EP3008383B1 - Kleinfeuerungsanlage mit einbau - Google Patents

Kleinfeuerungsanlage mit einbau Download PDF

Info

Publication number
EP3008383B1
EP3008383B1 EP14729008.4A EP14729008A EP3008383B1 EP 3008383 B1 EP3008383 B1 EP 3008383B1 EP 14729008 A EP14729008 A EP 14729008A EP 3008383 B1 EP3008383 B1 EP 3008383B1
Authority
EP
European Patent Office
Prior art keywords
installation
combustion
small
exhaust gas
scale furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14729008.4A
Other languages
English (en)
French (fr)
Other versions
EP3008383A1 (de
Inventor
Mohammadshayesh Aleysa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3008383A1 publication Critical patent/EP3008383A1/de
Application granted granted Critical
Publication of EP3008383B1 publication Critical patent/EP3008383B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B90/00Combustion methods not related to a particular type of apparatus
    • F23B90/04Combustion methods not related to a particular type of apparatus including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B10/00Combustion apparatus characterised by the combination of two or more combustion chambers
    • F23B10/02Combustion apparatus characterised by the combination of two or more combustion chambers including separate secondary combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B80/00Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
    • F23B80/04Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel by means for guiding the flow of flue gases, e.g. baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/13002Energy recovery by heat storage elements arranged in the combustion chamber

