EP3015279A1 - Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild - Google Patents

Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild Download PDF

Info

Publication number
EP3015279A1
EP3015279A1 EP15003050.0A EP15003050A EP3015279A1 EP 3015279 A1 EP3015279 A1 EP 3015279A1 EP 15003050 A EP15003050 A EP 15003050A EP 3015279 A1 EP3015279 A1 EP 3015279A1
Authority
EP
European Patent Office
Prior art keywords
laser
motif
lenticular
microlenses
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15003050.0A
Other languages
English (en)
French (fr)
Other versions
EP3015279B1 (de
Inventor
André Gregarek
Michael Rahm
Josef Schinabeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP3015279A1 publication Critical patent/EP3015279A1/de
Application granted granted Critical
Publication of EP3015279B1 publication Critical patent/EP3015279B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/435Marking by removal of material using electromagnetic radiation, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/41Marking using electromagnetic radiation

Definitions

  • the invention relates to a method for producing a security element with a lenticular image for displaying one or more target images visible only from predetermined viewing directions, wherein the motifs of the target images are formed, in particular, by visually discernible, contrasting metallic and demetallized portions of a motif layer.
  • Data carriers such as valuables or identity documents, but also other valuables, such as branded goods, are often provided with security elements for the purpose of security, which permit verification of the authenticity of the data carrier and at the same time serve as protection against unauthorized reproduction.
  • Security elements with viewing-angle-dependent effects play a special role in the authentication of authenticity since they can not be reproduced even with the most modern copiers.
  • the security elements are equipped with optically variable elements that give the viewer a different image impression under different viewing angles and, for example, show a different color or brightness impression and / or another graphic motif depending on the viewing angle.
  • ID cards such as credit cards or identity cards have long been personalized by laser engraving.
  • the optical properties of the substrate material are irreversibly changed by suitable guidance of a laser beam in the form of a desired marking.
  • the publication EP 0 219 012 A1 describes a badge with a partial lenticular structure. This lens structure inscribes information into the card at different angles with a laser. This information can then be detected only at this angle, so that when tilting the map, the different information appear.
  • a lenticular image contains a metallic motif layer
  • the motifs shown can be formed by local demetallization of the metallic motif layer.
  • Various ways are known to bring a design into a metallization with a laser by demetallization.
  • demetallization can be effected by direct inscription by guiding a laser beam over the metallic motif layer by means of a suitable scanning device.
  • scanning devices are expensive and usually do not reach the speeds required in an industrial production line.
  • demetallization is the laser application via a mask.
  • the mask should move in a roll-to-roll process, preferably at the speed of the paper or film web.
  • each design requires its own mask so that in practice the mask can not simply be printed on the moving web.
  • a separate exposure step must be carried out for each design, with the exposure mask having to be removed from the corresponding direction after laser exposure.
  • a part of the laser radiation is masked or absorbed by a mask so that only part of the laser intensity is available for the laser inscription itself.
  • the present invention seeks to provide a method of the type mentioned above, which avoids the disadvantages of the prior art, and in particular allows a high production speed and a high efficiency of the Laserdemetallmaschine.
  • a diffractive optical element DOE
  • a refractive optical element ROI
  • a micro-mirror actuator Digital Micromirror Device, DMD
  • a surface light modulator SLM
  • Both the beamformer and the switchable mask can work in transmission or reflection. It has been found to be particularly advantageous when the beam shaper in transmission or the switchable mask works in reflection.
  • microlenses are lenses whose size lies below the resolution limit of the naked eye in at least one lateral direction.
  • the microlenses may be formed, for example, spherical or aspherical.
  • cylindrical lenses is currently preferred, so that the method advantageously provides a lenticular image with a lenticular grid of a plurality of micro-cylindrical lenses.
  • the spherical or aspherical microlenses preferably have a diameter between 5 ⁇ m and 100 ⁇ m, in particular between 10 ⁇ m and 50 ⁇ m, particularly preferably between 15 ⁇ m and 20 ⁇ m.
  • the micro-cylindrical lenses preferably have a width between 5 ⁇ m and 100 ⁇ m, in particular between 10 ⁇ m and 50 ⁇ m, particularly preferably between 15 ⁇ m and 20 ⁇ m.
  • the length of the micro-cylindrical lenses is arbitrary, it may for example correspond to the use of security threads of the total width of the thread and be several millimeters.
  • At least 20, preferably at least 50, in particular at least 500 microlenses are acted on simultaneously with the laser beam with the motif-shaped beam cross section.
  • the microlenses are advantageously acted upon by a laser beam whose beam cross-section is extended over a wide area and which is not limited to a linear surface area.
  • the beam cross-section in particular has the form of patterns, characters, in particular alphanumeric characters, or a coding.
  • the microlenses of the lenticular grid are advantageously applied to the laser radiation at an angle for each target image at an angle which corresponds to the predetermined viewing direction of this target image.
  • the microlenses of the lenticular grid can also be exposed to two or more laser beams with a motive beam cross-section from different angles.
  • the microlenses of the lenticular grid can be exposed to two or more laser beams with different motif-shaped beam cross sections.
  • the two or more laser beams may originate from different marker lasers or from the same marker laser.
  • the microlenses of the lenticular grid are exposed to pulsed laser radiation having a pulse length between 5 ns and 130 ns.
  • pulsed laser radiation having a pulse length between 5 ns and 130 ns.
  • an infrared laser in the wavelength range of 0.8 .mu.m to 3 .mu.m, in particular a Nd: YAG laser or Nd: YVO 4 laser has been proven.
  • Nd: YAG laser or Nd: YVO 4 laser has been proven.
  • shorter wavelengths in particular in the range from 480 nm to 580 nm, are much better suited. These can be generated, for example, by means of frequency-doubled solid-state lasers.
  • the laser parameters are advantageously chosen so that the metallic motif layer is locally demetallized by laser ablation by ablation or transparency.
  • the transparency can be effected, for example, by a transformation of the metal of the motif layer into metal oxide, or by a laser-induced melting of the metal layer, in which microscopic metal droplets that are no longer recognizable to the naked eye form.
  • metallic motif layer As a material for the metallic motif layer, aluminum has proven particularly useful, but there are also other metals, such as copper, gold, iron, chromium, nickel, silver, platinum, palladium, titanium, or an alloy of these metals into consideration.
  • metallic layer-containing thin-film elements with a color shift effect are also suitable for the metallic motif layer.
  • Such thin-film elements typically consist of an absorber layer, a dielectric spacer layer and a metallic reflector layer. The reflector layer is made thin enough so that it can be provided by the laser radiation with the desired partial motive demetallêten portions.
  • FIG. 1 shows a schematic representation of a banknote 10, which is provided with a security element according to the invention in the form of a window security thread 12.
  • the window security thread 12 emerges in window areas 14 on the surface of the banknote 10, while it is embedded in the intermediate web areas 16 in the interior of the banknote 10.
  • the security thread 12 shows a tilting image which is provided to the viewer from two different viewing directions 30A, 30B each presents another target image 18A or 18B.
  • the target images 18A, 18B each show a motif formed from visually recognizable and contrasting metallic motif parts 20 and demetallized motif parts 22A, 22B.
  • the windowed safety thread 12 in the exemplary embodiment when viewed perpendicularly 30A shows a sequence of crest motifs 22A in front of a metallic shiny background 20, while oblique viewing 30B shows a sequence of numerical motifs 22B in the form of the denomination "10" in front of the metallic shiny background 20 (FIG. "negative" motif representation).
  • the appearance of the window security thread 12 in the window regions 14 alternates between the two target images 18A, 18B.
  • the motif parts 20 can also be demetallised and the motif parts 22A, 22B can be made metallic ("positive" motif representation).
  • the window security thread 12 would then show a sequence of glossy metallic coat motifs 22A when viewed perpendicularly 30A, and a sequence of shiny metallic figure motifs 22B in each case in front of a contrasting background 20 when viewed obliquely 30B.
  • FIG. 2 schematically shows the structure of the window security thread 12 of Fig.1 in cross section.
  • the window security thread 12 has a carrier 32 in the form of a transparent plastic film, for example a PET film.
  • a UV lacquer layer 36 is arranged, on which a motif layer 40 is formed of aluminum, which in the grid of the cylindrical lenses 34 spaced, demetallieri portions 42 A, 42 B has.
  • the carrier 32, the UV lacquer layer 36 and the cylindrical lenses 34 are matched to one another in the exemplary embodiment so that the motif layer 40 is located in the focal plane of the cylindrical lenses 34.
  • demetallized portions 42A, 42B Due to the small dimensions of the cylindrical lenses 34, a large number of demetallized portions 42A, 42B cooperate in the reconstruction of the motives 18A, 18B.
  • the window security thread 12 typically includes additional layers, such as a full-color layer 44, however, these or other functional layers are not essential to the present invention and are therefore not described in detail.
  • the laser radiation of a pulsed laser source is provided by a beam former or a switchable mask with a motif-shaped beam cross-section and a plurality of cylindrical lenses 34 of the lenticular is simultaneously applied to the motif-shaped laser beam, so that with a single Laser pulse a plurality of part-motif demetallinstrumenter portions 42 A, 42 B is generated in the metallic motif layer 40.
  • FIG. 3 shows a processing apparatus 50 with a marking laser 52, for example, a pulsed Nd: YAG laser with a wavelength of 1.064 microns and a pulse duration between 5 ns and 130 ns to illustrate the method.
  • the lenticular sheet 70 to be processed is arranged in a working plane 72 and moves in the running direction 74 at a high line speed of, for example, 80 m / min.
  • the lenticular screen 70 provides a still uncut and not yet demetallized preform in Figures 1 and 2
  • the lenticular screen 70 has a lenticular array of a plurality of cylindrical lenses 34 and a spaced apart metallic motif layer 40.
