WO2020128169A1 - Procédé de fabrication d'une ébauche et dispositif correspondant - Google Patents

Procédé de fabrication d'une ébauche et dispositif correspondant Download PDF

Info

Publication number
WO2020128169A1
WO2020128169A1 PCT/FR2019/000213 FR2019000213W WO2020128169A1 WO 2020128169 A1 WO2020128169 A1 WO 2020128169A1 FR 2019000213 W FR2019000213 W FR 2019000213W WO 2020128169 A1 WO2020128169 A1 WO 2020128169A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
blank
stack
face
final
Prior art date
Application number
PCT/FR2019/000213
Other languages
English (en)
Inventor
Jean-Philippe ROZENBAUM
Olivier Martin
Original Assignee
Mecachrome France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecachrome France filed Critical Mecachrome France
Priority to EP19845696.4A priority Critical patent/EP3898072A1/fr
Publication of WO2020128169A1 publication Critical patent/WO2020128169A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P17/00Metal-working operations, not covered by a single other subclass or another group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the technical field of additive manufacturing.
  • additive manufacturing processes are the opposite of material removal or subtractive processes, which make it possible to obtain metallic objects from thick plates or hollow cylinders.
  • Metallic objects can also be obtained from rough roughed in forging or foundry rough close to the coast.
  • the solidification of the metal after its deposition causes strong constraints linked to the phase change and to the temperature gradients, and therefore to deformations of the support.
  • Another solution consists in clamping the support on a tool to contain the deformation of the support during the deposition of the wire or the powder, the assembly then undergoing a stress relieving heat treatment.
  • This solution therefore requires specific tools made of a material chosen to hold mechanically during the heat treatment. It is expensive because of this tool. Indeed, it has a large amount of material to ensure its rigidity and its cost is therefore high.
  • the tooling must be present during the heat treatment of the support and this treatment during several hours, a large number of tools must be provided, which increases the manufacturing cost.
  • the object of the invention is to overcome these drawbacks by proposing a radically different and highly efficient additive manufacturing process.
  • the invention relates to a method of manufacturing at least one blank of a final metallic object from a digital object, said blank comprising at least two separate stacks of layers superimposed on a metallic support, the method comprising successive stages of depositing molten metallic material on said support by local supply of metallic material, combined with a local supply of energy, said support defining two opposite faces, the method being characterized in that the deposit of material is produced on both sides of the support to produce at least one stack on each face, in that the support is at least partially integrated into said blank and in that all of the material in at least one stack is absent from the final object obtained after machining the blank.
  • This process thus makes it possible to control the overall deformation of the support by appropriately depositing the material on the two surfaces of the support and without the need to increase its thickness.
  • the method can be implemented to produce two blanks.
  • the support is then separated into two parts, each of which includes one of the faces of the support and the stack (s) produced on this face of the support and forming a blank.
  • the latter will be at least partially part of the blank leading to the production of a final object after machining.
  • all of the material deposited on one side is absent from the final object obtained after machining the blank including the other side of the support.
  • this material absent from the final object played the function of a rectifier for this draft from which this final object came.
  • At least one face of the support is made at least one stack which will at least partially form part of the final object as well as at least one stack forming a rectifier.
  • all of the material of the stack corresponding to the rectifier is absent from the final object obtained after machining the blank, while the stack present on the first face will be at least partially part of the blank .
  • At least one stack forming a rectifier will also be produced on the first face of the support and all of the material of the stack corresponding to the rectifier will be absent from the final object obtained after machining the blank.
  • a deposit of material on one side is carried out to compensate for the deformations linked to a deposit of material on the other side.
  • the invention relates to a method of manufacturing at least one blank of a final metallic object from a digital object, said blank comprising at least two separate stacks of layers superimposed on a metallic support, the method comprising successive stages of depositing molten metallic material on said support by local supply of metallic material, combined with a local supply of energy, said support defining two opposite faces, the method being characterized in that the deposit of material is produced on both sides of the support to produce at least one stack on each side, in that at least one of the stacks produced on one side will be at least partially part of the final object and in that at at least one stack forms a rectifier, all of the material of which is absent from the final object obtained after machining the blank.
