上限は特に限定されないが、例えば、50GPaとすることができる。
 曲げ弾性率が上記数値範囲内であることで、得られる成形体の機械的特性をより良好なものとすることができる。
[Bending modulus]
The flexural modulus of a dumbbell having a thickness of 4 mm conforming to ISO178, which is formed by molding a polyamide composition, measured according to ISO178 at 23 ° C. is preferably 10 GPa or more, and more preferably 11 GPa or more. , 12 GPa or more is more preferable. On the other hand, the upper limit of the flexural modulus is not particularly limited, but may be, for example, 50 GPa.
When the flexural modulus is within the above numerical range, the mechanical properties of the obtained molded product can be improved.
<使用用途>
 本実施形態のポリアミド組成物は、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動又は音の伝搬を抑制するための成形体に好適に用いられる。
<Usage>
The polyamide composition of the present embodiment is suitably used for a molded body for suppressing vibration or sound propagation of an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
≪成形体≫
 本実施形態の成形体は、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動又は音の伝搬を抑制するために用いられるものである。
 本実施形態の成形体は、上述したポリアミド組成物を成形してなる。
≪Molded body≫
The molded product of the present embodiment is used to suppress vibration or sound propagation of a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
The molded product of the present embodiment is formed by molding the above-mentioned polyamide composition.
 成形体の製造方法としては、特に限定されず、公知の成形方法を用いることができる。
 公知の成形方法としては、以下に限定されるものではないが、例えば、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、溶融紡糸等、一般に知られているプラスチック成形方法が挙げられる。
The method for producing the molded product is not particularly limited, and a known molding method can be used.
Known molding methods are not limited to the following, but are not limited to, for example, press molding, injection molding, gas-assisted injection molding, welding molding, extrusion molding, blow molding, film molding, hollow molding, multi-layer molding, and melt spinning. Etc., generally known plastic molding methods can be mentioned.
 装置が発生する振動又は音の周波数領域としては、特別な限定はないが、10Hz以上10000Hz以下であることが好ましく、10Hz以上6000Hz以下であることがより好ましく、50Hz以上6000Hz以下であることがよりさらに好ましい。本実施形態の成形体は、上記範囲内の周波数領域の振動又は音を特に効果的に抑制することができる。
 本実施形態の成形体は、特に1500Hz以上の周波数領域においても、アルミニウム等の金属や従来の樹脂組成物からなる成形体に対して振動又は音の伝搬を抑制する効果に優れる。
The frequency range of vibration or sound generated by the device is not particularly limited, but is preferably 10 Hz or more and 10000 Hz or less, more preferably 10 Hz or more and 6000 Hz or less, and more preferably 50 Hz or more and 6000 Hz or less. More preferred. The molded product of the present embodiment can particularly effectively suppress vibration or sound in the frequency range within the above range.
The molded body of the present embodiment is excellent in the effect of suppressing vibration or sound propagation with respect to a molded body made of a metal such as aluminum or a conventional resin composition, particularly even in a frequency region of 1500 Hz or higher.
 本実施形態の成形体が奏する振動抑制効果は具体的には、制振効果である。すなわち、本実施形態の成形体は、80℃以上140℃以下の高温環境下で振動を発生する装置の制振用成形体ということができる。ここでいう「制振」とは、振動エネルギーを熱エネルギーに変換し、振動を減衰させる手法を意味し、振動発生源と同一周波数領域において、振動エネルギーを熱エネルギーに変換することで、共振点における加速度を低下させて振動を減衰させる方法である。 Specifically, the vibration suppressing effect exerted by the molded body of the present embodiment is a vibration damping effect. That is, the molded product of the present embodiment can be said to be a vibration damping molded product of an apparatus that generates vibration in a high temperature environment of 80 ° C. or higher and 140 ° C. or lower. "Vibration suppression" here means a method of converting vibration energy into heat energy and attenuating the vibration, and by converting the vibration energy into heat energy in the same frequency region as the vibration source, the resonance point. It is a method of reducing the acceleration in the vibration to attenuate the vibration.
 本実施形態の成形体を用いた場合での共振点における加速度(m/s)は、本実施形態の成形体を用いない場合での共振点における加速度(m/s)に対して、通常60%以下、好ましくは50%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは15%以下となる値まで低減される。 The acceleration (m / s 2 ) at the resonance point when the molded body of the present embodiment is used is relative to the acceleration (m / s 2 ) at the resonance point when the molded body of the present embodiment is not used. It is usually reduced to a value of 60% or less, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 15% or less.
 また、本実施形態の成形体を用いた場合での周波数1500Hz以上6000Hz以下の範囲の音圧レベル(dB)を、本実施形態の成形体を用いない場合での周波数1500Hz以上6000Hz以下の範囲の音圧レベル(dB)に対して、通常60%以下、好ましくは50%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは15%以下となる値まで低減させることができる。 Further, the sound pressure level (dB) in the frequency range of 1500 Hz or more and 6000 Hz or less when the molded body of the present embodiment is used, and the frequency range of 1500 Hz or more and 6000 Hz or less when the molded body of the present embodiment is not used. It can be reduced to a value of usually 60% or less, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 15% or less with respect to the sound pressure level (dB). ..
 本実施形態の成形体の厚みは、被覆対象となる装置の種類に応じて適宜設計することができるが、例えば、1mm以上5mm以下とすることができる。 The thickness of the molded product of the present embodiment can be appropriately designed according to the type of the device to be covered, but can be, for example, 1 mm or more and 5 mm or less.
 本実施形態の成形体は、80℃以上140℃以下程度の高温環境下における曲げ弾性率及び引張強度が良好であり、且つ、高温環境下で振動を発生する装置の制振効果に優れることから、自動車のエンジンルーム内部品として好適に用いることができる。自動車のエンジンルーム内部品としては、例えば、オイルパン、シリンダーヘッドカバー、チェーンケース等が挙げられる。 The molded body of the present embodiment has good flexural modulus and tensile strength in a high temperature environment of about 80 ° C. or higher and 140 ° C. or lower, and is excellent in vibration damping effect of a device that generates vibration in a high temperature environment. , Can be suitably used as a part in an engine room of an automobile. Examples of parts in the engine room of an automobile include an oil pan, a cylinder head cover, a chain case, and the like.
 その他、自動車部品としては、特に限定されるものではないが、例えば、吸気系部品、冷却系部品、燃料系部品、内装部品、外装部品、電装部品等が挙げられる。 Other, but not particularly limited, automobile parts include intake system parts, cooling system parts, fuel system parts, interior parts, exterior parts, electrical components, and the like.
 自動車吸気系部品としては、特に限定されるものではないが、例えば、エアインテークマニホールド、インタークーラーインレット、エキゾーストパイプカバー、インナーブッシュ、ベアリングリテーナー、エンジンマウント、エンジンヘッドカバー、リゾネーター、スロットルボディ等が挙げられる。
 自動車冷却系部品としては、特に限定されるものではないが、例えば、チェーンカバー、サーモスタットハウジング、アウトレットパイプ、ラジエータータンク、オルタネーター、デリバリーパイプ等が挙げられる。
 自動車燃料系部品では、特に限定されるものではないが、例えば、燃料デリバリーパイプ、ガソリンタンクケース等が挙げられる。
 自動車内装部品としては、特に限定されるものではないが、例えば、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリム等が挙げられる。
 自動車外装部品としては、特に限定されるものではないが、例えば、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパー、ドアミラーステイ、ルーフレール等が挙げられる。
 自動車電装部品としては、特に限定されるものではないが、例えば、コネクター、ワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、コンビネーションスイッチ等が挙げられる。
The automobile intake system component is not particularly limited, and examples thereof include an air intake manifold, an intercooler inlet, an exhaust pipe cover, an inner bush, a bearing retainer, an engine mount, an engine head cover, a resonator, and a throttle body.
The automobile cooling system component is not particularly limited, and examples thereof include a chain cover, a thermostat housing, an outlet pipe, a radiator tank, an alternator, and a delivery pipe.
The automobile fuel system parts are not particularly limited, and examples thereof include fuel delivery pipes and gasoline tank cases.
The automobile interior parts are not particularly limited, and examples thereof include instrumental panels, console boxes, glove boxes, steering wheels, trims, and the like.
The automobile exterior parts are not particularly limited, and examples thereof include moldings, lamp housings, front grilles, mudguards, side bumpers, door mirror stays, roof rails, and the like.
The automobile electrical components are not particularly limited, and examples thereof include connectors, wire harness connectors, motor components, lamp sockets, sensor in-vehicle switches, combination switches, and the like.
 本実施形態の成形体は、80℃以上140℃以下程度の高温環境下における曲げ弾性率及び引張強度が良好であり、且つ、高温環境下で振動を発生する装置の制振効果に優れることから、電気自動車分野、すなわち、リチウムイオン二次電池を備え、電気モーターを動力源とする、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)、燃料電池車(FCV)等の部品として好適に用いることができる。例えば、モーターマウント、パワーモジュール、コンバータ、コンデンサ、インシュレーター、モーター端子台、バッテリー、電動コンプレッサー、バッテリー電流センサー、ジャンクションブロック等を収納するケースなど、特にDLIシステムのイグニッションコイル用ケース等が挙げられる。 The molded body of the present embodiment has good bending elasticity and tensile strength in a high temperature environment of about 80 ° C. or higher and 140 ° C. or lower, and is excellent in the vibration damping effect of a device that generates vibration in a high temperature environment. , Electric vehicle field, that is, hybrid vehicle (HV), plug-in hybrid vehicle (PHV), electric vehicle (EV), fuel cell vehicle (FCV), etc. equipped with a lithium ion secondary battery and powered by an electric motor. Can be suitably used as a component of. For example, a case for accommodating a motor mount, a power module, a converter, a capacitor, an insulator, a motor terminal block, a battery, an electric compressor, a battery current sensor, a junction block, etc., and particularly a case for an ignition coil of a DLI system can be mentioned.