Definitions

  • the registration concerns a small combustion system with installation.
  • Small combustion systems are one of the main sources of particulate and numerous gaseous emissions, such as CO, VOC and PAHs, which have a significant impact on human health.
  • These pollutants are formed in the event of incomplete combustion due to non-optimal oxidation conditions (local oxygen, active residence time and temperature). Due to the complicated process involved in the combustion of solid fuels, the fulfillment of the oxidation conditions is only possible through highly developed, well-designed combustion technology with intelligent control.
  • the small combustion systems most common in residential areas have a thermal output of less than 15 kW.
  • the improvement of the combustion in these plants should lead to a significant reduction of the pollutant emissions in residential areas.
  • the systems available to date for reducing flammable dust and gaseous pollutant components in small combustion systems are based on the catalytic principle or the filtration principle. These systems are either installed within the combustion systems or are installed downstream outside the combustion systems or in exhaust systems Recently, a large number of different catalytic exhaust gas cleaning systems have been developed for use in small combustion systems for the treatment of flammable gaseous and dusty pollutants (soot, CO, CnHm, PAH, etc.), which, however, are not to be described in detail here. With catalytic exhaust gas cleaning systems, this is sometimes the case Problem that the catalytic converter is damaged over time and its function is impaired A number of non-catalytic emission control systems have also been developed.
  • the non-catalytic exhaust gas cleaning systems which are to be installed in the small combustion system or in the connection piece, are mostly based on the principle of the storage filter.
  • a foam structure is used, which can also be catalytically coated.
  • the dusty pollutants should be deposited on and in the foam structure and, when favorable temperatures are reached, be burned freely.
  • the inorganic constituents remain in the foam structure, which has to be cleaned manually from time to time due to the increase in flow resistance.
  • the apparatus comprises a housing with a base and a cover.
  • a catalytic converter device which has a catalytic material, is present in the housing. This is a ceramic that can be used to catalyze the oxidation of the exhaust gases.
  • the catalytic converter device has a multiplicity of openings through which the exhaust gases can flow.
  • the bottom of the apparatus has an opening through which exhaust gas from the small combustion system can be passed into the apparatus and the lid has an opening through which the treated exhaust gas can be discharged.
  • a small combustion system for biogenic fuels is known. This has a feed device for solid fuels, a boiler containing a combustion chamber and heat exchanger, an induced draft and a chimney.
  • a fine dust filter with a renewable, profiled filter medium for separating coarse, fine and / or fine dust is provided as a filtering separator between the boiler and the induced draft or the chimney. This reduces fine dust emissions.
  • the DE 29 27 725 A1 discloses a method and a device for preventing condensation, in particular for heating chimneys.
  • a connection is provided between the warm air atmosphere in the vicinity of the boiler and the fresh air supply.
  • a mixture of dry, warm, externally supplied gas with the gas mixture located in the chimney is to be produced by means of a device for mixing and fed into the chimney area and passed through the chimney to dry.
  • the mixture should be produced essentially over the entire circumference of the exhaust pipe.
  • the warm externally supplied gas can in particular be room air.
  • a combustion system is known. Solids are burned in the furnace. The flue gas flows through flame tubes. The flame tubes are kept at a temperature which is intended to ensure complete combustion of the flue gas.
  • a furnace which has a flue gas duct which is arranged in the interior of the furnace.
  • the flue gas pass starts from the combustion chamber and tapers in cross-section.
  • a helix for guiding the flue gas is arranged in the flue gas duct.
  • a heating boiler that can be filled with solid fuels, in particular wood, is known.
  • the boiler has a combustion zone that can be flown through from bottom to top.
  • the combustion zone has a chimney-shaped combustion shaft arranged with an upright axis, which at its lower end is connected to the filling shaft via at least one tangentially opening inflow channel.
  • An insert made of refractory material with high heat capacity is arranged in the combustion shaft.
  • a device for consuming the smoke from a kiln is known.
  • a body with a high heat capacity is arranged in the flue gas duct, which body has several baffles.
  • a gas flame protrudes into the flue gas duct to burn the smoke.
  • a furnace is known with a furnace closing device for flue gas dedusting and combustion.
  • incompletely burned gases are passed through a highly heated blade system consisting of heat-storing surfaces and irradiated from the grate. This gives the gases time to take on the temperature required for combustion and to mix well with the addition of second air.
  • a chimney fireplace which comprises a combustion chamber with an openable door and a chimney connection in order to supply heating gases from the combustion chamber through the chimney connection to a chimney.
  • a heating gas space which is arranged in the flow direction of the heating gases between a filter element through which heating gases flow and the chimney connection.
  • the filter element is located in the upper, in particular the rear, area of the combustion chamber. Soot and aerosols are filtered in the filter element and burned at high temperatures.
  • the object of the invention is to provide a small combustion system which enables low-emission operation with as little effort as possible.
  • a small combustion system is disclosed with an installation which mixes combustible exhaust gas components with combustion air and has a heat capacity which prevents the temperature of the combustion from falling below a desired minimum temperature due to a temporarily reduced combustion output.
  • the mix should generally be fine. Mixing is usually achieved with the benefit of microturbulence.
  • the heat capacity of the installation is a prerequisite for storing a sufficient amount of energy in the form of heat. It is also necessary that the energy is quickly absorbed and released quickly.
  • the desired minimum temperature is usually the minimum oxidation temperature.
  • the installation can thus fulfill two functions at the same time, which improve the combustion.
  • the important mixing of combustion air and combustible exhaust gas components is improved.
  • falling below the minimum temperature is prevented.
  • the combustion output temporarily drops in a small combustion system.
  • heat is required to warm the wood. Without countermeasures, this would lead to the temperature falling below a desired minimum temperature.
  • the heat capacity of the installation can counteract this.
  • this presupposes that the installation has previously been appropriately heated by the combustion, i.e. that sufficient energy has been stored in the form of heat for the oxidation.
  • this is exactly what is usually guaranteed.
  • the combustion output is usually sufficient to achieve this.
  • the installation therefore causes an increased constancy of the temperature, i.e. a homogeneous temperature distribution or a homogeneous temperature field. Avoiding falling below the minimum temperature leads to improved combustion. This has two major advantages. On the one hand, this reduces unwanted exhaust emissions. On the other hand, the efficiency of the combustion increases. Because of the improved Combustion, i.e. the improved oxidation, the installation can also be viewed as an oxidation module. Because of the heat storage properties, a designation as high-temperature storage module is also appropriate.
  • the heat conduction and heat transfer must also be high enough so that the heat can get into the installation quickly enough and, above all, removed from the installation quickly enough and for the oxidation reactions can be provided.
  • the materials used and, as a result, especially the installation as a whole, must be sufficiently resistant to temperature changes in order to withstand the temperature changes.
  • the structure not only improves the mixing of combustible exhaust gas components with the combustion air, but also generally ensures an extension of the active dwell time during the combustion.
  • the stored thermal energy enables oxidation in unfavorable operating phases such as B. when placing wood and leads to a stable operation, i.e. a stable combustion process, during the entire combustion process.
  • the operation of the installation does not require an active energy supply. A certain energy requirement results from the pressure loss, even if this is low. The energy consumed by the pressure loss is converted into heat that is desired anyway. If the pressure loss does not require the use or higher performance of a fan, the energy consumption due to the pressure loss is irrelevant anyway. This can only be a disadvantage when using, for example, electrical energy for a fan.
  • the installation generally leads to an increase in performance.
  • the installation is therefore also advantageous for the user himself, in any case it is not a disadvantage.
  • Many measures known in the prior art for reducing emissions are associated with a reduction in the performance of the small combustion system. This leads to the temptation to bypass the installation or to expand it again. The elimination of this temptation is an advantage of the present installation, since it can be assumed that the achievable reduction in emissions will actually be achieved is achieved.
  • the installation can also be made inaccessible, which limits manipulation. Since the cross-section is not significantly reduced when the built-in unit is used, no bypass or heating flap is required. This facilitates the construction and in turn avoids the possibility of manipulation.
  • the improved thermal oxidation achieved through the installation is not subject to aging and is not damaged by undesirable exhaust gas components such as sulfur dioxide, heavy metals and fine dust, including chloride and potassium salts, as can happen in the catalytic process, as these exhaust gas components often lead to the poisoning of the catalytic converter.
  • the minimum temperature can sometimes be prevented even better, so that the expenditure on equipment and the additional energy consumption can be justified.
  • the incorporation brings about an enlargement of the reaction zone, that is to say the volume in which the oxidation takes place is enlarged. Since this is an active reaction, it is often referred to as an active reaction zone.
  • the increase in volume is due to the above-described effects of better mixing of combustible exhaust gas components with combustion air, i.e. mostly by favoring the microturbulence and the increased temperature constancy.In a larger reaction zone, the combustion can take place better overall.
  • the installation is made up of a plurality of elements. This enables problem-free adaptation to various small combustion systems.
  • the installation can usually be easily retrofitted anyway. This applies in particular to an installation made up of a plurality of elements. Uniform or different elements can be combined.
  • the elements can be linked deterministically or non-deterministically, systematically or not systematically, in a structured or non-structured manner.
  • the elements can be cross-linked for better functionality. This can be advantageous for the thermal conduction described later within the installation, but it can also serve to improve mechanical stability.
  • the installation is formed by one or more modules made of cast material.
  • a module made of cast material is comparatively easy to manufacture. The heat can often be transported well within such a module, since there are no thermal resistances at the transition from one element to an adjacent element. As a rule, it should be beneficial to provide a single module.
  • An installation can also consist of several modules.
  • the elements of the installation are Pall rings.
  • a Pall ring is a hollow cylinder with blades that point inward. There are usually holes on the outside. The blades and holes give the impression that the blades are formed, as it were, from the wall of the hollow cylinder that is bent inward at the points of the holes.
  • Such Pall rings are commercially available and can be assembled for installation with the properties and advantages outlined above.
  • the built-in elements are metallic and / or ceramic and / or stony components or a combination of both.
  • the elements can withstand the high temperatures. Therefore, the choice will very often fall on ceramic or stony components, since ceramic components, including components of a different type than the components described here, have proven themselves in small combustion systems.
  • the Pall rings described above are available in ceramic. With the Pall rings as elements you can. In general, materials can be used which have already proven themselves in many industrial applications.
  • the installation causes microturbulence in the combustion air.
  • microturbulence improves the mixing of combustible exhaust gas components and combustion air.
  • the installation has thermal conduction properties which are suitable for compensating for temperature differences within the installation. So can Local temperature drops can be avoided, since the installation allows the heat to flow away quickly enough from areas in which the temperature is high enough that the temperature does not fall below the minimum even if there is heat flow. This generally ensures a homogeneous temperature field.
  • the heat conduction properties of the installation depend on the one hand on the heat conduction of the material used. Particularly in the case of an installation made up of elements, it is also necessary to ensure good thermal contact between the elements.
  • the installation has surfaces with adhesive properties for exhaust gas components such as soot and aerosols. This is achieved by using suitable materials.
  • the structure of the surface is important, so a rough surface is usually desirable. On the one hand, roughness increases the available surface; on the other hand, soot and aerosols can more easily accumulate on a rough surface.
  • soot and aerosols accumulate. However, these are regularly followed by operating situations in which soot and aerosols are removed from the surfaces and are burned. Soot and aerosols often contain pollutants or are in themselves pollutants.
  • the installation causes a multiple diversion of combustion air and / or exhaust gas. This can be achieved, for example, by arranging a large number of Pall rings. But other built-in components can also do this.
  • a multiple diversion of the combustion air and / or the exhaust gas leads to an improved mixture of combustible exhaust gas components and combustion air and thus to lower emissions and higher combustion efficiency. Above all, however, the combustion is improved by the increased residence time.
  • Figure 1 Figure 12 shows a side perspective view of an installation with a plurality of elements formed by Pall rings.
  • Pall rings of this type are normally used in process engineering equipment to improve flow conditions, phase separation and to generate large mass transfer surfaces. Up to now, such an installation has not been used or investigated in combustion processes.
  • Figure 2 shows a plan view of the installation according to Fig. 1 .
  • Ceramic Pall rings with a diameter of 50 mm and a thickness of 0.8 mm are used as elements.
  • a low flow resistance or pressure loss can be achieved through the structured systematic construction of the installation, which ensures sufficiently large defined exhaust gas paths.
  • an exhaust gas volume flow of 50 Nm3 / h through an installation with the dimensions 30 x 25 x 20 cm a pressure loss of 3 to 5 Pascal is to be expected.
  • the ceramic used is available and durable. A service life of more than 15 years can be expected.
  • the ceramic has proven to be very robust against unfavorable fuels such as damp wood and waste as well as against rough operating phases and unsteady combustion, such as. B. proven in the start-up phase.
  • the installation used should have a very rough surface and have mini-turbulators that are distributed horizontally (or transversely to the exhaust gas flow) in the entire installation cross-section at different heights.
  • Figure 3 shows the mean carbon monoxide
  • Figure 4 the mean hydrocarbon
  • Figure 5 the mean carbon dioxide concentration curves when burning beech wood in one old wood stove with and without ceramic installation under standard test conditions. In doing so, four burn-ups were averaged.
  • the dashed line shows the course without installation, the solid line with installation
  • PAHs polycyclic aromatic hydrocarbons
  • VOCs volatile organic compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Fuel Combustion (AREA)

