EP3009780B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP3009780B2
EP3009780B2 EP15190213.7A EP15190213A EP3009780B2 EP 3009780 B2 EP3009780 B2 EP 3009780B2 EP 15190213 A EP15190213 A EP 15190213A EP 3009780 B2 EP3009780 B2 EP 3009780B2
Authority
EP
European Patent Office
Prior art keywords
refrigerant
channels
heat exchanger
coolant
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15190213.7A
Other languages
German (de)
French (fr)
Other versions
EP3009780A1 (en
EP3009780B1 (en
Inventor
Sarah Gorzellik
Matthias Seitz
Herbert Hofmann
Gottfried DÜRR
Arthur Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54365950&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3009780(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3009780A1 publication Critical patent/EP3009780A1/en
Publication of EP3009780B1 publication Critical patent/EP3009780B1/en
Application granted granted Critical
Publication of EP3009780B2 publication Critical patent/EP3009780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • F28D7/1692Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/106Particular pattern of flow of the heat exchange media with cross flow

Definitions

  • the present invention relates to a heat exchanger for cooling a heat source of a motor vehicle with coolant channels and coolant channels according to the preamble of claim 1.
  • a generic heat exchanger for cooling a heat source of a motor vehicle comprising a plurality of coolant channels and a plurality of coolant channels.
  • the coolant channels are formed by free spaces provided between the coolant channels, with heat-transferring surfaces being provided between a coolant guided in the coolant channels and a coolant guided in the coolant channels.
  • the coolant channels In the area of the heat transfer surfaces, the coolant channels have a coolant-carrying volume that is larger by a factor of between 4 and 6 than the coolant-carrying volume of the coolant channels in the area of the heat transfer surfaces. This is intended to achieve a so-called chiller with a compact design and high heat exchange efficiency.
  • a heat exchanger for a motor vehicle is known through which refrigerant can flow.
  • the refrigerant stream flowing into the heat exchanger is divided by a valve device into at least two separate strands in such a way that there is no mutual mixing of the incoming refrigerant partial stream. This is intended to ensure that the temperature distribution is as even as possible.
  • JP-A-2000356488 , and DE-A-102004024825 disclose a heat exchanger according to the preamble of claim 1.
  • the present invention is therefore concerned with the problem of specifying an improved or at least an alternative embodiment for a heat exchanger of the generic type, which in particular enables efficient cooling with at the same time low weight and low costs of the heat exchanger.
  • the present invention is based on the general idea of combining the advantages of an indirect evaporator (chiller) with the advantages of CO 2 as a refrigerant and thereby being able to provide a compact, highly efficient and inexpensive heat exchanger, in particular for battery cooling.
  • the heat exchanger according to the invention is therefore used to cool a heat source, for example a high-voltage battery or an electronic component, in a motor vehicle and has coolant channels and coolant channels in a known manner.
  • the individual refrigerant channels in a flat tube, together with the adjoining refrigerant channels of the other flat tubes, form a refrigerant flow path. In an analogous manner, this also applies to the coolant channels, which, when lined up next to one another, form a coolant flow path.
  • the coolant flows around the flat tubes.
  • Carbon dioxide (CO 2 ) is now used as the refrigerant, with the refrigerant flow path being deflected at least once in a U-shape and the refrigerant channels also having a ratio between their wall thickness and their free diameter (inner diameter) of at least 0.4.
  • both the running length and the flow speed can be increased and thus the heat transfer rate can be increased. Due to the comparatively high pressure and the associated small volume flows, deflection on the refrigerant side is preferred, with a U-shaped deflection of the coolant flow path also being provided.
  • a U-shaped flow path can be understood as meaning a flow path that first runs in one direction and then, after a 180° turn, in the opposite direction, so that the refrigerant flows in opposite directions in the two flow path sections.
  • the refrigerant channels are positioned parallel to one another in so-called flat tubes, so that such a flat tube comprises a plurality of refrigerant channels running parallel to one another.
  • the coolant channels are located between the individual flat tubes, so that an outer wall of a respective flat tube also forms a wall of a coolant channel.
  • heat exchanger elements such as turbulence inserts or corrugated fins, which improve heat transfer.
  • the refrigerant channels themselves wear-resistant in the long term against the comparatively high pressure, they are dimensioned in such a way that the ratio of their wall thickness to the free diameter or the channel width is at least 0.4.
  • a further requirement for the refrigerant channels according to the invention is that a web present between two refrigerant channels of a flat tube has a width that is at least 40% of the channel width, ie the diameter of the refrigerant channel, preferably even 70 or even 100% of the (inner) diameter of the refrigerant channel amounts. Thanks to such massive webs, it is easily possible to absorb the pressures occurring in the refrigerant channels over the long term. With a heat exchanger designed in this way, not only can a compact heat exchanger with a comparatively high heat transfer rate be achieved, but it can also be manufactured comparatively inexpensively, which is of great advantage, particularly with regard to competition in the automotive supply sector.
  • the refrigerant channels and the coolant channels are arranged in sections, that is to say locally, in cross-flow and as a whole, that is to say globally, in counter-current.
  • a particularly favorable embodiment from a thermodynamic point of view results when both the refrigerant flow path and the coolant flow path are deflected in the same way and thus a countercurrent or cross-flow can be maintained across all paths. Since the refrigerant is expected to overheat by approx. 5 Kelvin in normal operation, it is advantageous if the last section in particular before the refrigerant exits is in countercurrent.
  • the countercurrent principle is used here because the refrigerant has often already evaporated in the last flow path and is only heated up further, i.e.
  • both the coolant side and the coolant side are deflected and both the coolant and the coolant are in countercurrent in the respective flow path.
  • a 2-, 4- or 6-flow power supply is conceivable here. If both the coolant side and the refrigerant side are deflected, both flow paths can also be in cross-flow, in which case it makes particular sense to place the coolant outlet and the coolant inlet in the same section and thereby form a counterflow characteristic from a global perspective.
  • the refrigerant side can be designed with 4 or 6 channels.
  • a hydraulic diameter of the refrigerant channels is between 0.3 and 1.0 mm.
  • the hydraulic diameter is a calculated quantity that is used to calculate pressure loss and throughput in pipes and channels if the cross section of the pipe or channel deviates from the circular shape.
  • the hydraulic diameter is therefore to be determined in particular for refrigerant channels whose cross section is, for example, square with rounded corners or elliptical.
  • the hydraulic diameter indicates the diameter of the circular channel that would have the same pressure loss as the given channel with the same length and the same average flow velocity.
  • the empirically determined hydraulic diameter between 0.3 mm and 1.0 mm, both optimal pressure resistance and optimal heat transfer can be achieved.
  • round or elliptical channels are particularly advantageous.
  • the inner walls of the coolant channels are smooth, whereas the inner walls of the coolant channels are structured, i.e. H. especially rough, in order to achieve improved heat transfer.
  • the improved heat transfer is generated by the larger surface area.
  • the edges of the component lead to flow separation and thus to increased turbulence.
  • a structured inside of the refrigerant channel does not make sense. In order to generally rule out any impairment of the circuit, there are purity requirements for all media-carrying parts for the components installed in the circuit.
  • particles are only tolerated up to a certain amount and quality. Structuring on the inside makes sense for this (e.g. if the flow channels do not have round but star-shaped cross-sections.
  • Heat exchanger elements in particular turbulence inserts or corrugated fins, are expediently arranged in the coolant channels. Such heat exchanger elements increase the surface area available for heat transfer and thereby enable improved heat exchange.
  • a heat exchanger 1 according to the invention for cooling a heat source of a motor vehicle, in particular for cooling a heat pump or a high-voltage battery or an electronic component, has coolant channels 2 and coolant channels 3.
  • carbon dioxide (CO 2 ) is used as a refrigerant in all heat exchangers 1 and, in addition, a refrigerant flow path 7 is deflected at least once in a U-shape. Due to the at least one-time U-shaped deflection of at least the refrigerant flow path 7, the efficiency and also the performance of the heat exchanger 1 according to the invention can be significantly increased.
  • the refrigerant channels 3 according to the invention also have a ratio between their wall thickness w and their diameter d of at least 0.4 (cf. in particular also Figures 2 and 3 ). Due to the high pressure in the refrigerant channels 3 and the associated small volume flows, a deflection on the refrigerant side is preferred.
  • the individual refrigerant channels 3 are arranged in flat tubes 4 running parallel to one another, with a web 5 present between two refrigerant channels 3 having a width b which is at least 40% of the diameter of the refrigerant channel 3, preferably even 70 or 100% of the diameter of the refrigerant channel 3 (cf. again the Figures 2 and 3 ).
  • Such thick webs 5 ensure the required tensile strength.
  • the individual refrigerant channels 3 are connected evenly or progressively. Progressive means that the flow cross-sectional area of the refrigerant side increases from one flow path to the next. This takes into account the increasing volume of the refrigerant flow during evaporation. This does not affect the geometric shape of the individual refrigerant channels 3 in the respective flat tube 4, but is set by the number of flat tubes 4 per flow path 6, 7.
  • the refrigerant channels 3 are preferably round or elliptical (cf. Figure 3 ), but can also have a square cross section with rounded corners, as for example according to Figure 2 is shown.
  • both the coolant flow path 7 and the coolant flow path 6 are redirected, which results in particularly effective cooling.
  • the refrigerant and the coolant for example a water-glysantine mixture, are in cross-flow in both flow paths 6, 7, just as in the heat exchanger 1 according to FIG Figures 4 and 5 . It is particularly useful here to place the coolant outlet and the coolant inlet in the same section, although the coolant side can of course also be designed with 4 or 6 channels.
  • the heat exchanger 1 according to Figure 5 works in cross-flow and has two flows, both on the coolant side and on the coolant side, and each has a deflection of the coolant flow path 6 and the coolant flow path 7 in width.
  • the heat exchanger 1 according to Figure 4 is designed with 4 flutes and has one compared to that according to the Figure 5 Heat exchanger 1 shown has a higher flow velocity, which improves the heat transfer.
  • the 4-flow design also ensures better protection against overheating.
  • the refrigerant channels 3 are contained in one or two collectors 8, in which a channel height h in relation to the material thickness w 1 (wall thickness of the collector 8) is a maximum of 3, preferably even less than 1.5.
  • a collector 8 is, for example, in the Figures 6 and 7 shown.
  • a hydraulic diameter d H of the refrigerant channels 3 is between 0.3 and 1.0 mm.
  • a comparable hydraulic diameter d H for the coolant channels 2 is preferably between 0.5 and 2.0 mm. This allows an optimal ratio of pressure drop and heat transfer to be achieved on the coolant side.
  • a particularly advantageous ratio between the hydraulic diameter of the coolant channels 2 and the hydraulic diameter of the coolant channels 3 is greater than 1.0, preferably this ratio is between 1.5 and 3.
  • a two-phase mixture is usually heated on the coolant side, which is usually too significantly worse heat transfer coefficients on the refrigerant side than on the coolant side.
  • heat exchanger elements 9 for example turbulence inserts or corrugated fins, are arranged in the coolant channels 2, which increase the surface area available for heat exchange.
  • the surface available for heat transfer can also be designed to be structured, which in turn increases the surface area. Due to the high pressure load and the requirement for internal cleanliness, a structured surface is required for the refrigerant side, i.e. H. However, it is not specifically suitable for the inner surface of the refrigerant channels 3.
  • the coolant flow path 7 is deflected at least once in a U-shape, specifically in width, whereby the coolant flow path 6 can be deflected in corresponding coolant collectors 10.
  • the coolant flow path 6 and the coolant flow path 7 run in countercurrent.
  • a heat exchanger 1 designed as an R744 evaporator is shown with an upstream expansion element 11.
  • the expansion element 11 can be designed, for example, as an electronic expansion valve (EXV).
  • EXV electronic expansion valve
  • This expansion element 11 was usually attached to conventional R134a evaporators. However, for R744 and also for components with electronic expansion valves (EXV), these are usually integrated into the circuit separately from heat exchanger 1.
  • the term “unit” is understood to mean that the expansion element 11 (in particular TXV) is mechanically (possibly even cohesively) connected to the evaporator/chiller. Such a unit could be achieved, for example, by integrating the valve housing into the evaporator/chiller flange (+ soldering if necessary).
  • the heat exchanger 1 With the heat exchanger 1 according to the invention, a high performance, ie a high efficiency of the heat exchanger 1 can be achieved, with a small space requirement and a favorable connection situation, in particular if a connection for both the coolant flow path 6 and for the coolant flow path 7 is arranged on the same side of the heat exchanger 1 are.
  • the refrigerant channels 3 designed according to the invention can also ensure high pressure resistance, which enables the use of CO 2 as a refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die vorliegende Erfindung betrifft einen Wärmeübertrager zur Kühlung einer Wärmequelle eines Kraftfahrzeugs mit Kühlmittelkanälen und Kältemittelkanälen gemäß dem Oberbegriff des Anspruchs 1.The present invention relates to a heat exchanger for cooling a heat source of a motor vehicle with coolant channels and coolant channels according to the preamble of claim 1.