 また、本実施形態の成形体は、表面光沢値が高い。本実施形態の成形体の表面光沢値は、45%以上が好ましく、50%以上がより好ましく、65%以上がよりさらに好ましく、70%以上がよりさらに好ましい。ここで、表面光沢値は、光沢計を用いてJIS-K7150に準じて60度グロスを測定して得られる値である。
 成形体の表面光沢値が上記下限値以上であることにより、得られる成形体を自動車用以外に、電気及び電子部品、家電部品、OA(Office Automation)機器部品、携帯機器部品、産業機器部品、日用品及び家庭品用等の各種部品として、また、押出用途等に好適に用いることができる。
 中でも、表面外観に優れる本実施形態の成形体は、自動車部品、電気及び電子部品、家電部品、OA機器部品又は携帯機器部品として好適に用いられる。
Further, the molded product of the present embodiment has a high surface gloss value. The surface gloss value of the molded product of the present embodiment is preferably 45% or more, more preferably 50% or more, further preferably 65% or more, still more preferably 70% or more. Here, the surface gloss value is a value obtained by measuring a 60-degree gloss according to JIS-K7150 using a gloss meter.
When the surface gloss value of the molded body is equal to or higher than the above lower limit value, the obtained molded body can be used for electric and electronic parts, home appliance parts, OA (Office Automation) equipment parts, portable equipment parts, industrial equipment parts, etc. It can be suitably used as various parts for daily necessities and household goods, and for extrusion applications.
Above all, the molded body of the present embodiment having an excellent surface appearance is suitably used as an automobile part, an electric and electronic part, a home electric appliance part, an OA equipment part, or a portable equipment part.
 電気及び電子部品としては、特に限定されないが、例えば、コネクター、発光装置用リフレクタ、スイッチ、リレー、プリント配線板、電子部品のハウジング、コンセント、ノイズフィルター、コイルボビン、モーターエンドキャップ等が挙げられる。
 発光装置用リフレクタとしては、発光ダイオード(LED)の他にレーザーダイオード(LD)等の光半導体をはじめ、フォットダイオード、電荷結合素子(CCD)、相補型金属酸化膜半導体(CMOS)等の半導体パッケージに広く使用することができる。
The electric and electronic components are not particularly limited, and examples thereof include connectors, reflectors for light emitting devices, switches, relays, printed wiring boards, electronic component housings, outlets, noise filters, coil bobbins, motor end caps, and the like.
Reflectors for light emitting devices include optical semiconductors such as laser diodes (LDs) in addition to light emitting diodes (LEDs), fott diodes, charge-coupled devices (CCDs), complementary metal oxide semiconductors (CMOS), and other semiconductor packages. Can be widely used in.
 携帯機器部品としては、特に限定されるものではないが、例えば、携帯電話、スマートフォン、パソコン、携帯ゲーム機器、デジタルカメラ等の筐体及び構造体等が挙げられる。 The portable device component is not particularly limited, and examples thereof include a housing and a structure of a mobile phone, a smartphone, a personal computer, a portable game device, a digital camera, and the like.
 産業機器部品としては、特に限定されるものではないが、例えば、ギア、カム、絶縁ブロック、バルブ、電動工具部品、農機具部品、エンジンカバー等が挙げられる。 The industrial equipment parts are not particularly limited, and examples thereof include gears, cams, insulating blocks, valves, power tool parts, agricultural machinery parts, engine covers, and the like.
 日用品及び家庭品としては、特に限定されるものではないが、例えば、ボタン、食品容器、オフィス家具等が挙げられる。 The daily necessities and household items are not particularly limited, and examples thereof include buttons, food containers, office furniture, and the like.
 押出用途としては、特に限定されるものではないが、例えば、フィルム、シート、フィラメント、チューブ、棒、中空成形体等に用いられる。 The extrusion application is not particularly limited, but is used for, for example, a film, a sheet, a filament, a tube, a rod, a hollow molded body, or the like.
 また、本実施形態の成形体は、表面外観に優れているので、成形体表面に塗装膜を形成させた成形体としても好ましく用いられる。塗装膜の形成方法は公知の方法であれば特に限定されるものではなく、例えば、スプレー法、静電塗装法等の塗装によることができる。また、塗装に用いる塗料は、公知のものであれば特に限定されず、メラミン架橋タイプのポリエステルポリオール樹脂塗料、アクリルウレタン系塗料等を用いることができる。
 中でも、本実施形態の成形体は、機械的強度、靱性、耐熱性に優れ、耐振動疲労性にも優れることから、自動車用の部品材料として好適であり、さらに、摺動性に優れることから、ギア、ベアリング用の部品材料として特に好適である。また、機械的強度、靱性、耐熱性に優れることから、電気及び電子用の部品材料として好適である。
Further, since the molded product of the present embodiment has an excellent surface appearance, it is also preferably used as a molded product having a coating film formed on the surface of the molded product. The method for forming the coating film is not particularly limited as long as it is a known method, and for example, coating such as a spray method or an electrostatic coating method can be used. The paint used for painting is not particularly limited as long as it is known, and melamine crosslinked type polyester polyol resin paint, acrylic urethane paint and the like can be used.
Above all, the molded body of the present embodiment is excellent in mechanical strength, toughness, heat resistance, and vibration fatigue resistance, and is therefore suitable as a component material for automobiles, and further is excellent in slidability. , Especially suitable as a component material for gears and bearings. Further, since it is excellent in mechanical strength, toughness, and heat resistance, it is suitable as a component material for electricity and electronics.
<装置の振動又は音の伝搬を抑制する方法>
 本実施形態の方法は、80℃以上140℃以下の環境下で振動又は音を発生する装置に対して、上述した成形体を用いることを含む、前記装置の振動又は音の伝搬を抑制する方法である。
<Method of suppressing the vibration or sound propagation of the device>
The method of the present embodiment is a method of suppressing the propagation of vibration or sound of the device, which comprises using the above-mentioned molded product for a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. Is.
 本実施形態の方法によれば、上記成形体を用いることで、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動又は音の伝搬を効果的に抑制することができる。
 成形体としては、上記<成形体>において例示されたものを用いることができる。
According to the method of the present embodiment, by using the molded body, it is possible to effectively suppress the vibration or sound propagation of the device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
As the molded body, those exemplified in the above <molded body> can be used.
 また、本実施形態の方法によれば、上記成形体を用いた場合での共振点における加速度(m/s)を、上記成形体を用いない場合での共振点における加速度(m/s)に対して、通常60%以下、好ましくは50%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは15%以下となる値まで低減させることができる。 Further, according to the method of the present embodiment, the acceleration at the resonance point (m / s 2 ) when the molded body is used is the acceleration (m / s 2 ) at the resonance point when the molded body is not used. ), It can be reduced to a value of usually 60% or less, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 15% or less.
 また、本実施形態の方法によれば、上記成形体を用いた場合での周波数1500Hz以上6000Hz以下の範囲の音圧レベル(dB)を、上記成形体を用いない場合での周波数1500Hz以上6000Hz以下の範囲の音圧レベル(dB)に対して、通常60%以下、好ましくは50%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは15%以下となる値まで低減させることができる。 Further, according to the method of the present embodiment, the sound pressure level (dB) in the range of the frequency of 1500 Hz or more and 6000 Hz or less when the molded body is used is set to the frequency of 1500 Hz or more and 6000 Hz or less when the molded body is not used. With respect to the sound pressure level (dB) in the range of, it is usually reduced to a value of 60% or less, preferably 50% or less, more preferably 30% or less, still more preferably 20% or less, and particularly preferably 15% or less. be able to.
 以下、具体的な実施例及び比較例を挙げて、本発明について詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 まず、実施例及び比較例で用いた測定方法、評価方法、原料を以下に示す。本実施例において、1kg/cmは、0.098MPaを意味する。
Hereinafter, the present invention will be described in detail with reference to specific examples and comparative examples, but the present invention is not limited to the following examples.
First, the measurement method, evaluation method, and raw materials used in Examples and Comparative Examples are shown below. In this example, 1 kg / cm 2 means 0.098 MPa.
