EP2997307B2 - Arrangement and method in boiler using fluidized-bed technology - Google Patents
Arrangement and method in boiler using fluidized-bed technology Download PDFInfo
- Publication number
- EP2997307B2 EP2997307B2 EP14728236.2A EP14728236A EP2997307B2 EP 2997307 B2 EP2997307 B2 EP 2997307B2 EP 14728236 A EP14728236 A EP 14728236A EP 2997307 B2 EP2997307 B2 EP 2997307B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- space
- furnace
- arrangement
- roof structure
- partition wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000005516 engineering process Methods 0.000 title claims description 7
- 238000005192 partition Methods 0.000 claims description 41
- 239000000446 fuel Substances 0.000 claims description 35
- 239000012528 membrane Substances 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 230000005587 bubbling Effects 0.000 claims description 3
- 238000005243 fluidization Methods 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims description 3
- 238000002309 gasification Methods 0.000 claims description 2
- 239000002956 ash Substances 0.000 description 8
- 241001417527 Pempheridae Species 0.000 description 5
- 239000003546 flue gas Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 239000010882 bottom ash Substances 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010053615 Thermal burn Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
- F23C10/18—Details; Accessories
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
- F23C10/005—Fluidised bed combustion apparatus comprising two or more beds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/04—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/027—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
- F23G5/0276—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/30—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2201/00—Staged combustion
- F23C2201/10—Furnace staging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/10007—Spouted fluidized bed combustors
Definitions
- the invention relates to an arrangement comprising a boiler using fluidized-bed technology.
- the invention further relates to a method for a boiler using fluidized-bed technology.
- BFB bubbling fluidized bed boilers
- the temperature of the bed is adjusted to a required level by grate dimensioning, primary air volume and circulation gas.
- the volume of circulation gas may become very large, because the temperature of the fluidized bed typically needs to be kept at 600 to 750°C to prevent sintering.
- the problem is that a large circulation gas volume decreases efficiency and increases the size of the convection part of the boiler and the internal consumption. Further, even though sintering is prevented in the fluidized bed, there is often also the problem of extensive fouling of the walls of the furnace by ash compounds melting in low temperature. Large ash layers may then fall into the fluidized bed and cause disruptions in the process, especially in the floating of the bed, in the removal of bottom ash and in emissions. The result is that the proportion of the agro fuels, for instance, need to be limited in the fuel and the degree of use of the plant may be poor.
- the idea of the invention is that the boiler is divided by a partition wall and roof structure into two sections or spaces, in the first of which fuel is gasified and in the second of which the fuel is burned.
- the advantage is that it is possible to use, even without limitations, fuels, the ash of which melts in low temperatures.
- Another advantage may be the flexibility of the boiler in relation to the fuels that can be burned in it.
- Yet another advantage may be a better efficiency and reduced internal consumption due to the fact, among other things, that less high-pressure air is required to maintain a smaller fluidized bed and that less sand mass is required, which means that the bed weighs less and the structure of the boiler can be correspondingly lightened.
- the arrangement comprises at least two first spaces that are arranged on different sides of a second space of a furnace.
- the advantage is that the arrangement can be efficiently applied to large-scale boilers.
- the idea of an embodiment is that it comprises nozzles arranged at the bottom or in the bottom part of the second space of the furnace for feeding bottom air.
- the advantage is that any fuel that ends up at the bottom of the second space can be burned.
- the partition wall and/or roof structure is at least partly made of a membrane wall connected to the water/vapour circulation of the boiler.
- the advantage is that the recovery of thermal energy can be improved and the thermal expansions of the partition wall and/or roof structure can be controlled.
- the partition wall comprises a bend that increases the rigidity of the partition wall.
- the partition wall extends to a distance from the roof structure, whereby the gap between them forms a flow path.
- the advantage is that a flow path is achieved that has a low flow resistance.
- the partition wall and/or roof structure is at least partly made of a membrane wall connected to the water/vapour circulation of the boiler and that the membrane walls are connected to each other through a lattice pipe system, and the gaps in the lattice pipe system form the flow path.
- the advantage is that the recovery of thermal energy is boosted and a partition wall - roof structure having good strength is formed.
- the roof structure comprises a bottom surface that is arranged to ascend to the end of the roof structure, and a top surface that is arranged to descend to the end of the roof structure.
- the advantage is that the bottom surface guides gases toward the second space and the top surface guides the residue falling from the walls of the second space to the bottom of the second space.
- Figure 1 is a schematic sectional side view of an arrangement and method of the invention.
