EP3009081A1 - Bloc-batterie d'instrument chirurgical avec émulation de profil de puissance - Google Patents

Bloc-batterie d'instrument chirurgical avec émulation de profil de puissance Download PDF

Info

Publication number
EP3009081A1
EP3009081A1 EP15189688.3A EP15189688A EP3009081A1 EP 3009081 A1 EP3009081 A1 EP 3009081A1 EP 15189688 A EP15189688 A EP 15189688A EP 3009081 A1 EP3009081 A1 EP 3009081A1
Authority
EP
European Patent Office
Prior art keywords
assembly
power
battery pack
power assembly
medical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15189688.3A
Other languages
German (de)
English (en)
Other versions
EP3009081B1 (fr
Inventor
David C. Yates
Iv Frederick E. Shelton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Endo Surgery Inc
Original Assignee
Ethicon Endo Surgery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo Surgery Inc filed Critical Ethicon Endo Surgery Inc
Priority to PL15189688T priority Critical patent/PL3009081T3/pl
Publication of EP3009081A1 publication Critical patent/EP3009081A1/fr
Application granted granted Critical
Publication of EP3009081B1 publication Critical patent/EP3009081B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/597Protection against reversal of polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07271Stapler heads characterised by its cartridge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0814Preventing re-use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4221Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells with battery type recognition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/30Preventing polarity reversal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/23The load being a medical device, a medical implant, or a life supporting device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • endoscopic surgical instruments may be preferred over traditional open surgical devices since a smaller incision may reduce the post-operative recovery time and complications. Consequently, some endoscopic surgical instruments may be suitable for placement of a distal end effector at a desired surgical site through the cannula of a trocar. These distal end effectors may engage tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, stapler, clip applier, access device, drug/gene therapy delivery device, and energy delivery device using ultrasonic vibration, RF, laser, etc.). Endoscopic surgical instruments may include a shaft between the end effector and a handle portion, which is manipulated by the clinician.
  • Such a shaft may enable insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby facilitating positioning of the end effector within the patient. Positioning of an end effector may be further facilitated through inclusion of one or more articulation joints or features, enabling the end effector to be selectively articulated or otherwise deflected relative to the longitudinal axis of the shaft.
  • endoscopic surgical instruments include surgical staplers. Some such staplers are operable to clamp down on layers of tissue, cut through the clamped layers of tissue, and drive staples through the layers of tissue to substantially seal the severed layers of tissue together near the severed ends of the tissue layers.
  • surgical staplers are disclosed in U.S. Pat. No. 4,805,823 , entitled “Pocket Configuration for Internal Organ Staplers,” issued February 21, 1989; U.S. Pat. No. 5,415,334 , entitled “Surgical Stapler and Staple Cartridge,” issued May 16, 1995; U.S. Pat. No. 5,465,895 , entitled “Surgical Stapler Instrument,” issued November 14, 1995; U.S. Pat. No.
  • surgical staplers referred to above are described as being used in endoscopic procedures, it should be understood that such surgical staplers may also be used in open procedures and/or other non-endoscopic procedures.
  • a surgical stapler may be inserted through a thoracotomy, and thereby between a patient's ribs, to reach one or more organs in a thoracic surgical procedure that does not use a trocar as a conduit for the stapler.
  • Such procedures may include the use of the stapler to sever and close a vessel leading to a lung. For instance, the vessels leading to an organ may be severed and closed by a stapler before removal of the organ from the thoracic cavity.
  • surgical staplers may be used in various other settings and procedures.
  • 2014/0239036 entitled “Jaw Closure Feature for End Effector of Surgical Instrument,” Published August 28, 2014; U.S. Patent Application Publication No. 2014/0239040 , entitled “Surgical Instrument with Articulation Lock having a Detenting Binary Spring,” published August 24, 2014; U.S. Patent Application Publication No. 2014/0239043 , entitled “Distal Tip Features for End Effector of Surgical Instrument,” published August 28, 2014; U.S. Patent Application Publication No. 20140239037 , entitled “Staple Forming Features for Surgical Stapling Instrument,” filed August 28, 2014; U.S. Patent Application Publication No. 2014/0239038 , entitled “Surgical Instrument with Multi-Diameter Shaft,” published August 28, 2014; and U.S. Patent Application Publication No. 2014/0239044 , entitled “Installation Features for Surgical Instrument End Effector Cartridge,” published August 28, 2014.
  • FIGS. 1-6 depict a motor-driven surgical cutting and fastening instrument (10) that may or may not be reused.
  • the instrument (10) includes a housing (12) that comprises a handle assembly (14) that is configured to be grasped, manipulated and actuated by the clinician.
  • the housing (12) is configured for operable attachment to an interchangeable shaft assembly (200) that has a surgical end effector (300) operably coupled thereto that is configured to perform one or more surgical tasks or procedures.
  • an interchangeable shaft assembly 200
  • a surgical end effector (300) operably coupled thereto that is configured to perform one or more surgical tasks or procedures.
  • housing may also encompass a housing or similar portion of a robotic system that houses or otherwise operably supports at least one drive system that is configured to generate and apply at least one control motion that could be used to actuate the interchangeable shaft assemblies disclosed herein and their respective equivalents.
  • frame may refer to a portion of a handheld surgical instrument.
  • frame may also represent a portion of a robotically controlled surgical instrument and/or a portion of the robotic system that may be used to operably control a surgical instrument.
  • the interchangeable shaft assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods disclosed in U.S. Patent Application Publication No. US 2012/0298719 , entitled “Surgical Stapling Instruments With Rotatable Staple Deployment Arrangements,” published November 29,2012.
  • the housing (12) depicted in FIGS. 1-3A is shown in connection with an interchangeable shaft assembly (200) that includes an end effector (300) comprising a surgical cutting and fastening device that is configured to operably support a surgical staple cartridge (1070) therein.
  • the housing (12) may be configured for use in connection with interchangeable shaft assemblies that include end effectors that are adapted to support different sizes and types of staple cartridges, have different shaft lengths, sizes, and types, etc.
  • the housing (12) may also be effectively employed with a variety of other interchangeable shaft assemblies including those assemblies that are configured to apply other motions and forms of energy such as, for example, radio frequency (RF) energy, ultrasonic energy and/or motion to end effector arrangements adapted for use in connection with various surgical applications and procedures.
  • RF radio frequency
  • end effectors, shaft assemblies, handles, surgical instruments, and/or surgical instrument systems can utilize any suitable fastener, or fasteners, to fasten tissue.
  • a fastener cartridge comprising a plurality of fasteners removably stored therein can be removably inserted into and/or attached to the end effector of a shaft assembly.
  • FIG. 1 illustrates the handle assembly (14) with an interchangeable shaft assembly (200) operably coupled thereto.
  • FIGS. 2 and 3A illustrate attachment of the interchangeable shaft assembly (200) to the housing (12) of handle assembly (14).
  • the handle assembly (14) may comprise a pair of interconnectable handle housing segments (16, 18) that may be interconnected by screws, snap features, adhesive, etc.
  • the handle housing segments (16, 18) cooperate to form a pistol grip portion (19) that can be gripped and manipulated by the clinician.
  • the handle assembly (14) operably supports a plurality of drive systems therein that are configured to generate and apply various control motions to corresponding portions of the interchangeable shaft assembly that is operably attached thereto.
  • the handle assembly (14) may further include a frame (20) that operably supports a plurality of drive systems.
  • the frame (20) can operably support a "first" or closure drive system, generally designated as (30), which may be employed to apply closing and opening motions to the interchangeable shaft assembly (200) that is operably attached or coupled thereto.
  • the closure drive system (30) may include an actuator in the form of a closure trigger (32) that is pivotally supported by the frame (20). More specifically, as illustrated in FIG. 4 , the closure trigger (32) is pivotally coupled to the housing (14) by a pin (33).
  • the closure drive system (30) further includes a closure linkage assembly (34) that is pivotally coupled to the closure trigger (32).
  • the closure linkage assembly (34) may include a first closure link (36) and a second closure link (38) that are pivotally coupled to the closure trigger (32) by a pin (35).
  • the second closure link (38) may also be referred to herein as an "attachment member” and include a transverse attachment pin (37).
  • the first closure link (36) may have a locking wall or end (39) thereon that is configured to cooperate with a closure release assembly (60) that is pivotally coupled to the frame (20).
  • the closure release assembly (60) may comprise a release button assembly (62) that has a distally protruding locking pawl (64) formed thereon.
  • the release button assembly (62) may be pivoted in a counterclockwise direction by a release spring (not shown).
  • closure release assembly (60) serves to lock the closure trigger (32) in the fully actuated position.
  • release button assembly (62) is configured and positioned to be actuated by the thumb of the operator hand that grasps pistol grip (19).
  • the operator may grasp pistol grip (19) with one hand, actuate closure trigger (32) with one or more fingers of the same hand, and then actuate release button assembly (62) with the thumb of the same hand, without ever needing to release the grasp of pistol grip (19) with the same hand.
  • the clinician desires to unlock the closure trigger (32) to permit it to be resiliently driven back to the unactuated position, the clinician simply pivots the closure release button assembly (62) such that the locking pawl (64) is moved out of engagement with the locking wall (39) on the first closure link (36).
  • the closure trigger (32) may pivot back to the unactuated position.
  • Other closure trigger locking and release arrangements may also be employed.
  • FIG. 1 illustrates the closure trigger (32) in its unactuated position which is associated with an open, or unclamped, configuration of the shaft assembly (200) in which tissue can be positioned between the jaws of the shaft assembly (200).
  • the closure trigger (32) may be moved or actuated to an actuated position (not shown) which is associated with a closed, or clamped, configuration of the shaft assembly (200) in which tissue is clamped between the jaws of the shaft assembly (200).
  • the closure release button (62) is pivoted between a first position and a second position.
  • the rotation of the closure release button (62) can be referred to as being an upward rotation. However, at least a portion of the closure release button (62) is being rotated toward the circuit board (100).
  • the closure release button (62) can include an arm (61) extending therefrom and a magnetic element (63), such as a permanent magnet, for example, mounted to the arm (61).
  • a magnetic element such as a permanent magnet, for example, mounted to the arm (61).
  • the circuit board (100) can include at least one sensor configured to detect the movement of the magnetic element (63).
  • a Hall Effect sensor (not shown), for example, can be mounted to the bottom surface of the circuit board (100). The Hall Effect sensor can be configured to detect changes in a magnetic field surrounding the Hall Effect sensor caused by the movement of the magnetic element (63).
  • the Hall Effect sensor can be in signal communication with a microcontroller, for example, which can determine whether the closure release button (62) is in its first position, which is associated with the unactuated position of the closure trigger (32) and the open configuration of the end effector, its second position, which is associated with the actuated position of the closure trigger (32) and the closed configuration of the end effector, and/or any position between the first position and the second position.
  • a microcontroller for example, which can determine whether the closure release button (62) is in its first position, which is associated with the unactuated position of the closure trigger (32) and the open configuration of the end effector, its second position, which is associated with the actuated position of the closure trigger (32) and the closed configuration of the end effector, and/or any position between the first position and the second position.
  • the handle assembly (14) and the frame (20) may operably support another drive system referred to herein as a firing drive system (80) that is configured to apply firing motions to corresponding portions of the interchangeable shaft assembly attached thereto.
  • the firing drive system may (80) also be referred to herein as a "second drive system”.
  • the firing drive system (80) may employ an electric motor (82), located in the pistol grip portion (19) of the handle assembly (14).
  • the motor (82) may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example.
  • the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor.
  • the motor (82) may be powered by a power source (90) that in one example may comprise a removable power pack (92).
  • the power pack (92) may comprise a proximal housing portion (94) that is configured for attachment to a distal housing portion (96).
  • the proximal housing portion (94) and the distal housing portion (96) are configured to operably support a plurality of batteries (98) therein.
  • Batteries (98) may each comprise, for example, a Lithium Ion ("LI”) or other suitable battery.
  • the distal housing portion (96) is configured for removable operable attachment to a control circuit board assembly (100) that is also operably coupled to the motor (82).
  • a number of batteries (98) may be connected in series may be used as the power source for the surgical instrument (10).
  • the power source (90) may be replaceable and/or rechargeable.
  • Various alternative forms that power source (90) may take will be described in greater detail below.
  • the electric motor (82) can include a rotatable shaft (not shown) that operably interfaces with a gear reducer assembly (84) that is mounted in meshing engagement with a with a set, or rack, of drive teeth (122) on a longitudinally-movable drive member (120).
  • a voltage polarity provided by the power source (90) can operate the electric motor (82) in a clockwise direction.
  • the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor (82) in a counterclockwise direction.
  • the drive member (120) will be axially driven in the distal direction "DD".
  • the handle assembly (14) can include a switch that can be configured to reverse the polarity applied to the electric motor (82) by the power source (90). As with the other forms described herein, the handle assembly (14) can also include a sensor that is configured to detect the position of the drive member (120) and/or the direction in which the drive member (120) is being moved.
  • Actuation of the motor (82) can be controlled by a firing trigger (130) that is pivotally supported on the handle assembly (14).
  • the firing trigger (130) may be pivoted between an unactuated position and an actuated position.
  • the firing trigger (130) may be biased into the unactuated position by a spring (132) or other biasing arrangement such that when the clinician releases the firing trigger (130), it may be pivoted or otherwise returned to the unactuated position by the spring (132) or biasing arrangement.
  • the firing trigger (130) can be positioned "outboard" of the closure trigger (32) as was discussed above.
  • a firing trigger safety button (134) is pivotally mounted to the closure trigger (32) by pin (35).
  • the safety button (134) is positioned between the firing trigger (130) and the closure trigger (32) and has a pivot arm (136) protruding therefrom. See FIG. 4 .
  • the safety button (134) is contained in the handle assembly (14) where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger (130) and a firing position wherein the firing trigger (130) may be fired.
  • the safety button (134) and the firing trigger (130) pivot downwardly to a position where they can then be manipulated by the clinician.
  • the longitudinally movable drive member (120) has a rack of teeth (122) formed thereon for meshing engagement with a corresponding drive gear (86) of the gear reducer assembly (84).
  • At least one form also includes a manually-actuatable "bailout” assembly (140) that is configured to enable the clinician to manually retract the longitudinally movable drive member (120) should the motor (82) become disabled.
  • the bailout assembly (140) may include a lever or bailout handle assembly (142) that is configured to be manually pivoted into ratcheting engagement with a set of teeth (124) that are also provided in the drive member (120).
  • bailout assembly (140) may be constructed and operable in accordance with at least some of the teachings of U.S. Pub. No. 2010/0089970 , entitled “Powered Surgical Cutting and Stapling Apparatus with Manually Retractable Firing System,” published April 15, 2010.
  • handle assembly (14) and/or other features of instrument (10) may be constructed and operable in accordance with at least some of the teachings of U.S. Patent App. No. 14/226,142 , entitled “Surgical Instrument Comprising a Sensor System,” filed March 26, 2014.
  • the interchangeable shaft assembly (200) includes a surgical end effector (300) that comprises a lower jaw (1050) that is configured to operably support a staple cartridge (1070) therein.
  • the end effector (300) may further include an anvil (1060) that is pivotally supported relative to the lower jaw (1050).
  • the interchangeable shaft assembly (200) may further include an articulation joint (270) and an articulation lock (350) ( FIG. 5 ) that can be configured to releasably hold the end effector (300) in a desired position relative to a shaft axis SA-SA.
  • end effector (300), articulation joint (270), and/or articulation lock (350) may be constructed and operable in accordance with at least some of the teachings of U.S. Patent App. No. 13/803,086 , entitled “Articulatable Surgical Instrument Comprising an Articulation Lock,” filed March 14, 2013.
  • articulation joint (270) and features that drive articulation joint may be constructed and operable in accordance with at least some of the teachings of U.S. Pub. No. 2014/0243801 , entitled “Surgical Instrument End Effector Articulation Drive with Pinion and Opposing Racks,” published August 28, 2014.
  • the interchangeable shaft assembly (200) can further include a proximal housing or nozzle (201) comprised of nozzle portions (202) and (203).
  • the interchangeable shaft assembly (200) can further include a closure tube (260) that can be utilized to close and/or open the anvil (1060) of the end effector (300).
  • the shaft assembly (200) can include a spine (210) that can be configured to fixably support a shaft frame portion (212) of the articulation lock 350.
  • the spine (210) can be configured to slidably support a firing member (220) therein; and also slidably support the closure tube (260) that extends around the spine (210).
  • the spine (210) can also be configured to slidably support a proximal articulation driver (230).
  • the articulation driver (230) has a distal end (231) that is configured to operably engage the articulation lock (350).
  • the articulation lock (350) interfaces with an articulation frame (352) that is adapted to operably engage a drive pin (not shown) on the end effector frame (not shown).
  • the articulation lock (350) and the articulation frame may be constructed and operable in accordance with at least some of the teachings of U.S. Patent Application Publication No. 2014/0263541 , entitled "Articulatable Surgical Instrument Comprising an Articulation Lock," published September 18, 2014.
  • the spine (210) can comprise a proximal end (211) that is rotatably supported in a chassis (240).
  • the proximal end (211) of the spine (210) has a thread (214) formed thereon for threaded attachment to a spine bearing (not shown) configured to be supported within the chassis (240).
  • a spine bearing not shown
  • Such an arrangement facilitates rotatable attachment of the spine (210) to the chassis (240) such that the spine (210) may be selectively rotated about a shaft axis SA-SA relative to the chassis (240).
  • the interchangeable shaft assembly (200) further includes a closure shuttle (250) that is slidably supported within the chassis (240) such that it may be axially moved relative thereto.
  • the closure shuttle (250) includes a pair of proximally-protruding hooks (252) that are configured for attachment to the attachment pin (37) that is attached to the second closure link (38) as will be discussed in further detail below.
  • a proximal end (261) of the closure tube (260) is coupled to the closure shuttle (250) for relative rotation thereto.
  • a U shaped connector (not shown) is inserted into an annular slot (262) in the proximal end (261) of the closure tube (260) and is retained within vertical slots (not shown) in the closure shuttle (250).
  • Such an arrangement serves to attach the closure tube (260) to the closure shuttle (250) for axial travel therewith while enabling the closure tube (260) to rotate relative to the closure shuttle (250) about the shaft axis SA-SA.
  • a closure spring is journaled on the closure tube (260) and serves to bias the closure tube (260) in the proximal direction "PD," which can serve to pivot the closure trigger into the unactuated position when the shaft assembly is operably coupled to the handle assembly (14).
  • the interchangeable shaft assembly (200) may further include an articulation joint (270).
  • Other interchangeable shaft assemblies may not be capable of articulation.
  • articulation joint (270) enables longitudinal motion to be communicated from closure tube (260) to end effector (300) even when articulation joint (270) is in an articulated state.
  • an end effector closure ring (1036) includes a horseshoe aperture (275) and a tab (276) for engaging an opening tab on the anvil (1060) in the various manners described in U.S. Patent Application Publication No. 2014/0263541 .