Aus der DE 10 2011 107 281 A1 ist ein gattungsgemäßer Wärmeübertrager zur Kühlung einer Wärmequelle eines Kraftfahrzeugs bekannt, umfassend eine Mehrzahl von Kältemittelkanälen sowie eine Mehrzahl von Kühlmittelkanälen. Die Kühlmittelkanäle sind durch zwischen den Kältemittelkanälen vorgesehenen Freiräumen gebildet, wobei wärmeübertragende Flächen zwischen einem in den Kältemittelkanälen geführten Kältemittel und einem in den Kühlmittelkanälen geführten Kühlmittel vorgesehen sind. Im Bereich der Wärmeübertragungsflächen weisen die Kältemittelkanäle ein kältemittelführendes Volumen auf, das um einen Faktor zwischen 4 und 6 größer ist, als das kühlmittelführende Volumen der Kühlmittelkanäle im Bereich der Wärmeübertragungsflächen. Hierdurch soll ein sogenannter Chiller mit einer kompakten Bauform und einer hohen Wärmetauscheffizienz erreicht werden.From the DE 10 2011 107 281 A1 a generic heat exchanger for cooling a heat source of a motor vehicle is known, comprising a plurality of coolant channels and a plurality of coolant channels. The coolant channels are formed by free spaces provided between the coolant channels, with heat-transferring surfaces being provided between a coolant guided in the coolant channels and a coolant guided in the coolant channels. In the area of the heat transfer surfaces, the coolant channels have a coolant-carrying volume that is larger by a factor of between 4 and 6 than the coolant-carrying volume of the coolant channels in the area of the heat transfer surfaces. This is intended to achieve a so-called chiller with a compact design and high heat exchange efficiency.

Aus der DE 10 2005 020 499 A1 ist ein Wärmeübertrager für ein Kraftfahrzeug bekannt, der von Kältemittel durchströmbar ist. Der in den Wärmeübertrager einströmende Kältemittelstrom wird dabei durch eine Ventileinrichtung auf mindestens zwei voneinander getrennte Stränge derart aufgeteilt, dass es zu keiner gegenseitigen Durchmischung des jeweils einströmenden Kältemittelteilstroms kommt. Hierdurch soll eine möglichst gleichmäßige Temperaturverteilung sichergestellt werden können.From the DE 10 2005 020 499 A1 a heat exchanger for a motor vehicle is known through which refrigerant can flow. The refrigerant stream flowing into the heat exchanger is divided by a valve device into at least two separate strands in such a way that there is no mutual mixing of the incoming refrigerant partial stream. This is intended to ensure that the temperature distribution is as even as possible.

Im stetig zunehmenden Segment der Hybrid- und Elektrofahrzeuge ist ein besonders effektives Temperaturmanagement von Hochvoltbatterien von zentraler Bedeutung für die Reichweitenverlängerung und den effizienten Einsatz der elektrischen Energie. Zur Kühlung der Batterien werden dabei sogenannte "Chiller" eingesetzt, die kompakt bauen. Um dabei die Kühlleistung erhöhen zu können, wird zunehmend auch CO2 als Kältemittel eingesetzt, wodurch jedoch die Systeme auf höhere Systemdrücke und Temperaturen ausgelegt werden müssen. Bisherige Plattenwärmeübertrager zur Kühlung eines Niedertemperaturkreislaufes sind hierzu nicht geeignet.In the ever-increasing segment of hybrid and electric vehicles, particularly effective temperature management of high-voltage batteries is of central importance for extending the range and using electrical energy efficiently. To cool the batteries, so-called “chillers” are used, which are compact. In order to increase the cooling capacity, CO 2 is increasingly being used as a refrigerant, which means that the systems have to be designed for higher system pressures and temperatures. Previous plate heat exchangers for cooling a low-temperature circuit are not suitable for this.