  • the method is implemented with a support which is permanently free on its two faces.
  • a large part of the surface of each face of the support is devoid of tools, this part being between 60 and 100%.
  • the tooling is essentially intended to maintain the support in a determined frame of reference. It is not designed to prevent it from deforming. This is why the tooling can be provided on the periphery of the support, or even on its edge, which makes it possible to free the two faces of the support. It is also designed to adapt to deformations of the support.
  • the two faces of the support can therefore receive a deposit of material without it being necessary to dismantle a tool beforehand.
  • one or more of the following provisions is used:
  • the successive steps of depositing metallic material can be carried out at least in part simultaneously on the two faces of the support
  • At least one of said stacks is constructed in a direction which is not opposite to that of gravity
  • the support is arranged substantially horizontally or vertically
  • the metallic material is brought in the form of wire or powder the deposition steps are carried out by one device or by a plurality of additive manufacturing devices
  • At least one additive manufacturing device is controlled according to pre-established control software
  • At least one additive manufacturing device is controlled by measurements from sensors arranged near the support.
  • the invention also relates to a blank manufacturing system comprising a metal support which will be at least partially integrated in the blank and at least one additive manufacturing device designed to deposit a metallic material on said support in a direction which is not opposite to that of gravity.
  • FIG. 1 schematically illustrates a first example of implementation of the method according to the invention.
  • FIG. 2 schematically illustrates a second example of implementation of the method according to the invention.
  • FIG. 3 which corresponds to FIGS. 3A to 3D, schematically illustrates a third example of implementation of the method according to the invention.
  • FIG. 4 is a perspective view illustrating an example of a final part produced from a crude obtained with a method according to the invention.
  • FIG. 5 includes FIGS. 5A and 5B which are perspective views of a theoretical blank corresponding to the final part illustrated in FIG. 4.
  • FIG. 6 comprises FIGS. 6A and 6B which are perspective views of a blank obtained by a conventional additive manufacturing process, on the basis of the theoretical blank illustrated in FIG. 5.
  • Figure 7 includes Figures 7A and 7B which are sectional views along lines A-A and B-B of Figure 6B respectively.
  • FIG. 9 is a perspective view showing a variant of Figure 6B, with a longer support.
  • FIG. 9 comprises FIGS. 9A and 9B which are sectional views along lines AA and BB respectively of FIG. 8.
  • Figure 10 is a perspective view of a blank obtained by a manufacturing process according to the invention, providing for the formation of rectifiers.
  • Figure 11 is a perspective view of a blank obtained by a manufacturing process according to the invention, providing for the formation of rectifiers.
  • FIG. 12 includes FIGS. 12A and 12B which are sectional views corresponding to FIGS. 7A and 7B as well as FIGS. 12C and 12D which are sectional views along lines C-C and D-D of FIG. 11.
  • FIG. 13 is a perspective view of a variant of the blank illustrated in FIGS. 10 and 11.
  • FIG. 14 is a perspective view of a variant of the blank illustrated in FIGS. 10 and 11.
  • FIG. 15 is a graph schematically illustrating the deformations of a support after implementation of the method according to the invention.
  • FIG. 1 illustrates a metal support 1, for example made of TA6V.
  • the thickness of this substrate is less than 20 mm.
  • the support 1 is substantially planar and defines two opposite faces 10 and 11 also substantially planar.
  • the invention is not however limited to this embodiment and the support is not necessarily planar. On the other hand, it must have facing surfaces.
  • the thickness of the support is not necessarily constant.
  • the support may result from the slanting of a plate.
  • the support 1 is arranged substantially horizontally. In other words, it defines a plane that is substantially perpendicular to the direction of the force of gravity (illustrated by arrow G).