  • the lenticular sheet contains a plurality of individual benefits, which are cut after the demetallization in a suitable manner to endless material or singulated for individual use.
  • the beam cross section of the laser beam 54 initially has a generally Gaussian or top hat-shaped output intensity distribution 56, as in FIG Fig. 3 shown schematically.
  • the laser beam 54 can be widened by at least two lenses 58 to the beam cross section required for later processing.
  • the expanded laser beam then passes through a beam former 60 designed specifically for the demetallization region 22A or 22B to be generated, which is formed in the exemplary embodiment by a diffractive optical element (DOE).
  • DOE diffractive optical element
  • the diffractive optical element redistributes the laser energy in the beam cross section of the laser beam such that the target intensity distribution 62 of the beam cross section in the processing plane 72 just has the shape and size of the crest motif 22A to be written or the digit sequence "10" to be written in (reference 22B).
  • other optical elements such as one or more deflecting mirror 64, scanner mirror (not shown) and lenses 66, directed to a desired portion of the lenticular screen 70 such that in the plane of the motif layer 40, which can lie in particular in the focal plane of the cylindrical lenses 34, the correct image of the motif to be written results.
  • the laser beam with its motif-shaped beam cross-section acts simultaneously on a plurality of cylindrical lenses 34, so that the desired motif (coat of arms or numerical sequence "10" in negative motif representation or background in positive motif representation) each with only one single laser pulse can be written in the metallic motif layer 40. Because of the short pulse duration, within which the lenticular screen film 70 only moves by a few tens of nanometers, no compensation for the web speed of the lenticular screen film 70 has to be made during the exposure.
  • the various motifs 22A, 22B are placed on the lenticular screen 70 in a grid pattern in a plurality of parallel rows, the positions of the individual subjects 22A, 22B on the lenticular sheet 70 and the angles at which the subjects 22A, 22B are introduced, in a manner known per se can be selected by means of the scanning device, not shown.
  • the shape of the beam cross section of the laser beam between the beam shaper 60 and the working plane 72 is not important to the present invention.
  • the beam shaper 60 merely has to be designed in such a way that the desired target intensity distribution 62 results there in the machining plane 72, taking into account the beam path between the beam shaper 60 and the machining plane 72.
  • the crest motif 22A must be inscribed under vertical laser beam incidence with a first beam former 60 which generates a target intensity distribution 62 in the shape and size of the crest motif 22A to be written in the processing plane 72, and must encode the digit sequence 22B with oblique laser beam incidence second beamformer 60 which generates in the processing plane 72 a target intensity distribution 62 in the form and size of the digit sequence "10" ( Fig. 3 ).
  • This can be done for example in two machine passes or with a processing device, which contains two laser modules or optical modules. It is also possible to divide the radiation of a laser source appropriately and to use it for the two inscription processes.
  • first or second beam shaper 60 for example, such that this instead of the crest motif 22A and the numeral "10" in the working plane 72, a target intensity distribution 62 in the form and size of the respective inscribed , the outline of the coat of arms motif 22A and the number of "10" forming background 20 generated, thereby to realize a "positive" motif representation.
  • FIGS. 4 (a) and (b) are schematic plan views of a section of the lenticular screen 70 and the metallic motif layer 40 in different stages of laser marking.
  • a section of the lenticular screen film 70 is shown with a plurality of cylindrical lenses 34 in plan view, wherein in addition the cross-section 62 of the laser beam 54 is located in the working plane 72, in Fig. 4 (a) in the form of the coat of arms (reference 22A in FIG Fig. 1 ) and in Fig. 4 (b) in the form of the number "10" (reference 22B in FIG Fig. 1 ).
  • the surface of the beam cross section 62 covers a large number of cylindrical lenses 34.
  • demetallization encompasses both a local ablation and a transparency of the aluminum layer.
  • a transparency can for example, by a laser-induced conversion of aluminum into aluminum oxide, or by a laser-induced melting of the aluminum layer, in which form with the naked eye unrecognizable, microscopic droplets.
  • FIGS. 4 (c) and (d) For illustration, each show a plan view only on the motif layer 40 after a laser application with a laser beam with a crest-shaped beam cross section (FIG. Fig. 4 (c) ) or after a laser application with a laser beam with a numerical beam cross section ( Fig. 4 (d) ).
  • the beam shaping in the form of motifs simultaneously demetallizes many, also irregularly shaped partial regions 42A, 42B, and thus a considerable acceleration of the production process can be achieved.
  • the partial areas 42A, 42B each have the shape of a part of the motifs 22A, 22B and are therefore designated in the context of this description as partial motif-shaped partial areas.
  • FIGS. 4 (c), 4 (d) For better visibility due to a fictitious intermediate step in the production of the window security thread 12 shows. If the lenticular raster film 70 is first subjected to the crest-shaped beam cross section 62, then the motif layer 40 already has the demetallised subregions 42A when it is subjected to the zifferiform beam cross section 62. Conversely, the motif layer 40 already has demetallized partial areas 42B if the lenticular raster film 70 is first subjected to the digit-shaped beam cross-section 62.
  • the subregions 42A and 42B are introduced under different directions of application, they are offset in the plane of the motif layer 40 against each other, in particular in Fig. 2 shown.
  • the partial regions 42A and 42B can also be designed to overlap.
  • the width of the demetalliserten partial areas 42 A, 42 B therefore ideally corresponds to half the width of the cylindrical lenses 34 or is slightly larger than this. Thus, it can be achieved that when tilting the window, a direct transition from one motif to another can take place.
  • the demetallized portions 42A and 42B are introduced into the motif layer 40 by the double laser application, so that the in Fig. 4 (e) schematically shown appearance arises.
  • the partial areas 42A when viewed vertically, reconstruct the demetallized coat of arms motif 22A against a metallic background.
  • the subregions 42B also reconstruct the demetallized digit sequence "10" against a metallic background (FIG. Fig. 1 ).
  • the concrete appearance of the demetallised motifs 22A, 22B can be determined by a suitable choice of the color layer 44 (FIG. Fig. 2 ) can be set as desired.
  • Einbelichtung a subject under several loading angles is possible.
  • subjects that should be visible over a wide range of angles can be imprinted at several consecutive angles.
  • more than two target images may be provided, for example, to realize a motion or pumping image when tilting the security element.
  • the beam shaper 60 may also be formed by a refractive optical element (ROE).
  • DOE diffractive optical element
  • ROE refractive optical element
  • the in Fig. 3 Beam shaper 60 shown by way of example works in transmission, but it is also possible to use a beam shaper operating in reflection, in particular in the form of a reflective diffractive optical element or a reflective refractive optical element.
  • a further processing device 80 in which instead of a beam former 60, a switchable mask 82 is used to generate the motif-shaped beam cross section.
  • the laser beam 54 of the pulsed marker laser 52 first has a Gaussian or top hat-shaped output intensity distribution 56. After the laser beam has expanded through the lenses 58, the expanded laser beam falls onto the switchable mask 82, which in the exemplary embodiment is formed by a micromirror device (DMD).
  • DMD micromirror device
  • Such micro-mirror actuators consist of a plurality of individual mirrors arranged in the form of a matrix, each of which is formed by an electronically tiltable mirror surface with an edge length of a few or a few tens of micrometers.
  • the laser radiation is forwarded (beam portion 84) or deflected towards an absorber 88 (beam portion 86), which receives the laser energy that is not required.
  • a motif-shaped cross-sectional intensity beam portion 84 is then as in the embodiment of Fig. 3 is directed and imaged onto a desired area of the lenticular screen film 70 by further optical elements, such as deflection mirrors 64, scanner mirrors (not shown) and lenses 66, where the laser beam with the desired target intensity distribution 62 impinges the cylindrical lenses 34 and through them the metallic motif layer 40 ,
  • a switchable mask 82 has the particular advantage that different beam cross sections 62 can be generated with the same mask 82.
  • the mirror surfaces of a micromirror actuator can be brought to a new position within a few microseconds and therefore permit different target images of a lenticular image to be successively imprinted despite the fast-moving web.
  • the disadvantage is that the unneeded part of the laser radiation 86 must be deposited in the absorber 88, so that a stronger laser source than required for the actual exposure must be used.
  • SLM Spatial Light Modulators
  • a switchable mask can redistribute the laser intensity in the beam, and therefore the advantages of a switchable mask (flexibility, possibility to create multiple designs with a mask) Advantages of a beam former (use of the total energy of the laser beam) connect.
  • Absorbers are dispensed with and the laser energy supplied by the marking laser 52 can be used almost completely for demetallization.
  • Surface light modulators can operate in reflection as well as in transmission, with modulators operating in reflection being presently preferred since they tolerate a higher energy density.
  • a switchable mask operating in transmission can also be formed by an LCD display in which the areas to be masked are switched to dark.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen eines Sicherheitselements mit einem Linsenrasterbild (70) zur Darstellung eines oder mehrerer, nur aus vorbestimmten Betrachtungsrichtungen sichtbarer Sollbilder (18A, 18B), deren Motive (22A, 22B) durch visuell erkennbare, kontrastierende metallische Teilbereiche und demetallisierte Teilbereiche (42A, 42B) einer Motivschicht (40) gebildet sind, wobei bei dem Verfahren - ein Linsenrasterbild (70) mit einem Linsenraster aus einer Mehrzahl von Mikrolinsen (34) und einer von dem Linsenraster beabstandet angeordneten metallischen Motivschicht (40) bereitgestellt wird, - eine Markierungs-Laserquelle (52) zur Erzeugung von gepulster Laserstrahlung bereitgestellt wird, - die gepulste Laserstrahlung im Strahlengang zwischen der Laserquelle (52) und dem Linsenrasterbild (70) durch einen Strahlformer (60) oder eine schaltbare Maske (82) mit einem motivförmigen Strahlquerschnitt versehen wird, und - eine Mehrzahl von Mikrolinsen (34) des Linsenrasters gleichzeitig mit dem Laserstrahl mit dem motivförmigen Strahlquerschnitt (62) beaufschlagt wird, um gleichzeitig eine Mehrzahl teilmotivförmig demetallisierter Teilbereiche (42, 42B) in der darunterliegenden metallischen Motivschicht (40) zu erzeugen.