JP-A-2000356488 , und DE-A-102004024825 offenbaren einen Wärmeübertrager gemäß dem Oberbegriff des Anspruchs 1. JP-A-2000356488 , and DE-A-102004024825 disclose a heat exchanger according to the preamble of claim 1.

Die vorliegende Erfindung beschäftigt sich daher mit dem Problem, für einen Wärmeübertrager der gattungsgemäßen Art eine verbesserte oder zumindest eine alternative Ausführungsform anzugeben, die insbesondere eine effiziente Kühlung bei gleichzeitig geringem Gewicht und geringen Kosten des Wärmeübertragers ermöglicht.The present invention is therefore concerned with the problem of specifying an improved or at least an alternative embodiment for a heat exchanger of the generic type, which in particular enables efficient cooling with at the same time low weight and low costs of the heat exchanger.

Dieses Problem wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.This problem is solved according to the invention by the subject matter of independent claim 1. Advantageous embodiments are the subject of the dependent claims.

Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, die Vorteile eines indirekten Verdampfers (Chillers) mit den Vorteilen von CO2 als Kältemittel zu kombinieren und dadurch einen einerseits kompakt bauenden, hocheffizienten und andererseits kostengünstigen Wärmeübertrager, insbesondere zur Batteriekühlung, bereitstellen zu können. Der erfindungsgemäße Wärmeübertrager dient somit zur Kühlung einer Wärmequelle, beispielsweise einer Hochvoltbatterie oder eines Elektronikbauteils, in einem Kraftfahrzeug und besitzt in bekannter Weise Kühlmittelkanäle und Kältemittelkanäle. Die einzelnen Kältemittelkanäle in einem Flachrohr bilden zusammen mit den sich daran anschließenden Kältemittelkanälen der anderen Flachrohre einen Kältemittelströmungsweg. In analoger Weise gilt dies auch für die Kühlmittelkanäle, die aneinander gereiht einen Kühlmittelströmungsweg bilden. Selbstverständlich strömt dabei das Kühlmittel um die Flachrohre. Als Kältemittel wird nun Kohlendioxid (CO2) eingesetzt, wobei der Kältemittelströmungsweg einerseits zumindest einmal U-förmig umgelenkt ist und die Kältemittelkanäle zudem ein Verhältnis zwischen ihrer Wandstärke und ihrem freien Durchmesser (Innendurchmesser) von mindestens 0,4 aufweisen. Durch die mindestens einmalige U-förmige Umlenkung können sowohl die Lauflänge als auch die Strömungsgeschwindigkeit erhöht und damit die Wärmeübertragungsrate gesteigert werden. Aufgrund des vergleichsweise hohen Drucks und den damit verbundenen kleinen Volumenströmen bietet sich die Umlenkung auf der Kältemittelseite bevorzugt an, wobei auch eine U-förmige Umlenkung des Kühlmittelströmungsweges vorgesehen ist. Unter einem U-förmigen Strömungsweg kann dabei ein Strömungsweg verstanden werden, der zuerst in die eine Richtung und anschließend nach einer 180°-Wende in die umgekehrte Richtung verläuft, so dass in den beiden Strömungswegabschnitten das Kältemittel in entgegengesetzte Richtungen strömt. Selbstverständlich ist dabei auch eine mehrmalige Umkehr bzw. Umlenkung möglich. Die Kältemittelkanäle sind dabei parallel zueinander in sogenannten Flachrohren positioniert, so dass ein derartiges Flachrohr mehrere parallel zueinander verlaufende Kältemittelkanäle umfasst. Zwischen den einzelnen Flachrohren befinden sich die Kühlmittelkanäle, so dass eine Außenwand eines jeweiligen Flachrohrs gleichzeitig auch eine Wandung eines Kühlmittelkanals bildet. Zwischen den einzelnen Flachrohren, d. h. in den Kühlmittelkanälen, können sich Wärmeübertragerelemente, wie beispielsweise Turbulenzeinlagen oder Wellrippen befinden, welche die Wärmeübertragung verbessern. Um die Kältemittelkanäle selbst langfristig verschleißbeständig gegen den vergleichsweise hohen Druck ausbilden zu können, werden diese derart bemessen, dass das Verhältnis deren Wandstärke zum freien Durchmesser bzw. der Kanalbreite mindestens 0,4 beträgt. Eine weitere Anforderung für die erfindungsgemäßen Kältemittelkanäle ist, dass ein zwischen zwei Kältemittelkanälen eines Flachrohrs vorhandener Steg eine Breite aufweist, die zumindest 40% der Kanalbreite, d. h. des Durchmessers des Kältemittelkanals, vorzugsweise sogar 70 oder sogar 100% des (Innen-)Durchmessers des Kältemittelkanals beträgt. Durch derart massive Stege ist es problemlos möglich, die in den Kältemittelkanälen auftretenden Drücke auch langfristig aufnehmen zu können. Mit einem derart ausgebildeten Wärmeübertrager kann somit nicht nur ein kompakt bauender Wärmeübertrager mit vergleichsweise hoher Wärmeübertragungsrate erreicht werden, sondern dieser lässt sich darüber hinaus auch vergleichsweise kostengünstig herstellen, was insbesondere im Hinblick auf einen Wettbewerb im Automobilzulieferungssektor von großem Vorteil ist.The present invention is based on the general idea of combining the advantages of an indirect evaporator (chiller) with the advantages of CO 2 as a refrigerant and thereby being able to provide a compact, highly efficient and inexpensive heat exchanger, in particular for battery cooling. The heat exchanger according to the invention is therefore used to cool a heat source, for example a high-voltage battery or an electronic component, in a motor vehicle and has coolant channels and coolant channels in a known manner. The individual refrigerant channels in a flat tube, together with the adjoining refrigerant channels of the other flat tubes, form a refrigerant flow path. In an analogous manner, this also applies to the coolant channels, which, when lined up next to one another, form a coolant flow path. Of course, the coolant flows around the flat tubes. Carbon dioxide (CO 2 ) is now used as the refrigerant, with the refrigerant flow path being deflected at least once in a U-shape and the refrigerant channels also having a ratio between their wall thickness and their free diameter (inner diameter) of at least 0.4. Through the at least one-time U-shaped deflection, both the running length and the flow speed can be increased and thus the heat transfer rate can be increased. Due to the comparatively high pressure and the associated small volume flows, deflection on the refrigerant side is preferred, with a U-shaped deflection of the coolant flow path also being provided. A U-shaped flow path can be understood as meaning a flow path that first runs in one direction and then, after a 180° turn, in the opposite direction, so that the refrigerant flows in opposite directions in the two flow path sections. Of course, multiple reversals or redirections are also possible. The refrigerant channels are positioned parallel to one another in so-called flat tubes, so that such a flat tube comprises a plurality of refrigerant channels running parallel to one another. The coolant channels are located between the individual flat tubes, so that an outer wall of a respective flat tube also forms a wall of a coolant channel. Between the individual flat tubes, ie in the coolant channels, there can be heat exchanger elements, such as turbulence inserts or corrugated fins, which improve heat transfer. In order to be able to make the refrigerant channels themselves wear-resistant in the long term against the comparatively high pressure, they are dimensioned in such a way that the ratio of their wall thickness to the free diameter or the channel width is at least 0.4. A further requirement for the refrigerant channels according to the invention is that a web present between two refrigerant channels of a flat tube has a width that is at least 40% of the channel width, ie the diameter of the refrigerant channel, preferably even 70 or even 100% of the (inner) diameter of the refrigerant channel amounts. Thanks to such massive webs, it is easily possible to absorb the pressures occurring in the refrigerant channels over the long term. With a heat exchanger designed in this way, not only can a compact heat exchanger with a comparatively high heat transfer rate be achieved, but it can also be manufactured comparatively inexpensively, which is of great advantage, particularly with regard to competition in the automotive supply sector.

Bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Lösung sind die Kältemittelkanäle und die Kühlmittelkanäle abschnittsweise, das heißt lokal, im Kreuzstrom und in der Gesamtheit, das heißt global, im Gegenstrom angeordnet. Eine aus thermodynamischer Sicht besonders günstige Ausführung ergibt sich dabei, wenn sowohl der Kältemittelströmungsweg als auch der Kühlmittelströmungsweg gleich umgelenkt werden und somit ein Gegenstrom bzw. Kreuzstrom über alle Wege aufrechterhalten werden kann. Da bei einem Chiller im Normalbetrieb mit einer Überhitzung des Kältemittels von ca. 5 Kelvin zu rechnen ist, ist es vorteilhaft, wenn sich insbesondere der letzte Abschnitt vor dem Kältemittelaustritt im Gegenstrom befindet. Das Gegenstrom prinzip wird hier angewandt, weil im letzten Strömungsweg häufig das Kältemittel bereits verdampft ist und nur noch weiter aufgeheizt, d.h. überhitzt wird. Während bei der Verdampfung keine Temperaturänderung stattfindet, erwärmt sich das Kältemittel im überhitzten Bereich. Hier kommt somit der Stromführung eine besondere Bedeutung. Sinnvolle Varianten ergeben sich dadurch insbesondere, wenn sowohl die Kältemittelseite als auch die Kühlmittelseite umgelenkt werden und sich sowohl das Kühlmittel als auch das Kältemittel in dem jeweiligen Strömungsweg im Gegenstrom befindet. Hierbei ist eine 2-, 4- oder 6-flutige Stromführung denkbar. Werden sowohl die Kühlmittelseite als auch die Kältemittelseite umgelenkt, können sich auch beide Strömungswege im Kreuzstrom befinden, wobei es hier dann besonders sinnvoll ist, den Kältemittelaustritt und den Kühlmitteleintritt in den gleichen Abschnitt zu legen und dadurch global gesehen eine Gegenstromcharakteristik auszubilden. Auch hier kann die Kältemittelseite 4- oder 6-flutig ausgebildet sein.In an advantageous development of the solution according to the invention, the refrigerant channels and the coolant channels are arranged in sections, that is to say locally, in cross-flow and as a whole, that is to say globally, in counter-current. A particularly favorable embodiment from a thermodynamic point of view results when both the refrigerant flow path and the coolant flow path are deflected in the same way and thus a countercurrent or cross-flow can be maintained across all paths. Since the refrigerant is expected to overheat by approx. 5 Kelvin in normal operation, it is advantageous if the last section in particular before the refrigerant exits is in countercurrent. The countercurrent principle is used here because the refrigerant has often already evaporated in the last flow path and is only heated up further, i.e. overheated. While there is no temperature change during evaporation, the refrigerant heats up in the superheated area. This is where the power supply is particularly important. This results in useful variants in particular if both the coolant side and the coolant side are deflected and both the coolant and the coolant are in countercurrent in the respective flow path. A 2-, 4- or 6-flow power supply is conceivable here. If both the coolant side and the refrigerant side are deflected, both flow paths can also be in cross-flow, in which case it makes particular sense to place the coolant outlet and the coolant inlet in the same section and thereby form a counterflow characteristic from a global perspective. Here too, the refrigerant side can be designed with 4 or 6 channels.

Bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Lösung beträgt ein hydraulischer Durchmesser der Kältemittelkanäle zwischen 0,3 und 1,0 mm. Der hydraulische Durchmesser ist dabei eine rechnerische Größe, die zur Berechnung von Druckverlust und Durchsatz in Rohren und Kanälen herangezogen wird, sofern der Querschnitt des Rohres bzw. des Kanals von der Kreisform abweicht. Der hydraulische Durchmesser ist somit insbesondere für Kältemittelkanäle zu bestimmen, deren Querschnitt beispielsweise quadratisch mit abgerundeten Ecken oder elliptisch ist. Der hydraulische Durchmesser gibt für derartige Kanäle somit den Durchmesser desjenigen kreisrunden Kanals an, der bei gleicher Länge und gleicher mittlerer Strömungsgeschwindigkeit den gleichen Druckverlust wie der gegebene Kanal aufweisen würde. Mit dem empirisch herausgefundenen hydraulischen Durchmesser zwischen 0,3 mm und 1,0 mm kann sowohl eine optimale Druckbeständigkeit als auch ein optimaler Wärmeübergang erreicht werden. Besonders vorteilhaft hierbei sind selbstverständlich runde bzw. elliptische Kanäle.In an advantageous development of the solution according to the invention, a hydraulic diameter of the refrigerant channels is between 0.3 and 1.0 mm. The hydraulic diameter is a calculated quantity that is used to calculate pressure loss and throughput in pipes and channels if the cross section of the pipe or channel deviates from the circular shape. The hydraulic diameter is therefore to be determined in particular for refrigerant channels whose cross section is, for example, square with rounded corners or elliptical. For such channels, the hydraulic diameter indicates the diameter of the circular channel that would have the same pressure loss as the given channel with the same length and the same average flow velocity. With the empirically determined hydraulic diameter between 0.3 mm and 1.0 mm, both optimal pressure resistance and optimal heat transfer can be achieved. Of course, round or elliptical channels are particularly advantageous.

Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Lösung sind die Innenwände der Kältemittelkanäle glatt, wohingegen die Innenwände der Kühlmittelkanäle strukturiert, d. h. insbesondere rau, sind, um eine verbesserte Wärmeübertragung erzielen zu können. Die verbesserte Wärmeübertragung wird dabei durch die größere Oberfläche erzeugt. Zudem führen die Kanten des Bauteiles zu einer Strömungsablösung und damit zu einer erhöhten Turbulenz. Aufgrund der hohen Druckbelastung sowie der Anforderungen an die Innenreinheit ist eine strukturierte Innenseite des Kältemittelkanals hingegen nicht sinnvoll. Um generell eine Beeinträchtigung des Kreislaufes auszuschließen, existieren für die im Kreislauf verbauten Komponenten Reinheitsanforderungen für alle Medien führenden Teile.In a further advantageous embodiment of the solution according to the invention, the inner walls of the coolant channels are smooth, whereas the inner walls of the coolant channels are structured, i.e. H. especially rough, in order to achieve improved heat transfer. The improved heat transfer is generated by the larger surface area. In addition, the edges of the component lead to flow separation and thus to increased turbulence. However, due to the high pressure load and the requirements for internal cleanliness, a structured inside of the refrigerant channel does not make sense. In order to generally rule out any impairment of the circuit, there are purity requirements for all media-carrying parts for the components installed in the circuit.

Beispielsweise werden Partikeln (Flitter, Späne etc.) nur bis zu einer bestimmten Menge und Beschaffenheit toleriert. Hierfür machen Strukturierungen auf der Innenseite Sinn (z.B. wenn die Strömungskanäle nicht runde, sondern sternförmige Querschnitte haben.For example, particles (tinsel, chips, etc.) are only tolerated up to a certain amount and quality. Structuring on the inside makes sense for this (e.g. if the flow channels do not have round but star-shaped cross-sections.

Zweckmäßig sind in den Kühlmittelkanälen Wärmeübertragerelemente, insbesondere Turbulenzeinlagen oder Wellrippen angeordnet. Derartige Wärmeübertragerelemente vergrößern die zur Wärmeübertragung zur Verfügung stehende Oberfläche und ermöglichen dadurch einen verbesserten Wärmetausch.Heat exchanger elements, in particular turbulence inserts or corrugated fins, are expediently arranged in the coolant channels. Such heat exchanger elements increase the surface area available for heat transfer and thereby enable improved heat exchange.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Further important features and advantages of the invention emerge from the subclaims, from the drawings and from the associated description of the figures based on the drawings.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those to be explained below can be used not only in the combination specified in each case, but also in other combinations or alone, without departing from the scope of the present invention.

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.Preferred exemplary embodiments of the invention are shown in the drawings and are explained in more detail in the following description, with the same reference numbers referring to the same or similar or functionally the same components.