  • FIG. 1 also illustrates two devices 20 and 21 for additive manufacturing.
  • the first device 20 is arranged above the upper face 10 of the support, while the second device 21 is arranged below the lower face 11 of the support.
  • energy source for example electron beam, laser, plasma, electric arc or hot carrier gas. If one of these devices has several sources of energy, these can be different from each other.
  • each of these devices includes means for bringing the metal onto the support, in the form of powder or wire.
  • This metal will be melted thanks to the energy source present in the device 20 or 21, in order to deposit it on the support 1.
  • the support 1 is fixed in rotation.
  • the support 1 and the devices 20 and 21 are movable in translation relative to each other. In the example shown, it is the devices 20 and 21 which are movable in translation, the support 1 being fixed.
  • the first device 20 was controlled to produce a stack 12 formed here of four layers superimposed 120 to 23, while the second device 21 has been piloted to produce on the lower face 11 of the support 1 a stack 13, itself formed of successive layers 130 to 133.
  • the arrow F12 indicates the direction in which the stack 12 is constructed, or in other words, the direction defined by the succession or the progression of the layers 120 to 123 from the support 1.
  • Each layer corresponds to a deposition cycle during which the entire desired surface of the support or of the previous layer is covered with a bead of metallic material of a determined height, this height being defined in a direction perpendicular to the support. This height can vary from one layer to another, this variation being generally of small amplitude.
  • the direction of construction of the stack 12 is therefore opposite to the direction of gravity, this opposite direction being materialized by the arrow G ’.
  • the direction of construction of the stack 13 is, for its part, materialized by the arrow F13 and it corresponds to the direction of gravity, materialized by the arrow G.
  • the stacks 12 and 13 constitute two distinct stacks, that is to say that they are produced independently of one another or that there is a discontinuity between the material forming the first layer 120 of the stack 12 and the material forming the first layer 130 of the stack 13.
  • the invention is of course not limited to this mode of implementation and several separate stacks could be made on one face of the support or on both.
  • the direction of construction of the stacks is not necessarily perpendicular to the support but may form an angle to the support which is less than 90 °.
  • the control of the two devices 20 and 21 is carried out to minimize the deformation of the support 1.
  • the layers of the same rank of each of the stacks 12 and 13 can be produced simultaneously both to compensate for the deformations of the support and to obtain greater productivity in the manufacture of the blanks.
  • a simultaneous deposition of material on both sides of the support requires prior knowledge of the deformations caused by the deposition of material.
  • the method according to the invention does not provide for limiting or eliminating the deformations of the support, by stiffening it either by increasing the thickness of the support or by clamping it with suitable tools. Its effect is to compensate for a deformation occurring in one direction by a deformation occurring in an opposite direction in order to control the overall deformation of the support.
  • the two devices 20 and 21 can be controlled so as to alternate the simultaneous deposition of layers on each face of the support and a deposition shifted in time.
  • the number of successive layers constructed by a device 20 or 21 on the same face, between two deposition phases on the other face of the support is determined as a function of the blank to be constructed, taking into account its geometry, the temperature constraints and the tolerances fixed for the deformations.
  • an additive manufacturing device is provided for each face of the substrate 1.
  • the invention is not limited to this method of implementing the method and it could be implemented with a single device.
  • more than one additive manufacturing device can also be provided for each face of the substrate. These devices can be the same or different.
  • the devices 20 and 21 can be different.
  • the additive manufacturing devices can be identical or different.
  • energy sources can be different from one device to another.
  • the nature and composition of the filler materials may differ from one additive manufacturing device to another.
  • the method according to the invention is not however limited to these applications. It can also be implemented to produce at least one stack on each face of the support, a cut in the plane of the support then being carried out to obtain two blanks, each of which therefore comprises a part of the support. If the stacks are symmetrical with respect to the support, they will also make it possible to obtain two substantially symmetrical parts, after machining.