Description

  • Die Anmeldung betrifft eine Kleinfeuerungsanlage mit Einbau.
  • Stand der Technik
  • Kleinfeuerungsanlagen stellen eine der Hauptemissionsquellen für partikuläre und zahlreiche gasförmige Emissionen, wie zum Beispiel CO, VOC und PAK dar, welche eine maßgebliche Auswirkung auf die Gesundheit des Menschen haben. Diese Schadstoffe werden bei unvollständiger Verbrennung aufgrund nicht optimaler Oxidationsbedingungen (lokaler Sauerstoff, aktive Verweilzeit und Temperatur) gebildet. Aufgrund des komplizierten Prozesses bei der Verbrennung von Festbrennstoffen ist die Erfüllung der Oxidationsbedingungen nur durch hochentwickelte gut konstruierte Verbrennungstechnik mit einer intelligenten Regelung möglich.
  • Die in Wohngebieten am meisten verbreiteten Kleinfeuerungsanlagen haben eine thermische Leistung, kleiner als 15 kW. Tendenziell sollen immer mehr Kleinfeuerungsanlagen mit einer thermischen Leistung kleiner als 15 kW aufgrund zunehmender Zahl an Passiv- und Niedrigenergiehäuser sowie durch die energetische Sanierung bestehender Gebäude zum Einsatz kommen. Die Verbesserung der Verbrennung in diesen Anlagen soll zu einer signifikanten Reduzierung der Schadstoffemissionen in Wohngebieten führen.
  • Die bisher verfügbaren Systeme zur Minderung brennbarer staub- und gasförmiger Schadstoffkomponenten in Kleinfeuerungsanlagen beruhen auf dem katalytischen Wirkungsprinzip oder auf dem Filtrationsprinzip. Diese Systeme werden entweder innerhalb der Feuerungsanlagen eingebaut oder außerhalb der Feuerungsanlagen bzw. in Abgasanlagen als Einsatz nachgeschaltet
    In der letzten Zeit ist eine Vielzahl unterschiedlicher katalytischer Abgasreinigungssysteme zum Einsatz in Kleinfeuerungsanlagen zur Behandlung brennbarer gas- und staubförmiger Schadstoffe (Ruß, CO, CnHm, PAK usw.) entwickelt worden, die hier jedoch nicht im Einzelnen dargestellt werden sollen. Bei katalytischen Abgasreinigungssystemen besteht mitunter das Problem, dass der Katalysator im Laufe der Zeit beschädigt wird und damit in seiner Funktion beeinträchtigt wird
    Auch eine Reihe nichtkatalytischer Abgasreinigungssysteme sind entwickelt worden. Die nichtkatalytischen Abgasreinigungssysteme, welche in der Kleinfeuerungsanlage oder im Verbindungsstück einzubauen sind, basieren meist auf dem Prinzip vom Speicherfilter. Dabei wird eine Schaumstruktur verwendet, welche auch katalytisch beschichtet werden kann. Auf und in der Schaumstruktur sollen die staubförmigen Schadstoffe abgeschieden und beim Erreichen günstiger Temperaturen frei gebrannt werden. Die anorganischen Bestandteile bleiben in der Schaumstruktur, welche von Zeit zu Zeit aufgrund der Zunahme des Strömungswiderstands manuell gereinigt werden muss.
  • Aus der DE 20 2010 007 246 U1 ist ein Apparat zur Behandlung von Abgasen in einer Kleinfeuerungsanlage bekannt. Der Apparat umfasst ein Gehäuse mit Boden und Deckel. Im Gehäuse ist eine Katalysatoreinrichtung vorhanden, die ein katalytisches Material aufweist. Dabei handelt es sich um eine Keramik, mit der eine Oxidation der Abgase katalysierbar ist. Die Katalysatoreinrichtung weist eine Vielzahl von Öffnungen auf, die von den Abgasen durchströmbar sind. Der Boden des Apparats weist eine Öffnung auf, durch die Abgas aus der Kleinfeuerungsanlage in den Apparat geleitet werden kann und der Deckel weist eine Öffnung auf, durch die das behandelte Abgas abgeleitet werden kann.
  • Aus der DE 10 2008 009 004 A1 ist eine Kleinfeuerungsanlage für biogene Brennstoffe bekannt. Diese weist eine Zuführvorrichtung für Festbrennstoffe, einen Kessel, der eine Verbrennungskammer und Wärmetauscher enthält, einen Saugzug und einen Kamin auf. Zwischen dem Kessel und dem Saugzug oder dem Kamin ist als filternder Abscheider ein Feinstaubfilter mit erneuerbarem profiliertem Filtermedium zur Abscheidung von Grob-, Fein- und/oder Feinststaub vorgesehen. Damit wird die Feinstaubemission reduziert.
  • Die DE 29 27 725 A1 offenbart ein Verfahren und eine Vorrichtung zum Verhindern von Kondensatbildung, insbesondere für Heizungsschornsteine. Dazu ist eine Verbindung zwischen der in der Umgebung des Heizkessels vorhandenen Warmluftatmosphäre und der Frischluftzuführung vorgesehen. Eine Mischung aus trockenem, warmem, extern zugeführtem Gas mit dem im Schornstein befindlichen Gasgemisch soll mittels einer Vorrichtung zum Mischen hergestellt werden und in den Schornsteinbereich geleitet werden und zum Trocknen durch den Schornstein geleitet werden. Die Mischung soll dabei im Wesentlichen im gesamten Umfangsbereich der Abgasleitung hergestellt werden. Beim warmen extern zugeführtem Gas kann es sich insbesondere um Raumluft handeln.
  • Aus der FR 658 071 A ist eine Feuerungsanlage bekannt. In der Feuerungsanlage werden Feststoffe verbrannt. Das Rauchgas strömt durch Flammrohre. Die Flammrohre werden auf einer Temperatur gehalten, welche eine vollständige Verbrennung des Rauchgases sicherstellen soll.
  • Aus der DE 94 04 544 U1 ist ein Ofen bekannt, der einen Rauchgaszug aufweist, der im Inneren des Ofens angeordnet ist. Der Rauchgaszug geht vom Feuerraum aus und verjüngt sich im Querschnitt. Im Rauchgaszug ist eine Schraubenwendel zur Rauchgasführung angeordnet.
  • Aus der EP 0 798 510 A2 ist ein mit festen Brennstoffen, insbesondere Holz, befüllbarer Heizkessel bekannt. Der Heizkessel hat eine von unten nach oben durchströmbare Verbrennungszone. Die Verbrennungszone weist einen mit stehender Achse angeordneten, kaminförmigen Verbrennungsschacht auf, der an seinem unteren Ende über wenigstens einen tangential einmündenden Einströmkanal mit dem Füllschacht verbunden ist. Im Verbrennungsschacht ist ein Einsatz aus feuerfestem Material mit hoher Wärmekapazität angeordnet. EP 0 798 510 A2 offenbart den Oberbegriff des Anspruchs 1.
  • Aus der GB 473 417 A ist eine Vorrichtung zum Verbrauch des Rauchs aus einem Brennofen bekannt. Dazu ist im Rauchgaskanal ein Körper mit hoher Wärmekapazität angeordnet, der mehrere Leitbleche aufweist. Eine Gasflamme ragt in den Rauchgaskanal zur Verbrennung des Rauchs.