Es zeigen, jeweils schematisch,

Fig. 1
einen erfindungsgemäßen Wärmeübertrager mit umgelenkten Kältemittel- und Kühlmittelkanälen,
Fig. 2
eine Schnittdarstellung durch ein Flachrohr mit erfindungsgemäß ausgebildeten Kältemittelkanälen,
Fig. 3
eine Darstellung wie in Figur 2, jedoch mit anderen Kältemittelkanälen,
Fig. 4
einen erfindungsgemäßen 4-flutigen Wärmeübertrager im Kreuzstrom und zusätzlicher Umlenkung in der Tiefe,
Fig. 5
einen 2-flutigen Wärmeübertrager im Kreuzstrom sowohl kühlmittelseitig als auch kältemittelseitig und Umlenkung in der Breite,
Fig. 6
einen erfindungsgemäßen Wärmeübertrager im Gegenstrom einer kältemittelseitigen Umlenkung in der Breite,
Fig. 7
einen Wärmeübertrager im Gegenstrom mit kühl- und kältemittelseitiger Umlenkung,
Fig. 8
einen als Verdampfer ausgebildeten Wärmeübertrager mit vorgeschaltetem Expansionsorgan.
It shows, schematically,
Fig. 1
a heat exchanger according to the invention with diverted refrigerant and coolant channels,
Fig. 2
a sectional view through a flat tube with refrigerant channels designed according to the invention,
Fig. 3
a representation like in Figure 2 , but with different refrigerant channels,
Fig. 4
a 4-flow heat exchanger according to the invention in cross-flow and additional deflection in the depth,
Fig. 5
a 2-flow heat exchanger in cross-flow on both the coolant side and the refrigerant side and deflection across the width,
Fig. 6
a heat exchanger according to the invention in the countercurrent of a refrigerant-side deflection in width,
Fig. 7
a countercurrent heat exchanger with deflection on the coolant and refrigerant sides,
Fig. 8
a heat exchanger designed as an evaporator with an upstream expansion element.

Entsprechend den Figuren 1 sowie 4 bis 8, weist ein erfindungsgemäßer Wärmeübertrager 1 zur Kühlung einer Wärmequelle eines Kraftfahrzeuges, insbesondere zur Kühlung einer Wärmepumpe oder einer Hochvoltbatterie oder eines elektronischen Bauteils, Kühlmittelkanäle 2 sowie Kältemittelkanäle 3 auf. Erfindungsgemäß ist bei sämtlichen Wärmeübertragern 1 Kohlendioxid (CO2) als Kältemittel eingesetzt und zudem ist ein Kältemittelströmungsweg 7 zumindest einmal U-förmig umgelenkt. Durch die zumindest einmalige U-förmige Umlenkung zumindest des Kältemittelströmungsweges 7 kann die Effizienz und auch die Leistung des erfindungsgemäßen Wärmeübertragers 1 deutlich erhöht werden. Da CO2 als Kältemittel verwendet wird und hierbei vergleichsweise hohe Drücke auftreten, weisen die Kältemittelkanäle 3 zudem erfindungsgemäß ein Verhältnis zwischen ihrer Wandstärke w und ihrem Durchmesser d von mindestens 0,4 auf (vgl. insbesondere auch die Figuren 2 und 3). Aufgrund des hohen Drucks in den Kältemittelkanälen 3 und den damit verbundenen kleinen Volumenströmen bietet sich eine Umlenkung auf der Kältemittelseite bevorzugt an.According to the Figures 1 and 4 to 8, a heat exchanger 1 according to the invention for cooling a heat source of a motor vehicle, in particular for cooling a heat pump or a high-voltage battery or an electronic component, has coolant channels 2 and coolant channels 3. According to the invention, carbon dioxide (CO 2 ) is used as a refrigerant in all heat exchangers 1 and, in addition, a refrigerant flow path 7 is deflected at least once in a U-shape. Due to the at least one-time U-shaped deflection of at least the refrigerant flow path 7, the efficiency and also the performance of the heat exchanger 1 according to the invention can be significantly increased. Since CO 2 is used as a refrigerant and comparatively high pressures occur, the refrigerant channels 3 according to the invention also have a ratio between their wall thickness w and their diameter d of at least 0.4 (cf. in particular also Figures 2 and 3 ). Due to the high pressure in the refrigerant channels 3 and the associated small volume flows, a deflection on the refrigerant side is preferred.

Die einzelnen Kältemittelkanäle 3 sind dabei in Flachrohren 4 parallel zueinander verlaufend angeordnet, wobei ein zwischen zwei Kältemittelkanälen 3 vorhandener Steg 5 eine Breite b aufweist, die zumindest 40% des Durchmessers des Kältemittelkanals 3, vorzugsweise sogar 70 oder 100% des Durchmessers des Kältemittelkanals 3 beträgt (vgl. wiederum die Figuren 2 und 3). Derart dicke Stege 5 gewährleisten die erforderliche Zugfestigkeit. Selbstverständlich ist dabei denkbar, dass die einzelnen Kältemittelkanäle 3 gleichmäßig oder progressiv verschaltet sind. Progressiv bedeutet dabei, dass die Strömungsquerschnittsfläche der Kältemittelseite von einem Strömungsweg zum nächsten zunimmt. Dadurch wird dem bei der Verdampfung zunehmenden Volumen der Kältemittelströmung Rechnung getragen. Dies betrifft nicht die geometrische Form der einzelnen Kältemittelkanäle 3 in dem jeweiligen Flachrohr 4, sondern wird durch die Anzahl der Flachrohre 4 pro Strömungsweg 6, 7 eingestellt.The individual refrigerant channels 3 are arranged in flat tubes 4 running parallel to one another, with a web 5 present between two refrigerant channels 3 having a width b which is at least 40% of the diameter of the refrigerant channel 3, preferably even 70 or 100% of the diameter of the refrigerant channel 3 (cf. again the Figures 2 and 3 ). Such thick webs 5 ensure the required tensile strength. Of course, it is conceivable that the individual refrigerant channels 3 are connected evenly or progressively. Progressive means that the flow cross-sectional area of the refrigerant side increases from one flow path to the next. This takes into account the increasing volume of the refrigerant flow during evaporation. This does not affect the geometric shape of the individual refrigerant channels 3 in the respective flat tube 4, but is set by the number of flat tubes 4 per flow path 6, 7.

Um die erforderliche hohe Druckfestigkeit an sich gewährleisten zu können, sind die Kältemittelkanäle 3 vorzugsweise rund oder elliptisch ausgebildet (vgl. Figur 3), können aber auch einen quadratischen Querschnitt mit ausgerundeten Ecken aufweisen, wie dies beispielsweise gemäß der Figur 2 dargestellt ist.In order to be able to guarantee the required high pressure resistance, the refrigerant channels 3 are preferably round or elliptical (cf. Figure 3 ), but can also have a square cross section with rounded corners, as for example according to Figure 2 is shown.

Betrachtet man den Wärmeübertrager 1 gemäß der Figur 1, so kann man erkennen, dass dieser im Kreuzstrom arbeitet, so dass ein Kühlmittelströmungsweg 6 im Wesentlichen orthogonal zum Kältemittelströmungsweg 7 strömt. Selbstverständlich ist alternativ auch die Ausführung als Gegenstromkühler denkbar. Da bei einem Wärmeübertrager 1 (Chiller) im Normalbetrieb mit einer Überhitzung des Kältemittels von ca. 5 Kelvin zu rechnen ist, ist es darüber hinaus vorteilhaft, wenn sich insbesondere der letzte Abschnitt vor dem Kältemittelaustritt im Gegenstrom befindet.If you look at the heat exchanger 1 according to the Figure 1 , it can be seen that this works in cross-flow, so that a coolant flow path 6 flows essentially orthogonally to the coolant flow path 7. Of course, the design as a countercurrent cooler is also conceivable. Since an overheating of the refrigerant of approximately 5 Kelvin is to be expected in a heat exchanger 1 (chiller) in normal operation, it is also advantageous if the last section in particular before the refrigerant exits is in countercurrent.