  • the support material is at least partially integrated into the blank.
  • the method effectively allows the support to be cut into two parts, while the thickness of the support is reduced compared to conventional methods.
  • the method according to the invention can be implemented on supports the thickness of which is globally or locally less than 10 mm even if the length of the support reaches 500 mm for example, with a width of 400 mm.
  • supports with a thickness greater than 15 mm or even 20 mm must otherwise be used in this case.
  • the invention could achieve the same effects with greater lengths, for example equal to 1 m.
  • FIG. 2 illustrates another embodiment of the method according to the invention in which the support 3 is arranged substantially vertically or even substantially in the direction of the force of gravity.
  • the support 3 remains fixed in rotation throughout the implementation of the method.
  • the support 3 on the one hand, and the devices 40 and 41 on the other hand are relatively mobile in translation.
  • the support 3 is fixed and the devices are movable in translation.
  • the invention is not limited to this mode of implementation of the method and the support could be movable in rotation about an axis.
  • the method according to the invention has the advantage of being able to be implemented with a fixed support both in rotation and in translation.
  • the support 3 is substantially planar and defines two opposite faces 30 and 31 whose spacing corresponds to the thickness of the support.
  • An additive manufacturing device is provided on the side of each lateral face of the support.
  • a device 40 is provided on the side of the left side face 30 of the support and another additive manufacturing device 41 is provided on the side of the right side face 31 of the support.
  • the device 40 allows the construction 32 to be carried out on the face 30 of the support 3 and the device 41 allows the construction 33 to be carried out on the face 31 of the support.
  • Each of these constructions is formed by a succession of layers 320 to 323 for the stack 32 and 330 to 333 for the stack 33.
  • a construction direction is defined which corresponds to the direction in which the height of the stack increases relative to the support.
  • the direction of construction of the stack 32 is illustrated by the arrow F32. This arrow is horizontal and it starts from the left lateral face 30 of the support 3 towards the outside.
  • the arrow F33 illustrates the direction of construction of the stack 33. It is horizontal and starts from the right lateral face 31 of the support 3 while going outwards.
  • the method according to the invention is not limited to the two modes of implementation illustrated in FIGS. 1 and 2, that is to say to a support arranged substantially in the direction of the force of gravity or in a perpendicular direction. to this force.
  • FIG. 3 illustrates in more detail the mode of implementation of the method in which the different layers are deposited alternately on each face of a support.
  • FIGS. 3A to 3D illustrate a support 5 arranged substantially horizontally, like the support 1 illustrated in FIG. 1.
  • This support defines two planar opposite faces, the upper face 50 and the lower face 51.
  • FIG. 3A illustrates a first step in which a first layer 520 is deposited on the upper face 50 of the support 5.
  • FIG. 3B illustrates a second step of the method in which a first layer 530 is deposited on the lower face 51 of the support.
  • FIG. 3C illustrates a third step in implementing the method in which a second layer 521 is deposited on the first layer 520 previously deposited on the upper face 50 of the support.
  • FIG. 3D illustrates a fourth step in implementing the method in which a second layer 531 is deposited on the first layer 530 previously deposited on the underside 51 of the support 5.
  • the stacks 52 and 53 obtained are symmetrical with respect to the support 5.
  • the direction of construction F52 of the stack 52 is therefore opposite to the direction of gravity, this opposite direction being materialized by the arrow G ’.
  • the direction of construction F53 of the stack 53 is, for its part, materialized by the arrow F53 and it corresponds to the direction of gravity, materialized by the arrow G.
  • the method according to the invention is not limited to this mode of implementation.
  • it is possible to control the deformations of the support, even in the case where the stacks are not symmetrical with respect to the support. This will be illustrated in the following description.
  • It can be a single device, two devices each provided for one face of the support or a plurality of devices provided on at least one face of the support.
