EP3109125A1 - Système et procédé d'alimentation d'unités de fonctionnement décentralisées en énergie électrique - Google Patents

Système et procédé d'alimentation d'unités de fonctionnement décentralisées en énergie électrique Download PDF

Info

Publication number
EP3109125A1
EP3109125A1 EP15173810.1A EP15173810A EP3109125A1 EP 3109125 A1 EP3109125 A1 EP 3109125A1 EP 15173810 A EP15173810 A EP 15173810A EP 3109125 A1 EP3109125 A1 EP 3109125A1
Authority
EP
European Patent Office
Prior art keywords
network node
snd
units
power bus
node unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15173810.1A
Other languages
German (de)
English (en)
Inventor
Martin Hediger
Anton Reichlin
Daniel Sigg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to EP15173810.1A priority Critical patent/EP3109125A1/fr
Priority to EP16722583.8A priority patent/EP3313709B1/fr
Priority to PCT/EP2016/059772 priority patent/WO2016206842A1/fr
Publication of EP3109125A1 publication Critical patent/EP3109125A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L19/00Arrangements for interlocking between points and signals by means of a single interlocking device, e.g. central control
    • B61L19/06Interlocking devices having electrical operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/70Details of trackside communication

Definitions

  • the present invention relates to a system and method for supplying decentralized functional units with electrical energy arranged in an industrial plant.
  • Such decentralized functional units are used in particular in rail transport networks such as the railroad, where these are used to control vehicle influencing and / or vehicle monitoring units and to monitor functionality and to record process data and back to a central control and / or Monitoring center, such as a control center or a signal box, to report.
  • a central control and / or Monitoring center such as a control center or a signal box
  • As Switzerlandbeeinu units that give instructions to the driver or even make direct intervention in the vehicle control or directly set a safe track for example, signals, points, balises, line conductors, track magnets and the like, as well as sensors for detecting process variables of the moving train, such as power consumption, speed and the like.
  • train and track section monitoring units can also balise and line conductors, but also axle and track circuits and other train detection systems are called.
  • the present invention relates to all industrial plants in which functional units are distributed over long distances and yet must be centrally controlled.
  • the central controller can be perceived by a stationary control center, but also by
  • a digital data transport network can be used for the coupling of the decentralized functional units, which is robust in each case against a simple error event, yet a very skillful use of very widely used in railway engineering copper cables, for example, previously available interlocking cables, and finally requires only a relatively small number of network access points.
  • Such a device is used in a particularly advantageous manner for a rail network for rail transport. Consequently, it is then expedient in a further advantageous embodiment, by means of the decentralized functional units traffic monitoring and traffic control functional units, such as in particular signals, switches, axle counter, track circuits, point and line train control elements to couple to the data transport network.
  • traffic monitoring and traffic control functional units such as in particular signals, switches, axle counter, track circuits, point and line train control elements to couple to the data transport network.
  • the supply of the connected consumers can take place from both supply sides. This creates a previously unavailable redundancy of the energy supply.
  • the decentralized functional units also called element controllers or EC for short
  • EC element controllers
  • SNDs bus couplers
  • the SNDs can interrupt or bypass the power bus, as well as measure currents and voltages in the power bus.
  • the present invention is therefore based on the object of specifying a system and a method for supplying arranged in an industrial plant decentralized functional units with electrical energy, in the interruptions in the power bus or faulty network node units, in particular their switching modules are reliably and quickly detected, so immediately Measures to restore the correct function of the energy bus can be initiated.
  • the voltages of the same network node unit measured for the two inputs of the power bus in a network node unit can be compared. In this way, it can be determined whether the connection to both feed points is intact or whether one of these connections is broken or if one of the switches has a fault.
  • the voltages measured for the two inputs of the power bus in two directly adjacent network node units can be compared. In this way, it can also be determined whether the connection to both feed points is intact or whether one of these connections between the two network node units is interrupted.
  • the voltage values measured on a network node unit can be transmitted via the data bus to an adjacent network node unit and / or the higher-order control system.
  • the data can be accumulated in a suitable manner where their evaluation is provided by means of the evaluation module.