- the boiler 10 is a bubbling fluidized bed boiler (BFB).
- BFB bubbling fluidized bed boiler
- the boiler 10 may be supported from below and/or the top.
- a BFB boiler like other boiler types based on fluidization, is especially well suited for burning so-called poor-grade fuels, such as wet biomasses, sludges, recycled fuels, and waste coals; naturally other fuels can also be used.
- the boiler is used in burning so-called agro fuels.
- An agro fuel refers to straw, straw pellets, palm oil waste or any other waste produced in agricultural production, for example.
- Agro fuels typically originate from fast-growing plants and, thus, contain lots of alkalis, chlorine and phosphor.
- the boiler 10 comprises a furnace that is divided into two spaces: a first space 1 and a second space 2.
- the boiler also has, among other things, a flue gas channel and channels for feeding combustion air, fuel, reagents and other additives possibly needed in burning into the furnace 2.
- Thermal energy generated in the thermal process taking place in the boiler 10 can be recovered by means of walls formed of water pipes and other heat delivery surfaces.
- the figures do not show all details of the boiler 10 to simplify the presentation.
- the first space 1 of the furnace comprises means known per se for forming 21 a fluidized bed, and from the second space 2, they are missing.
- Fuel F is fed to the first space of the furnace with appropriate means that comprise, among other things, one or more feed channels 4.
- the feed channel 4 is preferably directed to the middle of the bottom 15 of the first space, whereby the entire surface area of the bottom 15 is utilized as well as possible.
- the boiler 10 may be a front wall-fed furnace as shown in Figure 1 or a side wall-fed furnace.
- the boiler 10 comprises nozzles 22 for feeding primary air and/or circulation gas into the first space 1 of the furnace. According to an idea, only an amount of air required for the fluidization and the gasification of the fuel is fed into the first space 1. The amount of necessary circulation gas is also rather small due to the small surface area of the grate in the first space. If necessary, the temperature of the first space 1 is adjusted with circulation gas in such a manner that it is below the sintering temperature, that is, typically below 750°C. Circulation gas comprises flue gases generated during the process in the boiler 10. According to an idea, a sub-stoichiometric state prevails in the first space 1 and its air coefficient may be 0.2 to 0.5, for instance, depending on the used fuel.
- a partition wall 3 and roof structure 5 are arranged between the first space 1 and the second space 2.
- the partition wall 3 is at least mainly vertical, whereas the roof structure 5 arranged above the first space 1 forms a horizontally extending obstacle or space divider between the first space 1 and part of the second space 2 above it.
- the partition wall 3 extends to a distance from the roof structure 5, whereby the gap between them forms a flow path 18. Gases rising from the fluidized bed can flow through the flow path 18 from the first part 1 to the second part 2 as shown by arrow G.
- the partition wall 3 may have additional functional features, for instance in the partition wall shown in Figure 1 , there is a bend 17 that increases the rigidity of the wall 3.
- the location, direction, shape, depth, and number of the bend may differ from the example shown in the figure.
- the partition wall 3 is bent at its top toward the first part 1. It is then possible to use a shorter roof structure 5, which in turn increases the effective volume of the boiler.
- the partition wall 3 may also naturally be straight without any specific functional shapes.
- the height of the partition wall 3 is selected to only just prevent the fuel from flying over to the second space 2.
- the height of the partition wall is approximately 5 m, when the height of the boiler is approximately 20 m.
- the wall surfaces of the first space 1 and thus also the partition wall 3 may comprise brickwork that extends to a height of 2.5 m, for instance.
- the wall 3 is at least partly formed of a membrane wall 16 connected to the water/vapour circulation of the boiler 10.
- a membrane wall 16 connected to the water/vapour circulation of the boiler 10.
- An example of the structure of the membrane wall is shown in Figure 2 .
- the roof structure 5 can also be at least partly formed of the membrane wall 16 connected to the water/vapour circulation of the boiler 10.
- the wall 3 and roof structure 5 that comprise a membrane wall 16 provide the advantage that they boost the recovery of thermal energy in the boiler 10.
- the partition wall 3 and/or roof structure 5 can naturally be implemented using different solutions, such as a plate structure or a combination of a plate structure and brickwork.
- the roof structure 5 is preferably shaped to improve the natural flow of the gases G.
- the bottom surface 6 of the roof structure may be arranged to ascend toward the end 20 of the roof structure and, on the other hand, the top surface 7 of the roof structure may be arranged to descend toward the end 20 of the roof structure.