  • FIGS. 4 to 12 describe another embodiment of the invention in which a stack is produced on one face of the support, this stack being intended to form at least partially the final part, l 'other side of the support receiving stacks which have a rectifier function, that is to say intended to compensate for the deformations of the support linked to the formation of the stack. These rectifiers will be absent from the final part.
  • a theoretical blank can be designed which can be produced by forging or by additive manufacturing.
  • the design of the blank integrates the manufacturing constraints of the blank, for example the undercuts or the joint planes, depending on the process used.
  • FIG. 5 illustrates how the theoretical outline of the part 6 illustrated in FIG. 4 is designed, when the latter is intended to be produced by additive manufacturing.
  • FIG. 5A illustrates a planar support 7 defining an upper face 70 also planar on which a stack 8 of four layers is provided, each layer forming a square.
  • the stack 8 comprises two pairs of facing walls: the walls 80,81, on the one hand and the walls 82,83, on the other hand.
  • FIG. 5B is a view similar to FIG. 5A in which the final part 6 is drawn in dotted lines inside the stack and the support.
  • the thickness of the support in the theoretical blank will be 10 mm (an additional thickness of 0.5 mm is required on each face to carry out the machining, an additional thickness of 3 mm is also necessary on each face to carry out a control by ultrasound).
  • the deformation of the support can be so great that the desired part cannot be obtained after machining.
  • FIG. 6A shows that the support 7 now has a concave shape and that the walls of the stack 8 are also deformed.
  • FIG. 6B illustrates the relative position of the blank and of the final part 6.
  • the shaded areas correspond to the parts of part 6 which cannot be obtained due to the deformation of the support 7.
  • Figures 7A and 7B provide a better view of the locations where the material is lacking to obtain the final part. It should be emphasized that this phenomenon is even more accentuated when the length of the support increases.
  • FIG. 8 shows that the support 7 ’, which has the same width as the support 7 but a greater length, has a concave shape more accentuated than that of the support 7.
  • FIGS. 9A and 9B make it possible to better visualize the locations where the material is lacking to obtain the final part.
  • the method according to the invention consists in producing not only the stack 8 on the upper face 70 of the support, as provided in the theoretical blank illustrated in FIG. Figure 5, but also several stacks 90 to 97 on the opposite face 71 of the support.
  • These stacks have a rectifier function, that is to say that they are provided to compensate for the deformation of the support during the formation of the stack 8 on the face 70 of the support.
  • the direction of construction Fs of the stack 8 is therefore opposite to the direction of gravity, this opposite direction being materialized by the arrow G ’.
  • the direction of construction F9 of the rectifiers is, in turn, materialized by the arrow F9 and it corresponds to the direction of gravity, materialized by the arrow G.
  • two rectifiers 90 and 91 are substantially in line with the walls 80 and 81 of the stack and centered with respect to them, while two other rectifiers 92 and 93 are substantially in line walls 82 and 83 of the stack and centered with respect thereto.
  • a pair of rectifiers 94.95 and 96.97 respectively is provided between an edge 72.73 of the support 7 and the rectifiers 90 to 93.
  • FIGS. 12A and 12C make it possible to compare the deformations of the support along its length, with a conventional method (FIG. 12A) and with the method according to the invention (FIG. 12C) which provides for the production of rectifiers 90, 91 on the face of the support. opposite stacking.
  • FIGS. 12B and 12D make it possible to compare the deformations of the support according to its width, with a conventional method (FIG. 12B) and with the method according to the invention (FIG. 12D). In both cases, the thickness of the support is that calculated for the theoretical blank.
  • FIGS. 13 and 14 illustrate a variant implementation of the method illustrated in FIGS. 10 and 11.
  • the method according to the invention here consists in making the stack 8 on the upper face 70 of the support, as provided in the theoretical blank illustrated in FIG. 5, but also several stacks 90 'to 93' inside the stack 8 and several stacks 94 'to 97' on the opposite face 71 of the support.
  • These stacks 90 ’to 97’ again have a rectifier function, that is to say that they are provided to compensate for the deformation of the support during the formation of the stack 8 on the face 70 of the support.
