EP2983851B1 - Procede de fabrication de piece dissymetrique par fabrication additive - Google Patents

Procede de fabrication de piece dissymetrique par fabrication additive Download PDF

Info

Publication number
EP2983851B1
EP2983851B1 EP14722252.5A EP14722252A EP2983851B1 EP 2983851 B1 EP2983851 B1 EP 2983851B1 EP 14722252 A EP14722252 A EP 14722252A EP 2983851 B1 EP2983851 B1 EP 2983851B1
Authority
EP
European Patent Office
Prior art keywords
model
sacrificial
balancing
plane
symmetry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14722252.5A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2983851A1 (fr
Inventor
Cyrille Baudimont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP2983851A1 publication Critical patent/EP2983851A1/fr
Application granted granted Critical
Publication of EP2983851B1 publication Critical patent/EP2983851B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a method of manufacturing a part by additive manufacturing, in particular by melting or sintering powder particles by means of a high energy beam.
  • This process is particularly suitable for manufacturing parts exhibiting asymmetries or large mass disproportions, particularly intended for the aeronautical field.
  • a classic example of additive manufacturing is the manufacture by melting or sintering of powder particles by means of a high energy beam.
  • high energy beams there may be mentioned in particular the laser beam and the electron beam.
  • SLM Selective Laser Melting
  • a first layer 10a of powder of a material is deposited on a production plate 21 (it can be a single plate only). or surmounted by a massive support, a part of another part or a support grid used to facilitate the construction of certain parts).
  • This powder is transferred from a feed tank 22 during a forward movement of the roll 20 and then is scraped, and possibly slightly compacted, during one (or more) movement (s) of the return roller 20.
  • the powder is composed of particles 11.
  • the excess powder is recovered in a recycling bin 23 located adjacent to the building tank 24 in which the manufacturing platform 21 moves vertically.
  • a laser beam generator 31 is also used, and a control system 32 capable of directing this beam 31 on any region of the manufacturing platform 21 so as to scan any region of a layer of powder previously filed.
  • the shaping of the laser beam 31 and the variation of its diameter in the focal plane are done respectively by means of a beam expander or "Beam Expander" 33 and a focusing system 34, the assembly constituting the system optical.
  • this first powder layer 10a is scanned with a laser beam 31 at a temperature above the melting temperature of this powder.
  • the SLM process can use any high energy beam in place of the laser beam 31, and in particular an electron beam, as long as this beam is sufficiently energetic to melt the powder particles and a part of the material on which the particles rest.
  • This scanning of the beam is carried out for example by a galvanometric head forming part of a control system 32.
  • this control system comprises at least one orientable mirror on which the laser beam 31 is reflected before reaching a layer of powder whose each point of the surface is always located at the same height relative to the focusing lens, contained in the focusing system 34, the angular position of this mirror being controlled by a galvanometric head so that the laser beam sweeps at minus one region of the first layer of powder, and thus follows a pre-established room profile.
  • the galvanometric head is controlled according to the information contained in the database of the computer tool used for computer-aided design and manufacture of the part to be manufactured.
  • the powder particles 11 of this region of the first layer 10a are melted and form a first element 12a in one piece, integral with the production plate 21.
  • the production platform 21 is lowered by a height corresponding to the thickness of the first layer of powder 10a (20 to 100 ⁇ m and in general 30 to 50 ⁇ m).
  • a second layer 10b of powder is then deposited on the first layer 10a and on this first integral or consolidated element 12a, and a region of the second layer 10b which is located partially or completely is heated by exposure to the laser beam 31.
  • this first element in one piece or consolidated 12a in the case illustrated in the FIG 1 so that the powder particles of this region of the second layer 10b are melted with at least a portion of the element 12a and form a second integral or consolidated element 12b, all of these two elements.
  • 12a and 12b forming, in the case illustrated in FIG 1 , a block in one piece.
  • Such an additive manufacturing technique or others such as that of manufacture by powder projection, thus provides excellent control of the geometry of the part to be manufactured and makes it possible to produce parts having great fineness.
  • WO2012103603 discloses a manufacturing method for two or more thin wall structures by additive manufacturing, which is to orient the thin-walled structures relative to each other so that the stresses accumulated in the thin-walled structures partially neutralize during manufacture .
  • the present disclosure relates to a method of manufacturing an additive manufacturing part, comprising the following steps: providing a numerical model of a part to be manufactured, orientation of the model with respect to a direction of construction of the part, modification of the model by addition of a balancing sacrificial portion configured so as to balance the residual stresses brought to appear in the part during its manufacture, production of a raw part layer by layer using an additive manufacturing technique on the base of the model thus modified, said layers being stacked in the direction of construction, removal by a material removal process of the sacrificial portion of the blank piece from the sacrificial balancing portion of the model, and obtaining this way of said part to be manufactured.