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines Sicherheitselements mit einem Linsenrasterbild zur Darstellung eines oder mehrerer, nur aus vorbestimmten Betrachtungsrichtungen sichtbarer Sollbilder, wobei die Motive der Sollbilder insbesondere durch visuell erkennbare, kontrastierende metallische und demetallisierte Teilbereiche einer Motivschicht gebildet sind.
  • Datenträger, wie Wert- oder Ausweisdokumente, aber auch andere Wertgegenstände, wie etwa Markenartikel, werden zur Absicherung oft mit Sicherheitselementen versehen, die eine Überprüfung der Echtheit des Datenträgers gestatten und die zugleich als Schutz vor unerlaubter Reproduktion dienen.
  • Eine besondere Rolle bei der Echtheitsabsicherung spielen Sicherheitselemente mit betrachtungswinkelabhängigen Effekten, da diese selbst mit modernsten Kopiergeräten nicht reproduziert werden können. Die Sicherheitselemente werden dabei mit optisch variablen Elementen ausgestattet, die dem Betrachter unter unterschiedlichen Betrachtungswinkeln einen unterschiedlichen Bildeindruck vermitteln und beispielsweise je nach Betrachtungswinkel einen anderen Farb- oder Helligkeitseindruck und/ oder ein anderes graphisches Motiv zeigen.
  • Beispielsweise werden Ausweiskarten, wie etwa Kreditkarten oder Personalausweise seit langem mittels Lasergravur personalisiert. Bei der Personalisierung durch Lasergravur werden die optischen Eigenschaften des Substratmaterials durch geeignete Führung eines Laserstrahls in Gestalt einer gewünschten Kennzeichnung irreversibel verändert.
  • Die Druckschrift EP 0 219 012 A1 beschreibt eine Ausweiskarte mit einer partiellen Linsenrasterstruktur. Durch diese Linsenstruktur werden mit einem Laser unter verschiedenen Winkeln Informationen in die Karte eingeschrieben. Diese Informationen können anschließend auch nur unter diesem Winkel erkannt werden, so dass beim Kippen der Karte die unterschiedlichen Informationen erscheinen.
  • Enthält ein Linsenrasterbild eine metallische Motivschicht, so können die dargestellten Motive durch lokale Demetallisierungen der metallischen Motivschicht gebildet sein. Dabei sind verschiedene Möglichkeiten bekannt, mit einem Laser durch Demetallisierung ein Design in eine Metallisierung einzubringen. Zum einen kann die Demetallisierung durch direkte Beschriftung erfolgen, indem ein Laserstrahl mittels einer geeigneten Scaneinrichtung über die metallische Motivschicht geführt wird. Derartige Scaneinrichtungen sind allerdings teuer und erreichen in der Regel nicht die in einer industriellen Fertigungslinie benötigten Geschwindigkeiten.
  • Eine andere Möglichkeit der Demetallisierung besteht in der Laserbeaufschlagung über eine Maske. Die Maske sollte sich in einem Rolle-zu-Rolle-Prozess bevorzugt mit der Geschwindigkeit der Papier- oder Folienbahn bewegen. Zudem ist für jedes Design eine eigene Maske nötig, so dass die Maske in der Praxis nicht einfach auf die laufende Bahn gedruckt werden kann. Alternativ muss für jedes Design ein eigener Belichtungsschritt durchgeführt werden, wobei nach der Laserbelichtung aus der entsprechenden Richtung die Belichtungsmaske entfernt werden muss. Durch eine Maske wird außerdem ein Teil der Laserstrahlung ausgeblendet oder absorbiert, so dass nur ein Teil der Laserintensität für die Laserbeschriftung selbst zur Verfügung steht.
  • Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, das die Nachteile des Standes der Technik vermeidet, und das insbesondere eine hohe Produktionsgeschwindigkeit bzw. eine hohe Effektivität der Laserdemetallisierung ermöglicht.
  • Diese Aufgabe wird durch die Merkmale des unabhängigen Anspruchs gelöst. Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Gemäß der Erfindung wird bei einem Verfahren der eingangs genannten Art
    • ein Linsenrasterbild mit einem Linsenraster aus einer Mehrzahl von Mikrolinsen und einer von dem Linsenraster beabstandet angeordneten metallischen Motivschicht bereitgestellt,
    • wird eine Markierungs-Laserquelle zur Erzeugung von gepulster Laserstrahlung bereitgestellt,
    • wird die gepulste Laserstrahlung im Strahlengang zwischen der Laserquelle und dem Linsenrasterbild durch einen Strahlformer oder eine schaltbare Maske mit einem motivförmigen Strahlquerschnitt versehen, und
    • wird eine Mehrzahl von Mikrolinsen des Linsenrasters gleichzeitig mit dem Laserstrahl mit dem motivförmigen Strahlquerschnitt beaufschlagt, um gleichzeitig eine Mehrzahl teilmotivförmig demetallisierter Teilbereiche in der darunterliegenden metallischen Motivschicht zu erzeugen.
  • In einer vorteilhaften Verfahrensvariante wird als Strahlformer ein Diffraktives Optisches Element (DOE) oder ein Refraktives Optisches Element (ROE) bereitgestellt. Nach einer ebenfalls vorteilhaften Verfahrensvariante wird als schaltbare Maske ein Mikrospiegelaktor (Digital Micromirror Device, DMD) oder ein Flächenlichtmodulator (Spatial Light Modulator, SLM) bereitgestellt.
  • Sowohl der Strahlformer als auch die schaltbare Maske können in Transmission oder Reflexion arbeiten. Dabei hat es sich als besonders günstig herausgestellt, wenn der Strahlformer in Transmission bzw. die schaltbare Maske in Reflexion arbeitet.
  • Als Mikrolinsen werden im Rahmen dieser Beschreibung Linsen bezeichnet, deren Größe in zumindest einer lateralen Richtung unterhalb der Auflösungsgrenze des bloßen Auges liegt. Die Mikrolinsen können dabei beispielsweise sphärisch oder asphärisch ausgebildet sein. Bevorzugt ist gegenwärtig allerdings der Einsatz von Zylinderlinsen, so dass bei dem Verfahren mit Vorteil ein Linsenrasterbild mit einem Linsenraster aus einer Mehrzahl von Mikro-Zylinderlinsen bereitgestellt wird.
  • Die sphärischen oder asphärischen Mikrolinsen haben vorzugsweise einen Durchmesser zwischen 5 µm und 100 µm, insbesondere zwischen 10 µm und 50 µm, besonders bevorzugt zwischen 15 µm und 20 µm. Die Mikro-Zylinderlinsen haben vorzugsweise eine Breite zwischen 5 µm und 100 µm, insbesondere zwischen 10 µm und 50 µm, besonders bevorzugt zwischen 15 µm und 20 µm. Die Länge der Mikro-Zylinderlinsen ist beliebig, sie kann beispielsweise beim Einsatz in Sicherheitsfäden der Gesamtbreite des Fadens entsprechen und mehrere Millimeter betragen.
  • Mit Vorteil werden bei dem Verfahren zumindest 20, vorzugsweise zumindest 50, insbesondere zumindest 500 Mikrolinsen gleichzeitig mit dem Laserstrahl mit dem motivförmigen Strahlquerschnitt beaufschlagt.
  • Die Mikrolinsen werden vorteilhaft mit einem Laserstrahl beaufschlagt, dessen Strahlquerschnitt flächig ausgedehnt ist und der nicht auf einen linienförmigen Oberflächenbereich beschränkt ist. Der Strahlquerschnitt weist dabei insbesondere die Form von Mustern, Zeichen, insbesondere alphanumerischen Zeichen, oder einer Codierung auf.
  • Weiter werden die Mikrolinsen des Linsenrasters mit Vorteil für jedes Sollbild unter einem Winkel mit der Laserstrahlung beaufschlagt, der der vorbestimmten Betrachtungsrichtung dieses Sollbilds entspricht. Die Mikrolinsen des Linsenrasters können auch mit zwei oder mehr Laserstrahlen mit motivförmigem Strahlquerschnitt aus unterschiedlichen Winkeln beaufschlagt werden. Alternativ oder zusätzlich können die Mikrolinsen des Linsenrasters mit zwei oder mehr Laserstrahlen mit unterschiedlichen motivförmigen Strahlquerschnitten beaufschlagt werden. Die die zwei oder mehr Laserstrahlen können von unterschiedlichen Markierungslasern oder von demselben Markierungslaser stammen.
