EP3016830A1 - Équipement et procédé pour faire fonctionner des unités fonctionnelles décentralisées - Google Patents

Équipement et procédé pour faire fonctionner des unités fonctionnelles décentralisées

Info

Publication number
EP3016830A1
EP3016830A1 EP14747307.8A EP14747307A EP3016830A1 EP 3016830 A1 EP3016830 A1 EP 3016830A1 EP 14747307 A EP14747307 A EP 14747307A EP 3016830 A1 EP3016830 A1 EP 3016830A1
Authority
EP
European Patent Office
Prior art keywords
energy
transport network
functional units
network
dfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP14747307.8A
Other languages
German (de)
English (en)
Inventor
Anton Reichlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to EP14747307.8A priority Critical patent/EP3016830A1/fr
Publication of EP3016830A1 publication Critical patent/EP3016830A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/70Details of trackside communication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L19/00Arrangements for interlocking between points and signals by means of a single interlocking device, e.g. central control
    • B61L19/06Interlocking devices having electrical operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Definitions

  • the present invention relates to a
  • train-influencing units To control vehicle influencing and / or vehicle monitoring units and to monitor the functionality and to record process data and report back to a central control and / or monitoring center, such as a control center or a signal box.
  • a central control and / or monitoring center such as a control center or a signal box.
  • Process variables of the moving train such as
  • Monitoring units can also use balises and
  • the present invention relates to all industrial installations in which functional
  • the central controller can be perceived by a stationary control center, but also by a non-stationary virtual control center. In railway traffic, it is usually the case that these decentralized functional units are controlled by an interlocking or a remote interlocking computer. For the data transfer between the signal box and the
  • DTN data transport network
  • Data networks are branch lines or routes with ETCS Level 2 or long tunnels, for which still today an arrangement of .4 is due to the limits of the travel distances with conventional interlocking cables
  • novel data networks have a disadvantage in that basically every central and decentralized functional unit is suitably connected via a
  • Function units are used by the interlockings, continue to use for the control of the outdoor facilities.
  • Patent Application EP 2 301 202 A1 discloses a device and a method for controlling and / or monitoring decentralized ones arranged along a traffic network
  • Control system is coupled via at least one network access point on the data transport network
  • Network access point are connected, wherein:
  • the subnetwork of each of the subgroups at each of its two ends is coupled to the data transport network via a communication unit and via a network access point.
  • a digital transport network can be used for the coupling of the decentralized functional units, which is robust in each case against a simple error event, yet a very
  • Interlocking architectures taking full account of the decentralization solution for the control and reporting systems in the plants. This means that in the end, all to be controlled and monitoring Elements (signals, switches, train protection systems,
  • controller EC or decentralized functional unit DFE - received.
  • Patent application WO 2013/013908 AI discloses a solution.
  • This solution provides a device and a method for operating decentralized functional units arranged in an industrial plant, comprising:
  • Control system is coupled via at least one network access point on the data transport network
  • decentralized functional units supplied with electrical energy; and e) a number of intelligent ones on the
  • Energy storage connected energy storage, the energy intake and / or -abgäbe, if necessary.
  • the energy transport network is now completely decoupled from a signal box and can now be designed thanks to the envisaged energy storage in terms of cabling and transmission capacity to a certain predeterminable base load, with peak loads of electrical power consumption,
  • Closing and opening a railroad crossing which smoothes intelligent energy storage.
  • Energy storage devices are called intelligent because they support power consumption and / or energy consumption
  • Short-term peak loads such as the circulation of a switch or the opening of the barrier a railroad crossing, are covered by the on-site energy storage also executable as a short-term energy storage.
  • the systems no longer have to be dimensioned for the "worst case” energy consumption, but a design in the middle is sufficient
  • Supporting can be a superior intelligent
  • the intelligent energy management takes into account the availability required for a specific installation as a function of the energy consumption
  • Examples are the energy management for buildings or for large plants in the producing or
  • this approach shows the feasibility of a completely decoupled from the interlocking power supply for the decentralized element controller and their controlled functional units that far out in the periphery, for example, in a
  • the present invention is therefore based on the object, a system and a method for
  • This task is related to the facility
  • a device for operating decentralized functional units arranged in an industrial plant comprising:
  • Control system is coupled via at least one network access point on the data transport network
  • Control system is coupled via at least one network access point on the data transport network
  • Energy Energy Energy Energy Energy architecture may be the proprietary railway power system of railway infrastructure operators, which
  • the proprietary traction current system also includes the contact wire (overhead line), which usually has a high geographical extent. In Switzerland, for example, the coverage of the main main and secondary lines with a contact wire is almost 100%.
  • the contact wire overhead line
  • traffic-controlling units in particular signals, switches, axle counters, train detection systems,
  • DC bus is created, preferably a
  • a systemically particularly fail-safe supply of an energy buff can be provided if one of the at least two energy baks for generating energy on at least one hydroelectric power plant, in particular a
  • Photovoltaic power plant can be accessed. In the times in which the weather-dependent energy sources sun and wind can provide much or little energy, then the hydropower can generate correspondingly little or correspondingly more electrical energy. Any surplus energy from wind and sun can even be used to pump water into a storage lake or other reservoir and thus to be able to provide energy for wind- and / or solar-poor days as needed.
  • Balancing solution results when a number of intelligent energy storage connected to the energy transport network are provided, the one
  • Figure 1 is a schematic view of the structure of a
  • Embodiment for an energy transport network with variants a) and b);
  • Figure 3 is a schematic view of a second
  • Embodiment for an energy transport network with variants a) and b);
  • Figure 4 is a schematic view of a third
  • Embodiment for an energy transport network with variants a) and b);
  • Figure 5 is a schematic view of the structure of a
  • FIG 1 shows a schematic view of the structure of a device E for controlling and / or monitoring along a railway network (not shown here) arranged decentralized functional units DFE1A to DFEnA, DFE1B to DFEnB, etc. (hereinafter also called element controller EC).