  • an upper double pivot link (277) includes upwardly projecting distal and proximal pivot pins that engage respectively an upper distal pin hole in the upper proximally projecting tang (not shown) and an upper proximal pin hole in an upper distally projecting tang (264) on the closure tube (260).
  • a lower double pivot link (278) includes upwardly projecting distal and proximal pivot pins that engage respectively a lower distal pin hole in the lower proximally projecting tang (274) and a lower proximal pin hole in the lower distally projecting tang (265).
  • the closure tube (260) is translated distally to close the anvil (1060), for example, in response to the actuation of the closure trigger (32).
  • the anvil (1060) is closed by distally translating the closure tube (260) and thus the shaft closure sleeve assembly (272), causing it to strike a proximal surface on the anvil (1060) in the manner described in the aforementioned reference U.S. Patent Application Publication No. 2014/0263541 .
  • the anvil (1060) is opened by proximally translating the closure tube (260) and the shaft closure sleeve assembly (272), causing tab (276) and the horseshoe aperture (275) to contact and push against the anvil tab to lift the anvil (1060).
  • the shaft closure tube (260) is moved to its proximal position.
  • the surgical instrument (10) may further include an articulation lock (350) ( FIG. 5 ) of the types and construction described in further detail in U.S. Patent Application Publication No. 2014/0263541 , which can be configured and operated to selectively lock the end effector (300) in a straight position or in any selected articulated position.
  • an articulation lock (350) FIG. 5
  • Such arrangement enables the end effector (300) to be rotated, or articulated, relative to the shaft closure tube (260) when the articulation lock (350) is in its unlocked state.
  • the end effector (300) can be positioned and pushed against soft tissue and/or bone, for example, surrounding the surgical site within the patient in order to cause the end effector (300) to articulate relative to the closure tube (260).
  • the end effector (300) may also be articulated relative to the closure tube (260) by an articulation driver (230) ( FIG. 5 ).
  • the interchangeable shaft assembly (200) further includes a firing member (220) that is supported for axial travel within the shaft spine (210).
  • the firing member (220) includes an intermediate firing shaft portion (222) that is configured for attachment to a distal cutting portion or firing beam (1082).
  • the firing member (220) may also be referred to herein as a "second shaft” and/or a "second shaft assembly”.
  • the intermediate firing shaft portion (222) may include a longitudinal slot (223) in the distal end thereof that can be configured to receive a tab (284) on the proximal end (282) of the distal firing beam (1082).
  • the longitudinal slot (223) and the proximal end (282) can be sized and configured to permit relative movement therebetween and can comprise a slip joint (286).
  • the slip joint (286) can permit the intermediate firing shaft portion (222) of the firing drive (220) to be moved to articulate the end effector (300) without moving, or at least substantially moving, the firing beam (1082).
  • the intermediate firing shaft portion (222) can be advanced distally until a proximal sidewall of the longitudinal slot (223) comes into contact with the tab (284) in order to advance the firing beam (1082) and fire the staple cartridge positioned within the lower jaw (1050) ( FIGS. 10A-10B ).
  • FIG. 10A-10B As can be further seen in FIG.
  • the shaft spine (210) has an elongate opening or window (213) therein to facilitate assembly and insertion of the intermediate firing shaft portion (222) into the shaft frame (210).
  • a top frame segment (215) may be engaged with the shaft frame (212) to enclose the intermediate firing shaft portion (222) and firing beam (1082) therein.
  • the firing member (220) may be further constructed and operable in accordance with at least some of the teachings of U.S. Patent Application Publication No. 2014/0263541 .
  • the shaft assembly (200) can include a clutch assembly (400) that can be configured to selectively and releasably couple the articulation driver (230) to the firing member (220).
  • the clutch assembly (400) includes a lock collar, or sleeve (402), positioned around the firing member (220). The lock sleeve (402) can be rotated between an engaged position, in which the lock sleeve (402) couples the articulation driver (360) to the firing member (220); and a disengaged position, in which the articulation driver (360) is not operably coupled to the firing member (200).
  • lock sleeve (402) When lock sleeve (402) is in its engaged position, distal movement of the firing member (220) can move the articulation driver (360) distally; and, correspondingly, proximal movement of the firing member (220) can move the articulation driver (230) proximally.
  • lock sleeve (402) When lock sleeve (402) is in its disengaged position, movement of the firing member (220) is not transmitted to the articulation driver (230); and, as a result, the firing member (220) can move independently of the articulation driver (230).
  • the articulation driver (230) can be held in position by the articulation lock (350) when the articulation driver (230) is not being moved in the proximal or distal directions by the firing member (220).
  • the lock sleeve (402) can comprise a cylindrical, or an at least substantially cylindrical, body including a longitudinal aperture (not shown) defined therein configured to receive the firing member (220).
  • the lock sleeve (402) can comprise diametrically-opposed, inwardly-facing lock protrusions (404) and an outwardly-facing lock member (406).
  • the lock protrusions (404) can be configured to be selectively engaged with the firing member (220).
  • the lock protrusions (404) are positioned within a drive notch (224) defined in the firing member (220) such that a distal pushing force and/or a proximal pulling force can be transmitted from the firing member (220) to the lock sleeve (402).
  • the second lock member (406) is received within a drive notch (232) defined in the articulation driver (230) such that the distal pushing force and/or the proximal pulling force applied to the lock sleeve (402) can be transmitted to the articulation driver (230).
  • the firing member (220), the lock sleeve (402), and the articulation driver (230) will move together when the lock sleeve (402) is in its engaged position.
  • the lock protrusions (404) may not be positioned within the drive notch (224) of the firing member (220); and, as a result, a distal pushing force and/or a proximal pulling force may not be transmitted from the firing member (220) to the lock sleeve (402).
  • the distal pushing force and/or the proximal pulling force may not be transmitted to the articulation driver (230).
  • the firing member (220) can be slid proximally and/or distally relative to the lock sleeve (402) and the proximal articulation driver (230).
  • the shaft assembly (200) further includes a switch drum (500) that is rotatably received on the closure tube (260).
  • the switch drum (500) comprises a hollow shaft segment (not shown) that has a shaft boss (504) formed thereon for receive an outwardly protruding actuation pin (410) therein.
  • the actuation pin (410) extends through a slot (267) into a longitudinal slot (408) provided in the lock sleeve (402) to facilitate axial movement of the lock sleeve (402) when it is engaged with the articulation driver (230).
  • a rotary torsion spring (420) is configured to engage the boss (504) on the switch drum (500) and a portion of the nozzle housing (203) to apply a biasing force to the switch drum (500).
  • the switch drum (500) can further comprise at least partially circumferential openings (506) defined therein that can be configured to receive circumferential mounts (not shown) extending from the nozzle halves (202, 203) and permit relative rotation, but not translation, between the switch drum (500) and the proximal nozzle (201).
  • the mounts (not shown) also extend through openings (not shown) in the closure tube (260) to be seated in recesses (211) in the shaft spine (210).
  • the nozzle (201) may be employed to operably engage and disengage the articulation drive system with the firing drive system in the various manners described in further detail in U.S. Patent Application Publication No. 2014/0263541 .
  • the shaft assembly (200) can comprise a slip ring assembly (600) that can be configured to conduct electrical power to and/or from the end effector (300) and/or communicate signals to and/or from the end effector (300), for example.
  • the slip ring assembly (600) can comprise a proximal connector flange (604) mounted to a chassis flange (not shown) extending from the chassis (not shown) and a distal connector flange (601) positioned within a slot defined in the nozzle housings (202, 203).
  • the proximal connector flange (604) can comprise a first face and the distal connector flange (601) can comprise a second face that is positioned adjacent to and movable relative to the first face.
  • the distal connector flange (601) can rotate relative to the proximal connector flange (604) about the shaft axis SA-SA.
  • the proximal connector flange (604) can comprise a plurality of concentric, or at least substantially concentric, conductors (602) defined in the first face thereof.
  • a connector (607) can be mounted on the proximal side of the connector flange (601) and may have a plurality of contacts (not shown). Each contact of the connector flange (601) corresponds to and is in electrical contact with one of the conductors (602). Such an arrangement permits relative rotation between the proximal connector flange (604) and the distal connector flange (601) while maintaining electrical continuity therebetween.
  • the proximal connector flange (604) can include an electrical connector (606) that can place the conductors (602) in signal communication with a shaft circuit board (not shown) that is mounted to the shaft chassis (240), for example.
  • a wiring harness comprising a plurality of conductors can extend between the electrical connector (606) and the shaft circuit board.
  • the electrical connector (606) may extend proximally through a connector opening defined in the chassis mounting flange.
  • the shaft assembly (200) can include a proximal portion that is fixably mounted to the handle assembly (14) and a distal portion that is rotatable about a longitudinal axis.
  • the rotatable distal shaft portion can be rotated relative to the proximal portion about the slip ring assembly (600), as discussed above.
  • the distal connector flange (601) of the slip ring assembly (600) can be positioned within the rotatable distal shaft portion.
  • the switch drum (500) can also be positioned within the rotatable distal shaft portion. When the rotatable distal shaft portion is rotated, the distal connector flange (601) and the switch drum (500) can be rotated synchronously with one another.
  • the switch drum (500) can be rotated between a first position and a second position relative to the distal connector flange (601).
  • the articulation drive system When the switch drum (500) is in its first position, the articulation drive system may be operably disengaged from the firing drive system and, thus, the operation of the firing drive system may not articulate the end effector (300) of the shaft assembly (200).
  • the switch drum (500) When the switch drum (500) is in its second position, the articulation drive system may be operably engaged with the firing drive system and, thus, the operation of the firing drive system may articulate the end effector (300) of the shaft assembly (200).
  • the switch drum (500) When the switch drum (500) is moved between its first position and its second position, the switch drum (500) is moved relative to distal connector flange (601).
  • the shaft assembly (200) can comprise at least one sensor configured to detect the position of the switch drum (500).
  • the distal connector flange (601) can comprise a Hall Effect sensor (not shown), for example, and the switch drum (500) can comprise a magnetic element, such as permanent magnet (not shown) for example.
  • the Hall Effect sensor can be configured to detect the position of the permanent magnet.
  • Hall Effect sensor can detect changes in a magnetic field created when the permanent magnet (505) is moved.
  • the Hall Effect sensor can be in signal communication with the shaft circuit board and/or the handle circuit board (100), for example. Based on the signal from the Hall Effect sensor, a microcontroller on the shaft circuit board and/or the handle circuit board (100) can determine whether the articulation drive system is engaged with or disengaged from the firing drive system.
  • the handle assembly (14) includes an electrical connector (4000) comprising a plurality of electrical contacts (4001a-f).
  • the electrical connector (4000) of the present example comprises a first contact (4001a), a second contact (4001b), a third contact (4001c), a fourth contact (4001d), a fifth contact (4001e), and a sixth contact (4001f).
  • Electrical contacts (4001 a-f) are configured and arranged to contact complementary contacts (4011 a-f) at the proximal end of shaft assembly (200) when shaft assembly (200) is coupled with handle assembly (14), such that contacts (4001a-f, 4011a-f) provide paths for electrical communication between handle assembly (14) and shaft assembly (200).
  • the first contact (4001a) is in electrical communication with a transistor (4008)
  • contacts (4001b-e) each are in electrical communication with a microcontroller (7004)
  • the sixth contact (4001 f) is in electrical communication with a ground.
  • one or more of the electrical contacts (4001b-e) may be in electrical communication with one or more output channels of the microcontroller (7004) and can be energized, or have a voltage potential applied thereto, when the handle assembly (14) is in a powered state.
  • one or more of the electrical contacts (4001b-e) may be in electrical communication with one or more input channels of the microcontroller (7004) and, when the handle assembly (14) is in a powered state, the microcontroller (7004) can be configured to detect when a voltage potential is applied to such electrical contacts (4001b-e).
  • electrical contacts (4001a-f) may be exposed and may be prone to being accidentally placed in electrical communication with one another. Such circumstances may arise when one or more of the contacts (4001a-f) come into contact with an electrically conductive material.
  • the microcontroller (7004) may receive an erroneous input and/or the shaft assembly (200) can receive an erroneous output, for example.
  • the handle assembly (14) may be configured to remain in a powered-down state when the handle assembly (14) is not coupled to a shaft assembly, such as shaft assembly (200).
  • the microcontroller (7004) may be configured to ignore inputs, or voltage potentials, applied to the contacts (4001a-f) in electrical communication with the microcontroller (7004) until shaft assembly (14) is attached to the handle assembly (14).
  • the handle assembly (14) may be in a powered-down state.
  • the electrical connector (4000) may be in a powered-down state as voltage potentials applied to the electrical contacts (4001b-4001e) may not affect the operation of the handle assembly (14).
  • electrical contacts (4001 a) and (4001f) which are not in electrical communication with the microcontroller (7004) in the example shown, may or may not be in a powered-down state regardless of the state of the contacts (4001b-e).
  • sixth contact (4001f) may remain in electrical communication with a ground regardless of whether the handle assembly (14) is in a powered-up or a powered-down state.
  • the transistor (4008), and/or any other suitable arrangement of transistors, such as transistor (4010), for example, and/or switches may be configured to control the supply of power from a power source (4004) (e.g., power pack (92)) to the first electrical contact (4001a), regardless of whether the handle assembly (14) is in a powered-up or a powered-down state.
  • a power source e.g., power pack (92)
  • the shaft assembly (200) can be configured to change the state of the transistor (4008) when the shaft assembly (200) is engaged with the handle assembly (14).
  • a Hall Effect sensor (4002) can be configured to switch the state of transistor (4010) which, as a result, can switch the state of transistor (4008) and ultimately supply power from power source (4004) to first contact (4001a).
  • both the power circuits and the signal circuits to the connector (4000) can be powered down when shaft assembly (200) is not coupled to the handle assembly (14), and powered up when shaft assembly (200) is installed to the handle 14.
  • the handle assembly (14) includes the Hall Effect sensor (4002), which can be configured to detect a detectable element, such as a magnetic element (4007) ( FIG. 3 ) on shaft assembly (200) when the shaft assembly (200) is coupled to the handle assembly (14).
  • the Hall Effect sensor (4002) is in communication with a power source (4006) (e.g., power pack (92)), which is configured to amplify the detection signal of the Hall Effect sensor (4002) and communicate with an input channel of the microcontroller (7004) via the circuit illustrated in FIG. 3B .
  • a power source e.g., power pack (92)
  • the microcontroller (7004) can enter into its normal, or powered-up, operating state. In such an operating state, the microcontroller (7004) will evaluate the signals transmitted to one or more of the contacts (4001b-e) from the shaft assembly and/or transmit signals to the shaft assembly (200) through one or more of the contacts (4001b-e) in normal use thereof.
  • the shaft assembly (200) may have to be fully seated before the Hall Effect sensor (4002) can detect the magnetic element (4007).
  • shaft assembly (200) and/or other features of instrument (10) may be constructed and operable in accordance with at least some of the teachings of U.S. Patent App. No. 14/226,142 , entitled “Surgical Instrument Comprising a Sensor System,” filed March 26, 2014.
  • end effector (300) of the present example includes a lower jaw (1050) and a pivotable anvil (1060).
  • Anvil (1060) includes a pair of integral, outwardly extending pins (1066) that are disposed in corresponding curved slots (1054) of lower jaw (1050).
  • Anvil (1060) is pivotable toward and away from lower jaw (1050) between an open position (shown in FIG. 7 ) and a closed position (shown in FIGS. 6 , 10A-10B ).
  • Use of the term "pivotable” (and similar terms with "pivot" as a base) should not be read as necessarily requiring pivotal movement about a fixed axis.
  • anvil (1060) pivots about an axis that is defined by pins (1066), which slide along curved slots (1054) of lower jaw (1050) as anvil (1060) moves toward lower jaw (1050).
  • the pivot axis translates along the path defined by slots (1054) while anvil (1060) simultaneously pivots about that axis.
  • the pivot axis may slide along slots (1054) first, with anvil (1060) then pivoting about the pivot axis after the pivot axis has slid a certain distance along the slots (1054).
  • pivotal movement is encompassed within terms such as “pivot,” “pivots,” “pivotal,” “pivotable,” “pivoting,” and the like.
  • some versions may provide pivotal movement of anvil (1060) about an axis that remains fixed and does not translate within a slot or channel, etc.
  • lower jaw (1050) of the present example defines a channel (1052) that is configured to receive a staple cartridge (1070).
  • Staple cartridge (1070) may be inserted into channel (1052), end effector (300) may be actuated, and then staple cartridge (1070) may be removed and replaced with another staple cartridge (1070).
  • Lower jaw (1050) thus releasably retains staple cartridge (1070) in alignment with anvil (1060) for actuation of end effector (300).
  • lower jaw (1050) is constructed in accordance with at least some of the teachings of U.S. Patent Application Publication No. 2014/0329044 , entitled "Installation Features for Surgical Instrument End Effector Cartridge,” published August 28, 2014. Other suitable forms that lower jaw (1050) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • staple cartridge (1070) of the present example comprises a cartridge body (1071) and a tray (1076) secured to the underside of cartridge body (1071).
  • the upper side of cartridge body (1071) presents a deck (1073), against which tissue may be compressed when anvil (1060) is driven to a closed position by distal advancement of closure tube (260) and closure ring (1036).
  • Cartridge body (1071) further defines a longitudinally extending channel (1072) and a plurality of staple pockets (1074).
  • a staple (1077) is positioned in each staple pocket (1074).
  • a staple driver (1075) is also positioned in each staple pocket (1074), underneath a corresponding staple (1077), and above tray (1076).
  • staple drivers (1075) are operable to translate upwardly in staple pockets (1074) to thereby drive staples (1077) upwardly through staple pockets (1074) and into engagement with anvil (1060).
  • Staple drivers (1075) are driven upwardly by a wedge sled (1078), which is captured between cartridge body (1071) and tray (1076), and which translates longitudinally through cartridge body (1071) in response to distal advancement of knife member (1080).
  • Wedge sled (1078) includes a pair of obliquely angled cam surfaces (1079), which are configured to engage staple drivers (1075) and thereby drive staple drivers (1075) upwardly as wedge sled (1078) translates longitudinally through cartridge (1070).
  • wedge sled (1078) when wedge sled (1078) is in a proximal position as shown in FIG. 10A , staple drivers (1075) are in downward positions and staples (1077) are located in staple pockets (1074). As wedge sled (1078) is driven to the distal position shown in FIG. 10B by distally translating knife member (1080), wedge sled (1078) drives staple drivers (1075) upwardly, thereby driving staples (1077) out of staple pockets (1074) and into staple forming pockets (1064). Thus, staple drivers (1075) translate along a vertical dimension as wedge sled (1078) translates along a horizontal dimension.
  • staple cartridge (1070) may be varied in numerous ways.
  • staple cartridge (1070) of the present example includes two longitudinally extending rows of staple pockets (1074) on one side of channel (1072); and another set of two longitudinally extending rows of staple pockets (1074) on the other side of channel (1072).
  • staple cartridge (1070) includes three, one, or some other number of staple pockets (1074) on each side of channel (1072).
  • staple cartridge (1070) is constructed and operable in accordance with at least some of the teachings of U.S. Patent Application Publication No. 2014/0239042 , entitled “Integrated Tissue Positioning and Jaw Alignment Features for Surgical Stapler," published August 28, 2014.
  • staple cartridge (1070) may be constructed and operable in accordance with at least some of the teachings of U.S. Patent Application Publication No. 2014/0239044 , entitled “Installation Features for Surgical Instrument End Effector Cartridge,” published August 28, 2014.
  • Other suitable forms that staple cartridge (1070) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • anvil (1060) of the present example comprises a longitudinally extending channel (1062) and a plurality of staple forming pockets (1064).