  • Vorteilhaft werden die Mikrolinsen des Linsenrasters mit gepulster Laserstrahlung einer Pulslänge zwischen 5 ns und 130 ns beaufschlagt. Als Laserquelle hat sich ein Infrarotlaser im Wellenlängenbereich von 0,8 µm bis 3 µm, insbesondere ein Nd:YAG-Laser oder Nd:YVO4-Laser bewährt. Um bestimmte Metalle, wie etwa Gold oder Kupfer, durch Laserbeaufschlagung lokal zu demetallisieren, eignen sich kürzere Wellenlängen, insbesondere im Bereich von 480 nm bis 580 nm, deutlich besser. Diese lassen sich beispielsweise mithilfe frequenzverdoppelter Festkörperlaser erzeugen.
  • Die Laserparameter werden mit Vorteil so gewählt, dass die metallische Motivschicht bei der Laserbeaufschlagung durch Abtragung oder Transparentisierung lokal demetallisiert wird. Die Transparentisierung kann beispielsweise durch eine Umwandlung des Metalls der Motivschicht in Metalloxid erfolgen, oder durch ein laserinduziertes Aufschmelzen der Metallschicht, bei dem sich mit dem bloßen Auge nicht mehr erkennbare, mikroskopisch kleine Metall-Tröpfchen bilden.
  • Als Material für die metallische Motivschicht hat sich Aluminium besonders bewährt, es kommen jedoch auch anderes Metalle, wie etwa Kupfer, Gold, Eisen, Chrom, Nickel, Silber, Platin, Palladium, Titan, oder eine Legierung dieser Metalle in Betracht. Neben Metallen und Metall-Legierungen kommen für die metallische Motivschicht außerdem Metallschichten enthaltende Dünnschichtelemente mit Farbkippeffekt in Betracht. Derartige Dünnschichtelemente bestehen typischerweise aus einer Absorberschicht, einer dielektrischen Abstandsschicht und einer metallischen Reflektorschicht. Die Reflektorschicht wird dabei dünn genug ausgeführt, so dass sie durch die Laserstrahlung mit den gewünschten teilmotivförmig demetallisierten Teilbereichen versehen werden kann.
  • Weitere Ausführungsbeispiele sowie Vorteile der Erfindung werden nachfolgend anhand der Figuren erläutert, bei deren Darstellung auf eine maßstabs- und proportionsgetreue Wiedergabe verzichtet wurde, um die Anschaulichkeit zu erhöhen.
  • Es zeigen:
  • Fig. 1
    eine schematische Darstellung einer Banknote mit einem erfindungsgemäßen Sicherheitselement in Form eines Fenstersicherheitsfadens, der ein Kippbild mit zwei unterschiedlichen Sollbildern enthält,
    Fig. 2
    schematisch den Aufbau des Fenstersicherheitsfadens der Fig.1 im Querschnitt,
    Fig. 3
    schematisch eine Bearbeitungsvorrichtung zur Illustration des erfindungsgemäßen Verfahrens,
    Fig. 4
    in (a) bis (e) jeweils schematische Aufsichten auf einen Ausschnitt der Linsenrasterfolie der Fig. 3 bzw. der metallischen Motivschicht in verschiedenen Stadien der Laserbeschriftung, und
    Fig. 5
    schematisch eine weitere Bearbeitungsvorrichtung zur Illustration des erfindungsgemäßen Verfahrens.
  • Die Erfindung wird nun am Beispiel von Sicherheitselementen für Banknoten und andere Wertdokumente erläutert. Figur 1 zeigt dazu eine schematische Darstellung einer Banknote 10, die mit einem erfindungsgemäßen Sicherheitselement in Form eines Fenstersicherheitsfadens 12 versehen ist. Der Fenstersicherheitsfaden 12 tritt in Fensterbereichen 14 an der Oberfläche der Banknote 10 hervor, während er in den dazwischen liegenden Stegbereichen 16 im Inneren der Banknote 10 eingebettet ist.
  • In den Fensterbereichen 14 zeigt der Sicherheitsfaden 12 ein Kippbild, das dem Betrachter aus zwei verschiedenen Betrachtungsrichtungen 30A, 30B jeweils ein anderes Sollbild 18A bzw. 18B präsentiert. Die Sollbilder 18A, 18B zeigen dabei jeweils ein Motiv, das aus visuell erkennbaren und kontrastierenden metallischen Motivteilen 20 und demetallisierten Motivteilen 22A, 22B gebildet ist. Konkret zeigt der Fenstersicherheitsfadens 12 im Ausführungsbeispiel bei senkrechter Betrachtung 30A eine Abfolge von Wappenmotiven 22A vor einem metallisch glänzenden Hintergrund 20, während bei schräger Betrachtung 30B eine Abfolge von Ziffernmotiven 22B in Form der Denomination "10" vor dem metallisch glänzenden Hintergrund 20 zu sehen ist ("negative" Motivdarstellung). Beim Kippen der Banknote wechselt das Erscheinungsbild des Fenstersicherheitsfadens 12 in den Fensterbereichen 14 zwischen den beiden Sollbildern 18A, 18B hin und her. In einer hier nicht gezeigten Ausgestaltung können alternativ auch die Motivteile 20 demetallisiert und die Motivteile 22A, 22B metallisch ausgebildet sein ("positive" Motivdarstellung). Im Ausführungsbeispiel würde der Fenstersicherheitsfaden 12 dann bei senkrechter Betrachtung 30A eine Abfolge von metallisch glänzenden Wappenmotiven 22A, bei schräger Betrachtung 30B eine Abfolge von metallisch glänzenden Ziffernmotiven 22B jeweils vor einem kontrastierenden Hintergrund 20 zeigen.
  • Figur 2 zeigt schematisch den Aufbau des Fenstersicherheitsfadens 12 der Fig.1 im Querschnitt. Der Fenstersicherheitsfaden 12 weist einen Träger 32 in Form einer transparenten Kunststofffolie, beispielsweise einer PET-Folie auf. Die Oberseite des Trägers 32 ist mit einem Linsenraster in Form einer Mehrzahl paralleler Zylinderlinsen 34 versehen, deren Breite b im Ausführungsbeispiel b = 20 µm beträgt. Auf der Unterseite des Trägers 32 ist eine UV-Lackschicht 36 angeordnet, auf der eine Motivschicht 40 aus Aluminium ausgebildet ist, die im Raster der Zylinderlinsen 34 beabstandete, demetallisierte Teilbereiche 42A, 42B aufweist.
  • Der Träger 32, die UV-Lackschicht 36 und die Zylinderlinsen 34 sind im Ausführungsbeispiel so aufeinander abgestimmt, dass sich die Motivschicht 40 in der Fokusebene der Zylinderlinsen 34 befindet.
  • Bei Betrachtung des Fenstersicherheitsfadens 12 aus der senkrechten Betrachtungsrichtung 30A sind wegen der fokussierenden Wirkung der Zylinderlinsen 34 jeweils nur die demetallisierten Teilbereiche 42A und der umgebende metallische Hintergrund der metallischen Motivschicht 40 sichtbar, während bei Betrachtung aus der schrägen Betrachtungsrichtung 30B jeweils nur die demetallisierte Teilbereiche 42B und der diese Teilbereiche umgebende metallische Hintergrund sichtbar sind. Da die demetallisierten Teilbereiche 42A, 42B, wie nachfolgend genauer beschrieben, mittels Laserstrahlung mit motivförmigem Strahlquerschnitt aus den Richtungen 30A, 30B in die Motivschicht 40 eingebracht wurden, setzen sich diese Teilbereiche mit ihrem metallischen Hintergrund bei der Betrachtung aus den Betrachtungsrichtungen 30A, 30B wieder zu der gewünschten Abfolge von Motiven 18A, 18B zusammen.
  • Wegen der geringen Abmessungen der Zylinderlinsen 34 wirkt bei der Rekonstruktion der Motive 18A, 18B eine große Zahl von demetallisierten Teilbereichen 42A, 42B zusammen. Beispielsweise sind bei einer Höhe der demetallisierten Motivteile 22A, 22B von etwa 2 mm und eine Breite der Zylinderlinsen von b = 20 µm die demetallisierten Teilbereiche 42A, 42B, die an der Rekonstruktion der Motive 22A/20 (Wappen) bzw. 22B/20 (Ziffernfolge "10") teilnehmen, über eine Fläche der Motivschicht 40 verteilt, die von 2 mm/20 µm = 100 Zylinderlinsen überdeckt wird.
  • Wie in Fig. 2 ebenfalls dargestellt, enthält der Fenstersicherheitsfaden 12 typischerweise weitere Schichten, wie etwa eine vollflächige Farbschicht 44, die eine Farbgebung der demetallisierten Motivteile 22A, 22B erlaubt, eine Deckweißschicht 46 und eine Heißsiegellackschicht 48. Diese oder andere Funktionsschichten sind für die vorliegende Erfindung jedoch nicht wesentlich und werden daher nicht näher beschrieben.