  • Aus der DE 640 470 C ist eine Feuerungsanlage bekannt mit einer die Feuerungskammer abschließenden Vorrichtung zur Rauchgasentstaubung und Verbrennung. Dabei werden unvollkommen verbrannte Gase durch ein aus wärmespeichernden Flächen bestehendes, vom Rost aus bestrahltes hocherhitztes Schaufelsystem geleitet. Dadurch haben die Gase Zeit die zur Verbrennung nötige Temperatur anzunehmen und sich unter Zuführung von Zweitluft gut zu vermischen.
  • Austauschseite
  • Aus der EP 2 530 386 A1 ist eine Kaminfeuerstelle bekannt, die eine Brennkammer mit einer öffenbaren Tür und einen Kaminanschluss umfasst, um Heizgase aus der Brennkammer durch den Kaminanschluss einem Kamin zuzuführen. Ferner ist ein Heizgasraum vorhanden, der in Strömungsrichtung der Heizgase zwischen einem von Heizgase durchströmten Filterelement und dem Kaminanschluss angeordnet ist. Das Filterelement befindet sich am oberen, insbesondere rückwärtigen Bereich der Brennkammer. Im Filterelement werden Ruß und Aerosole gefiltert und bei hohen Temperaturen verbrannt.
  • Aufgabe der Erfindung ist eine Kleinfeuerungsanlage bereitzustellen, welche mit möglichst niedrigem Aufwand einen emissionsarmen Betrieb ermöglicht.
  • Lösungsweg
  • Die Aufgabe wird insbesondere durch die Merkmale des unabhängigen Anspuchs gelöst. Die abhängigen Ansprüche geben vorteilhafte Weiterentwicklungen an. Die Beschreibung und die Zeichnungen geben weitere Einzelheiten an.
  • Erfindungsgemäß wird eine Kleinfeuerungsanlage mit einem Einbau offenbart, der eine Vermischung von brennbaren Abgasbestandteilen mit Verbrennungsluft bewirkt und eine Wärmekapazität aufweist, welche einen Abfall der Temperatur der Verbrennung unter eine gewünschte Mindesttemperatur durch eine vorübergehend abgesenkte Verbrennungsleistung verhindert. Die Vermischung sollte im Allgemeinen fein sein. Meist wird eine Durchmischung mit einer Begünstigung von Mikroturbulenzen erreicht. Die Wärmekapazität des Einbaus ist eine Voraussetzung eine ausreichende Energiemenge in Form von Wärme zu speichern. Dabei ist auch erforderlich, dass die Energie schnell aufgenommen und schnell abgegeben wird. Bei der gewünschten Mindesttemperatur handelt es sich im Regelfall um die M indestoxidationstem peratur.
  • Der Einbau kann damit zugleich zwei Funktionen erfüllen, welche die Verbrennung verbessern. Einerseits wird die wichtige Vermischung von Verbrennungsluft und brennbaren Abgasbestandteilen verbessert. Darüber hinaus, werden Unterschreitungen der Mindesttemperatur verhindert. Etwa beim Nachlegen von Holz sinkt in einer Kleinfeuerungsanlage vorübergehend die Verbrennungsleistung. Zudem wird Wärme zur Erwärmung des Holzes benötigt. Dies würde ohne Gegenmaßnahmen dazu führen, dass die Temperatur unter eine gewünschte Mindesttemperatur fällt. Die Wärmekapazität des Einbaus kann dem entgegenwirken. Dies setzt freilich voraus, dass der Einbau zuvor durch die Verbrennung entsprechend erwärmt worden ist, das heißt dass ausreichend Energie in Form von Wärme für die Oxidation gespeichert worden ist. Genau dies ist jedoch in aller Regel gewährleistet. Außer zu Beginn des Verbrennungsbetriebs ist die Verbrennungsleistung in aller Regel hinreichend, dies zu erreichen. Hinzu kommt, dass die Verbrennung meist zum Teil ohnehin im Einbau erfolgt. Der Einbau bewirkt also eine erhöhte Konstanz der Temperatur, also eine homogene Temperaturverteilung oder ein homogenes Temperaturfeld. Die Vermeidung von Unterschreitungen der Mindesttemperatur führt zu einer verbesserten Verbrennung. Dies hat zwei wesentliche Vorteile. Zum einen werden dadurch unerwünschte Abgasemissionen reduziert. Zum anderen steigt der Wirkungsgrad der Verbrennung. Wegen der verbesserten Verbrennung, also der verbesserten Oxidation kann der Einbau auch als Oxidationsmodul angesehen werden. Wegen der Wärmespeichereigenschaften ist auch eine Bezeichnung als Hochtemperaturspeichermodul passend.
  • Neben einer hinreichend hohen Wärmekapazität, die die Speicherung einer ausreichenden Energiemenge gestattet, muss auch die Wärmeleitung und Wärmeübertragung hoch genug sein, damit die Wärme hinreichend schnell in den Einbau hinein gelangen kann und vor allem bei Bedarf schnell genug aus dem Einbau entnommen und für die Oxidationsreaktionen bereitgestellt werden kann.
  • Die verwendeten Werkstoffe und im Ergebnis vor allem der Einbau als ganzer müssen hinreichende Temperaturwechselbeständigkeit aufweisen, um den Temperaturwechseln standzuhalten.
  • Durch die Struktur wird nicht nur eine verbesserte Durchmischung von brennbaren Abgasbestandteilen mit der Verbrennungsluft erreicht, sondern im Regelfall auch eine Verlängerung der aktiven Verweilzeit während der Verbrennung gewährleistet. Die gespeicherte Wärmeenergie ermöglicht die Oxidation in ungünstigen Betriebsphasen wie z. B. beim Auflegen von Holz und führt zu einem stabilen Betrieb, also einem stabilen Verbrennungsvorgang, während des ganzen Verbrennungsprozesses.
  • Die Einflüsse einer Fehlbedienung, hier ist vor allem an das Auflegen von Holz in einer zu großen Menge durch unkundige Nutzer zu denken, können dementsprechend reduziert werden.
  • Der Betrieb des Einbaus erfordert keine aktive Energiezufuhr. Ein gewisser Energiebedarf ergibt sich aus dem Druckverlust, auch wenn dieser gering ist. Die durch den Druckverlust verbrauchte Energie wird in ohnehin erwünschte Wärme umgewandelt Soweit der Druckverlust nicht den Einsatz oder die höhere Leistung eines Lüfters verlangt, spielt der Energieverbrauch durch den Druckverlust somit ohnehin keine Rolle. Lediglich beim Einsatz etwa elektrischer Energie für einen Lüfter kann dies von Nachteil sein.