  • the decentralized functional units are hereinafter referred to as DFE or EC.
  • Such decentralized functional units DFE are used to control and monitor train-influencing and / or train monitoring units.
  • signals, switches, balises, line conductors, track magnets and the like may be mentioned.
  • Train monitoring units can also include balises and line conductors, as well as axle counters and track circuits.
  • a signal S is controlled and monitored by the decentralized functional unit DFE1C.
  • decentralized functional unit DFE IC controls the Display of the signal terms and leads respectively
  • Each decentralized functional unit DFE or the controlled / monitored unit has throughout
  • the device E further includes a
  • Data transport network TN with a number of
  • Network access points 2 to 16 At a part of this
  • Network access points 6 to 16 are connected to communication units 18 to 28.
  • the data transport network TN is designed here as a highly available network.
  • the device E comprises a higher-level control system 30, which in addition to other components not further listed here a control center LT, a
  • Stelltechnikrechner STW an axle counting computer AZ and a service / diagnostic unit SD includes, over the
  • Network access points 2 and 4 are connected by means of Ethernet connections to the data transport network TN. As shown in Figure 1, the decentralized
  • Communication groups 18 to 28 and the corresponding network nodes 6 to 16 may be coupled to the transport network TN and so on this
  • decentralized functional units DFE are to
  • Subnetwork NA, NB, NC, ND and NE combined.
  • the Subgroup A becomes, for example, the decentralized functional units DFE1A, DFE2A, DFE3A to DFEnA
  • the subgroups A to E are always at their two ends with one of the communication groups 18 to 28 and a network access points 6 to 16
  • Each decentralized functional unit DFE is also a switching computer SU or SCU, which may alternatively be integrated directly into the decentralized functional unit DFE, upstream, which provides the connection to the subnetwork for the decentralized functional units DFE, so that each decentralized
  • Communication group can still be addressed by a second redundant communication group 18 to 28.
  • Each subnetwork (NA to NE) is thus made up of a number of point-to-point connections of logically adjacent distributed functional units (DFE).
  • DFE distributed functional units
  • Scheduling module (SU), which even gives the chance to change the point-to-point transmission technology from cell to cell and so the respective
  • a suitable switching module (SU) can do so in this way
  • the subgroups A to E are each connected to a first connection type or a second connection type to the two communication groups 18 to 28.
  • first connection such as for the
  • railway networks are arranged, then represent the subgroups A, C and E rather arranged in the station area decentralized functional units DFE.
  • the subgroups B and D represent more such
  • Parts of existing copper cable can be used to save energy, which is explained using the example of subgroup B.
  • Network access point 8 has been activated.
  • DFEnB were controlled from the station at the network access point 10.
  • the establishment of a connection sufficed only between the decentralized functional units DFE3B and DFEnB in order to interconnect the subgroup B in the subnetwork NB.
  • the system limits of the device E can be described as follows:
  • Transport network OTN is limited only by the system performance (interlocking computer STW, transport network OTN);
  • the number of DFEs connected to a subnetwork A to E is at least one DFE: the maximum number of connectable DFEs is limited by the system performance (for example, at least 8 DFEs may be desired)
  • the number of communication units 18 to 28 at a network access point 6 to 16 is essentially determined by the max. Number of Ethernet interfaces of the selected network access points 6 to 16 limited;
  • Number of connectable subnetworks A to E at a communication unit 18 to 28 can be four subnetworks in the selected embodiment
  • Network access points must be connected; while the two network access points 2 to 16 at the same
  • Transport network OTN or be connected to two network access points of two different transport networks (this case with a second transport network OTN has not been shown here, but technically readily feasible).
  • Realtime telegrams user data telegrams from the signal box to the DFEs as special TCP / IP telegrams, more specific
  • Non-realtime telegrams normal TCP / IP telegrams, no user data telegrams.
  • the telegram types have assigned fixed timeslots. The assignment can be fixed during operation and can be parameterized offline, for example in the ratio of at least 1 to 10.
  • FIG. 2 shows a schematic representation of the situation according to FIG. 1 which is valid only in terms of data technology with the energy supply concept according to the invention. All
  • the energy required in the energy transport network ETN is thereby applied to the two feed nodes IEK shown here provided by two independent Energybackbones EBl and EB2.
  • the Energy backbone 1 the public uninterruptible power supply network (local area network).
  • the energy bag EB2 is supplied from the contact wire of the railway network, the power supply for the contact wire is a proprietary structure of the railway operator, which has its own independent of the public power network power plants.
  • the element controllers EC are each combined into groups of one
  • the energy transport network ETN forms an energy bus reaching from the one infeed node to the other infeed node IEK, at which point the element controller EC and the intelligent one
  • FIG. 3 now shows a second variant for a
  • Energy transport network ETN in which two redundantly configured Energy-stacking EB1 and EB2 are provided.
  • the energy transport network ETN is bus-shaped between two feed-in nodes IEK, wherein one feed-in node from the first energy-stacking EB1 and the other feed-in node from the second
  • Energy backbone EB2 is taken care of.
  • Part a) again shows the element controller EC coupling in groups to an intelligent energy store IES.
  • Part b) again includes the individual connection of the element
  • the wiring of the feed-in node IEK depends on the hierarchically planned structure of the energy bag. For example, if two neighboring stations fail when the local network blacks out, it makes sense to connect the other energy bus at one of the two stations.
  • Figure 4 shows a comparison with Figure 2 easily
  • FIG. 5 shows schematically the data
  • Such an attachment point comprises a communication unit SCU for data exchange over both branches of the data transport network OTN.
  • a network node unit SND is provided, which couples to both branches of the energy transport network ETN.
  • the network node unit SND controls and
  • Diagnoseytem query the current voltages, currents, energy and power values, parameterization of the SND, data for charging an energy storage or the registration of a future power requirement).
  • Network node unit SND couples to a supply unit SPU, which converts the voltage of the transport network to the input voltage required for the EC.
  • a data connection between the network node unit SND and the supply unit SPU e.g. in the form of a serial RS 422, provided.
  • Energy-technically typical here is, for example, a three-phase connection with 400 VAC.
  • the element controller EC controls and supplies the switch W in FIG. 5
  • Element Controller EC Data telegrams from the higher-level interlocking computer via an Ethernet connection from the Communication unit SCU and gives via this SCU the feedback to the interlocking computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

