EP3554846B1 - Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild - Google Patents

Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild Download PDF

Info

Publication number
EP3554846B1
EP3554846B1 EP17822133.9A EP17822133A EP3554846B1 EP 3554846 B1 EP3554846 B1 EP 3554846B1 EP 17822133 A EP17822133 A EP 17822133A EP 3554846 B1 EP3554846 B1 EP 3554846B1
Authority
EP
European Patent Office
Prior art keywords
microlenses
laser
line width
lenticular image
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17822133.9A
Other languages
English (en)
French (fr)
Other versions
EP3554846A1 (de
Inventor
Andreas Rauch
Christian Fuhse
Josef Schinabeck
André Gregarek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP3554846A1 publication Critical patent/EP3554846A1/de
Application granted granted Critical
Publication of EP3554846B1 publication Critical patent/EP3554846B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/435Marking by removal of material using electromagnetic radiation, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/355Security threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials

Definitions

  • the invention relates to a method for producing a security element with a lenticular pattern image for displaying one or more target images that are only visible from predetermined viewing directions, the motifs of which are formed by visually recognizable, contrasting metallic and demetallized partial areas of a motif layer.
  • Data carriers such as value or ID documents, but also other valuables, such as branded items, are often provided with security elements for protection, which allow the authenticity of the data carrier to be checked and which also serve as protection against unauthorized reproduction.
  • Security elements with effects that depend on the viewing angle play a special role in securing authenticity, as these cannot be reproduced even with the most modern copiers.
  • the security elements are equipped with optically variable elements that give the viewer a different image impression from different viewing angles and, for example, show a different color or brightness impression and/or a different graphic motif depending on the viewing angle.
  • the pamphlet EP 0 219 012 A1 describes an identity card with a partial lenticular structure, through which desired information is written into the card with a laser at different angles. This information can subsequently only be recognized from this angle when viewed, so that the different information appears when the map is tilted.
  • a lenticular pattern image contains a metallic motif layer
  • the motifs shown can be formed by local demetallization of the metallic motif layer.
  • Various possibilities are known for introducing a design into a metallization with a laser by demetallization.
  • the demetallization can be carried out, for example, by direct inscription, in that a laser beam is guided over the metallic motif layer using a suitable scanning device, or also by a larger-area laser impingement using a mask. In both cases, a particular challenge is the generation of demetallized lines of a desired width in the motif layer.
  • a method for producing a security element with a lenticular pattern in which a marking laser source for generating pulsed laser radiation is provided and the pulsed laser radiation in the beam path between the laser source and the lenticular pattern is provided with a motif-shaped beam cross section by a beam shaper or a switchable mask.
  • a plurality of microlenses of the lens raster is simultaneously exposed to the laser beam with the pattern-shaped beam cross-section in order to simultaneously produce a plurality of sub-pattern-shaped demetallized partial areas in the underlying metallic pattern layer.
  • the pamphlet DE 10 2013 007 484 A1 describes a security element with an arrangement of similar microlenses arranged on the first main surface of a central body, a laser-sensitive recording layer arranged on the second main surface of the central body with a large number of micro-characteristics generated by the action of laser radiation, and a mask layer between the arrangement of microlenses and the laser-sensitive recording layer and is arranged outside the focal plane of the microlenses.
  • the pamphlet EP 3 015 279 A1 discloses a method according to the preamble of claim 1.
  • the metallic motif layer is subjected to demetallization with a finely focused laser beam from different angles and thus successively at different points in the focal plane, until the partial areas with the desired line width are demetallized, scanning the entire surface of the lenticular image is usually very complex and tedious.
  • the demetallization can be significantly faster be carried out, but the defocusing produces blurred tilting images with image changes that are no longer clearly defined.
  • the invention is based on the object of specifying a method of the type mentioned at the outset which avoids the disadvantages of the prior art and which, particularly at high production speeds, enables the production of sharply delimited demetallized partial areas of adjustable line width in a lenticular screen image.
  • the lenticular grid image is designed to represent n ⁇ 2 target images, and a line width is selected for the demetallized partial areas to be produced, which is preferably between 0.6*d ML /n and 1.4*d ML /n between 0.8*d ML /n and 1.2*d ML /n, particularly preferably between 0.9*d ML /n and 1.1*d ML /n, where d ML is the diameter of the microlenses.
  • the number n of target images to be displayed is in particular 2, 3, 4 or 5.
  • microlenses are lenses whose size is below the resolution limit of the naked eye in at least one lateral direction.
  • the microlenses can in principle be spherical or aspherical, but the use of plano-convex cylindrical lenses is currently preferred, so that with the method mentioned, a lenticular grid image with a lens grid of a plurality of plano-convex micro-cylindrical lenses is advantageously provided.
  • the term "diameter” always refers to the dimension perpendicular to the cylinder axis.
  • the micro-cylindrical lenses can be of any length; for example, when used in security threads, they can correspond to the overall width of the thread and be several millimeters.
  • the metallic motif layer of the lenticular image is arranged essentially in the focal plane of the microlenses, which means in particular that the distance between the metallic motif layer and the focal plane is less than 25%, preferably less than 10% and particularly preferably less than 5% of the focal length of the microlenses amounts to.
  • the marking laser source is then advantageously selected in such a way that the resolving power D( ⁇ ) deviates from the line width of the demetallized partial areas to be produced by less than 15%, preferably by less than 10%.
  • a readily available laser source is advantageously used as the marking laser source, such as an Nd:YAG laser, a frequency-doubled Nd:YAG laser, a frequency-tripled Nd:YAG laser or an Er:glass laser.
  • the marking laser source such as an Nd:YAG laser, a frequency-doubled Nd:YAG laser, a frequency-tripled Nd:YAG laser or an Er:glass laser.
  • other laser sources with other wavelengths such as the diode lasers available for numerous wavelengths, can also be used as long as they are only suitable for the demetallization of the metallic motif layer. If two or more different laser sources of different wavelengths are used, line widths of different sizes can easily be implemented in a security element.
  • the laser power of the marking laser source is adjusted for fine tuning in order to adapt the line width of the demetallized partial areas produced to the selected line width.
  • a lens raster image whose lens raster has microlenses with a lens diameter between 5 ⁇ m and 20 ⁇ m and whose lens period is between 100% and 125% of the lens diameter.
  • the lens raster can border on air, but in particular it can also be embedded in an embedding layer whose refractive index preferably differs from the refractive index of the microlenses by 0.2 or more.