  • Die Laserdemetallisierung metallischer Schichten ist an sich zwar bekannt, direkte Laserbeschriftungsverfahren sind jedoch sehr zeitaufwendig und für eine Produktion in größerem Maßstab daher in der Regel nicht geeignet. Um eine hohe Produktionsgeschwindigkeit zu erreichen, wird im Rahmen der Erfindung die Laserstrahlung einer gepulsten Laserquelle durch einen Strahlformer oder eine schaltbare Maske mit einem motivförmigen Strahlquerschnitt versehen und eine Mehrzahl von Zylinderlinsen 34 des Linsenrasters wird gleichzeitig mit dem motivförmigen Laserstrahl beaufschlagt, so dass mit einem einzigen Laserpuls eine Mehrzahl teilmotivförmiger demetallisierter Teilbereiche 42A, 42B in der metallischen Motivschicht 40 erzeugt wird.
  • Figur 3 zeigt zur Illustration des Verfahrens eine Bearbeitungsvorrichtung 50 mit einem Markierungslaser 52, beispielsweise einem gepulsten Nd:YAG-Laser mit einer Wellenlänge von 1,064 µm und einer Pulsdauer zwischen 5 ns und 130 ns. Die zu bearbeitende Linsenrasterfolie 70 ist in einer Bearbeitungsebene 72 angeordnet und bewegt sich mit hoher Bahngeschwindigkeit von beispielsweise 80 m/min in Laufrichtung 74.
  • Die Linsenrasterfolie 70 stellt eine noch ungeschnittene und zunächst noch nicht demetallisierte Vorform der in Figuren 1 und 2 gezeigten Sicherheitsfäden dar. Die Linsenrasterfolie 70 weist ein Linsenraster aus einer Mehrzahl von Zylinderlinsen 34 und eine beabstandet angeordnete metallische Motivschicht 40 auf. Die Linsenrasterfolie enthält eine Mehrzahl von Einzelnutzen, die nach der Demetallisierung in geeigneter Weise zu Endlosmaterial geschnitten oder zu Einzelnutzen vereinzelt werden.
  • Der Strahlquerschnitt des Laserstrahls 54 weist zunächst eine in der Regel gaußförmige oder Top-Hat-förmige Ausgangs-Intensitätsverteilung 56 auf, wie in Fig. 3 schematisch gezeigt. Der Laserstrahl 54 kann gegebenenfalls durch mindestens zwei Linsen 58 auf den für die spätere Bearbeitung erforderlichen Strahlquerschnitt aufgeweitet werden. Der aufgeweitete Laserstrahl durchläuft dann einen speziell auf den zu erzeugenden Demetallisationsbereich 22A bzw. 22B ausgelegten Strahlformer 60, der im Ausführungsbeispiel durch ein Diffraktives Optisches Element (DOE) gebildet ist. Das Diffraktive Optische Element verteilt die Laserenergie im Strahlquerschnitt des Laserstrahls so um, dass die Ziel-Intensitätsverteilung 62 des Strahlquerschnitts in der Bearbeitungsebene 72 gerade die Form und Größe des einzuschreibenden Wappenmotivs 22A bzw. der einzuschreibenden Ziffernfolge "10" (Bezugszeichen 22B) aufweist.
  • Der in seiner Querschnittsintensität umverteilte Laserstrahl 54 wird, gegebenenfalls durch weitere optische Elemente wie beispielsweise einen oder mehrere Umlenkspiegel 64, Scannerspiegel (nicht gezeigt) und Linsen 66, auf einen gewünschten Bereich der Linsenrasterfolie 70 derart gelenkt, dass sich in der Ebene der Motivschicht 40, die insbesondere in der Fokusebene der Zylinderlinsen 34 liegen kann, die korrekte Abbildung des einzuschreibenden Motivs ergibt.
  • Der Laserstrahl mit seinem motivförmigen Strahlquerschnitt beaufschlagt dabei gleichzeitig eine Vielzahl von Zylinderlinsen 34, so dass das gewünschte Motiv (Wappen bzw. Ziffernfolge "10" bei negativer Motivdarstellung bzw. Hintergrund bei positiver Motivdarstellung) jeweils mit nur einem einzigen Laserpuls in die metallische Motivschicht 40 eingeschrieben werden kann. Wegen der kurzen Pulsdauer, innerhalb der sich die Linsenrasterfolie 70 nur um wenige zehn Nanometer weiterbewegt, muss bei der Belichtung kein Ausgleich für die Bahngeschwindigkeit der Linsenrasterfolie 70 vorgenommen werden.
  • Die verschiedenen Motive 22A, 22B werden auf der Linsenrasterfolie 70 rasterförmig in mehreren parallelen Reihen eingebracht, wobei die Positionen der einzelnen Motive 22A, 22B auf der Linsenrasterfolie 70 und die Winkel, unter dem die Motive 22A, 22B eingebracht werden, in an sich bekannter Weise mittels der nicht dargestellten Scaneinrichtung gewählt werden können.
  • Die Form des Strahlquerschnitts des Laserstrahls zwischen dem Strahlformer 60 und der Bearbeitungsebene 72 ist für die vorliegende Erfindung nicht von Bedeutung. Der Strahlformer 60 muss lediglich so ausgebildet sein, dass sich in der Bearbeitungsebene 72 unter Berücksichtigung des Strahlwegs zwischen Strahlformer 60 und Bearbeitungsebene 72 dort die gewünschte Ziel-Intensitätsverteilung 62 ergibt.
  • Um das in den Figuren 1 und 2 gezeigte Kippbild zu erzeugen, muss das Wappenmotiv 22A unter senkrechtem Laserstrahleinfall mit einem ersten Strahlformer 60 eingeschrieben werden, welcher in der Bearbeitungsebene 72 eine Ziel-Intensitätsverteilung 62 in Form und Größe des einzuschreibenden Wappenmotivs 22A erzeugt, und muss die Ziffernfolge 22B unter schrägem Laserstrahleinfall mit einem zweiten Strahlformer 60 erzeugt werden, welcher in der Bearbeitungsebene 72 eine Ziel-Intensitätsverteilung 62 in Form und Größe der Ziffernfolge "10" erzeugt (Fig. 3). Dies kann beispielsweise in zwei Maschinendurchgängen geschehen oder mit einer Bearbeitungsvorrichtung, die zwei Lasermodule bzw. Optikmodule enthält. Es ist auch möglich, die Strahlung einer Laserquelle geeignet aufzuteilen und für die beiden Beschriftungsvorgänge zu verwenden. Es versteht sich, dass es auch möglich ist, den ersten bzw. zweiten Strahlformer 60 beispielsweise derart auszubilden, dass dieser anstelle des Wappenmotivs 22A bzw. der Zifferfolge "10" in der Bearbeitungsebene 72 eine Ziel-Intensitätsverteilung 62 in Form und Größe des jeweils einzuschreibenden, den Umriss des Wappenmotivs 22A bzw. der Ziffernfolge "10" bildenden Hintergrunds 20 erzeugt, um dadurch eine "positive" Motivdarstellung zu verwirklichen.
  • Zur weiteren Erläuterung zeigt Fig. 4 in (a) bis (e) jeweils schematische Aufsichten auf einen Ausschnitt der Linsenrasterfolie 70 bzw. der metallischen Motivschicht 40 in verschiedenen Stadien der Laserbeschriftung. Mit Bezug zunächst auf die Figuren 4(a) und (b) ist jeweils ein Ausschnitt der Linsenrasterfolie 70 mit einer Mehrzahl von Zylinderlinsen 34 in Aufsicht gezeigt, wobei zusätzlich der Querschnitt 62 des Laserstrahls 54 in der Bearbeitungsebene 72 eingezeichnet ist, und zwar in Fig. 4(a) in Form des Wappens (Bezugszeichen 22A in Fig. 1) und in Fig. 4(b) in Form der Ziffernfolge "10" (Bezugszeichen 22B in Fig. 1). Wie in den Figuren dargestellt, überdeckt die Fläche des Strahlquerschnitts 62 jeweils eine große Anzahl an Zylinderlinsen 34. Beispielsweise erfasst der Strahlquerschnitt 62 bei einer Höhe der Motive 22A, 22B von 2 mm und einer Breite der Zylinderlinsen von b = 20 µm gleichzeitig jeweils 100 Zylinderlinsen.
  • Durch die fokussierende Wirkung der Zylinderlinsen 34 wird die Laserstrahlung auf die unter dem Linsenraster liegende Aluminium-Motivschicht 40 fokussiert und führt dort zu einer lokalen Demetallisation. Der Begriff "Demetallisation" umfasst dabei sowohl eine lokale Abtragung als auch eine Transparentisierung der Aluminiumschicht. Eine Transparentisierung kann beispielsweise durch eine laserinduzierte Umwandlung von Aluminium in Aluminiumoxid erfolgen, oder durch ein laserinduziertes Aufschmelzen der Aluminiumschicht, bei dem sich mit dem bloßen Auge nicht mehr erkennbare, mikroskopisch kleine Tröpfchen bilden.