  • Channel (1062) is configured to align with channel (1072) of staple cartridge (1070) when anvil (1060) is in a closed position.
  • Each staple forming pocket (64) is positioned to lie over a corresponding staple pocket (1074) of staple cartridge (1070) when anvil (1060) is in a closed position.
  • Staple forming pockets (1064) are configured to deform the legs of staples (1077) when staples (1077) are driven through tissue and into anvil (1060).
  • staple forming pockets (1064) are configured to bend the legs of staples (1077) to secure the formed staples (1077) in the tissue.
  • Anvil (1060) may be constructed in accordance with at least some of the teachings of U.S. Patent Application Publication No. 2014/0239042 , entitled “Integrated Tissue Positioning and Jaw Alignment Features for Surgical Stapler,” published August 28, 2014; at least some of the teachings of U.S. Patent Application Publication No. 2014/0239036 , entitled “Jaw Closure Feature for End Effector of Surgical Instrument,” published August 28, 2014; and/or at least some of the teachings of U.S. Patent Application Publication No. 2014/0239037 , entitled “Staple Forming Features for Surgical Stapling Instrument,” published August 28, 2014.
  • Other suitable forms that anvil (1060) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • knife member (1080) is configured to translate through end effector (300). As best seen in FIGS. 8 and 10A-10B , knife member (1080) is secured to the distal end of a firing beam (1082), which extends through a portion of shaft assembly (200). As best seen in FIGS. 7 and 9 , knife member (1080) is positioned in channels (1062, 1072) of anvil (1060) and staple cartridge (1070). Knife member (1080) includes a distally presented cutting edge (1084) that is configured to sever tissue that is compressed between anvil (1060) and deck (1073) of staple cartridge (1070) as knife member (1080) translates distally through end effector (300). As noted above and as shown in FIGS.
  • knife member (1080) also drives wedge sled (1078) distally as knife member (1080) translates distally through end effector (300), thereby driving staples (1077) through tissue and against anvil (1060) into formation.
  • end effector (300) includes lockout features that are configured to prevent knife member (1080) from advancing distally through end effector (300) when a staple cartridge (1070) is not inserted in lower jaw (1050).
  • end effector (300) may include lockout features that are configured to prevent knife member (1080) from advancing distally through end effector (300) when a staple cartridge (1070) that has already been actuated once (e.g., with all staples (1077) deployed therefrom) is inserted in lower jaw (1050).
  • lockout features may be configured in accordance with at least some of the teachings of U.S. Patent Application Publication No. 2014/0239041 , entitled “Lockout Feature for Movable Cutting Member of Surgical Instrument," published August 28, 2014; and/or at least some of the teachings of U.S. Pat. App. No.
  • anvil (1060) is driven toward lower jaw (1050) by advancing closure ring (1036) distally relative to end effector (300).
  • Closure ring (1036) cooperates with anvil (1060) through a camming action to drive anvil (1060) toward lower jaw (1050) in response to distal translation of closure ring (1036) relative to end effector (300).
  • closure ring (1036) may cooperate with anvil (1060) to open anvil (1060) away from lower jaw (1050) in response to proximal translation of closure ring (1036) relative to end effector (300).
  • closure ring (1036) and anvil (1060) may interact in accordance with at least some of the teachings of U.S. Patent Application Publication No.
  • handle assembly (14) includes a pistol grip (19) and a closure trigger (32).
  • anvil (1060) is closed toward lower jaw (1050) in response to distal advancement of closure ring (1036).
  • closure trigger (32) is pivotable toward pistol grip (19) to drive closure tube (260) and closure ring (1036) distally.
  • closure trigger (32) toward pistol grip (19) into distal translation of closure tube (260) and closure ring (1036) relative to handle assembly (14) are described in detail above.
  • closure tube (260) and closure ring (1036) are described in detail above.
  • other suitable features that may be used to actuate anvil (1060) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIG. 11 shows end effector (300) having been actuated through a single stroke through tissue (1090).
  • cutting edge (1084) (obscured in FIG. 11 ) has cut through tissue (1090), while staple drivers (1075) have driven two alternating rows of staples (1077) through the tissue (1090) on each side of the cut line produced by cutting edge (1084).
  • Staples (1077) are all oriented substantially parallel to the cut line in this example, though it should be understood that staples (1077) may be positioned at any suitable orientations.
  • end effector (300) is withdrawn from the trocar after the first stroke is complete, the spent staple cartridge (1070) is replaced with a new staple cartridge (1070), and end effector (300) is then again inserted through the trocar to reach the stapling site for further cutting and stapling. This process may be repeated until the desired amount of cuts and staples (1077) have been provided.
  • Anvil (1060) may need to be closed to facilitate insertion and withdrawal through the trocar; and anvil (1060) may need to be opened to facilitate replacement of staple cartridge (1070).
  • cutting edge (1084) may sever tissue substantially contemporaneously with staples (1077) being driven through tissue during each actuation stroke.
  • cutting edge (1084) just slightly lags behind driving of staples (1077), such that a staple (1077) is driven through the tissue just before cutting edge (1084) passes through the same region of tissue, though it should be understood that this order may be reversed or that cutting edge (1084) may be directly synchronized with adjacent staples.
  • FIG. 11 shows end effector (300) being actuated in two layers (1092, 1094) of tissue (1090), it should be understood that end effector (300) may be actuated through a single layer of tissue (1090) or more than two layers (1092, 1094) of tissue.
  • FIG. 11 shows end effector (300) being actuated in two substantially flat, apposed planar layers (1092, 1094) of tissue, it should be understood that end effector (300) may also be actuated across a tubular structure such as a blood vessel, a section of the gastrointestinal tract, etc. FIG. 11 should therefore not be viewed as demonstrating any limitation on the contemplated uses for end effector (300).
  • instrument (10) may be used will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • instrument (10) may be configured and operable in accordance with any of the various references cited herein. Additional exemplary modifications that may be provided for instrument (10) will be described in greater detail below. Various suitable ways in which the below teachings may be incorporated into instrument (10) will be apparent to those of ordinary skill in the art. Similarly, various suitable ways in which the below teachings may be combined with various teachings of the references cited herein will be apparent to those of ordinary skill in the art. It should also be understood that the below teachings are not limited to instrument (10) or devices taught in the references cited herein. The below teachings may be readily applied to various other kinds of instruments, including instruments that would not be classified as surgical staplers. Various other suitable devices and settings in which the below teachings may be applied will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIGS. 12-1 and 12-2 show an exemplary electrical circuit and component arrangement that may be incorporated into a surgical instrument, such as instrument (10).
  • a surgical instrument such as instrument (10).
  • the handle assembly (2002), which may be configured in accordance with handle assembly (200) for example, includes a motor (2014) that can be controlled by a motor driver (2015).
  • Motor (2014) is configured to be employed by the firing system of the surgical instrument (2000), such as the firing system described herein with respect to instrument (10).
  • Motor (2014) may be further configured and/or operable similar or identical to motor (82) described above.
  • the motor driver (2015) may comprise an H-Bridge FETs (2019), as illustrated in FIG.
  • the motor (2014) can be powered by a power assembly (2006) ( FIG. 13 ), which can be releasably mounted to the handle assembly (2002), power assembly (2006) being configured to supply control power to the surgical instrument (2000).
  • the power assembly (2006) may comprise a battery (2007) ( FIG. 13 ) that may include a number of battery cells connected in series that can be used as the power source to power the surgical instrument (2000). In such a configuration, the power assembly (2006) may be referred to as a battery pack.
  • Power assembly (2006) may be configured in accordance with power source (90) described herein.
  • the battery cells of the power assembly (2006) may be replaceable and/or rechargeable.
  • the battery cells can be Lithium-Ion batteries that can be removably coupled to the power assembly (2006).
  • the electric motor (2014) of this example can include a rotatable shaft (not shown) that may operably interface with a gear reducer assembly that can be mounted in meshing engagement with a set, or rack, of drive teeth on a longitudinally-movable drive member.
  • a voltage polarity provided by the battery (2007) can operate the electric motor (2014) to drive the longitudinally-movable drive member to effectuate the end effector (2008).
  • the motor (2014) can be configured to drive the longitudinally-movable drive member to advance a firing mechanism to fire staples into tissue captured by the end effector (2008) from a staple cartridge assembled with the end effector (2008) and/or advance a cutting member to cut tissue captured by the end effector (2008), for example, in a similar manner described with respect to end effector (300).
  • the surgical instrument (2000) may comprise a lockout mechanism to prevent a user from coupling incompatible handle assemblies and power assemblies.
  • the power assembly (2006) may include a mating element.
  • the mating element can be a tab extending from the power assembly (2006).
  • the handle assembly (2002) may comprise a corresponding mating element (not shown) for mating engagement with the mating element. Such an arrangement can be useful in preventing a user from coupling incompatible handle assemblies and power assemblies.
  • the shaft assembly (2004) may include a shaft assembly controller (2022) that can communicate with the power management controller (2016) through an interface (2024) while the shaft assembly (2004) and the power assembly (2006) are coupled to the handle assembly (2002).
  • the interface (2024) may comprise a first interface portion (2025) that may include one or more electric connectors (2026) (e.g., electrical connectors 4001a-f as shown in FIGS. 3A-3B ) for coupling engagement with corresponding shaft assembly electric connectors (2028) (e.g., electrical connectors 4011 a-f as shown in FIG.
  • a second interface portion (2027) may include one or more electric connectors (2030) for coupling engagement with corresponding power assembly electric connectors (2032) to permit electrical communication between the shaft assembly controller (2022) and the power management controller (2016) while the shaft assembly (2004) and the power assembly (2006) are coupled to the handle assembly (2002).
  • One or more communication signals can be transmitted through the interface (2024) to communicate one or more of the power requirements of the attached interchangeable shaft assembly (2004) to the power management controller (2016).
  • the power management controller may modulate the power output of the battery (2007) of the power assembly (2006), as described below in greater detail, in accordance with the power requirements of the attached shaft assembly (2004).
  • one or more of the electric connectors (2026, 2028, 2030, and/or 2032) may comprise switches that can be activated after mechanical coupling engagement of the handle assembly (2002) to the shaft assembly (2004) and/or to the power assembly (2006) to allow electrical communication between the shaft assembly controller (2022) and the power management controller (2016).
  • the interface (2024) can facilitate transmission of the one or more communication signals between the power management controller (2016) and the shaft assembly controller (2022) by routing such communication signals through a main controller (2017) residing in the handle assembly (2002), for example.
  • the interface (2024) can facilitate a direct line of communication between the power management controller (2016) and the shaft assembly controller (2022) through the handle assembly (2002) while the shaft assembly (2004) and the power assembly (2006) are coupled to the handle assembly (2002).
  • the main microcontroller (2017) may be any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments.
  • the surgical instrument (2000) may comprise a power management controller (2016) such as, for example, a safety microcontroller platform comprising two microcontroller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments.
  • a safety microcontroller platform comprising two microcontroller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments.
  • the safety processor (1004) may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
  • the microcontroller (2017) may be an LM 4F230H5QR, available from Texas Instruments, for example.
  • the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet.
  • SRAM serial random access memory
  • ROM internal read-only memory
  • EEPROM electrically erasable programmable read-
  • the power assembly (2006) may include a power management circuit (2034) that may comprise the power management controller (2016), a power modulator (2038), and a current sense circuit (2036).
  • the power management circuit (2034) can be configured to modulate power output of the battery (2007) based on the power requirements of the shaft assembly (2004) while the shaft assembly (2004) and the power assembly (2006) are coupled to the handle assembly (2002).
  • the power management controller (2016) can be programmed to control the power modulator (2038) of the power output of the power assembly (2006) and the current sense circuit (2036) can be employed to monitor power output of the power assembly (2006) to provide feedback to the power management controller (2016) about the power output of the battery (2007) so that the power management controller (2016) may adjust the power output of the power assembly (2006) to maintain a desired output, as illustrated in FIG. 14 .
  • the power management controller (2016) and/or the shaft assembly controller (2022) each may comprise one or more processors and/or memory units that may store a number of software modules. Although certain modules and/or blocks of the surgical instrument (2000) may be described by way of example, it can be appreciated that a greater or lesser number of modules and/or blocks may be used.
  • modules and/or blocks may be implemented by one or more hardware components, e.g., processors, Digital Signal Processors (DSPs), Programmable Logic Devices (PLDs), Application Specific Integrated Circuits (ASICs), circuits, registers and/or software components, e.g., programs, subroutines, logic and/or combinations of hardware and software components.
  • DSPs Digital Signal Processors
  • PLDs Programmable Logic Devices
  • ASICs Application Specific Integrated Circuits
  • registers and/or software components e.g., programs, subroutines, logic and/or combinations of hardware and software components.
  • the surgical instrument (2000) may comprise an output device (2042) that may include one or more devices for providing a sensory feedback to a user.
  • Such devices may comprise, for example, visual feedback devices (e.g., an LCD display screen, LED indicators), audio feedback devices (e.g., a speaker, a buzzer), and/or tactile feedback devices (e.g., haptic actuators).
  • the output device (2042) may comprise a display that may be included in the handle assembly (2002).
  • the shaft assembly controller (2022) and/or the power management controller (2016) can provide feedback to a user of the surgical instrument (2000) through the output device (2042).
  • the interface (2024) can be configured to connect the shaft assembly controller (2022) and/or the power management controller (2016) to the output device (2042).
  • the output device (2042) can instead be integrated with the power assembly (2006).
  • communication between the output device (2042) and the shaft assembly controller (2022) may be accomplished through the interface (2024) while the shaft assembly (2004) is coupled to the handle assembly (2002).
  • the microcontroller (2017) may be an LM 4F230H5QR, available from Texas Instruments, for example.
  • the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet.
  • SRAM serial random access memory
  • ROM internal read-only memory
  • EEPROM electrically erasable programmable read-
  • the power assembly (2006) may include a power management circuit (2034) that may comprise the power management controller (2016), a power modulator (2038), and a current sense circuit (2036).
  • the power management circuit (2034) can be configured to modulate power output of the battery (2007) based on the power requirements of the shaft assembly (2004) (blocks 2039a, 2039b) while the shaft assembly (2004) and the power assembly (2006) are coupled to the handle assembly (2002).
  • the power management controller (2016) can be programmed to control the power modulator (2038) of the power output of the power assembly (2006).
  • the current sense circuit (2036) can be employed to monitor power output of the power assembly (2006) to provide feedback to the power management controller (2016) about the power output of the battery (2007) (block 2039c) so that the power management controller (2016) may adjust the power output of the power assembly (2006) to maintain a desired output (block 2039d).
  • FIG. 15 shows another exemplary electrical circuit and component arrangement that may be incorporated into instrument (10).
  • the arrangement includes a working assembly (2054) and a power assembly (2056).
  • Working assembly (2054) of this example comprises a handle assembly (e.g., like handle assembly (14) described above, etc.) and a shaft assembly (e.g., like shaft assembly (200) described above, etc.) extending between the handle assembly and the end effector (2052) (which may comprise an end effector (300) as described above, etc.).
  • the surgical instrument (2050) may include a power assembly (2056) (e.g., similar to power source (90) described above, etc.) that can be employed with a plurality of interchangeable working assemblies such as, for example, the interchangeable working assembly (2054).
  • Such interchangeable working assemblies (2054) may include surgical end effectors such as, for example, the end effector (2052) that can be configured to perform one or more surgical tasks or procedures, similar to the end effector (300) described herein.
  • the handle assembly (2053) and the shaft (2055) may be integrated into a single unit. In other circumstances, the handle assembly (2053) and the shaft (2055) may removably attached to each other.
  • the power assembly (2056) may be provided as a variation of power source (90) described above.
  • the surgical instrument (2050) may operably support a plurality of drive systems that can be powered by the power assembly (2056) while the power assembly (2056) is coupled to the interchangeable working assembly (2054).
  • the interchangeable working assembly (2054) can operably support a closure drive system, which may be employed to apply closing and opening motions to the end effector (2052).
  • the interchangeable working assembly (2054) may operably support a firing drive system that can be configured to apply firing motions to the end effector (2052). Examples of drive systems suitable for use with the surgical instrument (2050) are described in U.S. Provisional Patent Application Serial No. 61/782,866, entitled “Contorl System of a Surgical Instrument," and filed March 14, 2013.
  • the power assembly (2056) of the surgical instrument (2050) can be removably coupled to an interchangeable working assembly such as, for example, the interchangeable working assembly (2054).
  • an interchangeable working assembly such as, for example, the interchangeable working assembly (2054).
  • Various coupling means can be utilized to releasably couple the power assembly (2056) to the interchangeable working assembly (2054). Exemplary coupling mechanisms are described herein and are described in the aforementioned U.S. Provisional Patent Application Serial No. 61/782,866.
  • the power assembly (2056) may include a power source (2058) such as, for example, a battery that can be configured to power the interchangeable working assembly (2054) while coupled to the power assembly (2056).
  • the power assembly (2056) may include a memory (2060) that can be configured to receive and store information about the battery (2058) and/or the interchangeable working assembly (2054) such as, for example, the state of charge of the battery (2058), the number of treatment cycles performed using the battery (2058), and/or identification information for the interchangeable working assemblies coupled to the power assembly (2056) during the life cycle of the battery (2058).
  • the interchangeable working assembly (2054) may include a controller (2062) that can be configured to provide the memory (2060) with such information about the battery (2058) and/or the interchangeable working assembly (2054).
  • the power assembly (2056) may include an interface (2064) that can be configured to facilitate electrical communication between the memory (2060) of the power assembly (2056) and a controller of an interchangeable working assembly that is coupled to the power assembly (2056) such as, for example, the controller (2062) of the interchangeable working assembly (2054).
  • the interface (2064) may comprise one or more connectors (2066) for coupling engagement with corresponding working assembly connectors (2068) to permit electrical communication between the controller (2062) and the memory (2060) while the interchangeable working assembly (2054) is coupled to the power assembly (2056).
  • one or more of the electric connectors (2066) and/or (2068) may comprise switches that can be activated after coupling engagement of the interchangeable working assembly (2054) and the power assembly (2056) to allow electric communication between the controller (2062) and the memory (2060).
  • the power assembly (2056) may include a state of charge monitoring circuit (2070).
  • the state of charge monitoring circuit (2070) may comprise a coulomb counter.
  • the controller (2062) can be in communication with the state of charge monitoring circuit (2070) while the interchangeable working assembly (2054) is coupled to the power assembly (2056).
  • the state of charge monitoring circuit (2070) can be operable to provide for accurate monitoring of charge states of the battery (2058).
  • FIG. 16 shows a flowchart depicting an exemplary method of use of a controller of an interchangeable working assembly such as, for example, the controller (2062) of the interchangeable working assembly (2054) while coupled to the power assembly (2056).