<構成成分>
[(A)結晶性ポリアミド]
 A-1:ポリアミド66(Mw(A)=35000、Mw(A)/Mn(A)=2.0)
<Components>
[(A) Crystalline polyamide]
A-1: Polyamide 66 (Mw (A) = 35000, Mw (A) / Mn (A) = 2.0)
[(B)非晶性ポリアミド]
 B-1:ポリアミド6I(Mw(B)=20000、Mw(B)/Mn(B)=2.0、封止剤で封止された末端量:150μmol当量/g、アミノ末端量及びカルボキシ=基末端量の合計:110μmol当量/g、全ジカルボン酸単位中のイソフタル酸比率は100モル%、結晶化エンタルピーΔH0J/g)
 B-2:ポリアミド6I(Mw(B)=20000、Mw(B)/Mn(B)=2.0、封止剤で封止された末端量:0μmol当量/g、アミノ末端量及びカルボキシ末端量の合計:253μmol当量/g、全ジカルボン酸単位中のイソフタル酸比率は100モル%、結晶化エンタルピーΔH0J/g)
 B-3:ポリアミド6I T-40(ランクセス社製、Mw(B)=44000、Mw(B)/Mn(B)=2.8、封止剤で封止された末端量:0μmol当量/g、アミノ末端量及びカルボキシ末端量の合計:147μmol当量/g、全ジカルボン酸単位中のイソフタル酸比率は100モル%、結晶化エンタルピーΔH0J/g)
 B-4:ポリアミド6I/6T グリボリー21(エムス社製、Mw=27000、Mw/Mn=2.2、封止剤で封止された末端量:10μmol当量/g、アミノ末端量とカルボキシ末端量の合計:139μmol当量/g、全ジカルボン酸単位中のイソフタル酸比率は70モル%、結晶化エンタルピーΔH0J/g)
[(B) Amorphous polyamide]
B-1: Polyamide 6I (Mw (B) = 20000, Mw (B) / Mn (B) = 2.0, terminal amount sealed with a sealant: 150 μmol equivalent / g, amino terminal amount and carboxy = Total basal terminal amount: 110 μmol equivalent / g, isophthalic acid ratio in all dicarboxylic acid units is 100 mol%, crystallization enthalpy ΔH0J / g)
B-2: Polyamide 6I (Mw (B) = 20000, Mw (B) / Mn (B) = 2.0, terminal amount sealed with a sealant: 0 μmol equivalent / g, amino terminal amount and carboxy terminal Total amount: 253 μmol equivalent / g, isophthalic acid ratio in all dicarboxylic acid units is 100 mol%, crystallization enthalpy ΔH0J / g)
B-3: Polyamide 6IT-40 (manufactured by Rankses, Mw (B) = 44000, Mw (B) / Mn (B) = 2.8, terminal amount sealed with a sealant: 0 μmol equivalent / g , Total amino terminal amount and carboxy terminal amount: 147 μmol equivalent / g, isophthalic acid ratio in total dicarboxylic acid unit is 100 mol%, crystallization enthalpy ΔH0J / g)
B-4: Polyamide 6I / 6T Glybory 21 (manufactured by Ms, Mw = 27000, Mw / Mn = 2.2, terminal amount sealed with a sealant: 10 μmol equivalent / g, amino terminal amount and carboxy terminal amount Total: 139 μmol equivalent / g, isophthalic acid ratio in all dicarboxylic acid units is 70 mol%, crystallization enthalpy ΔH0J / g)
[(C)エラストマー]
 C-1:水添スチレン系熱可塑性エラストマー(変性SEBS)(旭化成株式会社、タフテック(登録商標)MP10)
[(C) Elastomer]
C-1: Hydrogenated styrene-based thermoplastic elastomer (modified SEBS) (Asahi Kasei Corporation, Tough Tech (registered trademark) MP10)
[(D)無機充填材]
 D-1:ガラス繊維(GF)(日本電気硝子製、商品名「ECS03T275H」、数平均繊維径(平均粒子径):10μm(真円状)、カット長:3mm)
 本実施例において、ガラス繊維の平均繊維径は、以下のとおり測定した。
 まず、ポリアミド組成物を電気炉に入れて、ポリアミド組成物中に含まれる有機物を焼却処理した。当該処理後の残渣分から、任意に選択した100本以上のガラス繊維を、走査型電子顕微鏡(SEM)で観察して、これらのガラス繊維の繊維径を測定することにより数平均繊維径を求めた。
[(D) Inorganic filler]
D-1: Glass fiber (GF) (manufactured by Nippon Electric Glass, trade name "ECS03T275H", number average fiber diameter (average particle size): 10 μm (round shape), cut length: 3 mm)
In this example, the average fiber diameter of the glass fiber was measured as follows.
First, the polyamide composition was placed in an electric furnace to incinerate the organic substances contained in the polyamide composition. From the residue after the treatment, 100 or more glass fibers arbitrarily selected were observed with a scanning electron microscope (SEM), and the fiber diameters of these glass fibers were measured to determine the number average fiber diameter. ..
[(E)カーボンブラック]
 E-1:平均一次粒子径が18nmのカーボンブラック
[(E) Carbon Black]
E-1: Carbon black with an average primary particle size of 18 nm
[(F)潤滑剤]
 F-1:モンタン酸カルシウム(クラリアント製、商品名「Licomont CaV102」)
 F-2:モンタン酸ナトリウム(クラリアント製、商品名「Licomont NaV101」)
[(F) Lubricant]
F-1: Calcium montanate (manufactured by Clariant, trade name "Licomont CaV102")
F-2: Sodium montanate (manufactured by Clariant, trade name "Licomont NaV101")
<ポリアミドの原料>
 本実施例及び比較例において用いた(A)結晶性ポリアミド及び(B)非晶性ポリアミドは、下記(a)及び(b)を適宜用いて製造した。
<Raw material for polyamide>
The (A) crystalline polyamide and (B) amorphous polyamide used in this example and comparative example were produced by appropriately using the following (a) and (b).
[(a)ジカルボン酸)]
 (a-1)アジピン酸(ADA)(和光純薬工業製)
 (a-2)イソフタル酸(IPA)(和光純薬工業製)
[(A) Dicarboxylic acid)]
(A-1) Adipic acid (ADA) (manufactured by Wako Pure Chemical Industries, Ltd.)
(A-2) Isophthalic acid (IPA) (manufactured by Wako Pure Chemical Industries, Ltd.)
[(b)ジアミン)
 (b-1)1,6-ジアミノヘキサン(ヘキサメチレンジアミン)(C6DA)(東京化成工業製)
[(B) Diamine)
(B-1) 1,6-diaminohexane (hexamethylenediamine) (C6DA) (manufactured by Tokyo Chemical Industry)
<ポリアミドの製造>
 次に、(A)結晶性ポリアミドA-1及び(B)非晶性ポリアミドB-1、B-2の製造方法について説明する。
<Manufacturing of polyamide>
Next, a method for producing (A) crystalline polyamide A-1 and (B) amorphous polyamides B-1 and B-2 will be described.
[製造例1]
(結晶性ポリアミドA-1(ポリアミド66)の製造)
 「熱溶融重合法」によりポリアミドの重合反応を以下のとおり実施した。
 アジピン酸とヘキサメチレンジアミンとの等モル塩:1500gを蒸留水:1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。この水溶液を、内容積5.4Lのオートクレーブに仕込み、窒素置換した。110℃以上150℃以下の温度下で撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。その後、内部温度を220℃に昇温した。このとき、オートクレーブは1.8MPaまで昇圧した。そのまま1時間、内部温度が245℃になるまで、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。次に、1時間かけて圧力を降圧した。その後、オートクレーブ内を真空装置で650torrの減圧下に10分維持した。このとき、重合の最終内部温度は265℃であった。その後、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、100℃、窒素雰囲気下で12時間乾燥し、結晶性ポリアミドA-1(ポリアミド66)を得た。Mw(A)=35000、Mw(A)/Mn(A)=2.0であった。また、下記物性1で記載の方法により測定された結晶化エンタルピーΔH65J/gであった。
[Manufacturing Example 1]
(Manufacturing of Crystalline Polyamide A-1 (Polyamide 66))
The polymerization reaction of polyamide was carried out as follows by "Fused Deposition Modeling".
An equimolar salt of adipic acid and hexamethylenediamine: 1500 g was dissolved in distilled water: 1500 g to prepare an equimolar 50% by mass uniform aqueous solution of the raw material monomer. This aqueous solution was placed in an autoclave having an internal volume of 5.4 L and substituted with nitrogen. While stirring at a temperature of 110 ° C. or higher and 150 ° C. or lower, water vapor was gradually removed and concentrated to a solution concentration of 70% by mass. After that, the internal temperature was raised to 220 ° C. At this time, the autoclave was boosted to 1.8 MPa. The reaction was carried out for 1 hour as it was until the internal temperature reached 245 ° C., while the water vapor was gradually removed and the pressure was maintained at 1.8 MPa. Next, the pressure was reduced over 1 hour. Then, the inside of the autoclave was maintained in a vacuum device under a reduced pressure of 650 torr for 10 minutes. At this time, the final internal temperature of the polymerization was 265 ° C. After that, it is pressurized with nitrogen to form a strand from the lower spun (nozzle), water-cooled, cut, discharged in pellet form, dried at 100 ° C. in a nitrogen atmosphere for 12 hours, and crystalline polyamide A-1 (polyamide 66). ) Was obtained. Mw (A) = 35,000 and Mw (A) / Mn (A) = 2.0. Further, the crystallization enthalpy ΔH65J / g was measured by the method described in Physical Properties 1 below.
[製造例2]
(非晶性ポリアミドB-1(ポリアミド6I)の製造)
 「熱溶融重合法」によりポリアミドの重合反応を以下のとおり実施した。
 イソフタル酸とヘキサメチレンジアミンとの等モル塩:1500g、及び、全等モル塩成分に対して4.0モル%の酢酸を蒸留水:1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製した。110℃以上150℃以下の温度下で撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。その後、内部温度を220℃に昇温した。このとき、オートクレーブは1.8MPaまで昇圧した。そのまま1時間、内部温度が245℃になるまで、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。次に、30分かけて圧力を降圧した。その後、オートクレーブ内を真空装置で650torrの減圧下に10分維持した。このとき、重合の最終内部温度は265℃であった。その後、窒素で加圧し下部紡口(ノズル)からストランド状にし、水冷、カッティングを行いペレット状で排出して、100℃、窒素雰囲気下で12時間乾燥し、非晶性ポリアミドB-1(ポリアミド6I)を得た。Mw(B)=20000、Mw(B)/Mn(B)=2.0、封止剤で封止された末端量:150μmol当量/g、アミノ末端量及びカルボキシ末端量の合計:110μmol当量/g、全ジカルボン酸単位中のイソフタル酸比率は100モル%であった。また、下記物性1で記載の方法により測定された結晶化エンタルピーΔHは0J/gであった。
[Manufacturing Example 2]
(Manufacturing of Amorphous Polyamide B-1 (Polyamide 6I))
The polymerization reaction of polyamide was carried out as follows by "Fused Deposition Modeling".