  • figure 1 shows a schematic representation of a banknote 10 which is provided with a security element according to the invention in the form of a window security thread 12.
  • the window security thread 12 emerges in window areas 14 on the surface of the banknote 10 while being embedded in the interior of the banknote 10 in the land areas 16 lying between them.
  • the security thread 12 shows a tilting image which presents the viewer with a different target image 18A, 18B or 18C from three different viewing directions 30A, 30B, 30C.
  • the target images 18A-18C each show a motif that is formed from visually recognizable and contrasting metallic motif parts 20 and demetallized motif parts 22A, 22B, 22C.
  • the window security thread 12 of the exemplary embodiment shows a sequence of euro symbols 22A against a shiny metallic background 20 when viewed at an angle 30A from above, while a sequence of coat of arms motifs 22B against a shiny metallic background 20 when viewed perpendicularly 30B and a Sequence of number motifs 22C in the form of the denomination "10" against a shiny metallic background 20 is visible.
  • the appearance of the window security thread 12 in the window areas 14 changes back and forth between the three target images 18A, 18B, 18C, depending on the viewing direction.
  • FIG 2 12 schematically shows the structure of the window security thread 12 of FIG 1 in cross section.
  • the window security thread 12 has a carrier 32 in the form of a transparent plastic film, for example a PET film.
  • a motif layer 40 made of aluminum is formed on the underside of the carrier 32 and has demetallized partial regions 42 spaced apart in the grid of the cylindrical lenses 34 .
  • the carrier 32, the cylindrical lenses 34 and the motif layer 40 are matched to one another in such a way that the motif layer 40 is in the focal plane of the cylindrical lenses 34.
  • FIG. 2 For illustration shows figure 2 a section of the lenticular grid image in which the motif layer 40 contains demetallized sub-areas 42 only in the areas 44B visible when viewed perpendicularly 30B.
  • the areas 44A and 44C visible when viewed obliquely from above (viewing direction 30A) or obliquely from below (viewing direction 30C) do not have any demetallization in the section shown, so that the viewer looks at metal areas of the motif layer 40 from these directions.
  • the individual demetallized partial areas 42 represent narrow strips arranged in the grid of the cylindrical lenses, they settle when viewed from the different viewing directions due to the focusing Action of the cylindrical lenses 34 to the desired sequence of motifs 18A - 18C together.
  • the window security thread 12 typically contains further layers, such as a full-surface color layer 45, which allows coloring of the demetallized motif parts 22A - 22C, an opaque white layer 46 and a heat-sealing lacquer layer 48.
  • a full-surface color layer 45 which allows coloring of the demetallized motif parts 22A - 22C
  • an opaque white layer 46 and a heat-sealing lacquer layer 48.
  • these or other functional layers are not essential for the present invention and are therefore not described in detail.
  • the line width D real of the demetallized partial areas 42 is essentially one third of the diameter d ML of the microlenses 34 .
  • the advantageous line width of the demetallized partial areas in a lenticular grid image for the display of two target images is essentially half the microlens diameter, and generally with a number n of target images to be displayed essentially one nth of the diameter d ML of the microlenses. In this way, on the one hand, the available area of the motif layer is optimally utilized and, on the other hand, Tilting the lenticular image achieves a clearly defined switching between the different target images.
  • the motif layer 40 is conventionally scanned with a finely focused laser beam at different angles, for example, until partial areas 42 of the desired width are demetallized, or the motif layer is arranged outside the focal plane of the microlenses 34 to increase the process speed, so that During laser demetallization, an expanded and thus broader image of the incident laser radiation results in the plane of the motif layer.
  • both variants have disadvantages with regard to the process duration or the quality of the target images generated, as already explained above.
  • the solution according to the invention uses the wavelength-dependent resolution of the optical system formed by the microlenses in order to obtain a desired line width without defocusing through a targeted selection of the wavelength of the laser radiation used for the demetallization.
  • the quantity D is also referred to as the resolving power, since two points can just about be separated from an optical system if their diffraction disks (or diffraction lines in the case of cylindrical lenses) overlap by half.
  • the diffraction-limited resolving power of the optical system of the microlenses 34 thus leads to a specific extension of the focus area, which is dependent on the laser wavelength, even when the incident laser radiation is optimally focused.
  • the present invention uses the wavelength-dependent size of the diffraction spot in a targeted manner in order to easily generate demetallizations of a desired line width in the focal plane and thus with maximum image sharpness.
  • the demetallized line width D real in practice does not always result in exactly the value for D calculated according to equation (1), but that the line width actually achieved also depends slightly on the laser power used. Specifically, that area of the focused laser beam in which the laser intensity exceeds the threshold required for the demetallization of the metallic motif layer is decisive for the demetallization. Since the laser intensity drops very sharply at the edge of the diffraction spot, only a small variation of the actual line width D real can be achieved by increasing or decreasing the laser intensity, but in practice it is suitable for fine tuning.
  • the wavelength dependence of the refractive index n of the lens material can also be used to achieve a further To achieve variation and in particular an increase in line width.
  • the refractive index n of the lens material which generally varies as a function of the wavelength, the focal length f of the microlenses used also varies depending on the wavelength of the incident radiation.
  • the demetallization takes place in such a way that the metallic motif layer lies essentially in the focal plane of the microlenses when the security element is viewed as desired in the visible spectral range.
  • an additional broadening of the lines can result from the fact that the focus length at 1064 nm is already deviates significantly from the focal length in the visible spectral range.
  • the conditions are therefore similar to those in the known method described above, in which the motif layer is arranged in a targeted manner outside the focal plane of the microlenses.
  • the motif layer is arranged in a targeted manner outside the focal plane of the microlenses.
  • the metallic motif layer 40 is illuminated through the microlenses 34 from three irradiation directions 30A, 30B, 30C in the form of the motifs 18A-18C Laser radiation applied to produce the desired demetallized portions 42 in the metallic layer 40 motif.
  • line widths of different sizes can also be used in a security element in a simple manner.
  • the 4 lenticular image 60 shown are provided with two target images which become visible when viewed obliquely from above (viewing direction 30A) or obliquely from below (viewing direction 30C).
  • a metallic motif layer 40 On the underside of the carrier are as in the embodiment of the 2 a metallic motif layer 40, a full-surface color layer 45, an opaque white layer 46 and a heat-sealing lacquer layer 48 are arranged.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Credit Cards Or The Like (AREA)