Betrachtet man die einzelnen Strömungswege 6, 7 beim Wärmeübertrager 1 gemäß der Figur 1, so kann man erkennen, dass sowohl der Kältemittelströmungsweg 7 als auch der Kühlmittelströmungsweg 6 umgelenkt werden, wodurch sich eine besonders effektive Kühlung ergibt. Das Kältemittel und das Kühlmittel, beispielsweise ein Wasser-Glysantin-Gemisch, befinden sich in beiden Strömungswegen 6, 7 im Kreuzstrom, ebenso wie bei dem Wärmeübertrager 1 gemäß in Figuren 4 und 5. Hierbei ist es besonders sinnvoll, den Kältemittelaustritt und den Kühlmitteleintritt in den gleichen Abschnitt zu legen, wobei selbstverständlich die Kältemittelseite auch 4- oder 6-flutig ausgeführt sein kann.If you look at the individual flow paths 6, 7 in the heat exchanger 1 according to Figure 1 , it can be seen that both the coolant flow path 7 and the coolant flow path 6 are redirected, which results in particularly effective cooling. The refrigerant and the coolant, for example a water-glysantine mixture, are in cross-flow in both flow paths 6, 7, just as in the heat exchanger 1 according to FIG Figures 4 and 5 . It is particularly useful here to place the coolant outlet and the coolant inlet in the same section, although the coolant side can of course also be designed with 4 or 6 channels.

Der Wärmeübertrager 1 gemäß der Figur 5 funktioniert dabei im Kreuzstrom und ist 2-flutig, sowohl kältemittelseitig als auch kühlmittelseitig und besitzt jeweils eine Umlenkung des Kühlmittelströmungsweges 6 und des Kältemittelströmungsweges 7 in der Breite. Der Wärmeübertrager 1 gemäß der Figur 4 ist 4-flutig ausgebildet und besitzt dabei eine im Vergleich zu dem gemäß der Figur 5 gezeigten Wärmeübertrager 1 eine höhere Strömungsgeschwindigkeit, durch welche der Wärmeübertrag verbessert wird. Durch die 4-flutige Ausbildung kann auch ein besserer Schutz gegen Überhitzung gewährleistet werden.The heat exchanger 1 according to Figure 5 works in cross-flow and has two flows, both on the coolant side and on the coolant side, and each has a deflection of the coolant flow path 6 and the coolant flow path 7 in width. The heat exchanger 1 according to Figure 4 is designed with 4 flutes and has one compared to that according to the Figure 5 Heat exchanger 1 shown has a higher flow velocity, which improves the heat transfer. The 4-flow design also ensures better protection against overheating.

Prinzipiell sind die Kältemittelkanäle 3 in einem oder zwei Sammlern 8 gefasst, in welchen eine Kanalhöhe h im Verhältnis zur Materialstärke w1 (Wandstärke des Sammlers 8) maximal 3, besser sogar kleiner als 1,5 beträgt. Ein derartiger Sammler 8 ist beispielsweise in den Figuren 6 und 7 dargestellt.In principle, the refrigerant channels 3 are contained in one or two collectors 8, in which a channel height h in relation to the material thickness w 1 (wall thickness of the collector 8) is a maximum of 3, preferably even less than 1.5. Such a collector 8 is, for example, in the Figures 6 and 7 shown.

Um einen ausreichenden Wärmeübergang sowie eine ausreichende Druckbeständigkeit gewährleisten zu können, liegt ein hydraulischer Durchmesser dH der Kältemittelkanäle 3 zwischen 0,3 und 1,0 mm. Ein vergleichbarer hydraulischer Durchmesser dH für die Kühlmittelkanäle 2 liegt vorzugsweise zwischen 0,5 und 2,0 mm. Hierdurch kann ein optimales Verhältnis von Druckabfall und Wärmeübertragung auf der Kühlmittelseite erreicht werden. Ein besonders vorteilhaftes Verhältnis zwischen dem hydraulischen Durchmesser der Kühlmittelkanäle 2 und dem hydraulischen Durchmesser der Kältemittelkanäle 3 ist größer als 1,0, vorzugsweise liegt dieses Verhältnis zwischen 1,5 und 3. Auf der Kältemittelseite wird üblicherweise ein Zweiphasengemisch erwärmt, das in der Regel zu deutlichen schlechteren Wärmeübergangskoeffizienten auf der Kältemittelseite als auf der Kühlmittelseite führt. Um das Kältemittel effizient erwärmen und damit das Kühlmittel effizient kühlen zu können, müssen hohe Wärmeübertragungsflächen und kleine hydraulische Durchmesser auf der Kältemittelseite realisiert werden. Auf der Kühlmittelseite hingegen liegt ein sehr guter Wärmeübergang vor, wobei auf der Kühlmittelseite jedoch ein niedrigerer Druckabfall anzustreben ist.To ensure sufficient heat transfer as well In order to ensure sufficient pressure resistance, a hydraulic diameter d H of the refrigerant channels 3 is between 0.3 and 1.0 mm. A comparable hydraulic diameter d H for the coolant channels 2 is preferably between 0.5 and 2.0 mm. This allows an optimal ratio of pressure drop and heat transfer to be achieved on the coolant side. A particularly advantageous ratio between the hydraulic diameter of the coolant channels 2 and the hydraulic diameter of the coolant channels 3 is greater than 1.0, preferably this ratio is between 1.5 and 3. A two-phase mixture is usually heated on the coolant side, which is usually too significantly worse heat transfer coefficients on the refrigerant side than on the coolant side. In order to heat the refrigerant efficiently and thus cool the coolant efficiently, high heat transfer surfaces and small hydraulic diameters must be implemented on the refrigerant side. On the coolant side, however, there is very good heat transfer, although a lower pressure drop should be aimed for on the coolant side.

Um eine Wärmeübertragung zusätzlich verbessern zu können, sind in den Kühlmittelkanälen 2 Wärmeübertragerelemente 9, beispielsweise Turbulenzeinlagen oder Wellrippen angeordnet, die die zum Wärmetausch zur Verfügung stehende Oberfläche erhöhen. Selbstverständlich kann auch die dem Wärmeübertrag zur Verfügung stehende Oberfläche strukturiert ausgebildet sein, wodurch sich die Oberfläche wiederum vergrößert. Aufgrund der hohen Druckbelastung sowie der Anforderung an die Innenreinheit ist eine strukturierte Oberfläche für die Kältemittelseite, d. h. konkret für die Innenmantelfläche der Kältemittelkanäle 3 hingegen nicht geeignet.In order to be able to further improve heat transfer, heat exchanger elements 9, for example turbulence inserts or corrugated fins, are arranged in the coolant channels 2, which increase the surface area available for heat exchange. Of course, the surface available for heat transfer can also be designed to be structured, which in turn increases the surface area. Due to the high pressure load and the requirement for internal cleanliness, a structured surface is required for the refrigerant side, i.e. H. However, it is not specifically suitable for the inner surface of the refrigerant channels 3.

Betrachtet man schließlich noch den Wärmeübertrager 1 gemäß der Figur 6, so ist auch hier der Kältemittelströmungsweg 7 zumindest einmal U-förmig umgelenkt und zwar in der Breite, wobei der Kühlmittelströmungsweg 6 in entsprechenden Kühlmittelsammlern 10 umgelenkt werden kann. Der Kühlmittelströmungsweg 6 und der Kältemittelströmungsweg 7 verlaufen hierbei im Gegenstrom.Finally, if you look at the heat exchanger 1 according to the Figure 6 , here too the coolant flow path 7 is deflected at least once in a U-shape, specifically in width, whereby the coolant flow path 6 can be deflected in corresponding coolant collectors 10. The coolant flow path 6 and the coolant flow path 7 run in countercurrent.

Bei dem Wärmeübertrager 1 gemäß der Figur 7 erfolgt sowohl eine U-förmige Umlenkung des Kühlmittelströmungsweges 6 als auch eine U-förmige Umlenkung des Kältemittelströmungsweges 7, jeweils 2-flutig, wobei auch hier die Durchströmung im Gegenstrom. Da beim Gegenstrom Verluste von wärmeübertragender Fläche in Kauf genommen werden müssen, ist hier prinzipiell ein Kreuzstrom zu bevorzugen.In the heat exchanger 1 according to Figure 7 There is both a U-shaped deflection of the coolant flow path 6 and a U-shaped deflection of the coolant flow path 7, each with two flows, with the flow in countercurrent here too. Since losses from the heat-transferring surface have to be accepted with counterflow, cross-flow is generally preferable here.