Isomorphic salt of isophthalic acid and hexamethylenediamine: 1500 g, and 4.0 mol% acetic acid with respect to the total equimolar salt component are dissolved in distilled water: 1500 g, and an equimolar 50% by mass uniform aqueous solution of the raw material monomer is dissolved. Was produced. While stirring at a temperature of 110 ° C. or higher and 150 ° C. or lower, water vapor was gradually removed and concentrated to a solution concentration of 70% by mass. After that, the internal temperature was raised to 220 ° C. At this time, the autoclave was boosted to 1.8 MPa. The reaction was carried out for 1 hour as it was until the internal temperature reached 245 ° C., while the water vapor was gradually removed and the pressure was maintained at 1.8 MPa. Next, the pressure was reduced over 30 minutes. Then, the inside of the autoclave was maintained in a vacuum device under a reduced pressure of 650 torr for 10 minutes. At this time, the final internal temperature of the polymerization was 265 ° C. After that, it is pressurized with nitrogen to form a strand from the lower spun (nozzle), water-cooled, cut, discharged in pellet form, dried at 100 ° C. in a nitrogen atmosphere for 12 hours, and amorphous polyamide B-1 (polyamide). 6I) was obtained. Mw (B) = 20000, Mw (B) / Mn (B) = 2.0, terminal amount sealed with a sealant: 150 μmol equivalent / g, total amino terminal amount and carboxy terminal amount: 110 μmol equivalent / The ratio of isophthalic acid in the total dicarboxylic acid unit was 100 mol%. The crystallization enthalpy ΔH measured by the method described in Physical Properties 1 below was 0 J / g.
[製造例3]
(非晶性ポリアミドB-2(ポリアミド6I)の製造)
 イソフタル酸とヘキサメチレンジアミンとの等モル塩:1500g、及び、全等モル塩成分に対して1.5モル%過剰のアジピン酸を蒸留水:1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作製したこと以外は、製造例2に記載した方法でポリアミドの重合反応を行って(「熱溶融重合法」)、非晶性ポリアミドB-2(ポリアミド6I)のペレットを得た。ポリアミド6I(Mw(B)=20000、Mw(B)/Mn(B)=2.0、封止剤で封止された末端量:0μmol当量/g、アミノ末端量及びカルボキシ末端量の合計:253μmol当量/g、全ジカルボン酸単位中のイソフタル酸比率は100モル%であった。また、下記物性1で記載の方法により測定された結晶化エンタルピーΔHは0J/gであった。
[Manufacturing Example 3]
(Manufacturing of Amorphous Polyamide B-2 (Polyamide 6I))
Isomorphic acid of isophthalic acid and hexamethylenediamine: 1500 g, and adipic acid in an excess of 1.5 mol% with respect to the total isomorphic salt component are dissolved in distilled water: 1500 g, and the equimolar 50% by mass of the raw material monomer is dissolved. Except for the preparation of a uniform aqueous solution, the polymerization reaction of the polyamide was carried out by the method described in Production Example 2 (“thermal melt polymerization method”) to obtain pellets of the amorphous polyamide B-2 (polyamide 6I). Polyamide 6I (Mw (B) = 20000, Mw (B) / Mn (B) = 2.0, terminal amount sealed with encapsulant: 0 μmol equivalent / g, total amino terminal amount and carboxy terminal amount: The equivalent of 253 μmol / g, the ratio of isophthalic acid in the total dicarboxylic acid unit was 100 mol%, and the crystallization enthalpy ΔH measured by the method described in Physical Property 1 below was 0 J / g.
<ポリアミド組成物の製造>
[実施例1~10及び比較例1~3]
 上記(A)結晶性ポリアミド、及び、(B)非晶性ポリアミドを下記第1表に記載の種類及び割合で用いて、ポリアミド組成物を以下のとおり製造した。
 上記製造例で得られた各ポリアミドは、窒素気流中で乾燥し水分率を約0.2質量%に調整してから、ポリアミド組成物の原料として用いた。
<Manufacturing of polyamide composition>
[Examples 1 to 10 and Comparative Examples 1 to 3]
Using the above (A) crystalline polyamide and (B) amorphous polyamide in the types and ratios shown in Table 1 below, a polyamide composition was produced as follows.
Each polyamide obtained in the above production example was dried in a nitrogen stream to adjust the water content to about 0.2% by mass, and then used as a raw material for the polyamide composition.
 ポリアミド組成物の製造装置としては、二軸押出機[TEM-58SX(L/D=53.8):東芝機械社製]を用いた。
 二軸押出機において、上流側供給口からダイまでの温度を上記製造例にて製造した各(A)結晶性ポリアミドの融点Tm2+20℃に設定し、スクリュー回転数300rpm、吐出量400kg/hに設定した。
A twin-screw extruder [TEM-58SX (L / D = 53.8): manufactured by Toshiba Machine Co., Ltd.] was used as an apparatus for producing the polyamide composition.
In the twin-screw extruder, the temperature from the upstream supply port to the die is set to the melting point Tm2 + 20 ° C. of each (A) crystalline polyamide manufactured in the above production example, the screw rotation speed is set to 300 rpm, and the discharge rate is set to 400 kg / h. did.
 下記第1表に記載の種類及び割合となるように、(A)結晶性ポリアミド、及び、(B)非晶性ポリアミドを、ドライブレンドした後に二軸押出機の上流側供給口より供給し、二軸押出機の下流側第1供給口より、無機充填材としてガラス繊維を供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド組成物のペレットを得た。
 得られたポリアミド組成物のペレットを、窒素気流中で乾燥し、ポリアミド組成物中の水分量を500ppm以下にした。
After dry-blending, (A) crystalline polyamide and (B) amorphous polyamide are supplied from the upstream side supply port of the twin-screw extruder so as to have the types and ratios shown in Table 1 below. Glass fiber was supplied as an inorganic filler from the first supply port on the downstream side of the twin-screw extruder, and the melt-kneaded product extruded from the die head was cooled in a strand shape and pelletized to obtain pellets of a polyamide composition.
The obtained pellets of the polyamide composition were dried in a nitrogen stream to reduce the water content in the polyamide composition to 500 ppm or less.
[比較例4]
 ポリアミド組成物の製造装置としては、二軸押出機[ZSK-26MC(L/D=48):コペリオン社製(ドイツ)]を用いた。
 二軸押出機において、上流側供給口からダイまでの温度を上記製造例にて製造した各(A)結晶性ポリアミドの融点Tm2+20℃に設定し、スクリュー回転数250rpm、吐出量25kg/hに設定した。
 押出機を変更した以外は実施例1と同様に実施した。
[Comparative Example 4]
As an apparatus for producing the polyamide composition, a twin-screw extruder [ZSK-26MC (L / D = 48): manufactured by Coperion (Germany)] was used.
In the twin-screw extruder, the temperature from the upstream supply port to the die is set to the melting point Tm2 + 20 ° C. of each (A) crystalline polyamide manufactured in the above production example, the screw rotation speed is set to 250 rpm, and the discharge rate is set to 25 kg / h. did.
It was carried out in the same manner as in Example 1 except that the extruder was changed.
<ポリアミド組成物の物性の測定方法及びポリアミド組成物を用いた成形体の評価方法>
 水分量を調整した後のポリアミド組成物を用いて下記の各種物性を測定し、各種評価を実施した。物性の測定結果及び評価結果を下記第1表に示す。
<Measuring method of physical properties of polyamide composition and evaluation method of molded product using polyamide composition>
The following various physical properties were measured using the polyamide composition after adjusting the water content, and various evaluations were carried out. The measurement results and evaluation results of the physical properties are shown in Table 1 below.
[物性1]
(融解ピーク温度Tm2(融点))
 JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて測定した。具体的には、以下のとおり測定した。
 まず、窒素雰囲気下、サンプル約10mgを、室温からサンプルの融点に応じて300℃以上350℃以下まで、昇温速度20℃/minで昇温した。このときに現れる吸熱ピーク(融解ピーク)の最高ピーク温度をTm1(℃)とした。次に、昇温の最高温度で温度を2分間保った。この最高温度ではポリアミドは溶融状態であった。その後、降温速度20℃/minで30℃まで降温した。このときに現れる発熱ピークを結晶化ピークとし、結晶化ピーク温度をTc、結晶化ピーク面積を結晶化エンタルピーΔH(J/g)とした。その後、30℃で2分間保持した後、30℃からサンプルの融点に応じて280℃以上300℃以下まで、昇温速度20℃/minで昇温した。このときに現れる吸熱ピーク(融解ピーク)の最高ピーク温度を融点Tm2(℃)とした。
[Physical characteristics 1]
(Melting peak temperature Tm2 (melting point))
The measurement was performed using a Diamond-DSC manufactured by PERKIN-ELMER according to JIS-K7121. Specifically, the measurements were made as follows.