  • Im Ergebnis wird durch die Laserbeaufschlagung mit einem einzigen Laserpuls gleichzeitig eine große Zahl von demetallisierten Teilbereichen 42A, 42B in der Aluminium-Motivschicht 40 erzeugt. Figuren 4(c) und (d) zeigen zur Illustration jeweils eine Aufsicht nur auf die Motivschicht 40 nach einer Laserbeaufschlagung mit einem Laserstrahl mit wappenförmigem Strahlquerschnitt (Fig. 4(c)) bzw. nach einer Laserbeaufschlagung mit einem Laserstrahl mit ziffernförmigem Strahlquerschnitt (Fig. 4(d)). Wie aus den Figuren unmittelbar ersichtlich, können durch die Strahlformung in Motivform gleichzeitig viele, auch unregelmäßig geformte Teilbereiche 42A, 42B demetallisiert, und so eine erhebliche Beschleunigung des Herstellungsverfahrens erreicht werden. Die Teilbereiche 42A, 42B weisen jeweils die Form eines Teils der Motive 22A, 22B auf und werden daher im Rahmen dieser Beschreibung als teilmotivförmige Teilbereiche bezeichnet.
  • Der Vollständigkeit halber sei darauf hingewiesen, dass eine der Figuren 4(c), 4(d) der besseren Erkennbarkeit wegen einen fiktiven Zwischenschritt bei der Herstellung des Fenstersicherheitsfadens 12 zeigt. Wird nämlich die Linsenrasterfolie 70 zunächst mit dem wappenförmigen Strahlquerschnitt 62 beaufschlagt, so weist die Motivschicht 40 bei der Beaufschlagung mit dem ziffernförmigem Strahlquerschnitt 62 bereits die demetallisierten Teilbereiche 42A auf. Umgekehrt weist die Motivschicht 40 bereits demetallisierte Teilbereiche 42B auf, falls die Linsenrasterfolie 70 zuerst mit dem ziffernförmigem Strahlquerschnitt 62 beaufschlagt wird. Da die Teilbereiche 42A und 42B unter unterschiedlichen Beaufschlagungsrichtungen eingebracht werden, sind sie in der Ebene der Motivschicht 40 gegeneinander versetzt, wie insbesondere in Fig. 2 gezeigt. Die Teilbereiche 42A und 42B können auch überlappend ausgelegt werden. Im Ausführungsbeispiel entspricht die Breite der demetalliserten Teilbereiche 42A, 42 B daher idealerweise der halben Breite der Zylinderlinsen 34 oder ist geringfügig größer als diese. So lässt sich erreichen, dass beim Kippen des Fenster ein direkter Übergang von einem Motiv in das andere erfolgen kann.
  • Insgesamt werden in die Motivschicht 40 durch die zweifache Laserbeaufschlagung die demetallisierten Teilbereiche 42A und 42B eingebracht, so dass das in Fig. 4(e) schematisch dargestellte Erscheinungsbild entsteht. In Zusammenwirkung mit dem in der Figur nicht gezeigten, über der Motivschicht 40 angeordneten Raster der Zylinderlinsen 34 rekonstruieren die Teilbereiche 42A bei senkrechter Betrachtung das demetallisierte Wappenmotiv 22A vor metallischem Hintergrund. Bei schräger Betrachtung rekonstruieren die Teilbereiche 42B die demetallisierte Ziffernfolge "10" ebenfalls vor metallischen Hintergrund (Fig. 1). Das konkrete Erscheinungsbild der demetallisierten Motive 22A, 22B kann durch einen geeignete Wahl der Farbschicht 44 (Fig. 2) nach Wunsch eingestellt werden.
  • Es versteht sich, dass auch eine Einbelichtung eines Motivs unter mehreren Beaufschlagungswinkeln möglich ist. So können etwa Motive, die über einen großen Winkelbereich sichtbar sein sollen, unter mehreren aufeinanderfolgenden Winkeln einbelichtet werden. Auch können mehr als zwei Sollbilder vorgesehen sein, beispielsweise um ein Bewegungs- oder Pumpbild beim Kippen des Sicherheitselements zu verwirklichen.
  • Anstatt durch ein Diffraktives Optisches Element (DOE) kann der Strahlformer 60 auch durch ein Refraktives Optisches Element (ROE) gebildet sein. Der in Fig. 3 beispielhaft gezeigte Strahlformer 60 arbeitet in Transmission, es ist aber auch möglich, einen in Reflexion arbeitenden Strahlformer, insbesondere in Form eines reflektiven Diffraktiven Optischen Elements oder eines reflektiven Refraktiven Optischen Elements einzusetzen.
  • In Abwandlung der Bearbeitungsvorrichtung der Fig. 3 zeigt Fig. 5 eine weitere Bearbeitungsvorrichtung 80, bei der anstelle eines Strahlformers 60 eine schaltbare Maske 82 zur Erzeugung des motivförmigen Strahlquerschnitts eingesetzt wird. Wie bei der Ausgestaltung der Fig. 3 weist der Laserstrahl 54 des gepulsten Markierungslasers 52 zunächst eine Gauß- oder Top-Hat-förmige Ausgangs-Intensitätsverteilung 56 auf. Nach der Aufweitung des Laserstrahls durch die Linsen 58 fällt der aufgeweitete Laserstrahl auf die schaltbare Maske 82, die im Ausführungsbeispiel durch einen Mikrospiegelaktor (Digital Micromirror Device, DMD) gebildet ist. Derartige Mikrospiegelaktoren bestehen aus einer Vielzahl matrixförmig angeordneter Einzelspiegel, die jeweils durch eine elektronisch verkippbare Spiegelfläche mit einer Kantenlänge von einigen oder einigen zehn Mikrometern gebildet sind. Je nach der lokalen Stellung der Spiegelflächen wird die Laserstrahlung weitergeleitet (Strahlanteil 84) oder zu einem Absorber 88 hin abgelenkt (Strahlanteil 86), der die nicht benötigte Laserenergie aufnimmt.
  • Der verbleibende, mit einer motivförmigen Querschnittsintensität versehene Strahlanteil 84 wird dann wie bei der Ausgestaltung der Fig. 3 durch weitere optische Elemente, wie etwa Umlenkspiegel 64, Scannerspiegel (nicht gezeigt) und Linsen 66 auf einen gewünschten Bereich der Linsenrasterfolie 70 gelenkt und abgebildet, wo der Laserstrahl mit der gewünschten Ziel-Intensitätsverteilung 62 die Zylinderlinsen 34 und durch diese die metallische Motivschicht 40 beaufschlagt.
  • Die Verwendung einer schaltbaren Maske 82 hat den besonderen Vorteil, dass verschiedene Strahlquerschnitte 62 mit derselben Maske 82 erzeugt werden können. Die Spiegelflächen eines Mikrospiegelaktors können innerhalb weniger Mikrosekunden in eine neue Stellung gebracht werden und erlauben daher verschiedene Sollbilder eines Linsenrasterbilds trotz schnell laufender Bahn nacheinander einzubelichten. Nachteilig ist allerdings, dass der nicht benötigte Teil der Laserstrahlung 86 im Absorber 88 deponiert werden muss, so dass eine stärkere Laserquelle als für die eigentliche Belichtung benötigt verwendet werden muss.
  • Anstelle von Mikrospiegelaktoren können auch Flächenlichtmodulatoren (Spatial Light Modulator, SLM) als schaltbare Maske verwendet werden, welche die Laserintensität auch im Strahl umverteilen können, und daher die Vorteile einer schaltbaren Maske (Flexibilität, Möglichkeit, mehrere Designs mit einer Maske zu erzeugen) mit den Vorteilen eines Strahlformers (Verwendung der gesamten Energie des Laserstrahls) verbinden. In diesem Fall kann auf den in Fig. 5 dargestellten Absorber verzichtet werden und die vom Markierungslaser 52 gelieferte Laserenergie kann praktisch vollständig zur Demetallisierung verwendet werden. Flächenlichtmodulatoren können in Reflexion wie in Transmission arbeiten, wobei in Reflexion arbeitende Modulatoren derzeit bevorzugt sind, da sie eine höhere Energiedichte vertragen.
  • Grundsätzlich kann eine in Transmission arbeitende schaltbare Maske auch durch ein LCD-Display gebildet sein, bei dem die zu maskierenden Bereiche dunkel geschaltet sind.
  • Bezugszeichenliste
  • 10
    Banknote
    12
    Fenstersicherheitsfaden
    14
    Fensterbereiche
    16
    Stegbereiche
    18A, 18B
    Sollbilder
    20
    metallische Motivteile
    22A, 22B
    demetallisierte Motivteile
    30A, 30B
    Betrachtungsrichtungen
    32
    Träger
    34
    Zylinderlinsen
    36
    UV-Lackschicht
    40
    Motivschicht
    42A, 42B
    demetallisierte Teilbereiche
    50
    Bearbeitungsvorrichtung
    52
    Markierungslaser
    54
    Laserstrahl
    56
    Ausgangs-Intensitätsverteilung
    58
    Linsen
    60
    Strahlformer
    62
    Ziel-Intensitätsverteilung
    64
    Umlenkspiegel
    66
    Linsen
    70
    Linsenrasterfolie
    72
    Bearbeitungsebene
    80
    Bearbeitungsvorrichtung
    82
    schaltbare Maske
    84, 86
    Strahlanteile
    88
    Absorber