  • the evaluation module is rather an evaluation instance, because the evaluation of the voltage values is carried out by software and therefore the required hardware for this purpose in a suitable location, such as in the parent Control system (eg the interlocking) or else can be arranged on a master network node unit.
  • the parent Control system eg the interlocking
  • a monitoring cycle for the successive opening of the two switches for each network node unit can be provided by means of a successive processing of the network node units starting at one of the two feed points.
  • a monitoring cycle for the successive opening of the two switches for each network node unit by way of a successive processing of the network node units starting at the voltage center of the power bus network node unit and then be provided on both sides to the feed points out.
  • a typical implementation case for the industrial plant may be a railway network. Accordingly, then by means of the decentralized functional units traffic monitoring and traffic control units, in particular signals, switches (W), axle counter, track circuits, point and line-shaped train control elements controlled.
  • traffic monitoring and traffic control units in particular signals, switches (W), axle counter, track circuits, point and line-shaped train control elements controlled.
  • FIG. 1 schematically shows an interlocking architecture with a system Sys, inter alia, a signal box STW, a redunant degraded data backbone NB1, NB2, a data bus CB and an energy bus EB with two feed points PS1 and PS2 has.
  • the interlocking STW controls the train traffic on a track section G, in which here, for example, signals S, points W, a level crossing Bue and axle counter AC are arranged.
  • These train protection and influencing components each connect to a decentralized functional unit - also called element controller unit E - on the data bus CB and the power bus EB.
  • the decentralized functional units E are connected to the annular data bus CB in such a way that over each side of the annular data bus CB is given access to the data backbones NB1 and NB2.
  • the data bus CB coupled with corresponding routers / switches SW to the respective data backbone NB1, NB2.
  • FIG. 2 now shows schematically the data and power supply connection of the Element Controller Unit E of a train control component, here for example a switch W, to the data bus CB and the power bus EB.
  • a train control component here for example a switch W
  • Such an attachment point comprises a network node unit SND, a communication unit SCU and the actual element controller EC.
  • the communication unit SCU is used for the data exchange over both branches of the data bus CB.
  • the network node unit SND is provided which couples to both branches of the power bus EB.
  • the network node unit SND controls and monitors the power bus EB, detects current violations within the power bus and the connected consumer (SPU with EC).
  • the switching module S In redundant manner, it is always supplied from two sides with electrical energy and therefore has in a switching module S via a left switch S1 and a right switch S2 and a load switch S3 to the supply unit SPU of the element controller EC.
  • the switching module S also includes a control and / or evaluation logic SL, which is used, for example, to measure the voltages and / or currents at the inputs of the power bus EB in the network node unit SND.
  • the network node unit SND also supplies the communication unit SCU with voltage and can also exchange data with it via an Ethernet connection and is thus integrated in the data bus CB (eg for activating the manual operation of the SND via remote access and actuation of the switches S1 to S3, for delivery of diagnostic data to the interlocking or a superordinate service and diagnostic system, query of the current voltages, currents, energy and power values, parameterization of the SND, for the delivery and / or reception of data for the charging / the energy management of an energy storage not shown here or for the notification of a future power requirement) ,
  • the supply unit SPU is integrated via the switch S3, which converts the voltage of the power bus EB to the input voltage required for the element controller EC.
  • a data connection between the switching module S of the network node unit SND and the supply unit SPU, for example in the form of a serial RS 422, is provided.
  • Energy-technically typical here is, for example, a three-phase connection with 400 VAC.
  • the element controller EC controls and supplies in FIG. 2
  • the switch W receives the element controller EC data telegrams from a higher-level interlocking CPU via an Ethernet connection from the communication unit SCU and are via this communication unit SCU feedback to the interlocking computer CPU.
  • the interlocking computer CPU here also represents a corresponding evaluation module that evaluates the received data as intended.
  • the network node units SND1 to SND7 measure both current and voltage at the power bus EB, as well as the current direction in the power bus EB at both bus inputs (bus left, bus right). It is further assumed that in the network node units SND1 to SND7 a switching function is implemented in the switching module S, the switches S1 and S2 being realized by means of unidirectionally or bidirectionally conducting semiconductor components. Thus, in each network node unit SND there is a "switch left”, through which the current I flows from right to left, and a “switch right”, through which the current flows to the right. In the case of the bidirectionally conducting semiconductor element, although there is only one bus switch, which conducts in both directions. In addition, it is assumed here that the connected supply units SPU can bridge a voltage interruption of about 20 ms.