  • this method it is possible, at the computer-assisted design stage, to detect a potential risk of accumulation of residual stresses during manufacture, in particular because of asymmetries, or at least large mass disproportions, at the time of manufacture. within the room and artificially correct the model of the room to give it a more coherent overall geometry and better proportionate that will balance the residual stresses within the room during its manufacture.
  • the residual stresses will be distributed more evenly within the part: in this way, these residual stresses will not be concentrated in certain areas of the part beyond a certain threshold that could lead to critical deformation of the part.
  • the addition of such a sacrificial portion may make it possible to reduce certain edge effects or to move a concentration concentration zone to a part of the part less sensitive to deformations, for example a thicker part or having a particularly simple geometry, or to a part of the part in which the dimensional or mechanical tolerances are higher.
  • the raw part obtained has fewer defects both dimensional and mechanical: it is then sufficient to remove by a known material removal process the sacrificial balancing portion of the blank piece from the sacrificial balancing portion of the model. in order to obtain the desired piece.
  • the part to be manufactured has an asymmetrical part
  • the sacrificial balancing portion is configured so that the sacrificial part of the blank has a mass of between 70% and 130% of that of the asymmetrical part, preferably between 90% and 110%.
  • asymmetric part is meant a part which, if removed from the part, would leave a residual part having at least one element of symmetry more than the original part. This definition is directly transposed to the model.
  • element of symmetry we mean a symmetry with respect to a given plane, a symmetry with respect to a given point, an invariance with respect to a given rotation, or any other invariance by a given geometric relation.
  • this sacrificial part having a mass relatively close to that of the asymmetrical part, it is possible to correct at least partly the mass disproportion resulting from this part.
  • asymmetrical such an approach makes it possible to better balance the residual stresses in the blank, easily and substantially, which has a remarkable favorable impact on the occurrence of defects in the blank.
  • the balancing sacrificial portion is added to a height substantially equivalent to the height of the asymmetric portion.
  • the rebalancing of the residual stresses is carried out for substantially all the layers originally knowing an asymmetry and therefore a mass disproportion.
  • the balancing sacrificial portion extends the model in its direction of greater extension.
  • the balancing sacrificial portion is configured such that the sacrificial portion obtained is constructed opposite the asymmetric portion relative to the blank. In this way, it rebalances the mass distribution of the blank, and thus the residual stresses caused to appear during manufacture, the latter being partially moved to the center of the room.
  • the balancing sacrificial portion is added to provide the model with at least one more symmetry element, preferably one more symmetry plane.
  • the distribution of residual stresses will therefore be better distributed since it will also benefit from an additional element of symmetry.
  • Such an artificial restoration of symmetry in the sense of the presentation, thus makes it possible to dramatically reduce the occurrence and magnitude of the defects of the blank.
  • the balancing sacrificial portion is located in such a way that the sacrificial portion obtained is located in a zone symmetrical to the zone of the asymmetric portion with respect to a plane passing through the center of gravity of the the raw part.
  • the balancing sacrificial portion is configured so that the sacrificial portion of the blank is symmetrical to the asymmetric portion with respect to a plane, this plane being a plane of symmetry of the blank .
  • a plan of Symmetry is particularly easy to set up using the CAD software when working on the part model.
  • the step of modifying the model includes a step of defining a balancing plane, parallel to the direction of construction, corresponding to a plane of symmetry which would be available to the model if it were not available. its asymmetrical portion corresponding to the asymmetrical part of the piece. This step makes it easy to identify a candidate symmetry plan for the blank.
  • the step of modifying the model includes a balancing step during which a balancing slice is added to the model, in each layer perpendicular to the direction of construction, restoring the symmetry of the layer considered. of the model in relation to the balancing plan.
  • a balancing step during which a balancing slice is added to the model, in each layer perpendicular to the direction of construction, restoring the symmetry of the layer considered. of the model in relation to the balancing plan.
  • said additive manufacturing technique is a method of manufacturing by selective melting or selective sintering of powder beds.
  • said method of manufacturing by selective melting or selective sintering of powder beds uses a laser beam.
  • said method of manufacturing by selective melting or selective sintering of powder beds uses an electron beam.
  • said additive manufacturing technique is a powder projection manufacturing method.
  • the model is oriented so as to minimize the number of manufacturing supports and / or their sizes. These manufacturing supports are necessary in particular when a layer of the part protrudes laterally from the support formed by the layer of the just lower part. In this way, it is possible to limit the number of machining operations to be carried out on the blank to obtain the part: it also saves the powder. In addition, this limits the impact of the resulting roughness of the layering process.