  • the controller (2062) may comprise one or more processors and/or memory units that may store a number of software modules such as, for example, the module (2072).
  • modules and/or blocks of the surgical instrument (2050) may be described by way of example, it can be appreciated that a greater or lesser number of modules and/or blocks may be used.
  • modules and/or blocks may be implemented by one or more hardware components, e.g., processors, DSPs, PLDs, ASICs, circuits, registers and/or software components, e.g., programs, subroutines, logic and/or combinations of hardware and software components.
  • hardware components e.g., processors, DSPs, PLDs, ASICs, circuits, registers and/or software components, e.g., programs, subroutines, logic and/or combinations of hardware and software components.
  • the interface (2064) may facilitate communication between the controller (2062) and the memory (2060) and/or the state of charge monitoring circuit (2070) to execute the module (2072), as illustrated in FIG. 16 .
  • the controller (2062) of the interchangeable working assembly (2054) may utilize the state of charge monitoring circuit (2070) to measure the state of charge of the battery (2058) (block 2072a).
  • the controller (2062) may then access the memory (2060) and determine whether a previous value for the state of charge of the battery (2058) is stored in the memory (2060) (block 2072b). When a previous value is detected, the controller (2060) may compare the measured value to the previously stored value (block 2072c).
  • the controller (2060) may update the previously stored value (block 2072d).
  • the controller (2060) may store the measured value into the memory (2060).
  • the controller (2060) may provide visual feedback to a user of the surgical instrument (2050) as to the measured state of charge of the battery (2058).
  • the controller (2060) may display the measured value of the state of charge of the battery (2058) on an LCD display screen that, in some circumstances, can be integrated with the interchangeable working assembly (2054) (block 2072e).
  • FIGS. 17-19 show an exemplary circuit diagram of an exemplary alternative power assembly (2096) that may be used with a working assembly (2094) to form an instrument like instrument (10).
  • Working assembly (2094) of this example comprises a handle assembly (e.g., like handle assembly (14) described above, etc.) and a shaft assembly (e.g., like shaft assembly (200) described above, etc.) extending between the handle assembly an end effector (e.g., like end effector (300) described above, etc.).
  • the interchangeable working assembly (2094) of this example also includes a motor (2014) (e.g., like motor (82) described above, etc.) and a motor driver (2015) that can be employed to motivate the closure drive system and/or the firing drive system of the interchangeable working assembly (2094), for example.
  • the motor (2014) can be powered by a battery (2098) that may reside in the power assembly (2096).
  • the power assembly (2096) may be provided as a variation of power source (90) described above.
  • the battery (2098) may include a number of battery cells connected in series that can be used as a power source to power the motor (2014).
  • the battery cells of the power assembly (2096) may be replaceable and/or rechargeable.
  • the battery cells can be Lithium-Ion batteries that can be removably attached to the power assembly (2096), for example.
  • a voltage polarity provided by the power assembly (2096) can operate the motor (2014) to drive a longitudinally-movable drive member to effectuate an end effector, such as the end effector (300) described herein.
  • the motor (2014) can be configured to drive the longitudinally-movable drive member to advance a cutting member to cut tissue captured by the end effector (300) and/or a firing mechanism to fire staples from a staple cartridge assembled with the end effector (300), for example.
  • the staples can be fired into tissue captured by the end effector (300), for example.
  • the interchangeable working assembly (2094) may include a working assembly controller (2102); and the power assembly (2096) may include a power assembly controller (2100).
  • the working assembly controller (2102) can be configured to generate one or more signals to communicate with the power assembly controller (2100).
  • the working assembly controller (2102) may generate the one or more signals to communicate with the power assembly controller (2100) by modulating power transmission from the power assembly (2096) to the interchangeable working assembly (2094) while the power assembly (2096) is coupled to the interchangeable working assembly (2094).
  • the power assembly controller (2100) can be configured to perform one or more functions in response to receiving the one or more signals generated by the working assembly controller (2102).
  • the interchangeable working assembly (2094) may impose a power requirement and the working assembly controller (2102) may be configured to generate a signal to instruct the power assembly controller (2100) to select a power output of the battery (2098) in accordance with the power requirement of the interchangeable working assembly (2094).
  • the signal can be generated, as described above, by modulating power transmission from the power assembly (2096) to the interchangeable working assembly (2094) while the power assembly (2096) is coupled to the interchangeable working assembly (2094).
  • the power assembly controller (2100) may set the power output of the battery (2098) to accommodate the power requirement of the interchangeable working assembly (2094).
  • various interchangeable working assemblies may be utilized with the power assembly (2096). The various interchangeable working assemblies may impose various power requirements and may generate signals unique to their power requirements during their coupling engagement with the power assembly (2096) to alert the power assembly controller (2100) to set the power output of the battery (2098) in accordance with their power requirements.
  • the power assembly (2096) may include a power modulator control (2106) that may comprise, for example, one or more field-effect transistors (FETs), a Darlington array, an adjustable amplifier, and/or any other power modulator.
  • the power assembly controller (2100) may actuate the power modulator control (2106) to set the power output of the battery (2098) to the power requirement of the interchangeable working assembly (2094) in response to the signal generated by working assembly controller (2102) while the interchangeable working assembly (2094) is coupled to the power assembly (2096).
  • FETs field-effect transistors
  • the power assembly controller (2100) may actuate the power modulator control (2106) to set the power output of the battery (2098) to the power requirement of the interchangeable working assembly (2094) in response to the signal generated by working assembly controller (2102) while the interchangeable working assembly (2094) is coupled to the power assembly (2096).
  • the power assembly controller (2100) can be configured to monitor power transmission from the power assembly (2096) to the interchangeable working assembly (2094) for the one or more signals generated by the working assembly controller (2102) of the interchangeable working assembly (2094) while he interchangeable working assembly (2094) is coupled to the power assembly (2096).
  • the power assembly controller (2100) may utilize a voltage monitoring mechanism for monitoring the voltage across the battery (2098) to detect the one or more signals generated by the working assembly controller (2102), for example.
  • a voltage conditioner can be utilized to scale the voltage of the battery (2098) to be readable by an Analog to Digital Converter (ADC) of the power assembly controller (2100).
  • the voltage conditioner may comprise a voltage divider (2108) that can create a reference voltage or a low voltage signal proportional to the voltage of the battery (2098) that can be measured and reported to the power assembly controller (2100) through the ADC, for example.
  • the power assembly (2096) may comprise a current monitoring mechanism for monitoring current transmitted to the interchangeable working assembly (2094) to detect the one or more signals generated by the working assembly controller (2102), for example.
  • the power assembly (2096) may comprise a current sensor (2110) that can be utilized to monitor current transmitted to the interchangeable working assembly (2094). The monitored current can be reported to the power assembly controller (2100) through an ADC, for example.
  • the power assembly controller (2100) may be configured to simultaneously monitor both of the current transmitted to the interchangeable working assembly (2094) and the corresponding voltage across the battery (2098) to detect the one or more signals generated by the working assembly controller (2102).
  • Those of ordinary skill in the art will appreciate that various other mechanisms for monitoring current and/or voltage can be utilized by the power assembly controller (2100) to detect the one or more signals generated by the working assembly controller (2102). All such mechanisms are contemplated by the present disclosure.
  • the working assembly controller (2102) can be configured to generate the one or more signals for communication with the power assembly controller (2100) by effectuating the motor driver (2015) to modulate the power transmitted to the motor (2014) from the battery (2098).
  • the voltage across the battery (2098) and/or the current drawn from the battery (2098) to power the motor (2014) may include discrete patterns or waveforms that represent the one or more signals.
  • the power assembly controller (2100) can be configured to monitor the voltage across the battery (2098) and/or the current drawn from the battery (2098) for the one or more signals generated by the working assembly controller (2102).
  • the power assembly controller (2100) can be configured to pedal in one or more functions that correspond to the detected signal.
  • the power assembly controller (2100) upon detecting a first signal, can be configured to actuate the power modulator control (2106) to set the power output of the battery (2098) to a first duty cycle.
  • the power assembly controller (2100) upon detecting a second signal, can be configured to actuate the power modulator control (2106) to set the power output of the battery (2098) to a second duty cycle different from the first duty cycle.
  • the power assembly (2096) may comprise a switch (2104) that can be switchable between an open position and a closed position.
  • the switch (2104) can be transitioned from the open position to the closed positioned when the power assembly (2096) is coupled with the interchangeable working assembly (2094), for example.
  • the switch (2104) can be manually transitioned from the open position to the closed position after the power assembly (2096) is coupled with the interchangeable working assembly (2094), for example. While the switch (2104) is in the open position, components of the power assembly (2096) may draw sufficiently low or no power to retain capacity of the battery (2098) for clinical use.
  • the switch (2104) can be a mechanical, reed, hall, or any other suitable switching mechanism.
  • the power assembly (2096) may include an optional power supply (2105) that may be configured to provide sufficient power to various components of the power assembly (2096) during use of the battery (2098).
  • the interchangeable working assembly (2094) also may include an optional power supply (2107) that can be configured to provide sufficient power to various components of the interchangeable working assembly (2094).
  • the power assembly (2096) can be coupled to the interchangeable working assembly (2094) (block 2101).
  • the switch (2104) can be transitioned to the closed configuration to electrically connect the interchangeable working assembly (2094) to the power assembly (2096).
  • the interchangeable working assembly (2094) may power up and may, at least initially, draw relatively low current from the battery (2098) (block 2101a-1).
  • the interchangeable working assembly (2094) may draw less than or equal to 1 ampere to power various components of the interchangeable working assembly (2094).
  • the power assembly (2096) also may power up as the switch (2014) is transitioned to the closed position (block 2101b-1) while interchangeable working assembly (2094) powers up.
  • the power assembly controller (2100) may begin to monitor current drawn by the interchangeable working assembly (2094), as described in greater detail above, by monitoring voltage across the battery (2098) and/or current transmission from the battery (2098) to the interchangeable working assembly (2094), for example.
  • the working assembly controller (2102) may employ the motor drive (2015) to pulse power to the motor (2014) (block 2101a-2) in patterns or waveforms of power spikes, for example.
  • the working assembly controller (2102) can be configured to communicate with the motor driver (2015) to rapidly switch the direction of motion of the motor (2014) by rapidly switching the voltage polarity across the windings of the motor (2014) to limit the effective current transmission to the motor (2014) resulting from the power spikes.
  • the effective motor displacement resulting from the power spikes can be reduced to minimize effective displacement of a drive system of the surgical instrument (2090) that is coupled to the motor (2014) in response to the power spikes.
  • the working assembly controller (2102) may communicate with the power assembly controller (2100) by employing the motor driver (2015) to draw power from the battery (2098) in spikes arranged in predetermined packets or groups that can be repeated over predetermined time periods to form patterns detectable by the power assembly controller (2100).
  • the power assembly controller (2100) can be configured to monitor voltage across the battery (2100) for predetermined voltage patterns such as, for example, the voltage pattern (2103) ( FIG. 21A ) and/or predetermined current patterns such as, for example, the current pattern (2109) ( FIG. 21B ) using voltage and/or current monitoring mechanisms as described in greater detail above (blocks 2101b-2).
  • the power assembly controller (2100) can be configured to execute one or more algorithms and/or functions upon detecting of a pattern of current pulses (block 2101a-3).
  • the communication between the power assembly controller (2100) and the working assembly controller (2102) via power transmission modulation may reduce the number of connection lines needed between the interchangeable working assembly (2094) and the power assembly (2096).
  • the power assembly (2096) can be employed with various interchangeable working assemblies of multiple generations that may have different power requirements. Some of the various interchangeable workings assemblies may comprise communication systems, as described above, while others may lack such communication systems.
  • the power assembly (2096) can be utilized with a primary interchangeable working assembly that lacks the communication system described above.
  • the power assembly (2096) can be utilized with a secondary interchangeable working assembly such as, for example, the interchangeable working assembly (2094) that comprises a communication system, as described above.
  • the power assembly (2096) may be configured to provide power to a working assembly regardless of whether the working assembly has a communication system as described above.
  • the primary interchangeable working assembly may have a first power requirement and the secondary interchangeable working assembly may have a second power requirement that can be different from the first power requirement.
  • the first power requirement may be less than the second power requirement.
  • the power assembly (2096) may comprise a first power mode for use with the primary interchangeable working assembly and a second power mode for use with the secondary interchangeable working assembly.
  • the power assembly (2096) can be configured to operate at a default first power mode corresponding to the power requirement of the primary interchangeable working assembly.
  • the default first power mode of the power assembly (2096) may accommodate the first power requirement of the primary interchangeable working assembly.
  • the working assembly controller (2102) of the interchangeable working assembly (2094) may communicate, as described above, with the power assembly controller (2100) of the power assembly (2096) to switch the power assembly (2096) to the second power mode to accommodate the second power requirement of the interchangeable working assembly (2094).
  • the battery (2098) can be rechargeable. In certain circumstances, it may be desirable to drain the battery (2098) prior to shipping the power assembly (2096). A dedicated drainage circuit can be activated to drain the battery (2098) in preparation for shipping of the power assembly (2096). Upon reaching its final destination, the battery (2098) can be recharged for use during a surgical procedure. However, the drainage circuit may continue to consume energy from the battery (2098) during clinical use. In certain circumstances, the interchangeable working assembly controller (2102) can be configured to transmit a drainage circuit deactivation signal to the power assembly controller (2100) by modulating power transmission from the battery (2098) to the motor (2014), as described in greater detail above.
  • the power assembly controller (2100) can be programmed to deactivate the drainage circuit to prevent drainage of the battery (2098) by the drainage circuit in response to the drainage circuit deactivation signal, for example.
  • various communication signals can be generated by the working assembly controller (2102) to instruct the power assembly controller (2100) to pedal various functions while the power assembly (2096) is coupled to the interchangeable working assembly (2094).
  • the power assembly controller (2100) and/or the working assembly controller (2102) may comprise one or more processors and/or memory units that may store a number of software modules.
  • modules and/or blocks of the surgical instrument (2050) may be described by way of example, it can be appreciated that a greater or lesser number of modules and/or blocks may be used.
  • modules and/or blocks may be implemented by one or more hardware components, e.g., processors, DSPs, PLDs, ASICs, circuits, registers and/or software components, e.g., programs, subroutines, logic and/or combinations of hardware and software components.
  • FIG. 22 shows a schematic diagram of a circuit (3010) that may be provided by power pack (92).
  • Circuit (3010) includes a set of power cells (3012), which are provided by batteries (98) in this example; an effective series resistor (3014), which may be provided by various electrical components as will be apparent to those of ordinary skill in the art in view of the teachings herein; and a pair of terminals (3018a, 3018b), which may be provided as a set of contacts that are exposed through distal housing portion (96). Terminals (3018a, 3018b) may be coupled with complementary contacts in handle assembly (14), which is represented in FIG. 22 by a symbol for a load resistor (3016).
  • power pack (92), and hence circuit (3010) provides electrical power that is operable to drive motor (82) and other electrical components of instrument (10).
  • power cells (3012) are non-rechargeable.
  • Power pack (92) is thus provided and configured for disposal after the power from cells (3012)/batteries (98) has been consumed.
  • power pack (92) is provided with instrument (10) as a "primary" battery pack, such that power pack (92) is intended to be the first (and only) battery pack that is to be used with instrument (10).
  • power pack (92) and other devices referred herein to as "primary" battery packs or "primary" power packs/sources comprise one or more non-rechargeable batteries.
  • FIG. 23 An exemplary plot of load resistance (R L ) versus load voltage (V L ) is shown in FIG. 23 . As shown, the load voltage (V L ) increases in a non-linear fashion as the load resistance (R L ) increases, such that the load voltage (V L ) approaches but does not reach the open circuit voltage (V).
  • a medical device may be configured to detect battery pack characteristics in order to detect battery health, to confirm proper insertion of the battery pack, to confirm that an appropriate battery pack is inserted, etc. In instances, it may be desirable for a medical device to be operable to confirm that an appropriate battery pack is inserted in order to confirm that the battery pack is not intended for use in another device, in order to confirm that a counterfeit battery pack is not being used, an/or for other reasons.
  • one or more features on circuit board (100), other features of handle assembly (14), and/or other features of instrument (10) may detect one or more characteristics of power pack (92).
  • one or more features on circuit board (100), other features of handle assembly (14), and/or other features of instrument (10) may be configured to detect the effective series resistance (Rs) provided by effective series resistor (3014).
  • one or more features on circuit board (100), other features of handle assembly (14), and/or other features of instrument (10) may be configured to detect the open circuit voltage (V) of cells (3102). In either or both cases, the detection may be performed to ensure than an appropriate power pack (92) has been coupled with handle assembly (14).
  • Medical devices such as instrument (10) may be indicated for multiple uses and, as a result, may require sterilization between uses.
  • Some such devices may be designed to utilize a non-rechargeable battery that either cannot be sterilized or simply would not be sterilized for a variety of reasons.
  • it may be advantageous for economic, environmental, and/or various other reasons to utilize a rechargeable battery in a medical device instead of using a non-rechargeable battery in the medical device.
  • this may not be possible due to battery detection features that may be present in the medical device.
  • some medical devices may be equipped with features (e.g., mechanisms and/or software, etc.) that detect characteristics of a connected battery and/or interrogate a connected battery. If certain characteristics are not detected and/or the battery pack does not properly respond to the interrogations, the medical device may prevent the battery from being properly electrically connected to the medical device. Alternatively, the medical device may not operate properly if the medical device does not detect the appropriate characteristics and/or interrogation response.
  • features e.g., mechanisms and/or software, etc.
  • the "secondary" battery packs (or “secondary” power packs/sources) described herein comprise one or more rechargeable batteries; while the "primary” battery packs (or “primary” power packs/sources) described herein comprise one or more non-rechargeable batteries.
  • “secondary” battery packs (or “secondary” power packs/sources) described herein may instead comprise one or more non-rechargeable batteries; and/or “primary” battery packs (or “primary” power packs/sources) described herein may instead comprise one or more rechargeable batteries.