  • Der Einbau führt insgesamt eher zu einer Erhöhung der Leistung. Der Einbau ist damit auch für den Nutzer selbst von Vorteil, in jedem Fall ist es kein Nachteil. Mit vielen im Stand der Technik bekannten Maßnahmen zur Senkung der Emissionen ist eine Senkung der Leistung der Kleinfeuerungsanlage verbunden. Dies führt zur Versuchung den Einbau zu umgehen oder wieder auszubauen. Der Wegfall dieser Versuchung ist ein Vorteil des vorliegenden Einbaus, da damit davon auszugehen ist, dass die erreichbare Senkung der Emissionen auch tatsächlich erreicht wird. Auch kann der Einbau unzugänglich ausgeführt werden, wodurch die Manipulierbarkeit eingeschränkt wird. Da der Querschnitt beim Einsatz des Einbaus nicht wesentlich verkleinert wird, ist kein Bypass bzw. keine Anheizklappe nötig. Dies erleichtert den Aufbau und vermeidet wiederum Manipulationsmöglichkeiten.
  • Die durch den Einbau erreichte verbesserte thermische Oxidation unterliegt keiner Alterung und wird durch unerwünschte Abgaskomponenten, etwa Schwefeldioxid, Schwermetalle sowie Feinstäube, darunter Chlorid- und Kaliumsalze nicht beschädigt, wie dies beim katalytischen Prozess geschehen kann, da diese Abgaskomponenten oft zur Vergiftung des Katalysators führen.
  • Wiewohl der Verzicht auf eine katalytische Abgasbehandlung manche Probleme vermeidet ist es dennoch möglich, weiterhin katalytische Flächen bereitzustellen, um die Wirkung des Einbaus zu ergänzen und/oder zu verstärken.
  • Durch eine Vorbeheizung des Einbaus vor Beginn des Betriebs der Kleinfeuerungsanlage oder eine Beheizung des Einbaus währende des Betriebs können Mindesttemperaturunterschreitungen bisweilen noch besser verhindert werden, so dass der apparative Aufwand und der zusätzliche Energieverbrauch gerechtfertigt sein können.
  • In einer Ausführungsform der Erfindung bewirkt der Einbau eine Vergrößerung der Reaktionszone, es wird also das Volumen, in dem die Oxidation erfolgt vergrößert. Da es sich um eine aktive Reaktion handelt, wird oft auch von aktiver Reaktionszone gesprochen. Die Vergrößerung des Volumens liegt an den oben geschilderten Effekten der besseren Vermischung von brennbaren Abgasbestandteilen mit Verbrennungsluft, also zumeist durch eine Begünstigung der Mikroturbulenz und der erhöhten Temperaturkonstanz In einer größeren Reaktionszone kann die Verbrennung insgesamt besser erfolgen.
  • Im Regelfall lässt sich der Einbau nicht nur einfach und kostengünstig realisieren, auch die Entsorgung ist im Regelfall einfach.
  • Erfindungsgemäß ist der Einbau aus einer Mehrzahl von Elementen aufgebaut. Damit ist eine problemlose Anpassung an verschiedene Kleinfeuerungsanlagen möglich. Der Einbau ist im Regelfall ohnehin leicht nachrüstbar. Dies gilt insbesondere für einen Einbau aus einer Mehrzahl von Elementen. Dabei können gleichförmige oder unterschiedliche Elemente kombiniert werden. Die Elemente können deterministisch oder nicht-deterministisch, systematisch oder nicht systematisch, strukturiert oder nicht strukturiert verbunden werden.
  • Die Elemente können für eine bessere Funktion quer miteinander verbunden werden. Dies kann für die später geschilderte Wärmeleitung innerhalb des Einbaus vorteilhaft sein, aber auch einer besseren mechanischen Stabilität dienen.
  • Freilich ist es auch möglich größere Module vorzusehen, so dass in vielen Fällen ein einziges Modul als Einbau genügen könnte.
  • In einer Ausführungsform der Erfindung ist der Einbau durch ein oder mehrere Module aus Gussmaterial gebildet. Ein Modul aus Gussmaterial lässt sich vergleichsweise einfach herstellen. Innerhalb eines solchen Moduls kann die Wärme oft gut transportiert werden, da mögliche Wärmewiderstände beim Übergang von einem Element in ein benachbartes Element entfallen. Im Regelfall dürfte es günstig sein, ein einzelnes Modul vorzusehen. Ein Einbau kann aber auch aus mehreren Modulen aufgebaut sein.
  • Erfindungsgemäß sind die Elemente des Einbaus Pall-Ringe. Bei einem Pall-Ring handelt es sich um einen Hohlzylinder mit Schaufeln, die nach innen zeigen. Außen sind im Regelfall Löcher. Die Schaufeln und Löcher machen dabei den Eindruck, dass die Schaufeln gleichsam aus der an den Stellen der Löcher nach innen gebogenen Wand des Hohlzylinders gebildet sind. Solche Pall-Ringe sind im Handel erhältlich und können zu einem Einbau mit den oben geschilderten Eigenschaften und Vorteilen zusammengebaut werden.
  • In einer Ausführungsform der Erfindung sind die Elemente des Einbaus metallische und/oder keramische und/oder steinige Bauteile oder Kombination von beiden. Entscheidend ist natürlich, dass die Elemente den hohen Temperaturen standhalten können. Daher wird die Auswahl sehr oft auf keramische oder steinige Bauteile fallen, da sich keramische Bauteile, auch Bauteile anderer Art als die vorliegend beschriebenen Bauteile, in Kleinfeuerungsanlagen bewährt haben. Etwa die oben beschriebenen Pall-Ringe sind aus Keramik erhältlich. Mit den Pall-Ringen als Elemente können. Generell können Materialien eingesetzt werden, welche sich bei vielen industriellen Anwendungen bereits bewährt haben.
  • In einer Ausführungsform der Erfindung ruft der Einbau Mikroturbulenzen in der Verbrennungsluft hervor. Durch Mikroturbulenzen wird bei niedriger Erhöhung des Strömungswiderstands die Vermischung von brennbaren Abgasbestandteilen und Verbrennungsluft verbessert.
  • In einer Ausführungsform der Erfindung weist der Einbau Wärmeleitungseigenschaften auf, die geeignet sind, Temperaturunterschiede innerhalb des Einbaus auszugleichen. Damit können lokale Temperaturunterschreitungen vermieden werden, da die Wärme durch den Einbau schnell genug aus Bereichen abfließen kann, in denen die Temperatur hoch genug ist, dass auch bei einem Wärmeabfluss keine Unterschreitung der Mindesttemperatur erfolgt. Somit ist im Allgemeinen ein homogenes Temperaturfeld gewährleistet. Die Wärmeleitungseigenschaften des Einbaus hängen zum einen von der Wärmeleitung des verwendeten Materials ab. Gerade bei einem aus Elementen aufgebauten Einbau ist es auch erforderlich einen thermisch guten Kontakt zwischen den Elementen sicherzustellen.