Beim Gegenstrom müssen in Strömungsrichtung müssen Verteilkanäle mit eingebracht werden, wogegen der Kreuzstrom konstruktiv einfacher ist, jedoch nicht besonders gut bezüglich Effizienz und Reaktion auf Überhitzung. Am besten ist für sehr kompakte Wärmeübertrager daher eine Kombination bei der zwar die einzelnen Abschnitte im Kreuzstrom betrieben werden, diese jedoch (zumindest anteilig) nach dem Gegenstromprinzip hintereinander angeordnet werden.With counterflow, distribution channels must be installed in the direction of flow, whereas crossflow is structurally simpler, but not particularly good in terms of efficiency and reaction to overheating. For very compact heat exchangers, the best solution is a combination in which the individual sections are operated in cross-flow, but they are arranged one behind the other (at least in part) according to the counter-current principle.

Gemäß der Fig. 8 ist ein als R744-Verdampfer ausgebildeter Wärmeübertrager 1 mit einem vorgeschalteten Expansionsorgan 11 gezeigt. Das Expansionsorgan 11 kann beispielsweise als elektronisches Expansionsventil (EXV) ausgebildet sein. Dieses Expansionsorgan 11 wurde bei herkömmlichen R134a-Verdampfern in der Regel an diesem angebaut. Für R744 und auch für Bauteile mit elektronischem Expansionsventil (EXV) werden diese jedoch meistens getrennt vom Wärmeübertrager 1 in den Kreislauf eingebunden. Wird das Expansionsorgan 11 in Baueinheit mit dem Verdampfer verbaut, ergeben sich Kostenvorteile, Vorteile beim Handling und ggf. Vorteile bei den Schnittstellen. Unter dem Begriff "Baueinheit" ist dabei zu verstehen, dass das Expansionsorgan 11 (insbesondere TXV) mechanisch (ggf. sogar stoffschlüssig) mit dem Verdampfer/Chiller verbunden ist. Eine solche Baueinheit könnte z.B. durch eine Integration des Ventilgehäuses in den Verdampfer/Chiller-Flansch (+ggf. ein Mitlöten) erfolgen.According to the Fig. 8 a heat exchanger 1 designed as an R744 evaporator is shown with an upstream expansion element 11. The expansion element 11 can be designed, for example, as an electronic expansion valve (EXV). This expansion element 11 was usually attached to conventional R134a evaporators. However, for R744 and also for components with electronic expansion valves (EXV), these are usually integrated into the circuit separately from heat exchanger 1. If the expansion element 11 is installed in a structural unit with the evaporator, there are cost advantages, advantages in handling and, if necessary, advantages in terms of the interfaces. The term “unit” is understood to mean that the expansion element 11 (in particular TXV) is mechanically (possibly even cohesively) connected to the evaporator/chiller. Such a unit could be achieved, for example, by integrating the valve housing into the evaporator/chiller flange (+ soldering if necessary).

Mit dem erfindungsgemäßen Wärmeübertrager 1 lässt sich eine hohe Leistung, d. h. eine hohe Effizienz des Wärmeübertragers 1 erreichen, bei geringem Bauraumbedarf und günstiger Anschlusssituation, insbesondere sofern ein Anschluss sowohl für den Kühlmittelströmungsweg 6 als auch für den Kältemittelströmungsweg 7 auf der gleichen Seite des Wärmeübertragers 1 angeordnet sind. Durch die erfindungsgemäß ausgebildeten Kältemittelkanäle 3 kann darüber hinaus eine hohe Druckbeständigkeit gewährleistet werden, welche den Einsatz von CO2 als Kältemittel ermöglicht. With the heat exchanger 1 according to the invention, a high performance, ie a high efficiency of the heat exchanger 1 can be achieved, with a small space requirement and a favorable connection situation, in particular if a connection for both the coolant flow path 6 and for the coolant flow path 7 is arranged on the same side of the heat exchanger 1 are. The refrigerant channels 3 designed according to the invention can also ensure high pressure resistance, which enables the use of CO 2 as a refrigerant.

Claims (9)

  1. Heat exchanger (1) for cooling a heat source of a motor vehicle, having coolant channels (2) forming a coolant flow path (6) and refrigerant channels (3) forming a refrigerant flow path (7), wherein
    - the refrigerant is CO2,
    - the refrigerant flow path (7) is deviated at least once in the shape of a U,
    - the refrigerant channels (3) have a ratio of at least 0.4 between their wall thickness (w) and the diameter (d),
    - a web existing (5) between two refrigerant channels (3) has a width b equal to at least 40% of the diameter of the refrigerant channel (3), preferably even 70%, particularly preferably even 100% of the diameter of the refrigerant channel (3),
    - the refrigerant channels (3) are combined in a manifold (8),
    characterised in that the manifold (8) comprises distribution channels for which h/w1 < 3.0, in particular h/w1 < 1.5, where h is the height of the distribution channel/manifold and w1 is the wall thickness of the manifold and the coolant flow path (6) is deviated at least once in the shape of a U.
  2. Heat exchanger according to claim 1,
    characterised in that
    the refrigerant channels (3) have a square cross section with rounded corners.
  3. Heat exchanger according to claim 1,
    characterised in that
    the refrigerant channels (3) are configured to be round or elliptical.
  4. Heat exchanger according to any one of claims 1 to 3,
    characterised in that
    the refrigerant channels (3) and the cooling channels (2) are arranged in sections in cross-flow and overall in counter-flow.
  5. Heat exchanger according to any one of claims 1 to 4,
    characterised in that
    heat exchanger elements (9), in particular turbulence inserts or corrugated fins, are arranged in the refrigerant channels (2).
  6. Heat exchanger according to any one of claims 1 to 5,
    characterised in that
    - a hydraulic diameter dh of the refrigerant channels (3) is 0.3 mm < dh < 1.0 mm,
    - a hydraulic diameter dh of the coolant channels (2) is 0.5 mm < dh < 2.0 mm.
  7. Heat exchanger according to any one of claims 1 to 6,
    characterised in that
    a refrigerant flow path (7) is configured progressively.
  8. Heat exchanger according to any one of claims 1 to 7,
    characterised in that
    the distance between two flat tubes (4) framing refrigerant channels (3) forms a maximum coolant channel height of 3.5 mm.
  9. Heat exchanger according to any one of claims 1 to 8,
    characterised in that
    the heat exchanger (1) is configured as an evaporator and is configured in a constructional unit with an upstream expansion member (11), in particular an electronic expansion valve (EXV).
EP15190213.7A 2014-10-17 2015-10-16 Heat exchanger Active EP3009780B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014221168.9A DE102014221168A1 (en) 2014-10-17 2014-10-17 Heat exchanger

Publications (3)

Publication Number Publication Date
EP3009780A1 EP3009780A1 (en) 2016-04-20
EP3009780B1 EP3009780B1 (en) 2017-05-10
EP3009780B2 true EP3009780B2 (en) 2023-10-18

Family

ID=54365950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15190213.7A Active EP3009780B2 (en) 2014-10-17 2015-10-16 Heat exchanger

Country Status (2)