  • the rectifiers placed inside the stack form two pairs, respectively 90 ', 91' and 92 ', 93', arranged along two diagonals of the square formed by the stack 8 and perpendicular to each other.
  • a pair of rectifiers 94 ', 95' and 96 ', 97' respectively is provided between an edge 72,73 of the support 7 and the rectifiers 90 'to 93'.
  • FIG. 15 schematically illustrates the deformations of the support when the method according to the invention is implemented.
  • This figure thus illustrates (in dotted lines) a support 7 used in the context of the method according to the invention to produce stacks therein by additive manufacturing (these stacks are not illustrated in the figure).
  • This support is substantially identical to that of the theoretical blank, for example that illustrated in FIG. 5.
  • This thickness is for example substantially equal to 10 mm, like that provided in the theoretical blank, while that required for a conventional process is at least 15 mm.
  • part 6 of the support which will be present in the finished part, after machining.
  • the upper face 60, respectively the lower face 61 are located at a distance e from the upper face 70 of the support, respectively from its lower face 71. This distance e corresponds to the additional thickness provided for in the theoretical blank.
  • the support is shown in solid lines at the end of the implementation of the method, that is to say when both the stacks and the rectifiers have been formed, as illustrated for example in FIGS. 10 , 11 and 13.14.
  • This support 7A is deformed. However, at any point on the upper face 70A or on the lower face 71 A of the support, its deformation dy is less than the value e of the additional thickness.
  • the deformations dy 0 and dy n are illustrated in FIG. 15 at two different points on the support. These two deformations occur in opposite directions.
  • the support 7A has alternating deformations, which gives it a general shape of a sinusoid while the support illustrated for example in Figures 12A and 12B is deformed in one direction and has a general shape in a bowl.
  • the faces of the deformed support frame the faces of the support after machining or, in other words, stay away from these faces 60 and 61, which makes it possible to effectively obtain this support after machining. Therefore, inside the support, even deformed, can be obtained the part of the support intended to be present in the final part.
  • the rectifiers can be made of a material whose cost is lower than that of the material actually forming the, final part since they are intended to be eliminated during the machining of the blank.
  • a material distributed in a specific way in the space which will be present in the final object after machining with the exception of the part of the material forming extra thicknesses and extra lengths compared to the final object or planned to take into account the constraints linked to the process used. For example, it may be an undercut necessary to ensure the release of the part when it is obtained by forging.
  • the blank may include a stack, the material of which will be completely absent from the final object. This is the case when this stack constitutes a rectifier whose presence is provided to compensate for the deformation of the support.
  • the latter type of software allows continuous adjustment of the control of additive manufacturing devices.
  • some areas of the blank can be built more or less quickly and the amount of energy delivered by the additive manufacturing devices can also be limited if necessary.
  • This software can implement known digital simulation tools such as the SYSWELD software from the company ESI or the ABAQUS software.
  • the SYSWELD software is a multi-physical software for analyzing finite elements which is conventionally used for welding and is therefore suitable for the additive manufacturing technique with the addition of wire.
  • the ABAQUS software also makes it possible to model the deformations and the stresses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'au moins une ébauche d'un objet métallique final à partir d'un objet numérique, ladite ébauche comprenant au moins deux empilements distincts de couches superposées sur un support (1) métallique, le procédé comprenant des étapes successives de dépôt de matière métallique en fusion sur ledit support par apport local de matière métallique, combiné à un apport local d'énergie, ledit support (1) définissant deux faces (10, 11) en vis-à-vis, le procédé étant caractérisé en ce que le dépôt de matière est réalisé sur les deux faces (10, 11) du support pour réaliser au moins un empilement sur chaque face, en ce que le support est au moins partiellement intégré dans ladite ébauche et en ce que la totalité de la matière d'au moins un empilement est absente de l'objet final obtenu après usinage de l'ébauche.