  • Erfindungsgemäß weist der Einbau Oberflächen mit adhäsiven Eigenschaften für Abgaskomponenten wie Ruß und Aerosole auf. Dies wird durch geeignete Materialien erreicht. Darüber hinaus ist die Struktur der Oberfläche bedeutend, also eine raue Oberfläche ist meist wünschenswert. Zum einen erhöht Rauheit die zur Verfügung stehende Oberfläche, zum andern können sich auf einer rauen Oberfläche Ruß und Aerosole leichter anlagern. Während bei den im Stand der Technik genannten Filtern der Staub durch mehr oder aufwändige Verfahren entfernt werden muss, erfolgt dies beim hier vorgeschlagenen Einbau im Zuge des Betriebs der Kleinfeuerungsanlage. So kann es Betriebssituationen geben, in denen sich Ruß und Aerosole anlagern. Diesen folgen aber regelmäßig Betriebssituationen, in denen sich Ruß und Aerosole wieder von den Oberflächen entfernen und verbrannt werden. Ruß und Aerosole enthalten oft Schadstoffe oder stellen an sich Schadstoffe dar.
  • In einer Ausführungsform der Erfindung bewirkt der Einbau eine mehrfache Umlenkung von Verbrennungsluft und/oder Abgas. Dies ist etwa durch eine Anordnung einer Vielzahl von Pall-Ringen erreichbar. Aber auch andere Einbauten können dies bewirken. Eine mehrfache Umlenkung der Verbrennungsluft und/oder des Abgases führt zu einer verbesserten Mischung von brennbaren Abgasbestandteilen und Verbrennungsluft und somit zu niedrigeren Emissionen und höherem Wirkungsgrad der Verbrennung. Vor allem aber wird die Verbrennung durch die erhöhte Verweilzeit verbessert.
  • Anhand von Figuren sollen nachfolgend weitere Einzelheiten erläutert werden.
  • Dabei zeigen
  • Fig. 1
    eine Seitenansicht eines Einbaus aus einer Vielzahl von Pall-Ringen als Elemente
    Fig. 2
    eine Sicht von oben auf den Einbau nach Fig. 1
    Fig. 3
    einen Vergleich der CO-Emissionen mit und ohne Einbau
    Fig. 4
    einen Vergleich der CnHm-Emissionen mit und ohne Einbau
    Fig. 5
    einen Vergleich der CO2-Emissionen mit und ohne Einbau
  • Figur 1 zeigt eine seitliche perspektivische Ansicht eines Einbaus mit einer Vielzahl von Elementen, die durch Pall-Ringe gebildet sind. Derartige Pall-Ringe werden normalerweise in den verfahrenstechnischen Apparaten zur Verbesserung von Strömungsverhältnissen, Phasentrennung und zur Erzeugung großer Stoffaustauschflächen eingesetzt. Bisher wurde ein solcher Einbau in Verbrennungsprozessen nicht eingesetzt bzw. nicht untersucht.
  • Figur 2 zeigt eine Draufsicht auf den Einbau nach Fig. 1. Als Elemente kommen keramische Pall-Ringe mit einem Durchmesser von 50 mm und einer Dicke von 0,8 mm zum Einsatz.
  • Aufgrund der größeren Abgaswege im gezeigten Einbau lassen sich die Staubpartikel durch die Sedimentation bzw. das Speeren nicht abscheiden. Es sind Abgaswege im Einbau mit Dimensionen > 3 mm verfügbar. Dadurch ist eine Verstopfung des Einbaus- und somit ein Erhöhung des Strömungswiderstands nicht zu erwarten.
  • Es ist ein niedriger Strömungswiderstand bzw. Druckverlust durch den strukturierten systematischen Aufbau des Einbaus, welcher ausreichend große definierte Abgaswege gewährleistet, zu erreichen. Bei einem Abgasvolumenstrom von 50 Nm3/h durch einen Einbau mit den Maßen 30 x 25 x 20 cm ist mit einem Druckverlust von 3 bis 5 Pascal zu rechnen.
  • Da der Einbau aus mehreren Elementen, bei Bedarf auch Elementen mit unterschiedlichen Größen, besteht bzw. aufzubauen ist, ergibt sich die Möglichkeit, diese Technik in vielen Feuerungsanlagen mit unterschiedlichen Konstruktionen ohne großen Aufwand einzubauen.
  • Die verwendete Keramik ist verfügbar und langlebig. Es ist mit einer Lebensdauer von mehr als 15 Jahren zu rechnen. Die Keramik hat sich als sehr robust gegenüber ungünstigen Brennstoffen wie feuchtem Holz und Abfällen sowie gegenüber rauen Betriebsphasen und Instationarität der Verbrennung, wie z. B. in der Anfahrbetriebsphase erwiesen.
  • Der verwendete Einbau soll eine sehr raue Oberfläche besitzen und über Mini-Turbulatoren, die horizontal (bzw. quer zur Abgasströmung) im ganzen Einbau-Querschnitt in verschiedenen Höhen verteilt sind, verfügen.
  • Figur 3 zeigt die mittleren Kohlenmonoxid-, Figur 4 die mittleren Kohlenwasserstoff- und Figur 5 die mittleren Kohlendioxidkonzentrationsverläufe bei der Verbrennung von Buchenholz in einem alten Holzofen mit und ohne keramischen Einbau bei Normprüfbedingungen. Dabei ist über vier Abbrände gemittelt worden. Die gestrichelte Linie zeigt jeweils den Verlauf ohne Einbau, die durchgezogene Linie mit Einabu
  • Dabei ist zu ersehen, dass das Kohlenmonoxid (CO) und die Kohlenwasserstoffe (CnHm) mit Einsatz des Einbaus deutlich niedriger sind als ohne Einbau. Die beiden Komponenten (CO und CnHm) sinken schnell nach dem Schließen der Holzofentür und bleiben über lange Zeit, auch in der Ausbrandphase, bei niedrigem Niveau. Dieses Verhalten ist bei Kohlenwasserstoffen deutlicher zu bemerken als bei Kohlenmonoxid. Das ist damit zu begründen, dass der Einbau die für die Oxidation nötige Wärme -auch über eine lange Zeit der Verbrennung und in kritischen Betriebsphasen - bereitstellen kann. Es ist zu erwähnen, dass die in Figuren 3 bis 5 dargestellten CO- und CnHm-sowie CO2-Verläufe bei allen Abbränden (über 260 Abbrände) unabhängig von der Art der Brennstoffbeschickung bzw. dem Bediener des Holzofens erhalten wurden.
  • Aus Figur 5 ist ersichtlich, dass der CO2-Volumenanteil im Abgas beim Einsatz des Einbaus höher ist als ohne Einbau. Das ist mit der besseren Umsetzung vom Brennstoffkohlenstoff während des Verbrennungsprozesses zu begründen. Durch die Erhöhung des CO2-Anteils im Abgas lässt sich die Effizienz der Verbrennung verbessern. Beim Vorversuchsprogramm bzw. bei dieser Versuchsreihe wurde der Wirkungsgrad von 71 % auf 80 % erhöht.
  • Die polycyclischen aromatischen Kohlenwasserstoffe (PAKs) und flüchtigen organischen Verbindungen (VOCs) beim Einsatz von Einbauten können reduziert werden, da sie normalerweise mit dem CO sowie CnHm über lange Zeit des Verbrennungsprozesses korrelieren bzw. entsprechend thermisch behandelt werden können.
  • Es ist zu erwähnen, dass die oben geschilderten Ergebnisse aus derzeitiger Sicht noch weiter verbessert werden können, da durch fachmännisches Handeln eine Optimierung möglich sein sollte.