First, in a nitrogen atmosphere, about 10 mg of the sample was heated from room temperature to 300 ° C. or higher and 350 ° C. or lower depending on the melting point of the sample at a heating rate of 20 ° C./min. The maximum temperature of the endothermic peak (melting peak) that appears at this time was set to Tm1 (° C.). Next, the temperature was maintained for 2 minutes at the maximum temperature of the temperature rise. At this maximum temperature, the polyamide was in a molten state. Then, the temperature was lowered to 30 ° C. at a temperature lowering rate of 20 ° C./min. The exothermic peak appearing at this time was defined as the crystallization peak, the crystallization peak temperature was defined as Tc, and the crystallization peak area was defined as the crystallization enthalpy ΔH (J / g). Then, after holding at 30 ° C. for 2 minutes, the temperature was raised from 30 ° C. to 280 ° C. or higher and 300 ° C. or lower depending on the melting point of the sample at a heating rate of 20 ° C./min. The maximum temperature of the endothermic peak (melting peak) that appears at this time was defined as the melting point Tm2 (° C.).
[物性2]
(tanδピーク温度)
 粘弾性測定解析装置(レオロジ製:DVE-V4)を用いて、ASTM D1822 TYPE L試験片の平行部を短冊状に切削した試験片の動的粘弾性の温度分散スペクトルを以下の条件で測定した。なお、試験片寸法は、3.1mm(幅)×2.9mm(厚み)×15mm(長さ:つかみ具間距離)であった。
[Physical characteristics 2]
(Tanδ peak temperature)
Using a viscoelasticity measurement analyzer (manufactured by Rheology: DVE-V4), the temperature dispersion spectrum of the dynamic viscoelasticity of the test piece obtained by cutting the parallel part of the ASTM D1822 TYPE L test piece into strips was measured under the following conditions. .. The dimensions of the test piece were 3.1 mm (width) × 2.9 mm (thickness) × 15 mm (length: distance between gripping tools).
(測定条件)
 測定モード:引張
 波形:正弦波
 周波数:3.5Hz
 温度範囲:0℃以上180℃以下
 昇温ステップ:2℃/min
 静荷重:400g
 変位振幅:0.75μm
(Measurement condition)
Measurement mode: Tensile waveform: Sine wave Frequency: 3.5Hz
Temperature range: 0 ° C or higher and 180 ° C or lower Temperature rise step: 2 ° C / min
Static load: 400g
Displacement amplitude: 0.75 μm
 貯蔵弾性率E1に対する損失弾性率E2の比(E2/E1)をtanδとし、最も高い温度をtanδピーク温度とした。 The ratio (E2 / E1) of the loss elastic modulus E2 to the storage elastic modulus E1 was defined as tan δ, and the highest temperature was defined as the tan δ peak temperature.
[物性3]
(Mw(重量平均分子量)、Mn(数平均分子量)、分子量分布Mw/Mn)
 Mw(重量平均分子量)及びMn(数平均分子量)は、GPC(東ソー株式会社製、HLC-8020、ヘキサフルオロイソプロパノール溶媒、PMMA(ポリメチルメタクリレート)標準サンプル(ポリマーラボラトリー社製)換算)を用いて測定した。その値から、分子量分布Mw/Mnを計算した。
[Physical characteristics 3]
(Mw (weight average molecular weight), Mn (number average molecular weight), molecular weight distribution Mw / Mn)
For Mw (weight average molecular weight) and Mn (number average molecular weight), GPC (manufactured by Tosoh Corporation, HLC-8020, hexafluoroisopropanol solvent, PMMA (polymethylmethacrylate) standard sample (converted by Polymer Laboratory)) was used. It was measured. From that value, the molecular weight distribution Mw / Mn was calculated.
[物性4]
(封止剤で封止された末端量)
 ポリアミド組成物中に含まれるポリアミド、(A)結晶性ポリアミド及び(B)非晶性ポリアミドの封止剤で封止された末端の含有量をH-NMR測定により以下のように定量した。
 ポリアミド組成物、結晶性ポリアミド、又は非晶性ポリアミド:15mgを硫酸重水素化物:0.7g及びトリフルオロ酢酸重水素化物:0.7gの混合溶媒に溶解し、一晩静止した。その後、得られた溶液を用いて、日本電子製核磁気共鳴分析装置JNM ECA-500を用いてH-NMRの分析を行い、末端を測定した。
 主鎖アミンのメチレン基プロトンに由来する3.04ppmのピーク面積を基準とし、脂肪族ジアミン単位の末端に結合している酢酸のプロトンに由来する1.98ppmのピーク面積から積分比を計算することによって、封止された末端量を求めた。
[Physical characteristics 4]
(Amount of terminals sealed with a sealant)
The content of the polyamide contained in the polyamide composition, (A) crystalline polyamide and (B) amorphous polyamide at the end sealed with the sealant was quantified as follows by 1 H-NMR measurement.
The polyamide composition, crystalline polyamide, or amorphous polyamide: 15 mg was dissolved in a mixed solvent of 0.7 g of deuterated sulfate and 0.7 g of trifluoroacetic acid deuterated, and allowed to stand overnight. Then, using the obtained solution, 1 H-NMR analysis was performed using a nuclear magnetic resonance analyzer JNM ECA-500 manufactured by JEOL Ltd., and the terminal was measured.
Calculate the integration ratio from the peak area of 1.98 ppm derived from the proton of acetic acid bonded to the terminal of the aliphatic diamine unit, based on the peak area of 3.04 ppm derived from the methylene group proton of the main chain amine. The amount of sealed ends was determined by.
[物性5]
([NH]+[COOH])
 ポリアミド組成物中に含まれるポリアミド、及び、(B)非晶性ポリアミドの、アミノ末端及びカルボキシ末端の合計モル当量をH-NMR測定により以下のように定量した。
 ポリアミド組成物又は非晶性ポリアミド:15mgを硫酸重水素化物:0.7g及びトリフルオロ酢酸重水素化物:0.7gの混合溶媒に溶解し、一晩静止した。その後、得られた溶液を用いて、日本電子製核磁気共鳴分析装置JNM ECA-500を用いてH-NMRの分析を行い、末端を測定した。
[Physical characteristics 5]
([NH 2 ] + [COOH])
The total molar equivalents of the amino-terminal and the carboxy-terminal of the polyamide contained in the polyamide composition and the (B) amorphous polyamide were quantified as follows by 1 H-NMR measurement.
The polyamide composition or amorphous polyamide: 15 mg was dissolved in a mixed solvent of 0.7 g of deuterated sulfate and 0.7 g of trifluoroacetic acid deuterated, and allowed to stand overnight. Then, using the obtained solution, 1 H-NMR analysis was performed using a nuclear magnetic resonance analyzer JNM ECA-500 manufactured by JEOL Ltd., and the terminal was measured.
 主鎖アミンのメチレン基プロトンに由来する3.04ppmのピーク面積を基準とし、アジピン酸の隣接メチレン水素に由来する2.47ppmのピーク面積と、イソフタル酸単位の隣接ベンゼン環炭素上の水素に由来する8.07ppmのピーク面積と、テレフタル酸単位の隣接ベンゼン環炭素上の水素に由来する7.85ppmのピーク面積とから、積分比を計算することによって、カルボキシ末端量を求めた。ヘキサメチレンジアミン基の隣接メチレン炭素上水素に由来する2.67-2.69ppmのピーク面積から、積分比を計算することによって、アミノ末端量を求めた。 Based on the peak area of 3.04 ppm derived from the methylene group proton of the main chain amine, the peak area of 2.47 ppm derived from the adjacent methylene hydrogen of adipic acid and the hydrogen on the adjacent benzene ring carbon of the isophthalic acid unit are derived. The carboxy terminal amount was determined by calculating the integral ratio from the peak area of 8.07 ppm and the peak area of 7.85 ppm derived from hydrogen on the adjacent benzene ring carbon of the terephthalic acid unit. The amount of amino terminal was determined by calculating the integral ratio from the peak area of 2.67-2.69 ppm derived from hydrogen on the adjacent methylene carbon of the hexamethylenediamine group.
 上記により測定したアミノ末端量([NH])と、カルボキシ末端量([COOH])とにより、[NH]+[COOH]を算出した。 [NH 2 ] + [COOH] was calculated from the amount of amino terminal ([NH 2 ]) measured as described above and the amount of carboxy terminal ([COOH]).
[平板プレート成形片の製造]
 平板プレート成形片を以下のとおり製造した。
 各ポリアミド組成物について、射出成形機[NEX50III-5EG:日精樹脂工業株式会社製]を用いて、冷却時間25秒、スクリュー回転数200rpm、金型温度をTanδピーク温度+5℃、シリンダー温度=(Tm2+10)℃以上(Tm2+30)℃以下に設定し、充填時間が2.0±0.1秒の範囲となるように、射出圧力及び射出速度を適宜調整し、平板プレート成形片(6cm×9cm、厚さ2mm)を製造した。
[Manufacturing of flat plate molded pieces]
The flat plate molded pieces were manufactured as follows.
For each polyamide composition, using an injection molding machine [NEX5033-5EG: manufactured by Nissei Resin Industry Co., Ltd.], the cooling time is 25 seconds, the screw rotation speed is 200 rpm, the mold temperature is Tanδ peak temperature + 5 ° C., and the cylinder temperature = (Tm2 + 10). ) ° C or higher (Tm2 + 30) ° C, adjust the injection pressure and injection speed appropriately so that the filling time is in the range of 2.0 ± 0.1 seconds, and plate plate molded pieces (6 cm x 9 cm, thickness). 2 mm) was manufactured.