  • a secondary battery pack may be configured to express the characteristics and/or interrogation response that the medical device (e.g., instrument (10), etc.) would expect from a legitimate primary battery pack (e.g., power pack (92), etc.).
  • a secondary battery pack may also be configured for use in various kinds of medical devices that have different expectations for their respective primary battery packs. The secondary battery pack may thus determine what the expectations of a medical device are and then adapt to those expectations on an ad hoc basis.
  • Various examples of how a secondary battery pack may be configured and operable are described in greater detail below. Other examples will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIG. 24 shows a schematic circuit diagram of an exemplary alternative power assembly (3100).
  • Power assembly (3100) is configured to respond to an interrogation by a medical device to which it is connected in a manner that emulates a primary power assembly (i.e., a primary power pack (92)), thereby convincing the medical device that the secondary power assembly (3100) is a primary power pack (92).
  • the physical appearance and other features of the power assembly (3100) may be configured according to the teachings above.
  • the power assembly (3100) may be configured in a similar manner to the battery/power pack (92) shown in FIG. 4 , but is not so limited. Power assembly (3100) may thus be mechanically and electrically coupled with the proximal end of handle assembly (14) in a manner similar to power pack (92).
  • the power assembly (3100) includes a set of battery cells (3102) that are operable to provide power output through positive and negative output terminals (3104a, 3104b).
  • Battery cells (3102) may be rechargeable or non-rechargeable.
  • Terminals (3104a, 3104b) may be provided as a set of contacts that are exposed through a distal housing portion of power assembly (3100) (e.g., similar to distal housing portion (96)).
  • Terminals (3104a, 3104b) may thus be coupled with complementary contacts in a handle assembly (14), handle assembly (2002), working assembly (2054), etc., which are represented in FIG. 24 by a symbol for a load resistor (3114). It should be understood that terminals (3104a, 3104b) may also be coupled with complementary contacts in various other kinds of medical devices, not just surgical stapling instruments (10).
  • power assembly (3100) also includes a voltage regulator (3106), a NPN pass transistor (3108), a first sensor (3110), and a second sensor (3112).
  • the power assembly (3100) further includes a processor (3116) in communication with each of the voltage regulator (3106), the pass transistor (3108), the first sensor (3110), and the second sensor (3112).
  • the first sensor (3110) is a current sensor that is configured to sense the current level drawn through the circuit and communicate the sensed current to the processor (3116).
  • the second sensor (3112) is a voltage sensor that is configured to sense the voltage of the circuit and communicate the sensed voltage to the processor (3116).
  • voltage regulator (3106) may comprise a buck regulator, a boost regulator, and/or any other suitable kind of regulator(s).
  • power assembly (3100) may be operable to provide analog signal processing, digital signal processing, data storage, controllably variable output impedance, controllably variable output voltage, controllably variable current, and/or other functionality.
  • Various suitable ways in which power assembly (3100) may provide such functionality will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • power assembly (3100) may be compatible with various kinds of medical devices in addition to being compatible with instrument (10), the following examples will be provided in the context of instrument (10) by way of illustration.
  • the handle assembly (14) may detect that the power assembly (3100) is coupled with the handle assembly (14).
  • the power assembly (3100) may detect that the power assembly is coupled with the handle assembly (14) as soon as those components are coupled together.
  • the power assembly (3100) and/or the handle assembly (14) could include one or more contact sensors that are actuated upon insertion of power assembly (3100) in handle assembly (14).
  • power assembly (3100) may automatically periodically check for electrical continuity across terminals (3104a, 3104b), such that the presence of electrical continuity across terminals (3104a, 3104b) will indicate that power assembly (3100) is coupled with handle assembly (14).
  • power assembly (3100) may include an inductance sensor that is sensitive to metallic components being brought into close proximity to power assembly (3100), such that close proximity of a metallic component will indicate that power assembly (3100) is coupled with handle assembly (14).
  • inductance sensor that is sensitive to metallic components being brought into close proximity to power assembly (3100)
  • handle assembly (14) may detect the coupling of power assembly (3100) with handle assembly (14)
  • power assembly (3100) may also be configured to carry out a process to determine what kind of instrument (10) power assembly (3100) is coupled with, such as by sensing characteristics of the instrument (10) as described in greater detail below with reference to FIGS. 26 through 28-2 .
  • circuit board (100) and/or other electrical components of instrument (10) may generate one or more signals to communicate with the power assembly (3100) in order to interrogate the power assembly (3100).
  • instrument (10) may generate the one or more signals to interrogate or communicate with the power assembly (3100) by modulating power transmission from the power assembly (3100) to the instrument (10) while the power assembly (3100) is coupled to the instrument (10).
  • instrument (10) may send the one or more interrogation signals in order to determine whether power assembly (3100) is a primary power pack (92).
  • instrument (10) may interrogate power assembly (3100) to determine if the power assembly (3100) is compatible with the instrument (10).
  • instrument (10) may interrogate power assembly (3100) to determine battery health, whether power assembly (3100) is properly inserted, and/or other conditions. Based on the results of the interrogation, instrument (10) may be configured to prevent the use of a counterfeit power pack/assembly or a power pack/assembly that is otherwise perceived as improper by instrument (10).
  • the power assembly (3100) of the present example is configured to perform one or more functions in response to receiving the one or more interrogation signals from the instrument (10) in order to convince instrument (10) that power assembly (3100) is a primary power pack (92) and/or to otherwise convince instrument (10) that power assembly (3100) is compatible with instrument (10). Therefore, it may be desirable to provide a power assembly (3100) that is configured to emulate the power profile of a primary power pack (92).
  • FIG. 25 shows an exemplary method of emulating a power profile of a primary power pack (92) that is intended for use with instrument (10). It should be understood that the method shown in FIG. 25 may be carried out using the circuit of power assembly (3100) shown in FIG. 24 or using various other circuit arrangements. Various suitable ways in which the method shown in FIG. 25 may be carried out using the circuit of power assembly (3100) shown in FIG. 24 and/or using various other circuit arrangements will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • the instrument (10) may sense that a power assembly (3100) is connected thereto, as noted above.
  • the interrogation is received by the power assembly (3100) (block 3152). If the interrogation is understood by the processor (3116) of power assembly (3100) (block 3154) and if the processor (3116) is programmed to respond to the interrogation (block 3156), the processor (3116) sends the expected response or interrogation output to the instrument (10) (block 3158).
  • the expected response from power assembly (3100) is meant to emulate the effective series resistance (R S ) of a primary power pack (92) as described above.
  • the power assembly (3100) can convince instrument (10) that the effective series resistance (R S ) of the power assembly (3100) has the same value of an effective series resistance (R S ) as expected from a primary power pack (92).
  • the circuit board (100), other features of handle assembly (14), and/or other features of instrument (10) receives a voltage signal according to an assumed effective series resistance (R S ) value.
  • the processor (3116) may receive a signal that the power assembly (3100) is connected to a handle assembly (14) and detect an interrogation by the handle assembly (14). The processor (3116) may then command the voltage regulator (3104) to adjust the load voltage (V L ) at the expected level associated with the expected effective series resistance (R S ) value, for example.
  • the NPN pass transistor (3108) may also be configured to provide an output impedance that emulates the expected effective series resistance (R S ).
  • the power assembly (3100) initiates a voltage and current profile associated with the instrument (10) (block 3162).
  • the voltage and current profile associated with the shaft assembly may be constant or variable, and may be stored on a database, such as a database or other storage medium on a memory (not shown).
  • the memory and/or database may be present on or in the power assembly (3100) itself.
  • the database or part of the database may be in a nearby or remote memory and accessed according to methods that will be apparent to those skilled in the art.
  • the power assembly (3100) may be configured to communicate electronically (wired, wirelessly, or otherwise) with other sources of information (e.g., manufacturer's specifications) in order to discover and/or initiate an operational profile associated with the device.
  • an error warning may optionally be provided (block 3164).
  • the error warning may be provided by a visual, audio, and/or another indicative manner to the user; and may be provided through the power assembly (3100) and/or through the instrument (10) that is connected to the power assembly (3100). If the power assembly (3100) has performed less than a certain number of interrogation cycles (e.g., two), the power assembly (3100) may suspend operation (block 3166). Alternatively, if the instrument (10) does not believe a primary power pack (92) is connected, then another interrogation cycle may begin (block 3152), with or without an error warning (block 3164).
  • the power assembly (3100) collects and stores information regarding the interrogation (block 3168) and may use the collected and stored information to re-program the processor (block 3170) in order to increase the chances that, during the next interrogation cycle, the processor (3166) understands the interrogation and/or is programmed to appropriately respond to the interrogation.
  • powering the instrument (10) on and off may allow software and/or algorithms within the power assembly (3100) (e.g., in the processor (3116)) to adapt and update in order to attempt to match the expectations of the instrument (10), but powering the instrument (10) on and off is not required for the power assembly (3100) to update as described.
  • the step(s) of collection and storage of such information may be performed using a memory (not shown) on the power assembly (3100) itself, which then may communicate to parties such as the power assembly (3100) designer and manufacturer.
  • the information could be transmitted back to a centralized system once the power assembly (3100) is coupled with, for example, a recharging/docking station.
  • the recharging/docking station may be in communication with a centralized server or other processing system component via the internet, via a private network, via a cellular network, and/or via any other suitable means.
  • Information collected from power assembly (3100) may be used to refine the performance of that particular power assembly (3100).
  • the information may be used to improve the performance of other existing power assemblies (3100) and/or subsequently made power assemblies (3100).
  • the information may be stored and used in any software or algorithms used in a power assembly (3100) such as one of the examples described herein; or in some other fashion.
  • the information may be conveyed from a central processor or database to other power assemblies (3100) in any suitable manner as will be apparent to those skilled in the art. While FIG.
  • FIG. 25 shows that the collection and storage of information (block 3168) occurs when interrogation is not understood by the processor (3166) (block 3154) or if the processor (3166) is not programmed to respond to the interrogation (block 3156), such information may also be collected and stored at other stages of the interrogation cycle, for example.
  • power assembly (3100) may monitor duty cycle and usage data and may be operable to transmit such data to a centralized system when the power assembly (3100) is coupled with, for example, a recharging/docking station.
  • the data may be used to modify certain characteristics of the particular power assembly (3100), to improve the performance of other existing power assemblies (3100), and/or to improve the performance of subsequently made power assemblies (3100).
  • the data may be used to modify the steady-state outputs of current or future power assemblies (3100) in order to maximize battery life, cell balance, and capacity based on cumulative data usage over time.
  • bios or simple software updates may be uploaded to the power assembly (3100) as the power assembly manufacturer updates the operation algorithms and/or programs, or adds new medical devices whose primary power assemblies the secondary power assembly (3100) can emulate.
  • the communication link may be wired or wireless.
  • FIG. 26 shows a schematic circuit diagram of another exemplary alternative power assembly (5010) that includes features that allows the power assembly (5010) to be used to provide power to a variety of kinds of medical devices having different power requirements.
  • power assembly (5010) may be operable to provide power to surgical stapling instruments such as instrument (10), ultrasonic surgical instruments such as any of the various ultrasonic surgical instruments provided by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio, electrosurgical instruments such as any of the various electrosurgical instruments provided by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio, and/or any other kind of electrically powered medical devices.
  • the physical appearance and other features of the power assembly (5010) may be configured according to the teachings above.
  • the power assembly (5010) may be configured in a similar manner to the battery/power pack (92) shown in FIG. 4 , but is not so limited. Power assembly (5010) may thus be mechanically and electrically coupled with the proximal end of handle assembly (14) in a manner similar to power pack (92).
  • the power assembly (5010) of the present example includes one or more features that enable it to sense or observe certain characteristics a medical device to which it is connected and adjust its own configuration in an attempt to become operationally compatible with the device.
  • the power assembly (5010) also includes features that enable it to adapt and learn after successful and unsuccessful attempts to become operationally compatible with the medical device to increase the likelihood of success of subsequent attempts with the same or different medical devices.
  • power assembly (5010) may have the same components and functionalities described above with respect to power assembly (3100). Power assembly (5010) may thus be capable of convincing a medical device (e.g., instrument (10)) that power assembly (5010) is a primary power pack (92) that was originally provided with the medical device or that the medical device otherwise expects to be coupled with the medical device.
  • power assembly (5010) includes a set of battery cells (5012) that are operable to provide power output through terminals (5014a, 5014b).
  • Battery cells (5012) may be rechargeable or non-rechargeable.
  • Terminals (5014a, 5014b) may be provided as a set of contacts that are exposed through a distal housing portion of power assembly (5010) (e.g., similar to distal housing portion (96)). Terminals (5014a, 5014b) may thus be coupled with complementary contacts of a medical device (e.g., contacts in handle assembly (14), handle assembly (2002), working assembly (2054), etc.).
  • a medical device e.g., contacts in handle assembly (14), handle assembly (2002), working assembly (2054), etc.
  • terminals (5014a, 5014b) do not have predetermined polarity in this example, such that the polarity may be assigned on an ad hoc basis.
  • the circuit includes a set of switches (5030, 5032, 5034, 5036) that are interposed between terminals (5014a, 5014b) and the rest of the circuit of power assembly (5010).
  • the circuit of power assembly (5010) is configured to provide switches (5030, 5034) in a closed state, while switches (5032, 5036) are in an open state, in order to provide terminals (5014a, 5014b) at a first polarity (A).
  • the circuit of power assembly (5010) is further configured to provide switches (5032, 5036) in a closed state, while switches (5030, 5034) are in an open state, in order to provide terminals (5014a, 5014b) at a second polarity (B).
  • Power assembly (5010) is operable to switch between these polarities (A, B) on an ad hoc basis in order to render power assembly (5010) operable with a variety of working assemblies (2054) and/or handle assemblies (14, 2002) having different power requirements. Examples of components and methods through which power assembly (5010) provides this polarity switching will be described in greater detail below.
  • power assembly (5010) has the ability to observe or sense certain physical, electrical, electronic, or other characteristics of the medical device to which power assembly (5010) is coupled and adjust (or maintain) the polarity of the output terminals (5014a, 5014b) accordingly.
  • the power assembly (5010) is configured to sense electrical characteristics of the medical device to which power assembly (5010) is coupled.
  • Power assembly (5010) includes a voltage regulator (5016), a current regulator (5018), a sensor (5020) positioned to receive a return signal from the output terminals (5014a, 5014b) when the power assembly (5010) is connected to assembly medical, discussed in further detail below.
  • a processor (5022) included in the power assembly (5010) communicates with the sensor (5020) and determines whether the return signal is appropriate based on the output signal sent, such as whether the polarity of the power assembly (5010) matches the polarity of the medical device.
  • Power assembly (5010) also includes a warning device (5024) that is configured to provide a warning in a visual, audio, and/or another indicative manner.
  • a warning device 5024
  • Various suitable kinds of components that may be used to form voltage regulator (5016), current regulator (5018), sensor (5020), processor (5022), and warning device (5024) will also be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIG. 27 shows an exemplary method that may be carried out by power assembly (5010).
  • the method begins with a user connecting power assembly (5010) with a medical device (block 5050).
  • Power assembly (5010) may detect this coupling in accordance with the teachings above with respect to power assembly (3100).
  • power assembly (5010) may detect the coupling of power assembly (5010) with the medical device in any other suitable fashion as will be apparent to those of ordinary skill in the art in view of the teachings herein. In the example shown in FIGS.
  • power assembly (5010) begins an interrogation cycle of the medical device by sending an output signal to the medical device, via the output terminals (5014a, 5014b) of power assembly (5010) (block 5052).
  • the output signal is set to a first level of voltage by the voltage regulator (5016) as controlled by the processor (5022), with switches (5030, 5032, 5034, 5036) providing output terminals (4014s, 5014b) at a default polarity (A, B).
  • the first level of voltage is insufficient to power the medical device for normal use; and may be low enough such that the medical device does not even detect the first level of voltage. This relatively low, first level of voltage may be deemed a "polling" voltage.
  • the voltage level of the signal is increased (block 5052) by the voltage regulator (5016) according to an input from the processor (5022).
  • the sensor (5020) senses a return signal from the output terminals (5014a, 5014b) and communicates the return signal to the processor (5022).
  • the sensor (5020) is a current sensor and therefore senses the current drawn by the medical device.
  • sensor (5020) may be a different type of sensor that senses different electrical or electronic characteristics of the return signal.
  • the processor (5022) based on the return signal, determines whether the medical device is drawing an appropriate amount of current according to, for example, a start-up operation of the medical device (block 5054). Determining whether the medical device is drawing an appropriate amount of current based at least in part on the output signal allows the power assembly (5010) to determine whether the polarities of the terminals (5014a, 5014b) and the medical device are matching at that stage.
  • the power assembly (5010) may decrease the voltage output and monitor response of the medical device (block 5056).
  • the medical device begins to draw current at an expected level, then the medical device is known to the power assembly (5010) and the power assembly (5010) initiates an operational profile (e.g., current and voltage) associated with the known device.
  • the power assembly (5010) if the power assembly (5010) has performed less than a certain number of interrogation cycles (e.g., one or more), the power assembly (5010) switches polarities from the first polarity (A) to the second polarity (B), for example (block 5058).
  • the power assembly (5010) may then begin another interrogation cycle, starting at block 5052, by increasing the voltage output from the power assembly (5010) to the shaft assembly as described herein. If, however, the power assembly (5010) has already performed a certain number of interrogation cycles, the power assembly (5010) may decide not to switch polarity of the contacts, and instead may provide an error warning to the user (block 5060) and/or suspend operation (block 5062).
  • the error warning may be provided by a visual, audio, and/or another indicative manner to the user and may be provided on one or both of the power assembly (5010) (e.g., via warning device (5024)) or the medical device; or on a device connected to one of the power assembly (5010) or the medical device.
  • the number of interrogation cycles before providing an error warning may be two such that the power assembly (5010) has attempted to properly electrically connect with the medical device by switching between the first and second polarities (A, B). In some other versions, the number of interrogation cycles may be a different amount than two, and may be many more, as described below.