- the roof structure 5 covers the first space 1 of the furnace entirely; most preferably the roof structure 5 extends to some extent past the partition wall 3. When it is dimensioned in this way, the roof structure 5 prevents the fall of detaching ash layers and other layers into the fluidized bed from the top part of the furnace in the second space 2. According to an idea, the roof structure extends approximately 0.5 m or more past the partition wall 3.
- the layers may detach by themselves or be detached by sweepers 11, such as hydraulic guns, vapour sweepers, and audio sweepers.
- the roof structure 5 also prevents thermal radiation from the top part of the second space 2 to the fluidized bed, thanks to which the temperature of the fluidized bed or first space 1 is easier to keep sufficiently low. Further, the roof structure 5 may cause turbulence in the flow of the gas G, which boosts the mixing of the fuel and air and, therefore, burning.
- the second space 2 of the furnace is the combustion section, into which the remaining combustion air is fed to burn the fuel.
- Air nozzles 9 for feeding secondary, tertiary and possible other higher airs are arranged in the second space 2; the second space may also have nozzles for feeding circulation gas, among other things.
- the temperature may rise substantially higher than in the first space 1, to 1100° to 1400°, for instance.
- the air coefficient of the top part of the second space 2 may be over one, and the fuel is burned out there.
- the fuel gasifies and may also partly burn already in the first space 1.
- the walls of the second space 2 may scorify and/or foul due to melted ash. However, this does not cause problems, because the walls can be cleaned with above-mentioned sweepers 11.
- the second space 2 may have a nose 8 guiding the flow of the flue gases.
- a slag and ash removal system 12 to remove the fallen matter from the boiler 10 has been arranged at the bottom of the second space 2.
- the slag and ash removal system 12 may also be extended to the first part 1, as shown in Figure 1 .
- the first space 1 has its own bottom ash removal system.
- bottom air-feeding nozzles 24 can be arranged in the second space 2, at its bottom 23 or in its bottom part. With the bottom air fed through them, it is possible to burn any fuel particles that may fly there from the first space 1.
- Flue gases are led from the second space 2 of the furnace away from the furnace to a so-called empty pass and on to thermal surfaces.
- the second space 2 of the furnace may have thermal surfaces, but this is not necessary.
- Figure 2 is a schematic cross-sectional view of an embodiment of the partition wall and/or roof structure of the arrangement according to the invention.
- the partition wall 3 and roof structure 5 may be at least partly formed of a membrane wall 16 connected to the water/vapour circulation of the boiler 10.
- the membrane wall 16 typically comprises cooling pipes 13 arranged side by side and in the same direction and fastened to each other by fins 14. This type of gas-tight structure is known from furnace walls.
- the membrane wall 16 may be made by welding, for example.
- the structure of the membrane wall 16 can naturally also be made in some other way, for instance by directly joining adjacent cooling pipes 13 or by doing the opposite, that is, by increasing the width of the fin 14 in view of the embodiment shown in Figure 2 .
- Figure 3 is a schematic sectional side view of another arrangement and method of the invention
- Figure 3b is a schematic view of the cross-section of a detail of the arrangement.
- the partition wall 3 extends to the roof structure 5.
- Gas G flows from the first part 1 to the second part 2 through one or more openings 19 arranged in the partition wall 3.
- the flow path 18 is formed of one or more openings 19.
- the openings 19 are formed of the cooling pipes 13 of the membrane wall 16, from the gaps of which the fins 14 are left out along a suitable length and which are grouped in a lattice form.
- the membrane walls of the partition wall 3 and roof structure 5 are then connected to each other.
- Figure 3b shows a possible lattice 25.
- the lattice 25 can naturally be of some other kind, as long as the cooling pipes 13 are arranged loosely so that the gases G can flow through them via the openings 19.
- the cooling pipes 13 of the lattice 25 can be connected to the cooling pipes 13 of the partition wall 3 and/or roof structure 5 through collector chambers 26.
- the lattice 25 may be formed of cooling pipes 13, the diameter of which differs from that of the cooling pipes 13 of the membrane wall 16.
- the number of cooling pipes 13 forming the lattice 25 may differ from the number of cooling pipes 13 of the membrane wall 16 connected to the collector chambers 26.
- the lattice 25 is directed obliquely downward by dimensioning the partition wall 3 and roof structure 5.
- the roof structure 5 forms a lid over the lattice 25 to prevent matter detached from the second space 2 from falling into the first space 1.