[物性6]
((B)非晶性ポリアミドのドメインサイズ)
 上記方法を用いて得られた平板プレート成形片を、四酸化ルテニウムにより染色後、超薄切片を切り出し、透過型電子顕微鏡(日立製作所製H-7100型透過型電子顕微鏡)にてモルフォロジー観察を行い、(A)結晶性ポリアミド中に分散している(B)非晶性ポリアミドのドメインサイズの測定を行った。観測できる粒子長径を計測してその分散粒子径分布を得て、得られた分散粒子径分布の50%累計値を数平均粒子径とした。
[Physical characteristics 6]
((B) Domain size of amorphous polyamide)
The flat plate plate molded piece obtained by the above method is stained with ruthenium tetraoxide, an ultrathin section is cut out, and morphology is observed with a transmission electron microscope (H-7100 type transmission electron microscope manufactured by Hitachi, Ltd.). , (A) The domain size of the (B) amorphous polyamide dispersed in the crystalline polyamide was measured. The observable particle length was measured to obtain the dispersed particle size distribution, and the 50% cumulative value of the obtained dispersed particle size distribution was taken as the number average particle size.
[評価1]
(表面光沢値)
 上記方法を用いて得られた平板プレート成形片の中央部を、光沢計(HORIBA製IG320)を用いてJIS-K7150に準じて60度グロスを測定した。測定値が大きいほど表面外観に優れると判断し、測定値が45%以上であるものを表面外観が良好であると評価した。
[Evaluation 1]
(Surface gloss value)
The central portion of the flat plate plate molded piece obtained by the above method was measured for 60 degree gloss according to JIS-K7150 using a gloss meter (IG320 manufactured by HORIBA). It was judged that the larger the measured value was, the better the surface appearance was, and the one having a measured value of 45% or more was evaluated as having a good surface appearance.
[評価2]
(引張強度)
 各ポリアミド組成物について、射出成形機[PS-40E:日精樹脂株式会社製]を用いて、厚み4mmのISOダンベルを作製し、試験片とした。具体的な成形条件は、射出+保圧時間25秒、冷却時間15秒、金型温度を80℃、溶融樹脂温度をポリアミドの高温側の融解ピーク温度(Tm2)+20℃に設定した。
 得られた試験片を用いて、ISO527に準拠し、23℃の温度条件下、引張速度50mm/minで引張試験を行い、引張降伏応力を測定し、引張強度とした。引張強度が190MPa以上であるものを引張強度が良好であると評価した。
[Evaluation 2]
(Tensile strength)
For each polyamide composition, an ISO dumbbell having a thickness of 4 mm was prepared using an injection molding machine [PS-40E: manufactured by Nissei Resin Co., Ltd.] and used as a test piece. Specific molding conditions were set to injection + holding time 25 seconds, cooling time 15 seconds, mold temperature 80 ° C., and molten resin temperature set to the melting peak temperature (Tm2) + 20 ° C. on the high temperature side of the polyamide.
Using the obtained test piece, a tensile test was performed at a tensile speed of 50 mm / min under a temperature condition of 23 ° C. in accordance with ISO527, and the tensile yield stress was measured and used as the tensile strength. Those having a tensile strength of 190 MPa or more were evaluated as having good tensile strength.
[評価3]
(曲げ弾性率)
 上記評価2と同様の方法を用いて、各ポリアミド組成物について、厚み4mmのISOダンベルを作製し、試験片とした。得られた試験片を用いて、ISO178に準拠し、23℃の温度条件下、曲げ弾性率を測定した。また、温度条件を100℃にし、ISO178に準じて曲げ弾性率(100℃曲げ弾性率)を測定した。23℃の温度条件下での曲げ弾性率が10.0GPa以上であるもの、及び、100℃の温度条件下での曲げ弾性率が5.5GPa以上であるものを各温度条件下における曲げ弾性率が良好であると評価した。
[Evaluation 3]
(Bending elastic modulus)
Using the same method as in Evaluation 2 above, ISO dumbbells with a thickness of 4 mm were prepared for each polyamide composition and used as test pieces. Using the obtained test piece, the flexural modulus was measured under the temperature condition of 23 ° C. according to ISO178. Further, the temperature condition was set to 100 ° C., and the flexural modulus (100 ° C. flexural modulus) was measured according to ISO178. The flexural modulus under the temperature condition of 23 ° C. is 10.0 GPa or more, and the flexural modulus under the temperature condition of 100 ° C. is 5.5 GPa or more. Was evaluated as good.
[評価4]
(共振点加速度ピーク高さ)
 直方体型の成形体を以下のとおり製造した。
 射出成形機(PS-40E、日精樹脂株式会社製)を用いて、直方体型の成形体(横:180mm、奥行100mm、高さ50mm、厚み2mm)を成形した。具体的な射出成形時の条件としては、射出及び保圧の時間:20秒、冷却時間:15秒、金型温度:100℃、シリンダー温度:280℃に設定した。
 成形体の振動抑制能は、実施例及び比較例の各ポリアミド組成物を用いて得られた直方体型の成形体を用いて、23℃及び100℃下での共振点加速度ピーク高さを測定することで評価した。
 具体的には、以下に示す条件で、共振点加速度を測定した。測定時の温度は、熱風発生器と接続している温度調整カバー内の中央部に成形体を入れて、熱風を成形体に吹き付けることで調整した。23℃下での共振点加速度ピーク高さが500m/s以下であるもの、及び、100℃下での共振点加速度ピーク高さが100m/s以下であるものを各温度条件下における振動減衰が良好であると評価した。
[Evaluation 4]
(Resonance point acceleration peak height)
A rectangular cuboid molded body was manufactured as follows.
A rectangular cuboid molded body (width: 180 mm, depth 100 mm, height 50 mm, thickness 2 mm) was molded using an injection molding machine (PS-40E, manufactured by Nissei Resin Co., Ltd.). As specific conditions for injection molding, the injection and holding pressure time was set to 20 seconds, the cooling time was set to 15 seconds, the mold temperature was set to 100 ° C, and the cylinder temperature was set to 280 ° C.
For the vibration suppression ability of the molded body, the height of the resonance point acceleration peak at 23 ° C. and 100 ° C. is measured using the rectangular cuboid molded body obtained by using the polyamide compositions of Examples and Comparative Examples. I evaluated it.
Specifically, the resonance point acceleration was measured under the conditions shown below. The temperature at the time of measurement was adjusted by placing a molded body in the central portion of the temperature control cover connected to the hot air generator and blowing hot air onto the molded body. Vibration under each temperature condition where the resonance point acceleration peak height at 23 ° C is 500 m / s 2 or less and the resonance point acceleration peak height at 100 ° C is 100 m / s 2 or less. It was evaluated that the attenuation was good.
(測定条件)
 振動発生装置:EMIC製、バイブロチャンバー
 加速度測定装置:EMIC製、加速度ピックアップ
 温度:23℃から120℃まで
 成形体の締結方法:段付きボルト
 成形体の締結トルク:10N・m(M6標準)
 ガスケット締め代:2mm
 波形:Sin波(7分間で50Hzから1000Hzまでのスイープ波形)
 制御加速度:9.8m/s(1G)
 振動方向:上下
 測定位置:温度調整カバー上の中央部
(Measurement condition)
Vibration generator: EMIC, Vibro chamber Accelerometer: EMIC, Accelerometer Temperature: From 23 ° C to 120 ° C Fastening method of molded body: Stepped bolt Fastening torque of molded body: 10 Nm (M6 standard)
Gasket tightening allowance: 2 mm
Waveform: Sine wave (sweep waveform from 50Hz to 1000Hz in 7 minutes)
Control acceleration: 9.8m / s 2 (1G)
Vibration direction: Up and down Measurement position: Central part on the temperature control cover
[評価5]
(音圧レベル測定)
 上記評価4と同様の方法を用いて得られた各直方体型の成形体(横:180mm、奥行100mm、高さ50mm、厚み2mm)を周波数が1500Hzから6000Hzまでのスピーカーに組み付けた。スピーカーからは100dbの音を発し、成形体から100cm離れた位置にマイクを設置して120℃の環境下での音圧レベルを測定した。測定時の温度は、熱風発生器と接続している温度調整カバー内の中央部に成形体を入れて、熱風を成形体に吹き付けることで調整した。音圧レベルが25dB以下であるものをノイズ抑制効果が良好であると評価した。
[Evaluation 5]
(Sound pressure level measurement)
Each rectangular cuboid molded body (width: 180 mm, depth 100 mm, height 50 mm, thickness 2 mm) obtained by using the same method as in Evaluation 4 was assembled to a speaker having a frequency of 1500 Hz to 6000 Hz. A sound of 100 db was emitted from the speaker, and a microphone was installed at a position 100 cm away from the molded body to measure the sound pressure level in an environment of 120 ° C. The temperature at the time of measurement was adjusted by placing a molded body in the central portion of the temperature control cover connected to the hot air generator and blowing hot air onto the molded body. Those having a sound pressure level of 25 dB or less were evaluated as having a good noise suppression effect.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 第1表から、(A)結晶性ポリアミド及び(B)非晶性ポリアミドを含有するポリアミド組成物であって、(B)非晶性ポリアミドの含有量が、ポリアミド組成物中の全ポリアミド量に対し、10.0質量%以上50.0質量%以下であり、前記ポリアミド組成物のtanδピーク温度が90℃以上であるポリアミド組成物(実施例1~10)を用いた成形体では、曲げ弾性率、引張強度及び外観に優れ、且つ、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動減衰及びノイズ抑制効果に優れていた。また、6000Hzと周波数の高い音域においても、ノイズ抑制効果に優れることが示された。
 また、(B)非晶性ポリアミドの含有量が異なるポリアミド組成物(実施例1及び2)を用いた成形体の比較において、ポリアミド組成物中の全ポリアミド量に対する(B)非晶性ポリアミドの含有量が増加するほど、表面外観、並びに、100℃環境下での曲げ弾性率及び100℃下での振動減衰効果により優れる傾向がみられた。
 また、エラストマーの含有有無が異なるポリアミド組成物(実施例1及び3)を用いた成形体の比較において、エラストマーを含有することで、100℃環境下での振動抑制効果により優れる傾向がみられ、一方、エラストマーを含有しないことで、23℃及び100℃下での曲げ弾性率、並びに、引張強度等の機械的特性や表面外観がより良好になる傾向がみられた。
 また、(F)潤滑剤及び(E)カーボンブラックの含有有無が異なるポリアミド組成物(実施例1、4、7、8、9及び10)を用いた成形体の比較において、(F)潤滑剤、又は(F)潤滑剤及び(E)カーボンブラックを含有することで、100℃下での振動減衰効果及びノイズ抑制効果により優れる傾向がみられた。
From Table 1, it is a polyamide composition containing (A) crystalline polyamide and (B) amorphous polyamide, and the content of (B) amorphous polyamide is the total amount of polyamide in the polyamide composition. On the other hand, in the molded product using the polyamide composition (Examples 1 to 10) in which the weight is 10.0% by mass or more and 50.0% by mass or less and the tan δ peak temperature of the polyamide composition is 90 ° C. or higher, the bending elasticity It was excellent in rate, tensile strength and appearance, and was also excellent in vibration attenuation and noise suppression effect of a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. It was also shown that the noise suppression effect is excellent even in the high frequency range of 6000 Hz.