  • the pattern is oriented to minimize the height of the workpiece in the construction direction. This minimizes the number of layers and therefore the amount of powder used and the time of manufacture. In addition, the risk of deformation is also reduced and the surface condition obtained is more homogeneous.
  • the part to be manufactured is a blade part comprising a leading edge, a trailing edge and a blade.
  • the numerical model of the vane is oriented so that its leading edge or trailing edge is directed to the construction table. In this way, it is possible to minimize the use of manufacturing media.
  • the balancing plane of the blade part cuts the blade part substantially halfway up its blade.
  • the FIG 1 is an overview of an additive manufacturing device by selective melting of powder beds.
  • FIG 2A and 2B are perspective and plan views of the original model of an example of a part to be manufactured.
  • FIG 3A and 3B are perspective and plan views of the model of Figures 2A and 2B for which a balancing plan is defined.
  • FIG 4A is a perspective view of the model of FIG 3A and 3B which a sacrificial balancing portion has been added.
  • the FIG 4B is a plan view of a layer of the model of the FIG 4A .
  • the FIG 5 is a perspective view of the raw part obtained using the model of the FIG 4A .
  • FIG 6 is a perspective view of the final piece after removal of the sacrificial portion of the blank.
  • a blade 90 as represented very schematically on the FIG 6 .
  • This blade 90 comprises a blade 91, provided with a leading edge 93 and a trailing edge 94, and a foot 92 provided at one end of the blade 91.
  • the blade 91 is thin and elongated while the foot 92 is thick and compact: the foot 92 thus constitutes an asymmetrical portion of the blade 90. Indeed, if the blade 90 was to be deprived of its foot 92, the latter would have a plane of symmetry cutting the blade 91 halfway up.
  • the numerical model 50 of the blade 90 is received in computer-aided design (CAD) software 90.
  • CAD computer-aided design
  • this numerical model 50 comprises a first portion 51 thin and elongated corresponding to the blade 91 and a second portion 52 thick and compact corresponding to the foot 92.
  • the second portion 52 of the model 50 is an asymmetrical portion of the model 50.
  • the model 50 is oriented with respect to the digital image 61 of the manufacturing plate 21 and the direction of construction 62 perpendicular to said image of the plate 61.
  • the model 50 is oriented such that its edge 53 corresponding to the leading edge 93 of the blade 90 is directed towards the image of the plate 61.
  • the residual portion 51 of the model 50 has a second longitudinal plane of symmetry 71 which is also parallel to the direction of construction 62: however, this other plane of symmetry 71 can not be chosen as a balancing plane insofar as the original model 50 of the blade 90 is already symmetrical with respect to this plane 71.
  • each of the production layers is successively placed along the construction direction 62 from the image of the plate 61 and a balancing wafer 72a is added to each layer to the model 50 so as to restore the symmetry of the layer by In this way, in each layer perpendicular to the construction direction 62, the balance wafer 72a is symmetrical to the wafer 52a of the asymmetrical portion 52.
  • a modified model 50 'represented by FIG. FIG 4A comprising a balancing sacrificial portion 72 resulting from the stacking of the balancing slots 72a.
  • the modified model 50 ' is henceforth symmetrical with respect to the balancing plane 70, the equilibrium sacrificial portion 72 being symmetrical to the asymmetrical portion 52 with respect to the balancing plane 70.
  • FIG 1 it is a manufacturing process by selective sintering of powder beds.
  • FIG 1 it could be analogous to a powder projection manufacturing process.
  • a first layer 10a of powder of the desired material in this case nickel base powder, is deposited on the production plate 21.
  • a first region of said first layer 10a is scanned with the laser beam 31 so as to locally heat the powder of said region to a temperature greater than the sintering temperature of this powder, so that the particles of said powder thus melted or sintered from said first region then form a first integral element 12a.
  • a second layer 10b of powder of said material is deposited on said first layer of powder 10a.
  • the two preceding steps are then repeated for each new layer of powder to be deposited above a preceding layer, until the complete formation of the blank 80 shown on FIG. FIG 5 .
  • This blank 80 comprises the blade 91 and the foot 92 expected and a balancing sacrificial portion 82 symmetrical to the foot 92 relative to a plane of symmetry 81 of the blank 80 corresponding to the plane of balance 70.
  • the sacrificial balancing portion 82 therefore has the same geometry, with a close reflection, and the same mass as the foot 91 which was the asymmetrical part of the blade 90.
  • this sacrificial balancing portion 82 manufactured at the same time as the rest of the blank 80, the network of residual stresses of the blank 80 is distributed symmetrically, and therefore balanced, on both sides. other of the plane of symmetry 81.
  • the blank 80 is therefore devoid of major defects usually resulting from deformations caused by these residual stresses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
EP14722252.5A 2013-04-10 2014-04-01 Procede de fabrication de piece dissymetrique par fabrication additive Active EP2983851B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353217A FR3004370B1 (fr) 2013-04-10 2013-04-10 Procede de fabrication de piece dissymetrique par fabrication additive
PCT/FR2014/050779 WO2014167212A1 (fr) 2013-04-10 2014-04-01 Procede de fabrication de piece dissymetrique par fabrication additive