Description

Procédé de fabrication d’une ébauche et dispositif correspondant
La présente invention concerne le domaine technique de la fabrication additive.
On désigne classiquement par ce terme l’ensemble des procédés permettant de fabriquer par ajout de matière, couche par couche, un objet physique à partir d’un objet numérique, préalablement défini.
Ces procédés de fabrication additive sont à l’opposé des procédés par retrait de matière ou soustractifs, qui permettent d’obtenir des objets métalliques à partir de plaques épaisses ou de cylindre creux.
Des objets métalliques peuvent également être obtenus à partir de bruts ébauchés en forgeage ou de bruts de fonderie proches des côtes.
Cependant, tous ces procédés nécessitent l’utilisation d’une quantité de matière importante par rapport à celle présente dans la pièce finale. Le rapport correspondant peut aller jusqu’à 30 :1 , notamment dans le domaine de l’aéronautique, où il est dénommé « Buy to Fly ratio » dans la terminologie anglaise.
De plus, ils nécessitent la mise en œuvre d’outillages importants et de moyens industriels lourds, et entraînent des coûts et des cycles de réalisation très importants qui augmentent avec les dimensions de l’objet à fabriquer.
C’est pourquoi se développent des procédés de fabrication additive pour obtenir des objets métalliques qui procèdent par apport local de métal par exemple sous forme de poudre ou de fil, et d’énergie par exemple sous forme d’un faisceau laser, d’un faisceau d’électrons, d’un arc électrique ou de plasma. Ces procédés sont communément dénommés DMD (Direct Métal Déposition) dans la terminologie anglaise.
On peut ainsi prévoir un flux de gaz entraînant de la poudre métallique, se déplaçant au-dessus d’un support métallique avec un faisceau laser qui provoque la fusion de la poudre qui se dépose à l’état fondu sur le support lui-même légèrement fondu et se solidifie sur celui- ci. Chaque déplacement des faisceaux permet de créer une couche qui se superpose aux précédentes.
Ces procédés sont notamment proposés dans le domaine de l’aéronautique pour réduire la quantité de matière totale utilisée par rapport à celle de la pièce finale et réduire de façon générale les coûts de fabrication.
Ces procédés présentent cependant des inconvénients.
En effet, la solidification du métal après son dépôt entraîne de fortes contraintes liées au changement de phase et aux gradients de températures, et donc des déformations du support.
Pour y remédier, il a été envisagé d’utiliser un support plus épais pour augmenter sa résistance à la déformation. Cette solution nécessite donc, pour obtenir une pièce finie, un usinage plus important qu’avec un Substrat de moindre épaisseur. Cette solution est donc onéreuse.
Une autre solution consiste à brider le support sur un outillage pour contenir la déformation du support pendant le dépôt du fil ou de la poudre, l’ensemble subissant ensuite un traitement thermique de relaxation des contraintes. Cette solution nécessite donc un outillage spécifique réalisé en un matériau choisi pour tenir mécaniquement lors du traitement thermique. Elle est onéreuse du fait de cet outillage. En effet, celui-ci comporte une quantité de matière importante pour assurer sa rigidité et son coût est donc élevé. De plus, l’outillage devant être présent lors du traitement thermique du support et ce traitement durant plusieurs heures, un nombre important d’outillages doit être prévu, ce qui renchérit le coût de fabrication.
Enfin, il a également été proposé de réaliser par une méthode de fabrication additive deux empilements sensiblement identiques sur deux faces d’un support, ce dernier étant tourné de 180° une fois un empilement terminé, pour réaliser un empilement sur l’autre face. Le support est maintenu dans un outillage complexe qui comprend notamment des moyens assurant son refroidissement. Il est donc nécessaire de retirer l’outillage avant de tourner le support, puis de le remettre en place sur le support une fois le retournement réalisé.
Là encore, le procédé est onéreux du fait de la présence de l’outillage et des étapes de montage/démontage qui doivent être réalisées.