  • Laser Beam Processing (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines Sicherheitselements mit einem Linsenrasterbild zur Darstellung eines oder mehrerer, nur aus vorbestimmten Betrachtungsrichtungen sichtbarer Sollbilder, deren Motive durch visuell erkennbare, kontrastierende metallische und demetallisierte Teilbereiche einer Motivschicht gebildet sind.
  • Datenträger, wie Wert- oder Ausweisdokumente, aber auch andere Wertgegenstände, wie etwa Markenartikel, werden zur Absicherung oft mit Sicherheitselementen versehen, die eine Überprüfung der Echtheit des Datenträgers gestatten und die zugleich als Schutz vor unerlaubter Reproduktion dienen.
  • Eine besondere Rolle bei der Echtheitsabsicherung spielen Sicherheitselemente mit betrachtungswinkelabhängigen Effekten, da diese selbst mit modernsten Kopiergeräten nicht reproduziert werden können. Die Sicherheitselemente werden dabei mit optisch variablen Elementen ausgestattet, die dem Betrachter unter unterschiedlichen Betrachtungswinkeln einen unterschiedlichen Bildeindruck vermitteln und beispielsweise je nach Betrachtungswinkel einen anderen Farb- oder Helligkeitseindruck und/ oder ein anderes graphisches Motiv zeigen.
  • So ist es seit langem bekannt, Ausweiskarten, wie etwa Kreditkarten oder Personalausweise mittels Lasergravur zu personalisieren. Bei einer Personalisierung durch Lasergravur werden die optischen Eigenschaften des Substratmaterials der Ausweiskarten durch geeignete Führung eines Laserstrahls in Form einer gewünschten Kennzeichnung irreversibel verändert.
  • Die Druckschrift EP 0 219 012 A1 beschreibt eine Ausweiskarte mit einer partiellen Linsenrasterstruktur, durch die mit einem Laser unter verschiedenen Winkeln gewünschte Informationen in die Karte eingeschrieben werden. Diese Informationen können nachfolgend bei der Betrachtung auch nur unter diesem Winkel erkannt werden, so dass beim Kippen der Karte die unterschiedlichen Informationen erscheinen.
  • Enthält ein Linsenrasterbild eine metallische Motivschicht, so können die dargestellten Motive durch lokale Demetallisierungen der metallischen Motivschicht gebildet sein. Dabei sind verschiedene Möglichkeiten bekannt, mit einem Laser durch Demetallisierung ein Design in eine Metallisierung einzubringen. Die Demetallisierung kann beispielsweise durch direkte Beschriftung erfolgen, indem ein Laserstrahl mittels einer geeigneten Scaneinrichtung über die metallische Motivschicht geführt wird, oder auch durch eine großflächigere Laserbeaufschlagung unter Verwendung eine Maske. In beiden Fällen besteht eine besondere Herausforderung in der Erzeugung demetallisierter Linien einer gewünschten Breite in der Motivschicht.
  • So ist aus der Druckschrift EP 3 015 279 A1 ein Verfahren zum Herstellen eines Sicherheitselements mit einem Linsenrasterbild bekannt, bei dem eine Markierungs-Laserquelle zur Erzeugung von gepulster Laserstrahlung bereitgestellt wird und die gepulste Laserstrahlung im Strahlengang zwischen der Laserquelle und dem Linsenrasterbild durch einen Strahlformer oder eine schaltbare Maske mit einem motivförmigen Strahlquerschnitt versehen wird. Hierbei wird eine Mehrzahl von Mikrolinsen des Linsenrasters gleichzeitig mit dem Laserstrahl mit dem motivförmigen Strahlquerschnitt beaufschlagt, um gleichzeitig eine Mehrzahl teilmotivförmig demetallisierter Teilbereiche in der darunterliegenden metallischen Motivschicht zu erzeugen.
  • Die Druckschrift DE 10 2013 007 484 A1 beschreibt ein Sicherheitselement mit einer auf der ersten Hauptfläche eines Zentralkörpers angeordneten Anordnung aus gleichartigen Mikrolinsen, einer auf der zweiten Hauptfläche des Zentralkörpers angeordneten lasersensitiven Aufzeichnungsschicht mit einer Vielzahl von durch Einwirkung von Laserstrahlung erzeugten Mikrokennzeichen, und einer Maskenschicht, die zwischen der Anordnung aus Mikrolinsen und der lasersensitiven Aufzeichnungsschicht und außerhalb der Fokusebene der Mikrolinsen angeordnet ist.
  • Die Druckschrift EP 3 015 279 A1 offenbart ein Verfahren nach dem Oberbegriff des Anspruchs 1.
  • Wird die metallische Motivschicht zur Demetallisierung mit einem fein fokussierten Laserstrahl aus verschiedenen Winkeln und somit an unterschiedlichen Stellen in der Fokusebene sukzessiv beaufschlagt, bis jeweils die Teilbereiche mit der gewünschten Linienbreite demetallisiert sind, so ist die Abrasterung der gesamten Fläche des Linsenrasterbilds in der Regel sehr aufwendig und langwierig. Um die Verfahrensdauer abzukürzen, wurde daher vorgeschlagen, die metallische Motivschicht außerhalb der Fokusebene der (Mikro-)Linsen anzuordnen, so dass sich bei der Laserdemetallisation in der Ebene der Motivschicht ein aufgeweitetes Bild der einfallenden Laserstrahlung ergibt. Die Demetallisation kann in diesem Fall deutlich schneller durchgeführt werden, durch die Defokussierung werden allerdings unscharfe Kippbilder mit nicht mehr klar definierten Bildwechseln erzeugt. Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, das die Nachteile des Stands der Technik vermeidet, und das insbesondere bei hoher Produktionsgeschwindigkeit eine Erzeugung von scharf begrenzten demetallisierten Teilbereichen einstellbarer Linienbreite in einem Linsenrasterbild ermöglicht.
  • Diese Aufgabe wird durch die Merkmale des unabhängigen Anspruchs gelöst. Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Gemäß der Erfindung ist ein Verfahren nach Anspruch 1 definiert.
  • Bei einer bevorzugten Verfahrensvariante wird das Linsenrasterbild zur Darstellung von n ≥ 2 Sollbildern ausgelegt, und es wird eine Linienbreite für die zu erzeugenden demetallisierte Teilbereiche gewählt, die zwischen 0,6*dML/n und 1,4*dML/n, bevorzugt zwischen 0,8*dML/n und 1,2*dML/n, besonders vorzugsweise zwischen 0,9*dML/n und 1,1*dML/n liegt, wobei dML der Durchmesser der Mikrolinsen ist. Die Anzahl n von darzustellenden Sollbildern ist dabei insbesondere 2, 3, 4 oder 5.
  • Als Mikrolinsen werden dabei im Rahmen dieser Beschreibung Linsen bezeichnet, deren Größe in zumindest einer lateralen Richtung unterhalb der Auflösungsgrenze des bloßen Auges liegt. Die Mikrolinsen können grundsätzlich sphärisch oder asphärisch ausgebildet sein, bevorzugt ist gegenwärtig allerdings der Einsatz von plankonvexen Zylinderlinsen, so dass bei dem genannten Verfahren mit Vorteil ein Linsenrasterbild mit einem Linsenraster aus einer Mehrzahl von plankonvexen Mikro-Zylinderlinsen bereitgestellt wird. Bei Mikro-Zylinderlinsen bezieht sich der Begriff "Durchmesser" stets auf die Abmessung senkrecht zur Zylinderachse. Die Länge der Mikro-Zylinderlinsen ist beliebig, sie kann beispielsweise beim Einsatz in Sicherheitsfäden der Gesamtbreite des Fadens entsprechen und mehrere Millimeter betragen.
  • Die metallische Motivschicht des Linsenrasterbilds ist erfindungsgemäß im Wesentlichen in der Fokusebene der Mikrolinsen angeordnet, was insbesondere bedeutet, dass der Abstand der metallischen Motivschicht von der Fokusebene weniger als 25%, vorzugsweise weniger als 10% und besonders bevorzugt weniger als 5% der Fokuslänge der Mikrolinsen beträgt.
  • Das Auflösungsvermögen D der Mikrolinsen des Linsenrasterbilds wird durch die Airy-Beziehung D(λ) = 2,44* λ*f/ dML bestimmt, wobei f die Fokuslänge der Mikrolinsen, λ die Lichtwellenlänge und dML der Durchmesser der Mikrolinsen ist. Die Markierungs-Laserquelle wird dann vorteilhaft so ausgewählt, dass das Auflösungsvermögen D(λ) von der Linienbreite der zu erzeugenden demetallisierte Teilbereiche um weniger als 15%, vorzugsweise um weniger als 10% abweicht.
  • Mit Vorteil wird als Markierungs-Laserquelle dabei eine leicht verfügbare Laserquelle verwendet, wie etwa ein Nd:YAG-Laser, ein frequenzverdoppelter Nd:YAG-Laser, ein frequenzverdreifachter Nd:YAG-Laser oder ein Er:Glas-Laser. Grundsätzlich können natürlich auch andere Laserquellen mit anderen Wellenlängen, wie etwa die für zahlreiche Wellenlängen verfügbaren Diodenlaser verwendet werden, solange sie nur für die Demetallisierung der metallischen Motivschicht geeignet sind. Werden zwei oder mehr verschiedene Laserquellen unterschiedlicher Wellenlänge eingesetzt, so können in einem Sicherheitselement in einfacher Weise unterschiedlich große Linienbreiten verwirklicht werden.