  • the processor (5022) may command the voltage regulator (5016) to increase the voltage output until the medical device powers on (block 5064). At this point, the processor (5022) may initiate the voltage and current profile associated with the medical device (block 5066) to initiate operation of the medical device.
  • the power assembly (5010) optionally may observe or sense other characteristics of the medical device (block 5068) and confirm the identity of the medical device based on those characteristics (block 5070), in a manner discussed in more detail below, prior to initiating the voltage and current profile (block 5066). For instance, power assembly (5100) may initially provide a gradual voltage increase to detect if the medical device includes a reverse polarity protection circuit (e.g., a diode) that has been activated.
  • a reverse polarity protection circuit e.g., a diode
  • power assembly (5010) may subsequently initiate the voltage and current profile associated with the medical device (block 5066).
  • the processor (5022) may set the voltage regulator (5016) and/or the current regulator (5018) to operation levels associated with the medical device.
  • the voltage and current profile associated with the medical device may be constant or variable, and may be stored on a database, such as a database or other storage medium on a memory (not shown).
  • the memory and/or database may be present on or in the power assembly (5010) itself.
  • the database or part of the database may be in a nearby or remote memory and accessed according to methods that will be apparent to those skilled in the art.
  • the power assembly (5010) may be configured to communicate electronically (wired, wirelessly, or otherwise) with other sources of information (e.g., manufacturer's specifications) in order to discover and/or initiate an operational profile associated with the medical device.
  • the power assembly (5010) could provide an error warning (block 5072) and suspend operation (block 5074).
  • the error warning may be provided through warning device (5024).
  • the power assembly (5010) could return to (block 5056) and decrease voltage output, and switch the polarity of terminals (5014a, 5014b) according to (block 5058), and begin another interrogation cycle as described herein (e.g., at block 5052).
  • the power assembly (5010) is configured to adapt in the event that it cannot properly electrically connect to the medical device; e.g., where the initial polarity of polarity of terminals (5014a, 5014b) does not complement the polarity of the medical device.
  • the power assembly (5010) may collect and store certain information (block 5076) if the medical device is determined to be drawing current at a different level than expected (e.g., at block 5054), for example, or after the device identity is not confirmed (e.g., at block 5070), or at other stages of the interrogation cycle.
  • the power assembly (5010) may optionally collect and store the response of the medical device to the output signal of the power assembly (5010).
  • the power assembly (5010) may (additionally or alternatively) optionally collect and store the sensed or observed characteristics of the medical device, such as those characteristics described herein or other characteristics. While the flowchart shows that the collection and storage of information occurs if the medical device identity is not confirmed (e.g., blocks 5070, 5076), such information may also be collected and stored when the medical device identity is confirmed at block 5070, or if the medical device is drawing current at an expected level (block 5054). In other words, the power assembly (5010) may collect and store information whether or not it is able to successfully electrically connect to the medical device at any point during an interrogation cycle.
  • the power assembly (5010) may use the stored information in a subsequent attempt to match the polarity (and/or other characteristics) of the medical device to which it is connected. It may store the medical device or other device information for later use for itself or other power assemblies (5010), or both. If using the information in a subsequent attempt to match the polarity of the medical device, the power assembly (5010) may power down the medical device (block 5078) and subsequently power up the medical device (block 5080) and begin another interrogation cycle at, for example, (block 5052). In some examples, powering the device on and off may allow software and/or algorithms within the power assembly (5010) (e.g., in the processor (5022), etc.)) to adapt and update in order to attempt to match the medical device.
  • the step(s) of collection and storage of such information may be performed using a memory (not shown) on the power assembly (5010) itself, which then may communicate to parties such as the power assembly (5010) designer and manufacturer.
  • the information could be transmitted back to a centralized system once the power assembly (5010) is coupled with, for example, a recharging/docking station.
  • the recharging/docking station may be in communication with a centralized server or other processing system component via the internet, via a private network, via a cellular network, and/or via any other suitable means.
  • Information collected from power assembly (5010) may be used to refine the performance of that particular power assembly (5010).
  • the information may be used to improve the performance of other existing power assemblies (5010) and/or subsequently made power assemblies (5010).
  • the information may be stored and used in any software or algorithms used in a power assembly (5010) such as one of the examples described herein; or in some other fashion.
  • the information may be conveyed from a central processor or database to other power assemblies (5010) in any suitable manner as will be apparent to those skilled in the art.
  • an interrogation cycle of the power assembly (5010) may include sensing certain other characteristics of the medical device.
  • the power assembly (5010) may be configured to sense other electrical, mechanical, and/or electronic characteristics or properties of the medical device (block 4012).
  • the power assembly (5010) may be configured to sense other electrical characteristics of the medical device such as internal resistance.
  • the power assembly (5010) may include one or more inductance sensors configured to sense the presence of adjacent metallic members on the medical device when the power assembly (5010) is connected to or adjacent to the medical device. Therefore, the inductance sensor(s) may sense the presence (or lack thereof) and/or location of metallic contacts, for example, of the medical device and determine that it is connected to a particular known device. Other sensors could be employed to sense the physical characteristics (e.g. shape, size, etc.) of the receptacle area of the medical device that receives the power assembly (5010).
  • the power assembly (5010) could include switches or sensors to detect mechanical or other features of the receptacle area or other portions of the medical device.
  • the power assembly (5010) could include bar code readers, radiofrequency identification, or other electrical or electronic devices or sensors that could be used to identify at least some characteristics of the medical device or other portions of the medical device.
  • the power assembly (5010) may access a database of characteristics of known medical devices (e.g., working assemblies of known medical devices) and compare the sensed characteristic to the characteristics of known medical devices to determine to which possible medical devices it is connected (block 5104).
  • the database may be stored or included on a memory of the power assembly (5010) itself. Alternatively or additionally, the database or part of the database may be in a nearby or remote location and accessed according to methods that will be apparent to those skilled in the art.
  • the database may include physical, electric, electronic, and other characteristics of known medical devices, or may be a collection of different physical, electric, electronic, or other characteristics that may or may not be associated with a particular known medical device.
  • the database may have voltage, amp rate, polarity, physical location of contacts, and other various information on a number of medical devices to which the power assembly (5010) may be connected.
  • the polarity of the terminals (5014a, 5014b) may be maintained or adjusted by switches (5030, 5032, 5034, 5036) according to the presumed polarity of the medical device to which the power assembly (5010) believes it is connected (block 5108).
  • the electrical contacts thereof are moved physically with the goal of properly aligning the battery contacts with the contacts of the medical device.
  • the polarity of the terminals (5014a, 5014b) may be switched by switches (5030, 5032, 5034, 5036).
  • the power assembly (5010) could provide an error warning (block 5110) (e.g., via warning device (5024)) and suspend operation (block 5112).
  • the power assembly (5010) could return to (block 5056) and decrease voltage output, and switch the polarity of terminals (5014a, 5014b) according to block 5108, and begin another interrogation cycle as described herein (e.g., at block 5052).
  • the power assembly (5100) may then begin another interrogation cycle, starting at block (5052) of FIG. 28-2 , by commencing and increasing the voltage output from the power assembly (5010) to the medical device as described herein with respect to FIG. 27 .
  • the interrogation cycle shown in FIG. 28-2 is substantially identical to the interrogation cycle shown in FIG. 27 , except that the interrogation cycle of FIG. 28-2 may be preceded by the initial interrogation cycle described and shown in FIG. 28-1 , starting at (block 5102), for example. Therefore, blocks representing the same or similar steps are labeled with the same reference numerals.
  • the polarity of the device is switched (see block 5058, FIG. 27 ).
  • the power assembly (5010) may skip the step of adjusting the polarity at (block 5108) and commence the interrogation cycle starting at block 5052.
  • the power assembly (5010) may collect and store any information regarding the response and/or characteristics of the medical device and communicate with the database to add the observed characteristics of the medical device to the database at various times during the interrogation cycle (e.g., blocks 5114, 5116, 5118, 5120).
  • the storage and collection of such information may be in a same or similar manner as the collection of information and/or data shown and describe relative to the method shown in FIG. 27 .
  • the power assembly (5010) may collect and store different characteristics that were sensed during an initial attempt to connect.
  • FIG. 29 shows a schematic circuit diagram of an exemplary alternative medical device (6010) including features that that allow it to be used with a variety of battery packs or other power devices.
  • the device (6010) may be similar to the surgical instrument (10) shown in FIG. 1 , but is not so limited.
  • the device (6010) is schematically shown to be connected to a battery pack or power assembly (6012) that may have characteristics (e.g., such as polarity) that are initially unknown to the device (6010).
  • the device (6010) includes one or more features that enable it to sense or observe certain characteristics of the power assembly (6012) and adjust its own configuration in an attempt to become compatible with the power assembly (6012).
  • a working assembly (6014) of a medical device (6010) such as working assembly (2054) ( FIG. 15 ) described herein.
  • these features may be provided in, for example, different portions of a medical device (6010), such as a handle assembly (e.g., handle assembly 2002 ( FIGS. 12-1 , 12-2 , and 13 )), or any portion of a body of a medical device described herein.
  • the device (6010) in some examples, includes features that enable it to adapt and learn after successful and unsuccessful attempts to become operationally compatible with the power assembly (6012) to increase the likelihood of success of subsequent attempts with the same, similar, or different power assemblies (6012).
  • the working assembly (6014) includes an interface (6015) having a power input (6016) that is configured to be connected to, and receive power from, an interface (6017) of power assembly (6012) shown in FIG. 29 , via terminals (6018a, 6018b).
  • Terminals (6018a, 6018b) may be provided as a set of contacts that are exposed through a distal housing portion of working assembly (6014). Terminals (6018a, 6018b) may thus be coupled with complementary contacts of a power assembly (6012) (e.g., contacts of power assembly (90)).
  • terminals (6018a, 6018b) do not have predetermined polarity in this example, such that the polarity may be assigned on an ad hoc basis.
  • the circuit includes a set of switches (6020, 6022, 6024, 6026) that are interposed between terminals (6018a, 6018b) and the rest of the circuit of working assembly (6014).
  • the circuit of working assembly (6014) is configured to provide switches (6020, 6024) in a closed state, while switches (6022, 6026) are in an open state, in order to provide terminals (6018a, 6018b) at a first polarity (A).
  • the circuit of working assembly (6014) is further configured to provide switches (6022, 6026) in a closed state, while switches (6020, 6024) are in an open state, in order to provide terminals (6018a, 6018b) at a second polarity (B).
  • Working assembly (6014) is operable to switch between these polarities (A, B) on an ad hoc basis in order to render working assembly (6014) operable with a variety of power assemblies (e.g., 90, 6012) having different polarities.
  • working assembly (6014) may utilize a diode bridge (not shown) that enables the working assembly (6014) to be compatible with power assemblies (e.g., 90, 6012) having any polarity orientation. Examples of components and methods through which working assembly (6014) provides polarity switching via switches (6020, 6022, 6024, 6026) will be described in greater detail below.
  • the working assembly (6014) of medical device (6010) is configured to sense electrical characteristics of the power assembly (6012) that is connected to the device (6010).
  • the device (6010) includes a sensor (6018) that is operable to sense at least one characteristic of power assembly (6012).
  • the sensor (6018) is a polarity sensing device (6018) that is operable to sense the polarity of the power assembly (6012) that is connected to the working assembly (6014).
  • FIG. 30 shows an exemplary method that may be carried out by medical device (6010).
  • the method begins with a user connecting power assembly (6012) to the medical device (6010) (block 6150).
  • Medical device (6010) may detect this coupling in accordance with the teachings above with respect to power assembly (3100).
  • medical device (6010) may detect the coupling of power assembly (6012) with the medical device (6010) in any other suitable fashion as will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • working assembly (6014) begins an interrogation cycle at (block 6152) by sensing and/or observing the polarity of the power assembly (6012) with the polarity sensing device (6018), for example. If the polarity of the power assembly (6012) matches the polarity of the working assembly (6014) (block 6154), the working assembly (6014) powers on (block 6156).
  • the medical device (6010) may determine if there is still a match between the polarities of the device (6010) and the power assembly (6012) (block 5158) and then initiate a voltage and current profile associated with the device (6010) in order to operate the working assembly (6014) (block 6160).
  • the voltage and current profile associated with the working assembly (6014) may be constant or variable, and may be stored on a database, such as a database or other storage medium on a memory (not shown).
  • the memory may be present on or in the device (6010).
  • the database or part of the database may be in a nearby or remote memory and accessed according to methods that will be apparent to those skilled in the art.
  • working assembly (6014) or power assembly (6012) may be configured to communicate electronically (wired, wirelessly, or otherwise) with other sources of information (e.g., manufacturer's specifications) in order to discover and/or initiate an operational profile associated with the working assembly (6014).
  • sources of information e.g., manufacturer's specifications
  • the working assembly (6014) may optionally observe or sense at least one physical, electric, electronic, or other characteristic of the power assembly (6012), including the response of the power assembly (6012) to the working assembly (6014) being powered on (block 6166). The working assembly (6014) may then collect and store this information (block 6168). In some examples, the working assembly (6104) has the ability to observe or sense other certain physical, electrical, electronic, or other characteristics of the power assembly (6012) to which is connected and adjust (or maintain) the polarity of the terminals (6018a, 6018b) accordingly.
  • the working assembly (6014) may be configured to sense other electrical characteristics of the power assembly (6012) such as internal resistance, for example.
  • the device (6010) may include one or more inductance sensors configured to sense adjacent metallic members on interface (6017) of the power assembly (6012) when the power assembly (6012) is connected to or adjacent to the working assembly (6014). Therefore, the inductance sensor(s) may sense the presence (or lack thereof) and/or location of metallic contacts, for example, of the power assembly (6012); and determine that it is connected to a particular known power assembly (6012).
  • Other sensors could be employed to sense the physical characteristics (e.g. shape, size, etc.) of the body of the power assembly (6012), for example.
  • the working assembly (6014) could include could include switches or sensors to detect mechanical or other features of the body of the power assembly (6012). Additionally or alternatively, the working assembly (6014) could include bar code readers, radiofrequency identification, or other electrical or electronic devices or sensors that could be used to identify at least some characteristics of the power assembly (6012).
  • the polarity of the terminals (6018a, 6018b) is switched (block 6170) and the response of the working assembly (6014) or other sensed characteristics of the power assembly (6012) may be collected and stored (block 6171) in a memory.
  • the electrical contacts of the terminals (6018a, 6018b)) of the working assembly (6014) are moved physically with the goal of properly aligning the contacts of the working assembly (6014) with the contacts of the power assembly (6012).
  • the polarity of the terminals (6018a, 6018b) may be switched by switches (6020, 6022, 6024, 6026). Once the polarity of the terminals (6018a, 6018b) has been switched, the working assembly (6014) may then begin another interrogation cycle, starting at (block 6152), by observing the polarity of the power assembly (6012) as described herein above. If, however, the working assembly (6014) has already performed a certain number of interrogation cycles, the device (6010) may not switch polarity of the terminals (6018a, 6018b) as shown in (block 6170), and may instead provide an error warning to the user (block 6172) and/or suspend operation (block 6174).
  • the error warning may be provided by a visual, audio, and/or another indicative manner to the user and may be provided on one or both of the power assembly (6012) or the working assembly (6014); or on a device connected to one of the power assembly (6012) or the working assembly (6014).
  • the number of interrogation cycles before providing an error warning may be two such that the working assembly (6014) has attempted to properly electrically connect with the power assembly (6012) by switching between the first and second polarities. However, the number of interrogation cycles may be a different amount than two, and may be many more.
  • the working assembly (6014) is configured to adapt in the event that it cannot properly electrically connect to the power assembly (6012) (e.g., where the working assembly (6014) is unsuccessful in aligning the polarity of its contacts with the polarity of the contacts of the power assembly (6012)). While the flowchart shows that the collection and storage of information occurs at blocks 6171 and 6168, in other examples such information may also be collected and stored at other times during, before, or after the interrogation cycle. Moreover, the working assembly (6014) may collect and store information whether or not it is able to successfully electrically connect to the power assembly (6012) at any point during an interrogation cycle. The working assembly (6014) may optionally communicate the stored information to a database to add the observed characteristics of the power assembly (6012) to the database at various times during the interrogation cycle.
  • the working assembly (6014) may use the stored information in a subsequent attempt to match the polarity of the power assembly (6012) to which it is connected. It may store the power assembly (6012) information for later use for itself or other power assemblies (6012), or both. If using the information in a subsequent attempt to match the polarity of the power assembly (6012), the working assembly (6014) may power down and subsequently power up and begin another interrogation cycle at, for example, (block 6152). In some examples, powering the working assembly (6014) on and off may allow software and/or algorithms within the working assembly (6014) (e.g., in a processor) to adapt and update in order to attempt to match the power assembly (6012).
  • the step(s) of collection and storage of such information may be performed using a memory on the working assembly (6014) itself, which may then communicate to parties such as the device designer and manufacturer.
  • the information may be stored and used in any software or algorithms used in a working assembly (6014) such as one of the examples described herein. Additionally or alternatively, the information may be conveyed to a central processor or database that may communicate this and other information to other devices in manners that will be understood by those skilled in the art.
  • any of the examples described herein may include various other features in addition to or in lieu of those described above.
  • any of the examples described herein may also include one or more of the various features disclosed in any of the various references that are referenced herein.
  • Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure.
  • reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
  • versions described herein may be sterilized before and/or after a procedure.
  • the device is placed in a closed and sealed container, such as a plastic or TYVEK bag.
  • the container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons.
  • the radiation may kill bacteria on the device and in the container.
  • the sterilized device may then be stored in the sterile container for later use.
  • a device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Surgical Instruments (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
EP15189688.3A 2014-10-15 2015-10-14 Bloc-batterie d'instrument chirurgical avec émulation de profil de puissance Active EP3009081B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15189688T PL3009081T3 (pl) 2014-10-15 2015-10-14 Akumulator narzędzia chirurgicznego z emulacją profilu energii