Further, in a comparison of molded articles using polyamide compositions having different contents of (B) amorphous polyamide (Examples 1 and 2), (B) amorphous polyamide with respect to the total amount of polyamide in the polyamide composition. As the content increased, the surface appearance and the flexural modulus at 100 ° C. and the vibration damping effect at 100 ° C. tended to be more excellent.
Further, in the comparison of the molded products using the polyamide compositions (Examples 1 and 3) in which the presence or absence of the elastomer is different, the inclusion of the elastomer tends to be more excellent in the vibration suppressing effect in the environment of 100 ° C. On the other hand, when the elastomer was not contained, the flexural modulus at 23 ° C. and 100 ° C., and the mechanical properties such as tensile strength and the surface appearance tended to be improved.
Further, in the comparison of the molded bodies using the polyamide compositions (Examples 1, 4, 7, 8, 9 and 10) having different contents of (F) lubricant and (E) carbon black, (F) lubricant. Or, by containing (F) a lubricant and (E) carbon black, there was a tendency that the vibration damping effect and the noise suppressing effect at 100 ° C. were more excellent.
 一方、(B)非晶性ポリアミドを含まないポリアミド組成物(比較例1)を用いた成形体では、表面外観や引張強度及び23℃下での曲げ弾性率等の機械的特性、及び23℃下での振動減衰効果は良好であったが、100℃下での曲げ弾性率は不良であり、100℃下での振動減衰効果はほとんどみられず、ノイズ抑制効果は不良であった。
 また、ポリアミド組成物中の全ポリアミド量に対する(B)非晶性ポリアミドの含有量が50.0質量%超であるポリアミド組成物(比較例2)を用いた成形体では、23℃下での引張強度及び曲げ弾性率等の機械的特性や、100℃下での振動減衰効果及びノイズ抑制効果は良好であったが、成形時に離型不良が生じた。また、100℃下での曲げ弾性率は大きく低下し、表面外観は不良であり、23℃下での振動減衰効果はほとんどみられなかった。
 また、ポリアミド組成物中の全ポリアミド量に対する(B)非晶性ポリアミドの含有量が10.0質量%未満であるポリアミド組成物(比較例3)を用いた成形体では、表面外観や引張強度及び23℃下での曲げ弾性率等の機械的特性、及び23℃下での振動減衰効果は良好であったが、100℃下での曲げ弾性率は不良であり、100℃下での振動減衰効果はほとんどみられず、ノイズ抑制効果は不良であった。
 また、押出条件を変更した組成物(比較例4)を用いた成形体では、(A)結晶性ポリアミド中に分散してドメインを形成している(B)非晶性ポリアミドの数平均粒子径が大きく、表面外観や引張強度及び23℃下での曲げ弾性率等の機械的特性、及び23℃下での振動減衰効果は良好であったが、100℃下での振動減衰効果はほとんどみられず、ノイズ抑制効果は不良であった。
On the other hand, in the molded product using (B) a polyamide composition containing no amorphous polyamide (Comparative Example 1), mechanical properties such as surface appearance, tensile strength, flexural modulus at 23 ° C., and 23 ° C. The vibration damping effect underneath was good, but the flexural modulus at 100 ° C. was poor, the vibration damping effect at 100 ° C. was hardly observed, and the noise suppression effect was poor.
Further, in the molded product using the polyamide composition (Comparative Example 2) in which the content of (B) amorphous polyamide is more than 50.0% by mass with respect to the total amount of polyamide in the polyamide composition, the temperature is 23 ° C. The mechanical properties such as tensile strength and flexural modulus, vibration damping effect and noise suppressing effect at 100 ° C. were good, but mold release failure occurred during molding. Further, the flexural modulus at 100 ° C. was greatly reduced, the surface appearance was poor, and the vibration damping effect at 23 ° C. was hardly observed.
Further, in the molded product using the polyamide composition (Comparative Example 3) in which the content of (B) amorphous polyamide is less than 10.0% by mass with respect to the total amount of polyamide in the polyamide composition, the surface appearance and tensile strength The mechanical properties such as the bending elastic modulus at 23 ° C and the vibration damping effect at 23 ° C were good, but the bending elastic modulus at 100 ° C was poor, and the vibration at 100 ° C. Almost no damping effect was observed, and the noise suppression effect was poor.
Further, in the molded product using the composition (Comparative Example 4) in which the extrusion conditions were changed, the number average particle diameter of (A) the amorphous polyamide having a domain dispersed in the crystalline polyamide (A). The surface appearance, tensile strength, mechanical properties such as flexural modulus at 23 ° C, and vibration damping effect at 23 ° C were good, but the vibration damping effect at 100 ° C was almost nonexistent. The noise suppression effect was poor.
 本実施形態のポリアミド組成物によれば、成形体としたときの曲げ弾性率、引張強度及び外観に優れ、且つ、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動減衰及びノイズ抑制効果に優れるポリアミド組成物を提供することができる。 According to the polyamide composition of the present embodiment, the bending elastic modulus, the tensile strength and the appearance of the molded product are excellent, and the vibration damping of the device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. And it is possible to provide a polyamide composition having an excellent noise suppressing effect.

Claims (21)

  1.  80℃以上140℃以下の環境下で振動又は音を発生する装置の振動又は音の伝搬を抑制するための成形体に用いられるポリアミド組成物であって、
     (A)結晶性ポリアミド及び(B)非晶性ポリアミドを含有し、
     前記(B)非晶性ポリアミドの含有量が、前記ポリアミド組成物中の全ポリアミドの質量に対して10.0質量%以上50.0質量%以下であり、
     前記ポリアミド組成物のtanδピーク温度が90℃以上であり、
     前記(B)非晶性ポリアミドが、前記(A)結晶性ポリアミド中に分散し、ドメインを形成し、
     前記ドメインを形成する前記(B)非晶性ポリアミドの数平均粒子径が10nm以上1.0μm以下である、ポリアミド組成物。
    A polyamide composition used for a molded product for suppressing vibration or sound propagation of a device that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower.
    It contains (A) crystalline polyamide and (B) amorphous polyamide,
    The content of the (B) amorphous polyamide is 10.0% by mass or more and 50.0% by mass or less with respect to the mass of the total polyamide in the polyamide composition.
    The tan δ peak temperature of the polyamide composition is 90 ° C. or higher, and the temperature is 90 ° C. or higher.
    The (B) amorphous polyamide is dispersed in the (A) crystalline polyamide to form a domain.
    A polyamide composition having a number average particle size of 10 nm or more and 1.0 μm or less of the (B) amorphous polyamide forming the domain.
  2.  前記(A)結晶性ポリアミド及び前記(B)非晶性ポリアミドの合計質量に対する、(C)エラストマーの含有量が12質量%以下である、請求項1に記載のポリアミド組成物。 The polyamide composition according to claim 1, wherein the content of the (C) elastomer is 12% by mass or less with respect to the total mass of the (A) crystalline polyamide and the (B) amorphous polyamide.
  3.  前記ポリアミド組成物の総質量に対して、(D)無機充填材を5質量%以上70質量%以下更に含有する、請求項1または2に記載のポリアミド組成物。 The polyamide composition according to claim 1 or 2, further containing (D) an inorganic filler in an amount of 5% by mass or more and 70% by mass or less with respect to the total mass of the polyamide composition.
  4.  前記(A)結晶性ポリアミドがポリアミド66又はポリアミド610又はポリアミド6である、請求項1~3のいずれか一項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 3, wherein the (A) crystalline polyamide is polyamide 66 or polyamide 610 or polyamide 6.
  5.  前記(B)非晶性ポリアミドが、イソフタル酸単位を少なくとも75モル%含むジカルボン酸単位と、炭素数4以上10以下のジアミン単位を少なくとも50モル%含むジアミン単位と、を含有する半芳香族非晶性ポリアミドである、請求項1~4のいずれか一項に記載のポリアミド組成物。 The (B) amorphous polyamide contains a dicarboxylic acid unit containing at least 75 mol% of an isophthalic acid unit and a diamine unit containing at least 50 mol% of a diamine unit having 4 or more and 10 or less carbon atoms. The polyamide composition according to any one of claims 1 to 4, which is a crystalline polyamide.