  • In einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass zur Feinabstimmung die Laserleistung der Markierungs-Laserquelle eingestellt wird, um die Linienbreite der erzeugten demetallisierten Teilbereiche an die gewählte Linienbreite anzupassen.
  • Mit Vorteil wird ein Linsenrasterbild bereitgestellt, dessen Linsenraster Mikrolinsen mit einem Linsendurchmesser zwischen 5 µm und 20 µm aufweist und dessen Linsenperiode zwischen 100% und 125% des Linsendurchmessers beträgt.
  • Das Linsenraster kann an Luft angrenzen, es kann aber insbesondere auch in eine Einbettungsschicht eingebettet sein, deren Brechungsindex sich vorzugsweise um 0,2 oder mehr von dem Brechungsindex der Mikrolinsen unterscheidet.
  • Weitere Ausführungsbeispiele sowie Vorteile der Erfindung werden nachfolgend anhand der Figuren erläutert, bei deren Darstellung auf eine maßstabs- und proportionsgetreue Wiedergabe verzichtet wurde, um die Anschaulichkeit zu erhöhen.
  • Es zeigen:
  • Fig. 1
    eine schematische Darstellung einer Banknote mit einem erfindungsgemäßen Sicherheitselement in Form eines Fenstersicherheitsfadens, der ein Kippbild mit drei unterschiedlichen Sollbildern enthält,
    Fig. 2
    schematisch den Aufbau des Fenstersicherheitsfadens der Fig. 1 im Querschnitt,
    Fig. 3
    eine Schemaskizze eines Linsenrasterbilds zur Erläuterung des erfindungsgemäß verwendeten Prinzips, und
    Fig. 4
    schematisch den Aufbau eines Fenstersicherheitsfadens nach einem anderen Ausführungsbeispiel der Erfindung im Querschnitt.
  • Die Erfindung wird nun am Beispiel von Sicherheitselementen für Banknoten und andere Wertdokumente erläutert. Figur 1 zeigt dazu eine schematische Darstellung einer Banknote 10, die mit einem erfindungsgemäßen Sicherheitselement in Form eines Fenstersicherheitsfadens 12 versehen ist. Der Fenstersicherheitsfaden 12 tritt in Fensterbereichen 14 an der Oberfläche der Banknote 10 hervor, während er in den dazwischen liegenden Stegbereichen 16 im Inneren der Banknote 10 eingebettet ist.
  • In den Fensterbereichen 14 zeigt der Sicherheitsfaden 12 ein Kippbild, das dem Betrachter aus drei verschiedenen Betrachtungsrichtungen 30A, 30B, 30C jeweils ein anderes Sollbild 18A, 18B bzw. 18C präsentiert. Die Sollbilder 18A - 18C zeigen dabei jeweils ein Motiv, das aus visuell erkennbaren und kontrastierenden metallischen Motivteilen 20 und demetallisierten Motivteilen 22A, 22B, 22C gebildet ist.
  • Konkret zeigt der Fenstersicherheitsfaden 12 des Ausführungsbeispiels bei schräger Betrachtung 30A von oben eine Abfolge von Euro-Symbolen 22A vor einem metallisch glänzenden Hintergrund 20, während bei senkrechter Betrachtung 30B eine Abfolge von Wappenmotiven 22B vor metallisch glänzendem Hintergrund 20 und bei schräger Betrachtung 30C von unten eine Abfolge von Ziffernmotiven 22C in Form der Denomination "10" vor metallisch glänzendem Hintergrund 20 sichtbar ist. Beim Kippen der Banknote wechselt das Erscheinungsbild des Fenstersicherheitsfadens 12 in den Fensterbereichen 14 je nach Betrachtungsrichtung zwischen den drei Sollbildern 18A, 18B, 18C hin und her.
  • Figur 2 zeigt schematisch den Aufbau des Fenstersicherheitsfadens 12 der Fig. 1 im Querschnitt. Der Fenstersicherheitsfaden 12 weist einen Träger 32 in Form einer transparenten Kunststofffolie, beispielsweise einer PET-Folie auf. Die Oberseite des Trägers 32 ist mit einem Linsenraster in Form einer Mehrzahl paralleler plankonvexer Zylinderlinsen 34 versehen, die einen Krümmungsradius R = 4 µm und einen Linsendurchmesser dML = 7 µm aufweisen und in einem Linsenraster mit einer Linsenperiode von L = 8 µm angeordnet sind. Im Ausführungsbeispiel der Fig. 2 grenzt das Linsenraster an Luft, so dass die Zylinderlinsen mit nLinse = 1,5 und nLuft = 1 eine Fokuslänge von f = 3R = 12 µm aufweisen.
  • Auf der Unterseite des Trägers 32 ist eine Motivschicht 40 aus Aluminium ausgebildet, die im Raster der Zylinderlinsen 34 beabstandete, demetallisierte Teilbereiche 42 aufweist. Der Träger 32, die Zylinderlinsen 34 und die Motivschicht 40 sind so aufeinander abgestimmt, dass sich die Motivschicht 40 in der Fokusebene der Zylinderlinsen 34 befindet.
  • Zur Illustration zeigt Figur 2 einen Ausschnitt des Linsenrasterbilds, in dem die Motivschicht 40 nur in den bei senkrechter Betrachtung 30B sichtbaren Bereichen 44B demetallisierte Teilbereiche 42 enthält. Die bei Betrachtung schräg von oben (Betrachtungsrichtung 30A) bzw. schräg von unten (Betrachtungsrichtung 30C) sichtbaren Bereiche 44A und 44C weisen im gezeigten Ausschnitt keine Demetallisierungen auf, so dass der Betrachter aus diesen Richtungen jeweils auf Metallbereiche der Motivschicht 40 blickt. Obwohl die einzelnen demetallisierten Teilbereiche 42 schmale, im Raster der Zylinderlinsen angeordnete Streifen darstellen, setzen sie sich bei der Betrachtung aus den verschiedenen Betrachtungsrichtungen aufgrund der fokussierenden Wirkung der Zylinderlinsen 34 zu der gewünschten Abfolge von Motiven 18A - 18C zusammen.
  • Wegen der geringen Abmessungen der Zylinderlinsen 34 wirkt bei der Rekonstruktion der Motive 18A - 18C jeweils eine große Zahl von metallischen bzw. demetallisierten Teilbereichen zusammen. Beispielsweise sind bei einer Höhe der demetallisierten Motivteile 22A - 22C von 2 mm und einer Linsenperiode der Zylinderlinsen von L = 8 µm die demetallisierten Teilbereiche 42, die an der Rekonstruktion Motive "Euro-Symbol", "Wappen" und "Ziffernfolge 10" teilnehmen, über eine Fläche der Motivschicht 40 verteilt, die von 2 mm/8 µm = 250 Zylinderlinsen überdeckt wird.
  • Wie in Fig. 2 ebenfalls dargestellt, enthält der Fenstersicherheitsfaden 12 typischerweise weitere Schichten, wie etwa eine vollflächige Farbschicht 45, die eine Farbgebung der demetallisierten Motivteile 22A - 22C erlaubt, eine Deckweißschicht 46 und eine Heißsiegellackschicht 48. Diese oder andere Funktionsschichten sind für die vorliegende Erfindung jedoch nicht wesentlich und werden daher nicht näher beschrieben.
  • Bei der Gestaltung des Motivbilds eines Linsenrasterbilds für die Darstellung von drei Sollbildern hat es sich als besonders vorteilhaft herausgestellt, wenn die Linienbreite Dreal der demetallisierten Teilbereiche 42 im Wesentlichen ein Drittel des Durchmessers dML der Mikrolinsen 34 beträgt. Analog liegt die vorteilhafte Linienbreite der demetallisierten Teilbereiche bei einem Linsenrasterbild für die Darstellung von zwei Sollbildern im Wesentlichen bei der Hälfte des Mikrolinsendurchmessers, und allgemein bei einer Anzahl n an darzustellenden Sollbildern im Wesentlichen bei einem n-tel des Durchmessers dML der Mikrolinsen. Auf diese Weise wird einerseits die verfügbare Fläche der Motivschicht optimal ausgenutzt und andererseits beim Kippen des Linsenrasterbilds ein klar definiertes Umspringen zwischen den verschiedenen Sollbildern erreicht.
  • Um diese vorteilhafte Linienbreite zu erreichen, wird herkömmlich die Motivschicht 40 beispielsweise mit einem fein fokussierten Laserstrahl unter verschiedenen Winkeln abgerastert, bis Teilbereiche 42 der gewünschten Breite demetallisiert sind, oder die Motivschicht wird zur Steigerung der Prozessgeschwindigkeit außerhalb der Fokusebene der Mikrolinsen 34 angeordnet, so dass sich bei der Laserdemetallisation in der Ebene der Motivschicht ein aufgeweitetes und damit breiteres Bild der einfallenden Laserstrahlung ergibt. Beide Varianten haben allerdings Nachteile bezüglich der Prozessdauer oder der Qualität der erzeugten Sollbilder, wie weiter oben bereits erläutert.
  • Zur Abhilfe nutzt die erfindungsgemäße Lösung das wellenlängenabhängige Auflösungsvermögen des durch die Mikrolinsen gebildeten optischen Systems, um durch eine gezielte Auswahl der Wellenlänge der für die Demetallisierung verwendeten Laserstrahlung ohne Defokussierung eine gewünschte Linienbreite zu erhalten.
  • Zur genaueren Erläuterung des verwendeten Prinzips wird mit Bezug auf Fig. 3 sogar ein paralleler Lichtstrahl 50 von den Mikrolinsen 34 aufgrund von Beugungseffekten nicht auf einen Punkt bzw. im Fall von Zylinderlinsen auf eine unendlich schmale Linie abgebildet, sondern erzeugt ein Beugungsscheibchen bzw. eine langgestreckte Beugungslinie 52 mit einem Durchmesser D λ = 2,44 * λ * f / d ML
    Figure imgb0001