L'invention concerne un équipement (E) et un procédé pour faire fonctionner des unités fonctionnelles (DFE, EC) décentralisées disposées dans une installation industrielle. L'équipement comprend : a) un système de commande maître (30) qui échange des informations avec les unités fonctionnelles décentralisées (DFE) au moyen de télégrammes de données (DT); b) un réseau de transport de données (TN) qui comprend une pluralité de points d'accès au réseau (2 à 16), le système de commande maître (30) étant couplé au réseau de transport de données (TN) par le biais d'au moins un point d'accès au réseau (2, 4); c) des unités de communication (18 à 28) qui sont connectées à un point d'accès au réseau (6 à 16) et qui fournissent aux unités fonctionnelles décentralisées un accès au réseau de transport de données (TN); d) un réseau de transport d'énergie auquel les unités fonctionnelles décentralisées (DFE) sont raccordées et qui alimente les unités fonctionnelles décentralisées (DFE) en énergie électrique; e) une pluralité d'accumulateurs d'énergie intelligents, raccordés au réseau de transport d'énergie (ETN), qui assurent le prélèvement et/ou la fourniture d'énergie en coordination avec le système de commande maître et/ou avec au moins un des autres accumulateurs d'énergie. Le réseau de transport d'énergie (ETN) comporte des points d'injection d'énergie (IEK), répartis le long d'une structure en bus du réseau de transport d'énergie, qui peuvent être alimentés sélectivement en puissance électrique correspondante par le biais d'une parmi au moins deux infrastructures énergétiques indépendantes.
EP14747307.8A 2013-07-02 2014-06-25 Équipement et procédé pour faire fonctionner des unités fonctionnelles décentralisées Ceased EP3016830A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14747307.8A EP3016830A1 (fr) 2013-07-02 2014-06-25 Équipement et procédé pour faire fonctionner des unités fonctionnelles décentralisées