  • the present invention solves the technical problem of monitoring the power bus EB by means of a segment-by-segment check of the network node units SND1 to SND7. It can be revealed with the resources anyway necessary for the function also a hidden redundancy failure. Thus, neither a high-precision current or voltage measurement on the power bus EB has to be implemented, nor does a great amount of circuitry have to be operated in order to apply test signals to the data bus CB or to receive and evaluate them. Of course, all data could be in eg Ways to replace a power line communication via the power bus EB.
  • the existing in the power bus EB network node units SND1 to SND7 can perform the test process autonomously based on a fixed time sequence.
  • the network node units are assigned a fixed point of time on the basis of the position in the energy bus EB, for which they are allowed to carry out the interruption check. It is also possible to run the test procedure in a synchronized manner via the communication between the network node units, for example triggered by a predefined master SND. From the combined measurement of current, current direction and voltage at both switches S1, S2, the network node unit SND can determine the state of the power bus EB by briefly separating the switches S1 and S2.
  • interruption (A) a voltage jump becomes visible in the energy bus.
  • the SND adjacent to the interruption here SND2 and SND3, measure different bus voltages at their bus inputs.
  • this interruption (A) can be easily recognized because the two adjacent network node units SND2 and SND3 measure different voltages at their respectively facing bus inputs.
  • the SND In the event of an interruption (B), the SND, whose switch is defective, measures different bus voltages at the two voltage measuring points at the bus inputs. The difference is greater than the voltage drop across the Switches S1, S2 itself. This case can be seen in operation without much effort.
  • SND5 disconnects "switch left” which causes SND4 to be powered only from the left and the two inputs on SND5 need to measure different voltage levels. If the voltage on the left input of SND5 completely collapses, or is below the minimum allowed threshold, then "Switch right" of SND4 defective (defect (D)). Otherwise, the next SND can be checked.
  • SND6 disconnects "switch left", which causes SND5 to be powered only from the left and the two inputs of the switch module on SND6 have to measure different voltage values. If the voltage at the input to the left of SND6 completely collapses, "switch right" of SND5 is defective. Otherwise, the next SND can be checked.
  • test routine can continue to work in the left direction.
  • SND3 would open "switch right".
  • Defect (F) would thus be revealed when "switch left” of SND1 is opened.
  • the test routine can also be used with bidirectionally conductive semiconductor elements. Then there is only one bus switch, which conducts in both directions. Accordingly falls in this case, the failure mode "the switch that does not conduct in the energized direction, falls off" away. Only the failures A, B, C and D would have to be considered for this case. F would not exist anymore.
  • this test run is stopped immediately and the error is displayed by the SND by means of data telegrams and reported to the other SND and / or the interlocking STW and / or another related diagnosis device. Until a repair has taken place, manipulations in the energy bus EB are then to be omitted.
  • SND1 would be the first on the Configuration predefined time slot (time synchronization via NTP) received and the "switch right" open (the current flows from left to right, so this rung is interrupted to check the other current direction).
  • SND 2 Next up is SND 2, and so on.
  • the SND which receives power from both sides, opens both switches, the SND, in which the current flows only from the right, open the "switches left”.
  • the interruption detection function works analogously to the sequence described above, but an already existing interruption leads in this case to a brief voltage interruption in the element Controller Units E, which lie between the SND being tested and the interruption. For this reason, the switches must not be left open for more than 10 ms within the scope of the assumption made above for a 20 ms seized power supply. For the exact localization of the interruption, the entire energy bus EB must also be traversed, each SND must briefly open its switches S1 and / or S2. The interruption is reported, and also here, no manipulation except the repair to the power bus EB done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
EP15173810.1A 2015-06-25 2015-06-25 Système et procédé d'alimentation d'unités de fonctionnement décentralisées en énergie électrique Withdrawn EP3109125A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15173810.1A EP3109125A1 (fr) 2015-06-25 2015-06-25 Système et procédé d'alimentation d'unités de fonctionnement décentralisées en énergie électrique
EP16722583.8A EP3313709B1 (fr) 2015-06-25 2016-05-02 Système et procédé d'alimentation électrique d'unités fonctionnelles décentralisées
PCT/EP2016/059772 WO2016206842A1 (fr) 2015-06-25 2016-05-02 Système et procédé d'alimentation électrique d'unités fonctionnelles décentralisées