    wobei λ die Lichtwellenlänge, dML den Durchmesser der Mikrolinsen und f die Fokuslänge der Mikrolinsen darstellt. Die Größe D wird auch als Auflösungsvermögen bezeichnet, da zwei Punkte von einem optischen System gerade noch trennbar sind, wenn ihre Beugungsscheibchen (bzw. Beugungslinien bei Zylinderlinsen) einander zur Hälfte überdecken. Das beugungsbegrenzte Auflösungsvermögen des optischen Systems der Mikrolinsen 34 führt somit selbst bei optimaler Fokussierung der einfallenden Laserstrahlung zu einer bestimmten, von der Laserwellenlänge abhängigen Ausdehnung des Fokusbereichs.
  • Während das begrenzte Auflösungsvermögen herkömmlich meist als Einschränkung und nachteilig angesehen wird, setzt die vorliegende Erfindung die wellenlängenabhängige Größe des Beugungsflecks gezielt ein, um in der Fokusebene und damit bei maximaler Bildschärfe in einfacher Weise Demetallisierungen einer gewünschten Linienbreite zu erzeugen.
  • Konkret soll beispielsweise bei dem Ausführungsbeispiel der Fig. 2 die zunächst noch vollflächige metallische Motivschicht 40 des Linsenrasterbilds mit demetallisierten Teilbereichen versehen werden, um die Sollbilder 18A - 18C zu erzeugen. Da unter jeder Mikrolinse 34 drei Bildbereiche 44A - 44C liegen sollen, wird als Ziel-Linienbreite für die demetallisierte Teilbereiche 42 D ziel = d ML / 3 = 2,3 μm
    Figure imgb0002