Publications (2)

Publication Number Publication Date
EP2983851A1 EP2983851A1 (fr) 2016-02-17
EP2983851B1 true EP2983851B1 (fr) 2019-01-02

Family

ID=48613970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14722252.5A Active EP2983851B1 (fr) 2013-04-10 2014-04-01 Procede de fabrication de piece dissymetrique par fabrication additive

Country Status (9)

Country Link
US (1) US10118226B2 (zh)
EP (1) EP2983851B1 (zh)
JP (1) JP6416874B2 (zh)
CN (1) CN105102159B (zh)
BR (1) BR112015025863B1 (zh)
CA (1) CA2908960C (zh)
FR (1) FR3004370B1 (zh)
RU (1) RU2655551C2 (zh)
WO (1) WO2014167212A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478983B2 (en) 2015-06-19 2022-10-25 General Electric Company Additive manufacturing apparatus and method for large components
US10449606B2 (en) * 2015-06-19 2019-10-22 General Electric Company Additive manufacturing apparatus and method for large components
US10086567B2 (en) * 2015-07-01 2018-10-02 General Electric Company Method for additively manufacturing component and component made therefrom
WO2017055854A1 (en) * 2015-09-30 2017-04-06 Renishaw Plc Improvements in or relating to the control of a chain of machines, including an additive manufacturing machine, in the manufacture of a workpiece
FR3066419B1 (fr) * 2017-05-19 2021-04-30 Safran Aircraft Engines Procede de realisation par fabrication additive d'une aube de turbomachine d'aeronef
GB201712002D0 (en) 2017-07-26 2017-09-06 Rolls Royce Plc Curved plate production by additive layer manufacture
DE102017119728A1 (de) * 2017-08-29 2019-02-28 Renk Aktiengesellschaft Gleitlager und Verfahren zum Herstellen desselben
FR3083570B1 (fr) 2018-07-05 2021-09-10 Safran Helicopter Engines Degazeur centrifuge monobloc
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
IT201800010201A1 (it) * 2018-11-09 2020-05-09 Nuovo Pignone Tecnologie Srl Metodo per produrre componenti di turbomacchine cavi, di grandi dimensioni
US11179927B2 (en) * 2018-12-21 2021-11-23 Icon Technology, Inc. Systems and methods for the construction of structures utilizing additive manufacturing techniques
GB2593135B (en) * 2019-12-17 2024-01-24 Lpw Technology Ltd Build orientation optimisation method and system for producing an article by additive manufacturing
CN111151746B (zh) * 2019-12-31 2022-03-25 上海交通大学 自生内嵌超细网状结构增强体的钛基复合材料增材制造方法
FR3124748B1 (fr) * 2021-07-05 2023-10-06 Safran Aircraft Engines Procédé de fabrication additive de pièces de turbomachine
CN114433877A (zh) * 2022-01-17 2022-05-06 鑫精合激光科技发展(北京)有限公司 一种零件成形方法、终端设备及激光选区熔化成形系统
US11819920B1 (en) * 2022-09-12 2023-11-21 Chromalloy Gas Turbine Llc Systems and methods for repairing compressor blades using hybrid manufacturing techniques