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15173810.1A EP3109125A1 (fr) 2015-06-25 2015-06-25 Système et procédé d'alimentation d'unités de fonctionnement décentralisées en énergie électrique

Publications (1)

Publication Number Publication Date
EP3109125A1 true EP3109125A1 (fr) 2016-12-28

Family

ID=53488255

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15173810.1A Withdrawn EP3109125A1 (fr) 2015-06-25 2015-06-25 Système et procédé d'alimentation d'unités de fonctionnement décentralisées en énergie électrique
EP16722583.8A Active EP3313709B1 (fr) 2015-06-25 2016-05-02 Système et procédé d'alimentation électrique d'unités fonctionnelles décentralisées

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16722583.8A Active EP3313709B1 (fr) 2015-06-25 2016-05-02 Système et procédé d'alimentation électrique d'unités fonctionnelles décentralisées

Country Status (2)

Country Link
EP (2) EP3109125A1 (fr)
WO (1) WO2016206842A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257718A1 (fr) * 2016-05-05 2017-12-20 VolkerRail Nederland BV Logement ou armoire de relais doté d'un système ethercat
EP3822145A1 (fr) * 2019-11-13 2021-05-19 Siemens Mobility AG Procédé et système d'exécution d'un chemin de roulement à aiguillage projeté

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3415399T3 (pl) 2017-06-16 2020-04-30 Siemens Mobility Ag System do bezusterkowego zasilania elektrycznego urządzenia odbiorczego z redundantną magistralą energetyczną
CN107499141A (zh) * 2017-09-20 2017-12-22 中国重汽集团济南动力有限公司 一种多轴轮边驱动电动汽车用分布式高压系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2301202A1 (fr) 2007-05-24 2011-03-30 Siemens Schweiz AG Dispositif de commande et/ou de surveillance et de demande de données d'unités fonctionnelles décentralisées le long d'un réseau de communication
EP2549620A2 (fr) * 2011-07-22 2013-01-23 Siemens Schweiz AG Dispositif de fonctionnement d'unités de fonction décentralisées et agencées dans une installation industrielle
EP2674346A1 (fr) * 2012-06-13 2013-12-18 Siemens Schweiz AG Procédé et système d'approvisionnement de puissance électrique pour des éléments de voie décentralisés d'un réseau de voies ferrées
EP2821313A2 (fr) * 2013-07-02 2015-01-07 Siemens Schweiz AG Dispositif et procédé de fonctionnement d'unités fonctionnelles disposées de façon décentralisée

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2301202A1 (fr) 2007-05-24 2011-03-30 Siemens Schweiz AG Dispositif de commande et/ou de surveillance et de demande de données d'unités fonctionnelles décentralisées le long d'un réseau de communication
EP2549620A2 (fr) * 2011-07-22 2013-01-23 Siemens Schweiz AG Dispositif de fonctionnement d'unités de fonction décentralisées et agencées dans une installation industrielle
WO2013013908A2 (fr) 2011-07-22 2013-01-31 Siemens Schweiz Ag Dispositif permettant de faire fonctionner des unités fonctionnelles décentralisées disposées dans une installation industrielle
EP2674346A1 (fr) * 2012-06-13 2013-12-18 Siemens Schweiz AG Procédé et système d'approvisionnement de puissance électrique pour des éléments de voie décentralisés d'un réseau de voies ferrées
EP2821313A2 (fr) * 2013-07-02 2015-01-07 Siemens Schweiz AG Dispositif et procédé de fonctionnement d'unités fonctionnelles disposées de façon décentralisée