    gewählt. Die oben angegeben Beziehung (1) für den Durchmesser D des Beugungsflecks 52 kann nach der Wellenlänge aufgelöst und der gewünschte Wert der Linienbreite Dziel für den Durchmesser des Beugungsflecks 52 eingesetzt werden, um so eine ideale Ziel-Laserwellenlänge zu erhalten: λ ziel = 0,41 * D ziel * d ML / f
    Figure imgb0003
  • Mit einer Ziel-Linienbreite von Dziel = 2,3 µm, dem Linsendurchmesser dML = 7 µm und der Brennweite der Mikrolinsen f = 12 µm ergibt sich mit Beziehung (2) eine Ziel-Laserwellenlänge von λziel = 550 nm.
  • Als leicht verfügbare Markierungs-Laserquelle wird daher für die Demetallisierung ein frequenzverdoppelter Nd:YAG-Laser mit einer Wellenlänge von λ = 532 nm gewählt. Der Durchmesser des Beugungsscheibchens beträgt bei dieser Wellenlänge nach Beziehung (1) D= 2,2 µm und entspricht damit mit einer Abweichung von nur etwa 4% im Wesentlichen der gewünschten Ziel-Linienbreite Dziel = 2,3 µm.
  • Bei der Demetallisation kann weiter berücksichtigt werden, dass sich für die demetallisierte Linienbreite Dreal in der Praxis nicht stets genau der nach Beziehung (1) berechnete Wert für D ergibt, sondern dass die tatsächlich erzielte Linienbreite zusätzlich leicht von der verwendeten Laserleistung abhängt. Maßgeblich für die Demetallisierung ist nämlich insbesondere derjenige Bereich des fokussierten Laserstrahls, in dem die Laserintensität die für die Demetallisierung der metallischen Motivschicht erforderliche Schwelle überschreitet. Da die Laserintensität am Rand des Beugungsflecks sehr stark abfällt, kann durch eine Erhöhung oder Erniedrigung der Laserintensität nur eine kleine, in der Praxis aber zur Feinabstimmung geeignete Variation der tatsächlichen Linienbreite Dreal erreicht werden.
  • Neben der durch das wellenlängenabhängige Auflösungsvermögen erzielten Anpassung der Linienbreite kann auch die Wellenlängenabhängigkeit des Brechungsindex n des Linsenmaterials eingesetzt werden, um eine weitere Variation und insbesondere eine Vergrößerung der Linienbreite zu erzielen. So variiert mit dem in Allgemeinen in Abhängigkeit von der Wellenlänge variierenden Brechungsindex n des Linsenmaterials auch die Fokuslänge f der verwendeten Mikrolinsen abhängig von der Wellenlänge der einfallenden Strahlung.
  • Bei der vorliegenden Erfindung erfolgt die Demetallisation derart, dass die metallische Motivschicht bei einer gewünschten Betrachtung des Sicherheitselements im sichtbaren Spektralbereich im Wesentlichen in der Fokusebene der Mikrolinsen liegt. Werden die Mikrolinsen beispielsweise mit einem IR-Laser (also z.B. einem Nd:YAG-Laser mit λ = 1064 nm) beaufschlagt, so kann sich je nach verwendetem Material der Mikrolinsen eine zusätzliche Verbreiterung der Linien dadurch ergeben, dass die Fokuslänge bei 1064 nm bereits deutlich von der Fokuslänge im sichtbaren Spektralbereich abweicht. Es liegen bei der Beaufschlagung der metallischen Motivschicht mit Laserstrahlung somit ähnliche Bedingungen vor wie bei dem vorstehend beschriebenen bekannten Verfahren, bei welchem die Motivschicht gezielt außerhalb der Fokusebene der Mikrolinsen angeordnet wird. Anders als bei diesem bekannten Verfahren liegt eine Anordnung "außerhalb der Fokusebene" bei der vorliegenden Erfindung jedoch nur bei der zur Demetallisation verwendeten Wellenlänge vor.
  • Nach der Auswahl der Markierungs-Laserquelle und der Festlegung der für die Demetallisation einzusetzenden Laserintensität (und gegebenenfalls des Brechungsindex des Linsenmaterials) wird die metallische Motivschicht 40 durch die Mikrolinsen 34 hindurch aus drei Bestrahlungsrichtungen 30A, 30B, 30C in Form der Motive 18A-18C mit Laserstrahlung beaufschlagt, um die gewünschten demetallisierte Teilbereiche 42 in der metallischen Motivschicht 40 zu erzeugen.
  • Sollen bei dem Linsenrasterbild der Fig. 2 Demetallisierungen mit anderen Linienbreiten in der metallischen Motivschicht 40 erzeugt werden, so können als leicht verfügbare Laserquellen beispielsweise auch ein Nd:YAG-Laser mit λ = 1064 nm und einer Fokusbreite von D = 4,4 µm, ein frequenzverdreifachter Nd:YAG-Laser mit λ = 355 nm und einer Fokusbreite von D = 1,5 µm, oder auch ein Er:Glas-Laser mit λ = 1540 nm und einer Fokusbreite von D = 6,4 µm eingesetzt werden. Durch den Einsatz zweier oder mehr verschiedener Laserquellen unterschiedlicher Wellenlänge können in einem Sicherheitselement auch in einfacher Weise unterschiedlich große Linienbreiten verwendet werden.
  • In einem zweiten konkreten Ausführungsbeispiel soll das in Fig. 4 gezeigte Linsenrasterbild 60 mit zwei Sollbildern versehen werden, die bei Betrachtung schräg von oben (Betrachtungsrichtung 30A) bzw. schräg von unten (Betrachtungsrichtung 30C) sichtbar werden.
  • Die Oberseite des Trägers 62 ist mit einem Linsenraster in Form einer Mehrzahl paralleler plankonvexer Zylinderlinsen 64 versehen, die einen Krümmungsradius R = 4 µm und einen Linsendurchmesser dML = 7 µm aufweisen und mit einer Linsenperiode von L = 8 µm angeordnet sind. Das Linsenmaterial der Zylinderlinsen 64 weist im Ausführungsbeispiel einen Brechungsindex nLinse = 1,6 auf, der Brechungsindex der Trägerfolie 62 beträgt nFolie = 1,64. Zudem sind die Zylinderlinsen 64 in eine Einbettungsschicht 66 mit einem Brechungsindex nEinbettung = 1,33 eingebettet.
  • Auf der Unterseite des Trägers sind wie bei dem Ausführungsbeispiel der Fig. 2 eine metallische Motivschicht 40, eine vollflächige Farbschicht 45, eine Deckweißschicht 46 und eine Heißsiegellackschicht 48 angeordnet.
  • Da unter jeder Mikrolinse zwei Bildbereiche Platz finden sollen, wird als Ziel-Linienbreite für die zu erzeugenden demetallisierten Teilbereiche 42 im vorliegenden Ausführungsbeispiel D ziel = d ML / 2 = 3,5 μm
    Figure imgb0004