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216616A (en) * 1989-06-26 1993-06-01 Masters William E System and method for computer automated manufacture with reduced object shape distortion
US7314591B2 (en) * 2001-05-11 2008-01-01 Stratasys, Inc. Method for three-dimensional modeling
GB0715621D0 (en) * 2007-08-10 2007-09-19 Rolls Royce Plc Support architecture
CN101612793A (zh) * 2009-07-28 2009-12-30 李蕙如 制造三维工件的方法与设备
FR2962061B1 (fr) * 2010-07-01 2013-02-22 Snecma Procede de fabrication d'une piece metallique par fusion selective d'une poudre
RU2450891C1 (ru) * 2010-12-16 2012-05-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания деталей лазерным послойным синтезом
BE1020619A3 (nl) * 2011-02-04 2014-02-04 Layerwise N V Werkwijze voor het laagsgewijs vervaardigen van dunwandige structuren.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2655551C2 (ru) 2018-05-28
EP2983851A1 (fr) 2016-02-17
US20160059315A1 (en) 2016-03-03
JP2016520718A (ja) 2016-07-14
JP6416874B2 (ja) 2018-10-31
FR3004370B1 (fr) 2015-09-18
CN105102159B (zh) 2017-11-10
RU2015146763A3 (zh) 2018-03-26
CN105102159A (zh) 2015-11-25
CA2908960A1 (fr) 2014-10-16
CA2908960C (fr) 2021-04-06
BR112015025863A2 (pt) 2017-07-25
RU2015146763A (ru) 2017-05-12
US10118226B2 (en) 2018-11-06
FR3004370A1 (fr) 2014-10-17
WO2014167212A1 (fr) 2014-10-16
BR112015025863B1 (pt) 2020-09-24

Similar Documents

Publication Publication Date Title
EP2983851B1 (fr) Procede de fabrication de piece dissymetrique par fabrication additive
EP3377254B1 (fr) Procede de fabrication d'une preforme d'aube, d'une aube et d'un secteur de distributeur par fusion selective sur lit de poudre
WO2017118806A1 (fr) Procédé de fabrication de pièce par fabrication additive
FR2980380A1 (fr) Strategie de fabrication d'une piece metallique par fusion selective d'une poudre
EP3600727B1 (fr) Éprouvette pour la validation de paramètres opératoires d'un procédé de fabrication additive d'une pièce par fusion laser sur lits de poudre
EP2496376B1 (fr) Procede de frittage ameliore
EP3509774B1 (fr) Procede de fabrication d'une piece en materiau electroconducteur par fabrication additive
EP4018268A1 (fr) Procédé de fabrication d'un palier horloger
WO2020128169A1 (fr) Procédé de fabrication d'une ébauche et dispositif correspondant
FR3064519A1 (fr) Procede de fabrication d'une piece metallique par fabrication additive
EP3402626B1 (fr) Procédé et installation de fabrication d'un objet tridimensionnel
CA2449005C (fr) Procede de fabrication de profiles metalliques
EP3624967B1 (fr) Aube de turbomachine d'aeronef et son procede de realisation par fabrication additive
FR2692066A1 (fr) Procédé pour réaliser un modèle de pièce industrielle par transformation partielle d'un liquide sous l'action de la lumière et dispositif de mise en Óoeuvre de ce procédé.
FR3030321A1 (fr) Fabrication par fusion laser d'une piece telle qu'un boitier d'un dispositif optronique ou avionique et pieces associees
EP3818463A1 (fr) Procede ameliore de fabrication de piece par fabrication additive
FR2692067A1 (fr) Procédé de réalisation de pièces par transformation de matière grâce à l'action de la lumière et dispositif de mise en Óoeuvre de ce procédé.
FR3095365A1 (fr) Support et systeme pour fabrication additive et procede de fabrication additive mettant en œuvre un tel support
FR3081746A1 (fr) Procede de fabrication conjointe, par la technique des procedes additifs, d’une piece et de son support, et piece obtenue apres retrait du support
FR3102281A1 (fr) Procédé et système d’optimisation d’agencement d’un ensemble de pièces d’aéronef sur une plaque
FR3038095A1 (fr) Procede de dimensionnement de liaison entre une piece et un support, en vue d'une fabrication par fusion selective sur lit de poudre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014039078

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B22F0003105000

Ipc: B22F0003240000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B23K 26/342 20140101ALI20180731BHEP

Ipc: B22F 3/105 20060101ALI20180731BHEP

Ipc: B29C 64/40 20170101ALI20180731BHEP

Ipc: B22F 5/04 20060101ALI20180731BHEP

Ipc: B29C 64/153 20170101ALI20180731BHEP

Ipc: B22F 3/24 20060101AFI20180731BHEP

INTG Intention to grant announced

Effective date: 20180904

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1083724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014039078

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1083724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190402

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014039078

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20191003

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190401

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230327

Year of fee payment: 10

Ref country code: IT

Payment date: 20230322

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240321

Year of fee payment: 11