Claims (14)

  1. Verfahren zum Herstellen eines Sicherheitselements mit einem Linsenrasterbild zur Darstellung eines oder mehrerer, nur aus vorbestimmten Betrachtungsrichtungen sichtbarer Sollbilder, deren Motive durch visuell erkennbare, kontrastierende metallische und demetallisierte Teilbereiche einer Motivschicht gebildet sind, wobei bei dem Verfahren
    - ein Linsenrasterbild mit einem Linsenraster aus einer Mehrzahl von Mikrolinsen und einer von dem Linsenraster beabstandet angeordneten metallischen Motivschicht bereitgestellt wird,
    - eine Markierungs-Laserquelle zur Erzeugung von gepulster Laserstrahlung bereitgestellt wird,
    - die gepulste Laserstrahlung im Strahlengang zwischen der Laserquelle und dem Linsenrasterbild durch einen Strahlformer oder eine schaltbare Maske mit einem motivförmigen Strahlquerschnitt versehen wird, und
    - eine Mehrzahl von Mikrolinsen des Linsenrasters gleichzeitig mit dem Laserstrahl mit dem motivförmigen Strahlquerschnitt beaufschlagt wird, um gleichzeitig eine Mehrzahl teilmotivförmig demetallisierter Teilbereiche in der darunterliegenden metallischen Motivschicht zu erzeugen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Strahlformer ein Diffraktives Optisches Element (DOE) oder ein Refraktives Optisches Element (ROE) bereitgestellt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als schaltbare Maske ein Mikrospiegelaktor (DMD) oder ein Flächenlichtmodulator (SLM) bereitgestellt wird.
  4. Verfahren nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Strahlformer in Transmission bzw. die schaltbare Maske in Reflexion arbeitet.
  5. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass die gepulste Laserstrahlung durch eine als Strahlformer arbeitende schaltbare Maske mit dem motivförmigen Strahlquerschnitt versehen wird.
  6. Verfahren nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Linsenrasterbild mit einem Linsenraster aus einer Mehrzahl von Mikro-Zylinderlinsen bereitgestellt wird.
  7. Verfahren nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest 20, vorzugsweise zumindest 50, insbesondere zumindest 500 Mikrolinsen gleichzeitig mit dem Laserstrahl mit dem motivförmigen Strahlquerschnitt beaufschlagt werden.
  8. Verfahren nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mikrolinsen mit einem Laserstrahl beaufschlagt werden, dessen Strahlquerschnitt flächig ausgedehnt ist, und insbesondere die Form von Mustern, Zeichen, insbesondere alphanumerischen Zeichen, oder einer Codierung aufweist.
  9. Verfahren nach wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Mikrolinsen des Linsenrasters für jedes Sollbild unter einem Winkel mit der Laserstrahlung beaufschlagt werden, der der vorbestimmten Betrachtungsrichtung dieses Sollbilds entspricht.
  10. Verfahren nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Mikrolinsen des Linsenrasters mit zwei oder mehr Laserstrahlen mit motivförmigem Strahlquerschnitt aus unterschiedlichen Winkeln beaufschlagt werden.
  11. Verfahren nach wenigstens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Mikrolinsen des Linsenrasters mit zwei oder mehr Laserstrahlen mit unterschiedlichen motivförmigen Strahlquerschnitten beaufschlagt werden.
  12. Verfahren nach wenigstens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Mikrolinsen des Linsenrasters mit gepulster Laserstrahlung einer Pulslänge zwischen 5 ns und 130 ns beaufschlagt werden.
  13. Verfahren nach wenigstens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Mikrolinsen des Linsenrasters mit einem Infrarotlaser im Wellenlängenbereich von 0,8 µm bis 3 µm, insbesondere einem Nd:YAG-Laser oder einem Nd:YVO4-Laser beaufschlagt werden.
  14. Verfahren nach wenigstens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Laserparameter so gewählt werden, dass die metallische Motivschicht bei der Laserbeaufschlagung durch Abtragung oder Transparentisierung lokal demetallisiert wird.
EP15003050.0A 2014-10-28 2015-10-26 Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild Active EP3015279B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014016009.2A DE102014016009A1 (de) 2014-10-28 2014-10-28 Verfahren zum Herstellen eines Sicherheitselements mit einem Linsenrasterbild