  6.  前記(B)非晶性ポリアミドがポリアミド6Iである、請求項1~5のいずれか一項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 5, wherein the (B) amorphous polyamide is polyamide 6I.
  7.  10nm以上の平均一次粒子径を有する(E)カーボンブラックを更に含有する、請求項1~6のいずれか一項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 6, further containing (E) carbon black having an average primary particle diameter of 10 nm or more.
  8.  高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル及び高級脂肪酸アミドからなる群より選ばれる少なくとも一種の(F)潤滑剤を更に含有する、請求項1~7のいずれか一項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 7, further comprising at least one (F) lubricant selected from the group consisting of higher fatty acids, higher fatty acid metal salts, higher fatty acid esters and higher fatty acid amides. ..
  9.  融点Tm2が240℃以上260℃以下である、請求項1~8のいずれか一項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 8, wherein the melting point Tm2 is 240 ° C. or higher and 260 ° C. or lower.
  10.  前記(A)結晶性ポリアミド及び前記(B)非晶性ポリアミドからなる群より選ばれる少なくとも1種のポリアミド1g当たりの封止剤で封止された末端量が30μmol当量/g以上140μmol当量/g以下である、請求項1~9のいずれか一項に記載のポリアミド組成物。 The terminal amount sealed with the sealant per 1 g of at least one type of polyamide selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide is 30 μmol equivalent / g or more and 140 μmol equivalent / g. The polyamide composition according to any one of claims 1 to 9, which is as follows.
  11.  前記ポリアミド組成物の重量平均分子量Mwが、15000以上34000以下である、請求項1~10のいずれか一項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 10, wherein the polyamide composition has a weight average molecular weight Mw of 15,000 or more and 34,000 or less.
  12.  前記ポリアミド組成物の分子量分布Mw/Mnが2.4以下である、請求項1~11のいずれか一項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 11, wherein the polyamide composition has a molecular weight distribution Mw / Mn of 2.4 or less.
  13.  前記(A)結晶性ポリアミド及び前記(B)非晶性ポリアミドからなる群より選ばれる少なくとも1種のポリアミド1g当たりの、アミノ末端量及びカルボキシ末端量の合計が70μmol当量/g以上145μmol当量/g以下である、請求項1~12のいずれか一項に記載のポリアミド組成物。 The total amount of amino-terminal and carboxy-terminal amounts per 1 g of at least one polyamide selected from the group consisting of the (A) crystalline polyamide and the (B) amorphous polyamide is 70 μmol equivalent / g or more and 145 μmol equivalent / g. The polyamide composition according to any one of claims 1 to 12, which is described below.
  14.  前記ポリアミド組成物を成形してなる、ISO178に準拠した厚み4mmのダンベルの、ISO178に準拠して測定された23℃における曲げ弾性率が10GPa以上である、請求項1~13のいずれか一項に記載のポリアミド組成物。 One of claims 1 to 13, wherein a dumbbell having a thickness of 4 mm and having a thickness of 4 mm, which is obtained by molding the polyamide composition, has a flexural modulus of 10 GPa or more at 23 ° C. measured according to ISO178. The polyamide composition according to.
  15.  請求項1~14のいずれか一項に記載のポリアミド組成物を成形してなる、80℃以上140℃以下の環境下で振動又は音を発生する装置の振動又は音の伝搬を抑制するために用いられる成形体。 In order to suppress vibration or sound propagation of an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower, which is formed by molding the polyamide composition according to any one of claims 1 to 14. The molded body used.
  16.  前記振動又は音が10Hz以上6000Hz以下である、請求項15に記載の成形体。 The molded product according to claim 15, wherein the vibration or sound is 10 Hz or more and 6000 Hz or less.
  17.  制振用である、請求項15又は16に記載の成形体。 The molded product according to claim 15 or 16, which is for vibration damping.
  18.  前記成形体の厚みが1mm以上5mm以下である、請求項15~17のいずれか一項に記載の成形体。 The molded product according to any one of claims 15 to 17, wherein the thickness of the molded product is 1 mm or more and 5 mm or less.
  19.  前記成形体が、電気自動車部品を含む自動車部品用途である、請求項15~18のいずれか一項に記載の成形体。 The molded body according to any one of claims 15 to 18, wherein the molded body is used for automobile parts including electric vehicle parts.
  20.  前記成形体が、オイルパン、シリンダーヘッドカバー又はチェーンケースである、請求項15~19のいずれか一項に記載の成形体。 The molded product according to any one of claims 15 to 19, wherein the molded product is an oil pan, a cylinder head cover, or a chain case.
  21.  80℃以上140℃以下の環境下で振動又は音を発生する装置に対して、請求項15~20のいずれか一項に記載の成形体を用いることを含む、前記装置の振動又は音の伝搬を抑制する方法。 Propagation of vibration or sound of the device comprising using the molded product according to any one of claims 15 to 20 for an apparatus that generates vibration or sound in an environment of 80 ° C. or higher and 140 ° C. or lower. How to suppress.
PCT/JP2021/046776 2021-01-07 2021-12-17 Polyamide composition, molded body, and method for suppressing propagation of device vibration or sound WO2022149436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022573974A JPWO2022149436A1 (en) 2021-01-07 2021-12-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021001392 2021-01-07
JP2021-001392 2021-01-07

Publications (1)

Publication Number Publication Date
WO2022149436A1 true WO2022149436A1 (en) 2022-07-14

Family

ID=82357282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046776 WO2022149436A1 (en) 2021-01-07 2021-12-17 Polyamide composition, molded body, and method for suppressing propagation of device vibration or sound

Country Status (2)

Country Link
JP (1) JPWO2022149436A1 (en)
WO (1) WO2022149436A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143956A (en) * 1989-10-30 1991-06-19 Toyoda Gosei Co Ltd Vibration-damping resin molding for engine
JP2005225988A (en) * 2004-02-13 2005-08-25 Kishimoto Sangyo Co Ltd Vibration-damping and sound-reducing resin composition
JP2009544799A (en) * 2006-07-25 2009-12-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Vibration damping material, structural laminate, and manufacturing method thereof
JP2009544808A (en) * 2006-07-25 2009-12-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Vibration damping materials for polyamides and mercaptobenzimidazoles
WO2012060392A1 (en) * 2010-11-01 2012-05-10 東洋紡績株式会社 Polyamide resin composition, expanded polyamide resin molding, and automotive resin molding
WO2018181995A1 (en) * 2017-03-30 2018-10-04 旭化成株式会社 Polyamide composition and molded article
JP2018188534A (en) * 2017-05-01 2018-11-29 旭化成株式会社 Polyamide composition and molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143956A (en) * 1989-10-30 1991-06-19 Toyoda Gosei Co Ltd Vibration-damping resin molding for engine
JP2005225988A (en) * 2004-02-13 2005-08-25 Kishimoto Sangyo Co Ltd Vibration-damping and sound-reducing resin composition
JP2009544799A (en) * 2006-07-25 2009-12-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Vibration damping material, structural laminate, and manufacturing method thereof
JP2009544808A (en) * 2006-07-25 2009-12-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Vibration damping materials for polyamides and mercaptobenzimidazoles
WO2012060392A1 (en) * 2010-11-01 2012-05-10 東洋紡績株式会社 Polyamide resin composition, expanded polyamide resin molding, and automotive resin molding
WO2018181995A1 (en) * 2017-03-30 2018-10-04 旭化成株式会社 Polyamide composition and molded article
JP2018188534A (en) * 2017-05-01 2018-11-29 旭化成株式会社 Polyamide composition and molded article

Also Published As

Publication number Publication date
JPWO2022149436A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
TWI472552B (en) Polyamide and polyamide composition
KR101593355B1 (en) Polyamide composition and molded article
CN110964316B (en) Polyamide composition, molded article, and semi-aromatic polyamide
JP5942229B2 (en) Polyamide and polyamide composition
EP2871201A1 (en) Polyamide, polyamide composition, and molded article
JP2014231603A (en) Polyamide resin composition and molded product
CN110964315B (en) Polyamide composition, method for producing same, and molded article
JP6843698B2 (en) Polyamide composition and molded product
JP7440996B2 (en) Polyamide compositions and molded products
CN111978716B (en) Polyamide composition, method for producing same, and molded article
JP5669627B2 (en) Polyamide resin composition and molded product
WO2022149436A1 (en) Polyamide composition, molded body, and method for suppressing propagation of device vibration or sound
JP2019026670A (en) Polyamide composition and molding
JP7023723B2 (en) Polyamide composition and molded products
JP2024010978A (en) Polyamide composition and molded body
WO2016031257A1 (en) Polyamide, polyamide production method, polyamide composition, polyamide composition molded article and production method for same
JP5959190B2 (en) Polyamide resin composition and molded product
JP2023157584A (en) Polyamide composition and molded product
JP2023028935A (en) Polyamide composition and molded article
JP2018012780A (en) Polyamide, polyamide composition, polyamide composition molding, and method for producing polyamide
JP2023072690A (en) Polyamide composition, molded article, and laminate
JP2017155150A (en) Polyamide composition, polyamide composition molded article and manufacturing method of polyamide composition
JP2023050575A (en) Polyamide composition, molded article and method for producing polyamide composition
JP2022051850A (en) Polyamide composition and molded article
JP6639121B2 (en) Polyamide composition, molded product, and reflector for LED

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917657

Country of ref document: EP

Kind code of ref document: A1