Claims (7)

  1. Kleinfeuerungsanlage mit einem Einbau, der eine Vermischung von brennbaren Abgasbestandteilen mit Verbrennungsluft bewirkt und eine Wärmekapazität aufweist, welche einen Abfall der Temperatur der Verbrennung unter eine gewünschte Mindesttemperatur durch eine vorübergehend abgesenkte Verbrennungsleistung verhindert, dadurch gekennzeichnet, dass der Einbau Oberflächen mit adhäsiven Eigenschaften für Abgaskomponenten wie Ruß und Aerosole aufweist und aus einer Mehrzahl von Elementen aufgebaut ist, wobei die Elemente des Einbaus Pall-Ringe sind.
  2. Kleinfeuerungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass der Einbau eine Vergrößerung einer Reaktionszone bewirkt.
  3. Kleinfeuerungsanlage nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Einbau durch ein oder mehrere Module aus Gussmaterial gebildet ist.
  4. Kleinfeuerungsanlage nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Elemente des Einbaus metallische und/oder keramische und/oder steinige Bauteile sind.
  5. Kleinfeuerungsanlage nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Einbau Mikroturbulenzen in der Verbrennungsluft hervorruft.
  6. Kleinfeuerungsanlage nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Einbau Wärmeleitungseigenschaften aufweist, die geeignet sind, Temperaturunterschiede innerhalb des Einbaus auszugleichen.
  7. Kleinfeuerungsanlage nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Einbau eine mehrfache Umlenkung von Verbrennungsluft und/oder Abgas bewirkt.
EP14729008.4A 2013-06-12 2014-06-11 Kleinfeuerungsanlage mit einbau Active EP3008383B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013210985.7A DE102013210985A1 (de) 2013-06-12 2013-06-12 Kleinfeuerungsanlage mit Einbau
PCT/EP2014/062104 WO2014198758A1 (de) 2013-06-12 2014-06-11 Kleinfeuerungsanlage mit einbau

Publications (2)

Publication Number Publication Date
EP3008383A1 EP3008383A1 (de) 2016-04-20
EP3008383B1 true EP3008383B1 (de) 2021-05-05