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETER HEFTI ET AL: "Die neue dezentrale Stellwerksarchitektur Sinet im kommerziellen Betrieb der SBB", SIGNAL + DRAHT, TELZLAFF VERLAG GMBH. DARMSTADT, DE, vol. 106, no. 1/2, 1 January 2014 (2014-01-01), pages 36 - 40, XP001586600, ISSN: 0037-4997 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257718A1 (fr) * 2016-05-05 2017-12-20 VolkerRail Nederland BV Logement ou armoire de relais doté d'un système ethercat
EP3822145A1 (fr) * 2019-11-13 2021-05-19 Siemens Mobility AG Procédé et système d'exécution d'un chemin de roulement à aiguillage projeté

Also Published As

Publication number Publication date
EP3313709B1 (fr) 2019-06-26
WO2016206842A1 (fr) 2016-12-29
EP3313709A1 (fr) 2018-05-02

Similar Documents

Publication Publication Date Title
EP3313710B1 (fr) Système et procédé d'élimination de court-circuit dans un bus d'alimentation
DE102009042368B4 (de) Steuerungssystem zum Steuern von sicherheitskritischen Prozessen
EP3313709B1 (fr) Système et procédé d'alimentation électrique d'unités fonctionnelles décentralisées
EP2981868B1 (fr) Système de commande et de transmission de données, dispositif de traitement et procédé de commande de processus redondante à redondance décentralisée
DE102012000158B4 (de) Adaptives mehrfach redundantes ringförmiges Netzwerk und Verfahren zum Wählen einer Umleitung
EP2857913B1 (fr) Système d'automatisation redondant
EP2735082A2 (fr) Dispositif permettant de faire fonctionner des unités fonctionnelles décentralisées disposées dans une installation industrielle
EP1860564A1 (fr) Procédé et dispositif destinés à l'échange de données sur la base du protocole de communication OPC entre des composants redondants d'un système d'automatisation
EP3017570B1 (fr) Dispositif de controle, noeud de reseau et procede pour l'echange des donnees sur un reseau
WO2015000757A1 (fr) Équipement et procédé pour faire fonctionner des unités fonctionnelles décentralisées
EP2675114B1 (fr) Procédé pour expoiter une formation de réseau , un arrangement de réseau et une formation de réseau
EP3415399B1 (fr) Système d'alimentation à sureté intégrée d'un consommateur électrique à l'aide d'un bus d'énergie redondant
EP1672446B1 (fr) Module d'entrée/sortie sécurisé pour un controleur
DE112012005740T5 (de) Duplexsteuerungssystem und dessen Steuerungsverfahren
EP2418580B1 (fr) Procédé destiné au fonctionnement d'un réseau et réseau
EP3305622A1 (fr) Procédé de diagnostic de composants techniques répartis dans l'espace
EP4160845B1 (fr) Système de démarrage contrôlé et de fonctionnement d'un bus d'énergie redondant
EP3531137B1 (fr) Dispositif d'alimentation en énergie et procédé de fonctionnement d'un dispositif d'alimentation en énergie
EP1692578B1 (fr) Unite peripherique d'un systeme de commande redondant
WO2009026600A1 (fr) Dispositif d'alimentation en énergie décentralisé destiné à un système de commande modulaire sécurisé contre les erreurs
EP3822145A1 (fr) Procédé et système d'exécution d'un chemin de roulement à aiguillage projeté
EP3281365B1 (fr) Dispositif d'extension d'interface pour un dispositif réseau et procédé de fonctionnement d'un dispositif d'extension d'interface
WO2017054951A1 (fr) Système et procédé permettant l'élimination automatique d'une tension pertubatrice excessive dans un bus d'alimentation
EP2817923B1 (fr) Réseau de calculateurs avec un bus de liaison de forme annulaire
EP4037126A1 (fr) Système de démarrage rapide commandé et de fonctionnement d'un bus à énergie redondant destiné à l'alimentation à sécurité intégrée d'un consommateur électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170629