- a bend 17 toward the first space 1 in the wall below the lattice 25 stiffens the structure, increases the effective volume of the second space 2 and guides the matter detached from the second space 2 to the bottom 23 of the second space.
- the direction of the bend 17 is selected to be the most advantageous for the entity.
- Figure 4 is a schematic sectional side view of a third arrangement and method of the invention.
- the arrangement may comprise at least two first spaces 1 that are arranged on different sides of the second space 2 of the furnace.
- the features of both first spaces 1 may be as already described above: both may have a fuel feed channel 4 connected to them, for example. This type of solution is especially advantageous for use in large boilers 10.
- the shapes and structure of the partition wall 3 and roof structure 5 may also be implemented in some other manner, for instance as in Figure 3a .
- features disclosed in this application may be used as such, regardless of other features.
- features disclosed in this application may be combined in order to provide different combinations.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL14728236T PL2997307T5 (pl) | 2013-05-14 | 2014-05-13 | Układ i sposób zastosowany w kotle wykorzystującym technologię złoża fluidalnego |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20135507A FI126744B (fi) | 2013-05-14 | 2013-05-14 | Järjestely ja menetelmä leijutekniikkaa käyttävässä kattilassa |
PCT/FI2014/050356 WO2014184437A1 (en) | 2013-05-14 | 2014-05-13 | Arrangement and method in boiler using fluidized-bed technology |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2997307A1 EP2997307A1 (en) | 2016-03-23 |
EP2997307B1 EP2997307B1 (en) | 2017-07-05 |
EP2997307B2 true EP2997307B2 (en) | 2021-01-13 |
Family
ID=50884937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14728236.2A Active EP2997307B2 (en) | 2013-05-14 | 2014-05-13 | Arrangement and method in boiler using fluidized-bed technology |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2997307B2 (pl) |
DK (1) | DK2997307T4 (pl) |
ES (1) | ES2636452T5 (pl) |
FI (1) | FI126744B (pl) |
PL (1) | PL2997307T5 (pl) |
PT (1) | PT2997307T (pl) |
WO (1) | WO2014184437A1 (pl) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT520305B1 (de) * | 2018-03-09 | 2019-03-15 | Andritz Ag Maschf | Verbrennungsanlage |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3893426A (en) | 1974-03-25 | 1975-07-08 | Foster Wheeler Corp | Heat exchanger utilizing adjoining fluidized beds |
FR2446990A1 (fr) | 1979-01-22 | 1980-08-14 | Mitchell Douglas | Methode et appareil de traitement de dechets |
DE3244709C2 (de) | 1982-12-03 | 1986-06-19 | Buderus Ag, 6330 Wetzlar | Wirbelschichtfeuerung |
AT382227B (de) | 1985-04-30 | 1987-01-26 | Simmering Graz Pauker Ag | Verfahren und vorrichtung zur verbrennung von festen, fluessigen, gasfoermigen oder pastoesen brennstoffen in einem wirbelschichtofen |
CA1285375C (en) | 1986-01-21 | 1991-07-02 | Takahiro Ohshita | Thermal reactor |
US4815418A (en) | 1987-03-23 | 1989-03-28 | Ube Industries, Inc. | Two fluidized bed type boiler |
AT401419B (de) | 1987-07-21 | 1996-09-25 | Sgp Va Energie Umwelt | Wirbelschichtverfahren zur vergasung und verbrennung von brennstoffen sowie vorrichtung zu seiner durchführung |
ATE131271T1 (de) | 1988-08-31 | 1995-12-15 | Ebara Corp | Wirbelbettofen mit verbundumlauf. |
US5341766A (en) | 1992-11-10 | 1994-08-30 | A. Ahlstrom Corporation | Method and apparatus for operating a circulating fluidized bed system |
GB2297608A (en) * | 1994-12-05 | 1996-08-07 | Sandoz Ltd | Fluidised bed incinerator |
AU732542B2 (en) * | 1997-11-04 | 2001-04-26 | Ebara Corporation | Fluidized-bed gasification and combustion furnace |
US7285144B2 (en) | 1997-11-04 | 2007-10-23 | Ebara Corporation | Fluidized-bed gasification and combustion furnace |
US20070012230A1 (en) * | 2005-07-12 | 2007-01-18 | Hiroshi Hashimoto | Gasification furnace |
-
2013
- 2013-05-14 FI FI20135507A patent/FI126744B/fi active IP Right Grant
-
2014
- 2014-05-13 PT PT147282362T patent/PT2997307T/pt unknown
- 2014-05-13 DK DK14728236.2T patent/DK2997307T4/da active
- 2014-05-13 PL PL14728236T patent/PL2997307T5/pl unknown
- 2014-05-13 EP EP14728236.2A patent/EP2997307B2/en active Active
- 2014-05-13 ES ES14728236T patent/ES2636452T5/es active Active
- 2014-05-13 WO PCT/FI2014/050356 patent/WO2014184437A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2014184437A1 (en) | 2014-11-20 |
PL2997307T3 (pl) | 2017-10-31 |
ES2636452T3 (es) | 2017-10-05 |
EP2997307A1 (en) | 2016-03-23 |