Family

ID=50897648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14729008.4A Active EP3008383B1 (de) 2013-06-12 2014-06-11 Kleinfeuerungsanlage mit einbau

Country Status (3)

Country Link
EP (1) EP3008383B1 (de)
DE (2) DE102013210985A1 (de)
WO (1) WO2014198758A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2398903A1 (de) 2009-02-18 2011-12-28 Silence Therapeutics Aktiengesellschaft Mittel zur hemmung der expression von ang2
DE102015115933A1 (de) 2015-09-21 2017-03-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Behandlung von Abgasen in Einzelraumfeuerungsanlagen
DE202016100216U1 (de) 2016-01-19 2016-02-29 Schmid Feuerungstechnik GmbH & Co. KG Ofeneinsatz zur Abgasbehandlung
DE102019218807A1 (de) * 2019-12-03 2021-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Abgasnachbehandlungseinrichtung, Bausatz und Verfahren zu ihrer Herstellung und Feststofffeuerungsanlage
DE102022204799A1 (de) 2022-05-16 2023-11-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Abgasbehandlungseinrichtung und damit ausgestattete Kleinfeuerungsanlage

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR658071A (fr) 1928-07-25 1929-05-30 C R E S A Chauffage Rationnel Perfectionnements aux chaudières à éléments
DE640470C (de) 1934-11-18 1937-01-05 Fleck Carl Feuerung mit einer die Feuerkammer abschliessenden Vorrichtung zur Rauchgasentstaubung und -verbrennung
GB473417A (en) 1937-05-06 1937-10-12 Heinrich Gabriel Improvements in smoke consuming devices for furnaces
DE2927725A1 (de) * 1979-07-10 1981-01-29 Herbert Simon Verfahren zum verhindern von kondensatbildung, insbesondere fuer heizungsschornsteine, sowie vorrichtung zum verhindern von kondensatbildung
WO1995002450A1 (en) * 1993-07-16 1995-01-26 Thermatrix Inc. Method and afterburner apparatus for control of highly variable flows
DE9404544U1 (de) 1994-03-17 1994-05-11 Rainer, Johann, Eberschwang Ofen mit Rauchgasführung und Schraubenwendel als Einsatz für diesen Zweck
DE19612403A1 (de) 1996-03-28 1997-10-02 Fischer Georg Gmbh & Co Heizkessel
US6041771A (en) * 1998-09-21 2000-03-28 Hayes; Cecil Joseph Apparatus and method of automatically regulating intake of air into heating unit
EP1750071B2 (de) * 2005-08-02 2012-11-07 PRAG Protective Rights GmbH & Co. KG Kaminofen
DE102008009004A1 (de) * 2008-02-13 2009-12-17 Rudi Karpf Kleinfeuerungsanlage mit reduzierter Feinstaubemission
DE202009014002U1 (de) * 2009-10-15 2010-03-04 Hark Gmbh & Co Kg Kamin- U. Kachelofenbau Feuerstätte mit Reinigungselement zur Rauchgasreinigung
DE202010007246U1 (de) * 2010-05-26 2010-08-26 Dr. Pley Environmental Gmbh Apparat zur Behandlung von Abgasen einer Kleinfeuerungsanlage
DE102011012266A1 (de) * 2011-02-22 2012-08-23 Rauschert Kloster Veilsdorf Gmbh Vorrichtung zur Reinigung eines Abgasstromes
DE202011101621U1 (de) * 2011-05-31 2011-10-26 Hark Gmbh & Co Kg Kamin- Und Kachelofenbau Kaminfeuerstelle

Also Published As

Publication number Publication date
EP3008383A1 (de) 2016-04-20
WO2014198758A1 (de) 2014-12-18
DE202014010947U1 (de) 2017-02-13
DE102013210985A1 (de) 2014-12-31

Similar Documents

Publication Publication Date Title
EP3008383B1 (de) Kleinfeuerungsanlage mit einbau
EP3789671B1 (de) Biomasse-heizanlage mit einer rezirkulationseinrichtung mit optimierter rauchgasbehandlung
EP3789673B1 (de) Biomasse-heizanlage mit optimierter rauchgasbehandlung
DE202007016125U1 (de) Rußpartikelfilter mit variabel gesteuerter Rußabbrennung
EP3789672A1 (de) Biomasse-heizanlage mit sekundärluftführung, sowie deren bestandteile
DE202013001669U1 (de) Anlage mit Biomassen-Mischverbrennung
DE102011084902B3 (de) Verfahren und vorrichtung zur fluiderwärmung durch verbrennung kohlenstoffbasierter brennstoffe
DE202007017100U1 (de) Abgasreinigungsanordnung
EP1353125A1 (de) Vorrichtung und Verfahren zur Behandlung von Abgasen von Festbrennstoff-Feuerstätten
EP2989388B1 (de) Häusliche kleinfeuerungsanlage mit verbesserter lüftung
DE202016100216U1 (de) Ofeneinsatz zur Abgasbehandlung
EP2860468B1 (de) Heizkessel
EP3936013A1 (de) Grill und verfahren
EP2846088B1 (de) Rauchgasreinigungseinrichtung für Kleinfeuerungsanlagen
DE102007023051A1 (de) Kessel mit Brennmaterial aufnehmenden Brennraum
DE102010046858B4 (de) Heizkessel und Wärmeversorgungsanlage für Festbrennstoffe sowie ein Verfahren zur Verbrennung von Festbrennstoffen
DE102010051080A1 (de) Verfahren und Vorrichtung zur Reduzierung des Feinstaubanteils in der Abluft einer feste Brennstoffe verbrennende Kleinfeueranlage
EP2492593B1 (de) Vorrichtung zur Reinigung eines Abgasstromes
EP4432778A2 (de) Elektrisches widerstands-heizeinheit sowie damit ausgestattetes rauchgas-behandlungsmodul
AT397139B (de) Feuerung für die verbrennung fester brennstoffe
AT10295U1 (de) Kleinfeuerungsanlage für die kombinierte feuerung von rieselfähigen und festen brennstoffen, insbesondere holzpellets und stückholz
DE102015115933A1 (de) Vorrichtung und Verfahren zur Behandlung von Abgasen in Einzelraumfeuerungsanlagen
DE202010013722U1 (de) Heizkessel für Festbrennstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170403

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1390267

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014015550

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210906

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014015550

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210611

26N No opposition filed

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240617

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240619

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240617

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240621

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240628

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240701

Year of fee payment: 11