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP13174634 2013-07-02
EP20130178451 EP2821313A3 (fr) 2013-07-02 2013-07-30 Dispositif et procédé de fonctionnement d'unités fonctionnelles disposées de façon décentralisée
PCT/EP2014/063358 WO2015000757A1 (fr) 2013-07-02 2014-06-25 Équipement et procédé pour faire fonctionner des unités fonctionnelles décentralisées
EP14747307.8A EP3016830A1 (fr) 2013-07-02 2014-06-25 Équipement et procédé pour faire fonctionner des unités fonctionnelles décentralisées

Publications (1)

Publication Number Publication Date
EP3016830A1 true EP3016830A1 (fr) 2016-05-11

Family

ID=48745770

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20130178451 Withdrawn EP2821313A3 (fr) 2013-07-02 2013-07-30 Dispositif et procédé de fonctionnement d'unités fonctionnelles disposées de façon décentralisée
EP14747307.8A Ceased EP3016830A1 (fr) 2013-07-02 2014-06-25 Équipement et procédé pour faire fonctionner des unités fonctionnelles décentralisées

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20130178451 Withdrawn EP2821313A3 (fr) 2013-07-02 2013-07-30 Dispositif et procédé de fonctionnement d'unités fonctionnelles disposées de façon décentralisée

Country Status (6)

Country Link
US (1) US10407086B2 (fr)
EP (2) EP2821313A3 (fr)
CN (1) CN105358403B (fr)
AU (1) AU2014286412B2 (fr)
CA (1) CA2917091C (fr)
WO (1) WO2015000757A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109128A1 (fr) * 2015-06-25 2016-12-28 Siemens Schweiz AG Système et procédé d'élimination de court-circuit dans un bus d'alimentation
EP3109125A1 (fr) * 2015-06-25 2016-12-28 Siemens Schweiz AG Système et procédé d'alimentation d'unités de fonctionnement décentralisées en énergie électrique
EP3150461A1 (fr) * 2015-10-02 2017-04-05 Siemens Schweiz AG Système et procédé d'élimination automatique d'une tension induite excessive dans un bus de puissance
DE202016102634U1 (de) * 2016-05-18 2017-08-21 Thales Deutschland Gmbh Stromversorgungseinrichtung
EP3247015B2 (fr) 2016-05-18 2022-11-23 Thales Management & Services Deutschland GmbH Dispositif d'alimentation électrique et procédé de fonctionnement d'un dispositif d'alimentation électrique
FR3052928B1 (fr) * 2016-06-16 2019-07-19 Blue Solutions Procede et systeme de gestion intelligente de batteries electrochimiques d'une installation d'alimentation electrique
DE102016218585A1 (de) 2016-09-27 2018-03-29 Siemens Aktiengesellschaft Einrichtung und Verfahren zum Betreiben von in einer Gleisanlage dezentral angeordneten Feldelementen
PL3415399T3 (pl) 2017-06-16 2020-04-30 Siemens Mobility Ag System do bezusterkowego zasilania elektrycznego urządzenia odbiorczego z redundantną magistralą energetyczną
CN109446545B (zh) * 2018-09-07 2023-03-14 天津大学 基于通用能量母线的综合能源系统能量流分析计算方法
CN109249958A (zh) * 2018-09-11 2019-01-22 合肥康辉医药科技有限公司 一种计算机辅助连锁系统
CN113485276A (zh) * 2021-07-30 2021-10-08 中国电建集团河北省电力勘测设计研究院有限公司 一种分散式布置的智慧电厂电气监控管理系统
CN114422279B (zh) * 2021-12-07 2023-07-18 成都市联洲国际技术有限公司 扩展电路、系统、数据处理方法及计算机存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549620A (en) * 1945-05-28 1951-04-17 Mitchell Co John E Pumping mechanism
GB0009424D0 (en) * 2000-04-18 2000-06-07 Alstom Trackside power distribution systems
US7701077B2 (en) 2004-07-23 2010-04-20 General Electric Company Secondary power for critical loads for railroad
WO2008025414A2 (fr) * 2006-08-29 2008-03-06 Siemens Schweiz Ag Procédé et dispositif destinés à un système adaptatif modulaire de commande et de contrôle d'installations de sécurisation de chemin de fer
US20070124036A1 (en) * 2006-11-06 2007-05-31 Plishner Paul J Rail vehicle or other path-constrained vehicle equipped for providing solar electric power for off-vehicle use, and systems in support thereof
EP1995916A1 (fr) 2007-05-24 2008-11-26 Siemens Schweiz AG Dispositif de commande et/ou de surveillance et de demande de données à partir d'unités de fonction décentralisées agencées le long d'un réseau de trafic
CN101428565B (zh) 2008-12-15 2010-12-08 吴速 利用自然能向电力机车供能的系统和方法
EP2302202B1 (fr) 2009-09-24 2012-08-29 Jan Lostak Propulsion hydraulique pour les augmentations de la capacité de station d'alimentation hydroélectrique
DE102010045462A1 (de) * 2010-09-14 2012-03-15 Siemens Aktiengesellschaft Anordnung zum Übertragen von Daten von und/oder zu einem Streckenelement des spurgebundenen Verkehrs sowie Verfahren zum Übertragen von Daten
EP2549620A3 (fr) 2011-07-22 2013-04-24 Siemens Schweiz AG Dispositif de fonctionnement d'unités de fonction décentralisées et agencées dans une installation industrielle
GB201121938D0 (en) * 2011-12-21 2012-02-01 Dames Andrew N Supply of grid power to moving vehicles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015000757A1 *