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/514,417 US9974539B2 (en) 2014-10-15 2014-10-15 Surgical instrument battery pack with voltage polling
US14/514,426 US9833239B2 (en) 2014-10-15 2014-10-15 Surgical instrument battery pack with power profile emulation

Publications (2)

Publication Number Publication Date
EP3009081A1 true EP3009081A1 (fr) 2016-04-20
EP3009081B1 EP3009081B1 (fr) 2018-02-21

Family

ID=63914670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15189688.3A Active EP3009081B1 (fr) 2014-10-15 2015-10-14 Bloc-batterie d'instrument chirurgical avec émulation de profil de puissance

Country Status (7)

Country Link
US (2) US9974539B2 (fr)
EP (1) EP3009081B1 (fr)
JP (2) JP6648129B2 (fr)
CN (2) CN108370072B (fr)
BR (1) BR112017007631B1 (fr)
PL (1) PL3009081T3 (fr)
WO (2) WO2016060829A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020043253A1 (fr) * 2018-08-30 2020-03-05 Energy Laser A/S Tête laser et sonde laser pour thérapie laser à faible intensité et méthode de contrôle d'une telle sonde laser
CN113219241A (zh) * 2021-03-25 2021-08-06 河南翔宇医疗设备股份有限公司 一种功率检测方法、装置及治疗设备