Country Link
EP (1) EP3009780B2 (en)
DE (1) DE102014221168A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190072413A (en) * 2017-12-15 2019-06-25 한온시스템 주식회사 Heat exchanger
US20210285727A1 (en) * 2020-03-10 2021-09-16 University Of Maryland, College Park Cross-flow heat exchanger systems and methods for fabrication thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877000A (en) 1955-09-16 1959-03-10 Int Harvester Co Heat exchanger
DE3536325C2 (en) 1984-10-12 1987-12-10 Showa Aluminium Co Ltd
US5172761A (en) 1992-05-15 1992-12-22 General Motors Corporation Heat exchanger tank and header
DE19906289A1 (en) 1998-02-16 1999-08-19 Denso Corp Heat exchanger for carbon dioxide coolant in circuit
US6155340A (en) 1997-05-12 2000-12-05 Norsk Hydro Heat exchanger
JP2000356488A (en) 1999-06-11 2000-12-26 Showa Alum Corp Tube for heat exchanger
EP1070929A2 (en) 1999-07-20 2001-01-24 Valeo Klimatechnik GmbH Automotive air conditioning system evaporator
US20030080714A1 (en) 2001-10-29 2003-05-01 Yoshimitsu Inoue Battery temperature control device for controlling the temperature of battery installed in vehicle
US6564863B1 (en) 1999-04-28 2003-05-20 Valeo Thermique Moteur Concentrated or dilutable solutions or dispersions, preparation method and uses
EP1452814A1 (en) 2001-11-08 2004-09-01 Zexel Valeo Climate Control Corporation Heat exchanger and tube for heat exchanger
DE102004024825A1 (en) 2003-05-23 2004-12-09 Denso Corp., Kariya Heat exchange tube with several fluid paths
US20040256090A1 (en) 2003-06-23 2004-12-23 Yoshiki Katoh Heat exchanger
DE102005057327A1 (en) 2004-12-03 2006-06-22 Modine Manufacturing Co., Racine Manufacturing process and high pressure heat exchanger
DE102005016540A1 (en) 2005-04-08 2006-10-12 Behr Gmbh & Co. Kg Multichannel flat tube
US20070251682A1 (en) 2006-04-28 2007-11-01 Showa Denko K.K. Heat exchanger
DE102006053702A1 (en) 2006-11-13 2008-05-15 Behr Gmbh & Co. Kg Heat exchanger i.e. gas cooler, for use in air conditioning system of motor vehicle, has flat pipes provided for forming heat transfer surface, and longitudinal and transverse channels that are arranged in collecting pipe
US20090277606A1 (en) 2008-05-12 2009-11-12 Reiss Iii Thomas J Heat exchanger support and method of assembling a heat exchanger
DE102012109038A1 (en) 2011-12-19 2013-06-20 Visteon Global Technologies Inc. Heat transfer device for refrigerant circuit of air conditioning apparatus for passenger compartment of motor car, has heat exchanger formed with valve and collector as compact, coherent module with integrated refrigerant connections
DE102012221925A1 (en) 2012-11-29 2014-06-05 Behr Gmbh & Co. Kg Heat exchanger
DE102012224353A1 (en) 2012-12-21 2014-06-26 Behr Gmbh & Co. Kg Heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005020499A1 (en) 2005-04-29 2006-11-09 Behr Gmbh & Co. Kg Heat exchanger e.g. rear evaporator, for motor vehicle, has pipes, where exchanger flows-through cooling medium and medium flow is distributed such that flow comes to non mutual stirring of cooling medium partial flow
DE102011107281A1 (en) 2011-07-15 2013-01-17 Volkswagen Ag Chiller for cooling heat source of motor vehicle, has refrigerant flow channel whose refrigerant volume is set greater by predetermined factor than coolant volume of coolant flow channel

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877000A (en) 1955-09-16 1959-03-10 Int Harvester Co Heat exchanger
DE3536325C2 (en) 1984-10-12 1987-12-10 Showa Aluminium Co Ltd
US5172761A (en) 1992-05-15 1992-12-22 General Motors Corporation Heat exchanger tank and header
US6155340A (en) 1997-05-12 2000-12-05 Norsk Hydro Heat exchanger
DE19906289A1 (en) 1998-02-16 1999-08-19 Denso Corp Heat exchanger for carbon dioxide coolant in circuit
US6564863B1 (en) 1999-04-28 2003-05-20 Valeo Thermique Moteur Concentrated or dilutable solutions or dispersions, preparation method and uses
JP2000356488A (en) 1999-06-11 2000-12-26 Showa Alum Corp Tube for heat exchanger
EP1070929A2 (en) 1999-07-20 2001-01-24 Valeo Klimatechnik GmbH Automotive air conditioning system evaporator
US20030080714A1 (en) 2001-10-29 2003-05-01 Yoshimitsu Inoue Battery temperature control device for controlling the temperature of battery installed in vehicle
EP1452814A1 (en) 2001-11-08 2004-09-01 Zexel Valeo Climate Control Corporation Heat exchanger and tube for heat exchanger
DE102004024825A1 (en) 2003-05-23 2004-12-09 Denso Corp., Kariya Heat exchange tube with several fluid paths
US20040256090A1 (en) 2003-06-23 2004-12-23 Yoshiki Katoh Heat exchanger
DE102005057327A1 (en) 2004-12-03 2006-06-22 Modine Manufacturing Co., Racine Manufacturing process and high pressure heat exchanger
DE102005016540A1 (en) 2005-04-08 2006-10-12 Behr Gmbh & Co. Kg Multichannel flat tube
US20070251682A1 (en) 2006-04-28 2007-11-01 Showa Denko K.K. Heat exchanger
DE102006053702A1 (en) 2006-11-13 2008-05-15 Behr Gmbh & Co. Kg Heat exchanger i.e. gas cooler, for use in air conditioning system of motor vehicle, has flat pipes provided for forming heat transfer surface, and longitudinal and transverse channels that are arranged in collecting pipe
US20090277606A1 (en) 2008-05-12 2009-11-12 Reiss Iii Thomas J Heat exchanger support and method of assembling a heat exchanger
DE102012109038A1 (en) 2011-12-19 2013-06-20 Visteon Global Technologies Inc. Heat transfer device for refrigerant circuit of air conditioning apparatus for passenger compartment of motor car, has heat exchanger formed with valve and collector as compact, coherent module with integrated refrigerant connections
DE102012221925A1 (en) 2012-11-29 2014-06-05 Behr Gmbh & Co. Kg Heat exchanger
DE102012224353A1 (en) 2012-12-21 2014-06-26 Behr Gmbh & Co. Kg Heat exchanger

Also Published As

Publication number Publication date
EP3009780A1 (en) 2016-04-20
DE102014221168A1 (en) 2016-04-21
EP3009780B1 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
EP1985953B1 (en) Heat exchanger, in particular exhaust gas cooler, method for operating such a heat exchanger, system with an exhaust gas cooler
DE69423595T2 (en) Plate heat exchanger
DE102005015799B4 (en) Refrigerant evaporator
EP1459026B1 (en) Heat exchanger, particularly for a motor vehicle
DE69911131T2 (en) heat exchangers
DE112012004988T5 (en) heat exchangers
DE102007031824A1 (en) Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
EP2859296A1 (en) Heat exchanger system, method for producing same, and fluid distribution element
DE10217581A1 (en) Heat exchanger collector construction
WO2012159958A1 (en) Multiplate heat exchanger
EP3491323B1 (en) Heat exchanger having a micro-channel structure or wing tube structure
DE19933913A1 (en) Evaporator of an automotive air conditioning system
EP1892491A2 (en) Unit with a gas cooler and inner heat exchanger and heat exchanger
EP3009780B2 (en) Heat exchanger
EP2937658B1 (en) Internal heat exchanger
EP1563239B1 (en) Heat exchanger
DE102007001430A1 (en) A method for forming the collector sides of gas cooler heat exchangers has the individual flow tubes terminating in a rolled section bonded to square wave fin elements
DE102006005245A1 (en) Heat exchanger for a refrigeration cycle
DE102015111398A1 (en) Device for heat transfer
EP2994712B1 (en) Heat exchanger
EP3239641A1 (en) Flat tube for a heat exchanger
EP1520146A1 (en) Heat exchanger
DE102020213172A1 (en) Stacking plate for a stacking plate heat exchanger and associated stacking plate heat exchanger
DE102015223188A1 (en) Heat exchanger
DE102004009415A1 (en) Heat exchanger with side panels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160916

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 7/16 20060101AFI20161130BHEP

Ipc: F28F 1/02 20060101ALI20161130BHEP

Ipc: F28D 21/00 20060101ALI20161130BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 892809

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015001033

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015001033

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

26 Opposition filed

Opponent name: VALEO SYSTEMES THERMIQUES

Effective date: 20180207

R26 Opposition filed (corrected)

Opponent name: VALEO SYSTEMES THERMIQUES

Effective date: 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171016

R26 Opposition filed (corrected)

Opponent name: VALEO SYSTEMES THERMIQUES

Effective date: 20180207

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181030

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191016

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VALEO SYSTEMES THERMIQUES

Effective date: 20180207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 892809

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201016

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20231018

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502015001033

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231020

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240527