Also Published As

Publication number Publication date
AU2014286412A1 (en) 2016-01-28
WO2015000757A1 (fr) 2015-01-08
US20160167686A1 (en) 2016-06-16
CA2917091C (fr) 2018-06-12
EP2821313A3 (fr) 2015-05-06
US10407086B2 (en) 2019-09-10
AU2014286412B2 (en) 2017-02-23
EP2821313A2 (fr) 2015-01-07
CA2917091A1 (fr) 2015-01-08
CN105358403A (zh) 2016-02-24
CN105358403B (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
EP2735082B1 (fr) Dispositif permettant de faire fonctionner des unités fonctionnelles décentralisées disposées dans une infrastructure ferroviaire
WO2015000757A1 (fr) Équipement et procédé pour faire fonctionner des unités fonctionnelles décentralisées
EP2301202B1 (fr) Dispositif de commande et/ou de surveillance et de demande de données à partir d'unités de fonction décentralisées agencées le long d'un réseau de trafic
EP2057056B1 (fr) Procédé et dispositif destinés à un système adaptatif modulaire de commande et de contrôle d'installations de sécurisation de chemin de fer
EP2883196B1 (fr) Procédé et dispositif pour la commande dans l'espace et dans le temps de la consommation d'énergie électrique d'un réseau de télécommunication en fonction des états du système d'alimentation en énergie
EP1719688A1 (fr) Système de transmission de données pour véhicules ferroviaires
EP3313710A1 (fr) Système et procédé de suppression automatique de courts-circuits dans un bus d'alimentaton
EP2162339A1 (fr) Dispositif de transmission de données entre une unité de transmission de données fixe et un objet mobile
EP3415399B1 (fr) Système d'alimentation à sureté intégrée d'un consommateur électrique à l'aide d'un bus d'énergie redondant
WO2012139656A1 (fr) Réseau de distribution d'énergie et procédé d'exploitation de ce réseau
EP3313709A1 (fr) Système et procédé d'alimentation électrique d'unités fonctionnelles décentralisées
EP2674346B1 (fr) Procédé et système d'approvisionnement de puissance électrique pour des éléments de voie décentralisés d'un réseau de voies ferrées
EP3822145B1 (fr) Procédé et système pour traiter une chaine d'appareils d'aiguillage
EP1187750A1 (fr) Installation de securite pour passage a niveau
EP3305622A1 (fr) Procédé de diagnostic de composants techniques répartis dans l'espace
EP2613476B1 (fr) Procédé de redondance pour un réseau de données spécialisé
EP3739407A1 (fr) Procédé d'ajustement d'une topologie de communication dans un système cyberphysique
EP3383723A1 (fr) Dispositif et procédé de commande et/ou de surveillance d'unités fonctionnelles intelligentes décentralisées agencées dans un réseau ferroviaire
EP3168949B1 (fr) Procede et dispositif de reglage décentralisé de reseaux moyenne tension et basse tension
DE3219366A1 (de) Elektronische weichensteuerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170407

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS MOBILITY AG

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20220807