Families Citing this family (516)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US8365976B2 (en) 2006-09-29 2013-02-05 Ethicon Endo-Surgery, Inc. Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8632535B2 (en) 2007-01-10 2014-01-21 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US7604151B2 (en) 2007-03-15 2009-10-20 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
BRPI0901282A2 (pt) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc instrumento cirúrgico de corte e fixação dotado de eletrodos de rf
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CA2751664A1 (fr) 2009-02-06 2010-08-12 Ethicon Endo-Surgery, Inc. Ameliorations d'agrafeuse chirurgicale commandee
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
BR112013027794B1 (pt) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc Conjunto de cartucho de grampos
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9421060B2 (en) 2011-10-24 2016-08-23 Ethicon Endo-Surgery, Llc Litz wire battery powered device
WO2013119545A1 (fr) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Instrument chirurgical robotisé
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024102B1 (pt) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc Conjunto de cartucho de prendedores para um instrumento cirúrgico, e conjunto de atuador de extremidade para um instrumento cirúrgico
JP6105041B2 (ja) 2012-03-28 2017-03-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 低圧環境を画定するカプセルを含む組織厚コンペンセーター
RU2644272C2 (ru) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Узел ограничения, включающий компенсатор толщины ткани
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
BR112014032776B1 (pt) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
RU2636861C2 (ru) 2012-06-28 2017-11-28 Этикон Эндо-Серджери, Инк. Блокировка пустой кассеты с клипсами
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
BR112015021082B1 (pt) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
MX368026B (es) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Instrumento quirúrgico articulable con vías conductoras para la comunicación de la señal.
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
BR112015026109B1 (pt) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
JP6416260B2 (ja) 2013-08-23 2018-10-31 エシコン エルエルシー 動力付き外科用器具のための発射部材後退装置
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (ja) 2014-02-24 2019-01-30 エシコン エルエルシー 発射部材ロックアウトを備える締結システム
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US9750499B2 (en) * 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
BR112016021943B1 (pt) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
CN106456176B (zh) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 包括具有不同构型的延伸部的紧固件仓
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
JP6612256B2 (ja) 2014-04-16 2019-11-27 エシコン エルエルシー 不均一な締結具を備える締結具カートリッジ
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
BR112016023807B1 (pt) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc Conjunto de cartucho de prendedores para uso com um instrumento cirúrgico
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
MX2017003960A (es) 2014-09-26 2017-12-04 Ethicon Llc Refuerzos de grapas quirúrgicas y materiales auxiliares.
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
EP3010080B1 (fr) 2014-10-15 2022-02-23 Ethicon Endo-Surgery, Inc. Bloc-batterie d'instrument chirurgical avec sondage de tension
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10117649B2 (en) * 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
RU2703684C2 (ru) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Хирургический инструмент с упором, который выполнен с возможностью избирательного перемещения относительно кассеты со скобами вокруг дискретной неподвижной оси
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
JP2020121162A (ja) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) * 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10076326B2 (en) * 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10314578B2 (en) * 2015-09-29 2019-06-11 Ethicon Llc Battery drain circuit for surgical instrument
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US20170202595A1 (en) 2016-01-15 2017-07-20 Ethicon Endo-Surgery, Llc Modular battery powered handheld surgical instrument with a plurality of control programs
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
CN108882932B (zh) 2016-02-09 2021-07-23 伊西康有限责任公司 具有非对称关节运动构造的外科器械
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
JP7086963B2 (ja) 2016-12-21 2022-06-20 エシコン エルエルシー エンドエフェクタロックアウト及び発射アセンブリロックアウトを備える外科用器具システム
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
CN110087565A (zh) 2016-12-21 2019-08-02 爱惜康有限责任公司 外科缝合系统
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
JP6983893B2 (ja) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10835218B2 (en) * 2017-06-27 2020-11-17 Ethicon Llc Apparatus and method to determine end of life of battery powered surgical instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10667812B2 (en) * 2017-06-27 2020-06-02 Ethicon Llc Modular powered electrical connection for surgical instrument with features to prevent electrical discharge
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10603117B2 (en) * 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
EP4070740A1 (fr) 2017-06-28 2022-10-12 Cilag GmbH International Instrument chirurgical comprenant des coupleurs rotatifs actionnables de façon sélective
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US10695060B2 (en) 2017-09-01 2020-06-30 RevMedica, Inc. Loadable power pack for surgical instruments
US11331099B2 (en) 2017-09-01 2022-05-17 Rev Medica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
US10966720B2 (en) 2017-09-01 2021-04-06 RevMedica, Inc. Surgical stapler with removable power pack
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11129634B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instrument with rotary drive selectively actuating multiple end effector functions
US10932804B2 (en) 2017-10-30 2021-03-02 Ethicon Llc Surgical instrument with sensor and/or control systems
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11116485B2 (en) * 2017-10-30 2021-09-14 Cilag Gmbh International Surgical instrument with modular power sources
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11369372B2 (en) * 2018-11-28 2022-06-28 Covidien Lp Surgical stapler adapter with flexible cable assembly, flexible fingers, and contact clips
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
WO2021007400A1 (fr) * 2019-07-10 2021-01-14 Boston Scientific Scimed, Inc. Systèmes et dispositifs de fixation de tissu
WO2021016006A1 (fr) 2019-07-19 2021-01-28 RevMedica, Inc. Agrafeuse chirurgicale pourvue d'un bloc d'alimentation amovible
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US20210196362A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical end effectors with thermally insulative and thermally conductive portions
US11986234B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Surgical system communication pathways
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US20210196363A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
CN115380418A (zh) * 2020-04-01 2022-11-22 松下知识产权经营株式会社 蓄电组、电动移动体以及充电装置
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
EP4087499B1 (fr) * 2020-12-02 2024-02-14 Cilag GmbH International Dispositifs de gestion d'énergie dissipée entre des barrières stériles de boîtiers d'instruments chirurgicaux
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
JP2023551921A (ja) * 2020-12-02 2023-12-13 シラグ・ゲーエムベーハー・インターナショナル 外部コネクタを備える電動外科用器具
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11957342B2 (en) 2021-11-01 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805823A (en) 1988-03-18 1989-02-21 Ethicon, Inc. Pocket configuration for internal organ staplers
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5814055A (en) 1995-09-19 1998-09-29 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US6978921B2 (en) 2003-05-20 2005-12-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an E-beam firing mechanism
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US7303108B2 (en) 2003-09-29 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
US7367485B2 (en) 2004-06-30 2008-05-06 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary transmission
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7404508B2 (en) 2005-07-26 2008-07-29 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device
US7434715B2 (en) 2003-09-29 2008-10-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing with opening lockout
US20100089970A1 (en) 2008-10-10 2010-04-15 Ethicon Endo-Surgery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
EP2510891A1 (fr) * 2011-04-15 2012-10-17 Covidien AG Dispositif de découpe de cautère chirurgical ultrasonique portable alimenté par batterie
US20120298719A1 (en) 2011-05-27 2012-11-29 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8453914B2 (en) 2009-12-24 2013-06-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US20140154535A1 (en) * 2012-06-24 2014-06-05 Mark S. Olsson Modular battery pack apparatus, systems, and methods including viral data and/or code transfer
US20140239040A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulation lock having a detenting binary spring
US20140239036A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Jaw closure feature for end effector of surgical instrument
US20140239042A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Integrated tissue positioning and jaw alignment features for surgical stapler
US20140239037A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Staple forming features for surgical stapling instrument
US20140243801A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
US20140239038A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument with multi-diameter shaft
US20140239044A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Installation features for surgical instrument end effector cartridge
US20140239043A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Distal tip features for end effector of surgical instrument
US20140239041A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Lockout feature for movable cutting member of surgical instrument
US20140263541A1 (en) 2013-03-14 2014-09-18 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising an articulation lock
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US20140329044A1 (en) 2012-05-09 2014-11-06 Daniela SCIAN Mat with perimetric tray structure for gymnastics and physical rehabilitation with at least a repositionable step and an insert also removable

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840583A (en) * 1988-03-10 1989-06-20 Moore Donald M Automatic jumper cables
JPH06233467A (ja) * 1993-01-29 1994-08-19 Sanyo Electric Co Ltd 電子機器の電源装置
US5838143A (en) 1996-10-08 1998-11-17 Lo; Te-Yu Automatic battery polarity identification circuit having electrode plates, capacitor and relays
JPH11185824A (ja) * 1997-10-15 1999-07-09 Sony Corp 一次電池互換バッテリーパック
JP4590128B2 (ja) * 2001-05-18 2010-12-01 株式会社モリタ製作所 機能モジュール型の歯科用診療機器、この診療機器用の機能モジュール、この機能モジュールを用いる歯科用診療装置及び診療用機能モジュールユニット
US10105140B2 (en) * 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
US20090090763A1 (en) * 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
EP1704751A1 (fr) 2004-01-07 2006-09-27 Etymotic Research, Inc Appareil auditif universel
WO2006044693A2 (fr) * 2004-10-18 2006-04-27 Black & Decker Inc. Systeme electrique sans fil
KR100836634B1 (ko) * 2006-10-24 2008-06-10 주식회사 한림포스텍 무선 데이타 통신과 전력 전송이 가능한 무접점 충전장치,충전용 배터리팩 및 무접점 충전장치를 이용한 휴대용단말기
US8431263B2 (en) 2007-05-02 2013-04-30 Gary Stephen Shuster Automated composite battery
US8054049B1 (en) * 2007-08-30 2011-11-08 Avaya Inc. Using battery orientation to control mode of operation
US9107690B2 (en) * 2007-12-03 2015-08-18 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8210411B2 (en) * 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8201411B2 (en) * 2008-12-11 2012-06-19 General Electric Company Deep chilled air washer
DE102009000102A1 (de) 2009-01-09 2010-07-15 Hilti Aktiengesellschaft Steuerungsverfahren für einen Akkumulator und eine Handwerkzeugmaschine
CN201437021U (zh) * 2009-07-31 2010-04-14 广东省医疗器械研究所 可充电的植入性心脏起搏器设备
US20110093840A1 (en) * 2009-10-21 2011-04-21 Micro Power Electronics, Inc. Patches for battery-interfacing devices and associated systems and methods
CN201765310U (zh) * 2010-01-26 2011-03-16 南京工业大学 智能化电池循环充放电测试装置
EP2360773B1 (fr) * 2010-02-16 2013-07-24 Research In Motion Limited Mécanisme de contact de chargement CA
JP2012129183A (ja) * 2010-11-26 2012-07-05 Sony Corp 二次電池セル、電池パック及び電力消費機器
US8736228B1 (en) * 2010-12-20 2014-05-27 Amazon Technologies, Inc. Charging an electronic device including traversing at least a portion of a path with an apparatus
US20120179159A1 (en) * 2011-01-07 2012-07-12 Tyco Healthcare Group Lp Battery Interlock System and Related Method
KR20120085392A (ko) * 2011-01-24 2012-08-01 삼성전자주식회사 터치 스크린을 구비한 단말기 및 그 단말기에서 터치 이벤트 확인 방법
US8890467B2 (en) * 2011-03-28 2014-11-18 Continental Automotive Systems, Inc. System for controlling battery conditions
EP2505316A3 (fr) 2011-03-30 2014-04-23 HILTI Aktiengesellschaft Procédé de commande et machine-outil manuelle
CN202351406U (zh) * 2011-10-24 2012-07-25 中国电器科学研究院有限公司 一种新型动力电池检测控制系统
WO2013074485A2 (fr) * 2011-11-17 2013-05-23 Stryker Corporation Batterie capable de supporter les effets de l'immersion dans un liquide
CN103930298B (zh) * 2012-08-09 2016-04-13 约翰逊控制技术有限责任公司 用于电池组能量预测的系统和方法
JP2014092370A (ja) * 2012-10-31 2014-05-19 Agilent Technologies Inc 電圧電流特性発生器
CN103904898B (zh) * 2014-04-18 2017-05-03 东南大学 适于医疗检测用电源的低噪声高效隔离变换器及控制方法

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805823A (en) 1988-03-18 1989-02-21 Ethicon, Inc. Pocket configuration for internal organ staplers
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5673840A (en) 1994-12-19 1997-10-07 Ethicon Endo-Surgery, Inc. Surgical instrument
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5814055A (en) 1995-09-19 1998-09-29 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US6978921B2 (en) 2003-05-20 2005-12-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an E-beam firing mechanism
US7000818B2 (en) 2003-05-20 2006-02-21 Ethicon, Endo-Surger, Inc. Surgical stapling instrument having separate distinct closing and firing systems
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7303108B2 (en) 2003-09-29 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
US7434715B2 (en) 2003-09-29 2008-10-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing with opening lockout
US7367485B2 (en) 2004-06-30 2008-05-06 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary transmission
US7404508B2 (en) 2005-07-26 2008-07-29 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US20100089970A1 (en) 2008-10-10 2010-04-15 Ethicon Endo-Surgery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8453914B2 (en) 2009-12-24 2013-06-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
EP2510891A1 (fr) * 2011-04-15 2012-10-17 Covidien AG Dispositif de découpe de cautère chirurgical ultrasonique portable alimenté par batterie
US20120298719A1 (en) 2011-05-27 2012-11-29 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US20140329044A1 (en) 2012-05-09 2014-11-06 Daniela SCIAN Mat with perimetric tray structure for gymnastics and physical rehabilitation with at least a repositionable step and an insert also removable
US20140154535A1 (en) * 2012-06-24 2014-06-05 Mark S. Olsson Modular battery pack apparatus, systems, and methods including viral data and/or code transfer
US20140239042A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Integrated tissue positioning and jaw alignment features for surgical stapler
US20140239036A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Jaw closure feature for end effector of surgical instrument
US20140239037A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Staple forming features for surgical stapling instrument
US20140243801A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
US20140239038A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument with multi-diameter shaft
US20140239044A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Installation features for surgical instrument end effector cartridge
US20140239043A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Distal tip features for end effector of surgical instrument
US20140239041A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Lockout feature for movable cutting member of surgical instrument
US20140239040A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulation lock having a detenting binary spring
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US20140263551A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US20140263541A1 (en) 2013-03-14 2014-09-18 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising an articulation lock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020043253A1 (fr) * 2018-08-30 2020-03-05 Energy Laser A/S Tête laser et sonde laser pour thérapie laser à faible intensité et méthode de contrôle d'une telle sonde laser
CN113219241A (zh) * 2021-03-25 2021-08-06 河南翔宇医疗设备股份有限公司 一种功率检测方法、装置及治疗设备

Also Published As

Publication number Publication date
EP3009081B1 (fr) 2018-02-21
JP6648129B2 (ja) 2020-02-14
JP2017535038A (ja) 2017-11-24
BR112017007631B1 (pt) 2022-07-12
US9833239B2 (en) 2017-12-05
CN108601593B (zh) 2021-07-16
US20160106425A1 (en) 2016-04-21
US20160106424A1 (en) 2016-04-21
WO2016060830A1 (fr) 2016-04-21
JP6643331B2 (ja) 2020-02-12
CN108370072A (zh) 2018-08-03
PL3009081T3 (pl) 2018-08-31
CN108370072B (zh) 2021-09-03
BR112017007631A2 (pt) 2017-12-19
US9974539B2 (en) 2018-05-22
WO2016060829A1 (fr) 2016-04-21
JP2017538460A (ja) 2017-12-28
CN108601593A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
EP3009081B1 (fr) Bloc-batterie d'instrument chirurgical avec émulation de profil de puissance
EP3352680B1 (fr) Agrafeuse chirurgicale ayant une commande de moteur basée sur un paramètre électrique lié à un courant de moteur
US20200100699A1 (en) Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
EP3064149B1 (fr) Système permettant la détection d'une mauvaise insertion d'une cartouche d'agrafes dans une agrafeuse chirurgicale
US10105139B2 (en) Surgical stapler having downstream current-based motor control
EP3154188A1 (fr) Agrafeuse chirurgicale ayant une commande de moteur à miroir de courant
EP3151417A2 (fr) Agrafeuse chirurgicale ayant une commande moteur à base de forces
EP3157160A2 (fr) Agrafeuse chirurgicale ayant une commande de moteur thermique
EP3151418A1 (fr) Agrafeuse chirurgicale ayant une commande de moteur basée sur le champ magnétique
US11839377B2 (en) Surgical instrument battery pack with voltage polling
BR112017007650B1 (pt) Método para operar um dispositivo médico e conjunto de baterias secundário

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161018

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SHELTON, IV, FREDERICK E.

Inventor name: YATES, DAVID C.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 90/00 20160101ALN20171018BHEP

Ipc: H02J 7/00 20060101ALI20171018BHEP

Ipc: H01M 10/42 20060101ALI20171018BHEP

Ipc: H01M 10/48 20060101ALI20171018BHEP

Ipc: A61B 17/00 20060101ALN20171018BHEP

Ipc: A61B 17/072 20060101AFI20171018BHEP

INTG Intention to grant announced

Effective date: 20171109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 970823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015008154

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180221

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 970823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180522

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015008154

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181014

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220901

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220909

Year of fee payment: 8

Ref country code: FR

Payment date: 20220908

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220913

Year of fee payment: 8

Ref country code: DE

Payment date: 20220621

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015008154

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231014

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240501