    gewählt. Für die Berechnung der Ziel-Laserwellenlänge mit Hilfe der oben angegebenen Beziehung (2) wird noch die Fokuslänge der Mikrolinsen 64 benötigt, die sich im vorliegenden, eingebetteten Fall zu f = n Folie / n Linse n Einbettung * R = 24,3 μm
    Figure imgb0005

    ergibt. Mithilfe von Beziehung (2) ergibt sich aus diesen Angaben eine Ziel-Laserwellenlänge von λziel = 410 nm.
  • Für die Demetallisierung wird in diesem Fall als leicht verfügbare Markierungs-Laserquelle ein frequenzverdreifachter Nd:YAG-Laser mit einer Wellenlänge von λ = 355 nm gewählt. Da der Durchmesser des Beugungsscheibchens bei dieser Wellenlänge nach Beziehung (1) einen etwas geringeren Durchmesser (D = 3,1 µm) hat als die Ziel-Linienbreite (Abweichung 11%), wird die Markierungs-Laserquelle bei der Demetallisation mit hoher Laserintensität betrieben, um die demetallisierte Linienbreite Dreal noch etwas zu vergrößern und an die Ziel-Linienbreite anzunähern.
  • Sollen bei dem Linsenrasterbild der Fig. 4 Demetallisierungen mit anderen Linienbreiten in der metallischen Motivschicht erzeugt werden, so können als leicht verfügbare Laserquellen beispielsweise auch ein Nd:YAG-Laser mit λ = 1064 nm und einer Fokusbreite von D = 9,0 µm, ein frequenzverdoppelter Nd:YAG-Laser mit λ = 532 nm und einer Fokusbreite von D = 4,7 µm oder ein Er:Glas-Laser mit λ = 1540 nm und einer Fokusbreite von D = 13,0 µm eingesetzt werden.
  • Bezugszeichenliste
  • 10
    Banknote
    12
    Fenstersicherheitsfaden
    14
    Fensterbereiche
    16
    Stegbereiche
    18A, 18B, 18C
    Sollbilder
    20
    metallische Motivteile
    22A, 22B, 22C
    demetallisierte Motivteile
    30A, 30B, 30C
    Betrachtungsrichtungen
    32
    Träger
    34
    Zylinderlinsen
    40
    Motivschicht
    42
    demetallisierte Teilbereiche
    44A, 44B, 44C
    sichtbare Bereiche
    45
    vollflächige Farbschicht
    46
    Deckweißschicht
    48
    Heißsiegellackschicht
    50
    paralleler Lichtstrahl
    52
    Beugungsscheibchen
    60
    Linsenrasterbild
    62
    Träger
    64
    Zylinderlinsen
    66
    Einbettungsschicht

Claims (10)

  1. Verfahren zum Herstellen eines Sicherheitselements mit einem Linsenrasterbild zur Darstellung eines oder mehrerer, nur aus vorbestimmten Betrachtungsrichtungen sichtbaren Sollbilder, deren Motive durch visuell erkennbare, kontrastierende metallische und demetallisierte Teilbereiche einer Motivschicht gebildet sind, wobei bei dem Verfahren
    - ein Linsenrasterbild mit einem Linsenraster aus einer Mehrzahl von Mikrolinsen (34) und einer von dem Linsenraster beabstandet angeordneten metallischen Motivschicht (40) bereitgestellt wird,
    - wobei die brechende Wirkung der Mikrolinsen (34) eine Fokusebene definiert und die metallische Motivschicht (40) im Wesentlichen in dieser Fokusebene angeordnet ist,
    - eine Linienbreite für die zu erzeugenden demetallisierten Teilbereiche
    (42) in der metallischen Motivschicht (40) gewählt wird, dadurch gekennzeichnet, dass
    - eine Markierungs-Laserquelle mit einer Laserwellenlänge λ ausgewählt wird, so dass das Auflösungsvermögen D(λ) der Mikrolinsen des Linsenrasterbilds bei der ausgewählten Laserwellenlänge λ im Wesentlichen der Linienbreite der zu erzeugenden demetallisierten Teilbereiche (42) entspricht, wobei das Auflösungsvermögen D(λ) der Mikrolinsen des Linsenrasterbilds durch die Beziehung D(λ) = 2,44* λ*f/dML bestimmt wird, wobei f die Fokuslänge der Mikrolinsen und dML der Durchmesser der Mikrolinsen ist, und
    - die metallische Motivschicht (40) durch die Mikrolinsen (34) hindurch mit Laserstrahlung der ausgewählten Markierungs-Laserquelle beaufschlagt wird, um demetallisierte Teilbereiche (42) in der metallischen Motivschicht zu erzeugen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Linsenrasterbild zur Darstellung von n ≥ 2 Sollbildern ausgelegt wird, und eine Linienbreite für die zu erzeugenden demetallisierten Teilbereiche gewählt wird, die zwischen 0,6*dML/n und 1,4*dML/n, bevorzugt zwischen 0,8*dML/n und 1,2*dML/n, besonders vorzugsweise zwischen 0,9*dML/n und 1,1*dML/n liegt, wobei dML der Durchmesser der Mikrolinsen ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Linsenrasterbild mit einem Linsenraster aus einer Mehrzahl von Mikro-Zylinderlinsen bereitgestellt wird.
  4. Verfahren nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Linsenrasterbild bereitgestellt wird, dessen metallische Motivschicht von der Fokusebene in einem Abstand angeordnet ist, der weniger als 25%, vorzugsweise weniger als 10% der Fokuslänge der Mikrolinsen beträgt.
  5. Verfahren nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Markierungs-Laserquelle so ausgewählt wird, dass D von der Linienbreite der zu erzeugenden demetallisierte Teilbereiche um weniger als 15%, vorzugsweise um weniger als 10% abweicht.
  6. Verfahren nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Markierungs-Laserquelle ein Nd:YAG-Laser, ein frequenzverdoppelter Nd:YAG-Laser, ein frequenzverdreifachter Nd:YAG-Laser oder ein Er:Glas-Laser verwendet wird.
  7. Verfahren nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zwei oder mehr verschiedene Markierungs-Laserquellen unterschiedlicher Wellenlänge eingesetzt werden.
  8. Verfahren nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zur Feinabstimmung die Laserleistung der Markierungs-Laserquelle eingestellt wird, um die Linienbreite der erzeugten demetallisierten Teilbereiche an die gewählte Linienbreite anzupassen.
  9. Verfahren nach wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ein Linsenrasterbild bereitgestellt wird, dessen Linsenraster Mikrolinsen mit einem Linsendurchmesser zwischen 5 µm und 20 µm aufweist und dessen Linsenperiode zwischen 100% und 125% des Linsendurchmessers beträgt.
  10. Verfahren nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein Linsenrasterbild bereitgestellt wird, dessen Linsenraster in eine Einbettungsschicht eingebettet ist, deren Brechungsindex sich vorzugsweise um 0,2 oder mehr von dem Brechungsindex der Mikrolinsen unterscheidet.
EP17822133.9A 2016-12-15 2017-12-15 Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild Active EP3554846B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016015015.7A DE102016015015A1 (de) 2016-12-15 2016-12-15 Verfahren zum Herstellen eines Sicherheitselements mit einem Linsenrasterbild
PCT/EP2017/001429 WO2018108318A1 (de) 2016-12-15 2017-12-15 Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild

Publications (2)

Publication Number Publication Date
EP3554846A1 EP3554846A1 (de) 2019-10-23
EP3554846B1 true EP3554846B1 (de) 2022-03-23

Family

ID=60857000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17822133.9A Active EP3554846B1 (de) 2016-12-15 2017-12-15 Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild

Country Status (5)

Country Link
US (1) US11040565B2 (de)
EP (1) EP3554846B1 (de)
AU (1) AU2017377115B2 (de)
DE (1) DE102016015015A1 (de)
WO (1) WO2018108318A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102456159B1 (ko) * 2018-11-19 2022-10-18 한국조폐공사 위변조 방지용 보안제품

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2038119T3 (es) 1985-10-15 1993-07-16 Gao Gesellschaft Fur Automation Und Organisation Mbh Soporte de datos con caracteristica optica de autenticidad, asi como procedimiento para la fabricacion y comprobacion de dicho soporte de datos.
US20120091703A1 (en) * 2009-04-06 2012-04-19 Reserve Bank Of Australia Security document with an optically variable image and method of manufacture
NL2004481C2 (nl) * 2010-03-31 2011-10-04 Sagem Identification B V Werkwijze voor het vervaardigen van een driedimensionale afbeelding op basis van berekende beeldrotaties.
DE102010031713A1 (de) * 2010-07-21 2012-01-26 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit Kippbild
AU2012211170B2 (en) * 2011-01-28 2015-02-19 Crane & Co., Inc. A laser marked device
DE102013007484A1 (de) * 2013-04-29 2014-10-30 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement
DE102014016009A1 (de) * 2014-10-28 2016-04-28 Giesecke & Devrient Gmbh Verfahren zum Herstellen eines Sicherheitselements mit einem Linsenrasterbild

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3554846A1 (de) 2019-10-23
US20190315150A1 (en) 2019-10-17
US11040565B2 (en) 2021-06-22
AU2017377115A1 (en) 2019-06-20
AU2017377115B2 (en) 2022-03-10
DE102016015015A1 (de) 2018-06-21
WO2018108318A1 (de) 2018-06-21

Similar Documents

Publication Publication Date Title
EP2018277B1 (de) Sicherheitselement mit lasermarkierung
EP2991837B1 (de) Optisch variables sicherheitselement
EP1843901B1 (de) Sicherheitselement und verfahren zu seiner herstellung
WO2012097463A1 (de) Verfahren zur herstellung eines mehrschichtigen datenträgers sowie nach diesem verfahren hergestellter datenträger
WO2013064268A1 (de) Optisch variables sicherheitselement
DE102005025095A1 (de) Datenträger und Verfahren zu seiner Herstellung
DE10358784A1 (de) Datenträger mit mittels Laserstrahl eingeschriebenen Kennzeichnungen und Verfahren zu seiner Herstellung
DE102016012625A1 (de) Sicherheitselement und Verfahren zum Herstellen eines Sicherheitselements
DE102008028705B4 (de) Verfahren zum Herstellen eines Wert- und/oder Sicherheitsdokuments sowie Wert- und/oder Sicherheitsdokument mit einer demetallisierten Struktur
EP3126153B1 (de) Sicherheitselement mit einem linsenrasterbild
EP3015279B1 (de) Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild
WO2001029764A1 (de) Datenträger mit echtheitsmerkmalen und herstellverfahren hierfür
EP3554846B1 (de) Verfahren zum herstellen eines sicherheitselements mit einem linsenrasterbild
DE102018005705A1 (de) Sicherheitselement mit Linsenrasterbild
WO2022228730A9 (de) Sicherheitsmerkmal für ein wertdokument, wertdokument und verfahren zur herstellung eines sicherheitsmerkmals
DE102021002214A1 (de) Sicherheitsmerkmal für ein Wertdokument, Wertdokument und Verfahren zur Herstellung eines Sicherheitsmerkmals
EP3291994B1 (de) Personalisierungsvorrichtung und verfahren zur personalisierung eines dokuments
EP2539155A1 (de) Markierungsvorrichtung und verfahren zum markieren von wert- oder sicherheitsdokumenten mit hoher auflösung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200512

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012830

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1477187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220723

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012830

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

26N No opposition filed

Effective date: 20230102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221215

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 7

Ref country code: DE

Payment date: 20231231

Year of fee payment: 7

Ref country code: AT

Payment date: 20231214

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323