ES2636452T5 (es) | 2021-09-03 |
DK2997307T3 (en) | 2017-08-28 |
EP2997307B1 (en) | 2017-07-05 |
PL2997307T5 (pl) | 2021-06-14 |
PT2997307T (pt) | 2017-08-11 |
FI126744B (fi) | 2017-04-28 |
FI20135507A (fi) | 2014-11-15 |
DK2997307T4 (da) | 2021-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140352634A1 (en) | Method and Apparatus for Improved Firing of Biomass and Other Solid Fuels for Steam Production and Gasification | |
ZA200603850B (en) | Gasification boiler for solid fuels, in particular for bales of straw, with optimised exhaust gas values | |
CN1057373C (zh) | 可拆型沸腾床水管锅炉 | |
EP2997307B2 (en) | Arrangement and method in boiler using fluidized-bed technology | |
JP2009079835A (ja) | ボイラ装置及びボイラ装置の改造方法 | |
CN100439796C (zh) | 包括固定支持结构的塔式锅炉 | |
CN201811217U (zh) | 生物质锅炉 | |
CN202733916U (zh) | 一种燃药渣流化床锅炉 | |
FI126917B (fi) | Järjestely ja menetelmä polttoaineen polttamiseksi | |
CN215489684U (zh) | 一种清洁高效环保的生物质颗粒燃烧炉 | |
CN102066531B (zh) | 循环流化床气化炉的提升管顶部构造 | |
EP0044316A1 (en) | Spouted and fluidised bed combustors | |
CN113217906A (zh) | 一种清洁高效环保的生物质颗粒燃烧炉 | |
KR101385982B1 (ko) | 석유 코크스 보일러 | |
EP3054214B1 (en) | Method for feeding air to a fluidized bed boiler, a fluidized bed boiler and fuel feeding means for a fluidized bed boiler | |
RU2762036C1 (ru) | Решетка из воздухонагнетательных штанг для подачи воздуха в камеру сгорания, предназначенная для использования в реакторе с псевдоожиженным слоем, и реактор с псевдоожиженным слоем | |
JP2011226691A (ja) | 固体燃料の燃焼装置及びボイラー装置 | |
WO2002086385A1 (en) | Waste heat boiler | |
RU66799U1 (ru) | Водогрейный котел | |
CN111609397A (zh) | 一种生物质循环流化床热风炉 | |
JPS61161315A (ja) | 流動層燃焼装置 | |
JP3184168U (ja) | 固体燃料の燃焼装置及びボイラー装置 | |
Gaikwad | Environmental Friendly Technologies for heat recovery from waste fuels and process/industrial wastes | |
AU6648481A (en) | Spouted and fluidised bed combustors | |
PL224789B1 (pl) | Kocioł centralnego ogrzewania na paliwo stałe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151127 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170111 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 906855 Country of ref document: AT Kind code of ref document: T Effective date: 20170715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014011501 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 2997307 Country of ref document: PT Date of ref document: 20170811 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20170804 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20170821 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2636452 Country of ref document: ES Kind code of ref document: T3 Effective date: 20171005 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170705 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 906855 Country of ref document: AT Kind code of ref document: T Effective date: 20170705 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 24909 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171005 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171005 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171105 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171006 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602014011501 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
26 | Opposition filed |
Opponent name: ANDRITZ AG Effective date: 20180405 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140513 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170705 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20210113 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 602014011501 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T4 Effective date: 20210209 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T5 Ref document number: E 24909 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2636452 Country of ref document: ES Kind code of ref document: T5 Effective date: 20210903 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230602 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240527 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240627 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240509 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240509 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240528 Year of fee payment: 11 Ref country code: FI Payment date: 20240527 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240506 Year of fee payment: 11 Ref country code: PT Payment date: 20240502 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240521 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240524 Year of fee payment: 11 |