Publications (2)

Publication Number Publication Date
EP3015279A1 true EP3015279A1 (de) 2016-05-04
EP3015279B1 EP3015279B1 (de) 2017-12-13

Family

ID=54365921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15003050.0A Active EP3015279B1 (de) 2014-10-28 2015-10-26 Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild

Country Status (2)

Country Link
EP (1) EP3015279B1 (de)
DE (1) DE102014016009A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018108318A1 (de) * 2016-12-15 2018-06-21 Giesecke+Devrient Currency Technology Gmbh Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild
DE102018005697A1 (de) 2018-07-19 2020-01-23 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Linsenrasterbild
WO2021136704A1 (en) * 2019-12-29 2021-07-08 Thales Dis France Sa Virtual security element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016012625A1 (de) * 2016-10-21 2018-04-26 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement und Verfahren zum Herstellen eines Sicherheitselements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219012A2 (de) 1985-10-15 1987-04-22 GAO Gesellschaft für Automation und Organisation mbH Datenträger mit einem optischen Echtheitsmerkmal sowie Verfahren zur Herstellung und Prüfung des Datenträgers
DE102010031713A1 (de) * 2010-07-21 2012-01-26 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit Kippbild
WO2012162057A2 (en) * 2011-05-20 2012-11-29 3M Innovative Properties Company Laser-personalizable security articles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200875A (en) * 1978-07-31 1980-04-29 The United States Of America As Represented By The Secretary Of The Air Force Apparatus for, and method of, recording and viewing laser-made images on high gain retroreflective sheeting
DE102013007484A1 (de) * 2013-04-29 2014-10-30 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219012A2 (de) 1985-10-15 1987-04-22 GAO Gesellschaft für Automation und Organisation mbH Datenträger mit einem optischen Echtheitsmerkmal sowie Verfahren zur Herstellung und Prüfung des Datenträgers
DE102010031713A1 (de) * 2010-07-21 2012-01-26 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit Kippbild
WO2012162057A2 (en) * 2011-05-20 2012-11-29 3M Innovative Properties Company Laser-personalizable security articles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018108318A1 (de) * 2016-12-15 2018-06-21 Giesecke+Devrient Currency Technology Gmbh Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild
US11040565B2 (en) 2016-12-15 2021-06-22 Giesecke+Devrient Currency Technology Gmbh Method for manufacturing a security element having a lens grid image
AU2017377115B2 (en) * 2016-12-15 2022-03-10 Giesecke+Devrient Currency Technology Gmbh Method for producing a security element with a lens grid image
DE102018005697A1 (de) 2018-07-19 2020-01-23 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Linsenrasterbild
WO2020015848A1 (de) 2018-07-19 2020-01-23 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit linsenrasterbild
CN112423993A (zh) * 2018-07-19 2021-02-26 捷德货币技术有限责任公司 包括透镜状图像的防伪元件
CN112423993B (zh) * 2018-07-19 2022-02-11 捷德货币技术有限责任公司 包括透镜状图像的防伪元件
US11400748B2 (en) * 2018-07-19 2022-08-02 Giesecke+Devrient Currency Technology Gmbh Security element comprising a lenticular image
WO2021136704A1 (en) * 2019-12-29 2021-07-08 Thales Dis France Sa Virtual security element

Also Published As

Publication number Publication date
EP3015279B1 (de) 2017-12-13
DE102014016009A1 (de) 2016-04-28

Similar Documents

Publication Publication Date Title
EP2991837B1 (de) Optisch variables sicherheitselement
EP1776674B1 (de) Datenträger mit sicherheitselement und verfahren zu seiner herstellung
EP2773514B1 (de) Optisch variables sicherheitselement
EP1904312B1 (de) Datenträger und verfahren zu seiner herstellung
EP2838737B1 (de) Optisch variables sicherheitselement
WO2017097430A1 (de) Sicherheitselement mit linsenrasterbild
EP3459758B1 (de) Verfahren zum herstellen eines wertdokuments und druckvorrichtung
EP3015279B1 (de) Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild
EP1843901B1 (de) Sicherheitselement und verfahren zu seiner herstellung
EP3302995B1 (de) Optisch variables sicherheitselement
DE102005054396A1 (de) Markierung von Gegenständen mit Vielspiegelelementen
WO2014006173A1 (de) Verfahren zur herstellung von farbig personalisierbaren sicherheitsdokumentenrohlingen, farbig personalisierte sicherheitsdokumente und verfahren zur personalisierung
EP2941355B1 (de) Verfahren zum herstellen eines sicherheitselements mit einer lasersensitiven aufzeichnungsschicht
EP3126153B1 (de) Sicherheitselement mit einem linsenrasterbild
DE102008028705B4 (de) Verfahren zum Herstellen eines Wert- und/oder Sicherheitsdokuments sowie Wert- und/oder Sicherheitsdokument mit einer demetallisierten Struktur
WO2001029764A1 (de) Datenträger mit echtheitsmerkmalen und herstellverfahren hierfür
EP3578379B1 (de) Sicherheitselement mit farbiger abbildung
EP3554846B1 (de) Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild
DE102018005705A1 (de) Sicherheitselement mit Linsenrasterbild
EP3900944A1 (de) Verfahren zum markieren mittels laserpulsen
EP2539152B1 (de) Markierungsvorrichtung und verfahren zum markieren von wert- oder sicherheitsdokumenten unter verwendung von lichtleitfasern
EP3254864B1 (de) Merkmal und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161104

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

R17P Request for examination filed (corrected)

Effective date: 20161104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B42D 25/435 20140101AFI20170602BHEP

INTG Intention to grant announced

Effective date: 20170627

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 953985

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002527

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180413

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002527

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

26N No opposition filed

Effective date: 20180914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181026

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151026

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20211022

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 9

Ref country code: DE

Payment date: 20231031

Year of fee payment: 9

Ref country code: AT

Payment date: 20231019

Year of fee payment: 9