L’invention a pour objet de pallier ces inconvénients en proposant un procédé de fabrication additive radicalement différent et d’une grande efficacité.
Ainsi, l’invention concerne un procédé de fabrication d’au moins une ébauche d’un objet métallique final à partir d’un objet numérique, ladite ébauche comprenant au moins deux empilements distincts de couches superposées sur un support métallique, le procédé comprenant des étapes successives de dépôt de matière métallique en fusion sur ledit support par apport local de matière métallique, combiné à un apport local d’énergie, ledit support définissant deux faces en vis- à-vis, le procédé étant caractérisé en ce que le dépôt de matière est réalisé sur les deux faces du support pour réaliser au moins un empilement sur chaque face, en ce que le support est au moins partiellement intégré dans ladite ébauche et en ce que la totalité de la matière d’au moins un empilement est absente de l’objet final obtenu après usinage de l’ébauche.
Ce procédé permet ainsi de maîtriser la déformation globale du support en déposant de manière appropriée la matière sur les deux faces du support et sans qu’il soit nécessaire d’augmenter son épaisseur.
Le procédé peut être mis en œuvre pour réaliser deux ébauches. Dans ce cas, le support est alors séparé en deux parties, chacune d’elles incluant une des faces du support et le ou les empilement(s) réalisé(s) sur cette face du support et formant une ébauche. Ces derniers vont faire partie au moins partiellement de l’ébauche conduisant à l’obtention d’un objet final après usinage. Ainsi, la totalité de la matière déposée sur une face est absente de l’objet final obtenu après usinage de l’ébauche incluant l’autre face du support. On peut considérer que cette matière absente de l’objet final a joué la fonction d’un redresseur pour cette ébauche dont est issu cet objet final.
Dans une variante de ce procédé, sur au moins une face du support sont réalisés au moins un empilement qui fera partie au moins partiellement de l’objet final ainsi qu’au moins un empilement formant redresseur.
Dans ce cas, la totalité de la matière de l’empilement correspondant au redresseur est également absente de l’objet final obtenu après usinage de l’ébauche.
Il peut également être mis en œuvre pour réaliser une ébauche comportant au moins un empilement sur une première face du support et au moins un empilement formant redresseur sur la deuxième face du support. Dans ce cas, la totalité de la matière de l’empilement correspondant au redresseur est absente de l’objet final obtenu après usinage de l’ébauche, tandis que l’empilement présent sur la première face fera partie au moins partiellement de l’ébauche.
Dans une variante, au moins un empilement formant redresseur sera également réalisé sur la première face du support et la totalité de la matière de l’empilement correspondant au redresseur sera absente de l’objet final obtenu après usinage de l’ébauche. Dans tous ces exemples, un dépôt de matière sur une face est réalisé pour compenser les déformations liées à un dépôt de matière sur l’autre face.
Ainsi, l’invention concerne un procédé de fabrication d’au moins une ébauche d’un objet métallique final à partir d’un objet numérique, ladite ébauche comprenant au moins deux empilements distincts de couches superposées sur un support métallique, le procédé comprenant des étapes successives de dépôt de matière métallique en fusion sur ledit support par apport local de matière métallique, combiné à un apport local d’énergie, ledit support définissant deux faces en vis- à-vis, le procédé étant caractérisé en ce que le dépôt de matière est réalisé sur les deux faces du support pour réaliser au moins un empilement sur chaque face, en ce qu’au moins l’un des empilements réalisés sur une face fera partie au moins partiellement de l’objet final et en ce qu’au moins un empilement forme un redresseur dont la totalité de la matière est absente de l’objet final obtenu après usinage de l’ébauche.
Il convient encore de noter que le procédé est mis en oeuvre avec un support qui est en permanence libre sur ses deux faces. En d’autres termes, une part importante de la surface de chaque face du support est dépourvue d’outillage, cette part étant comprise entre 60 et 100%. En effet, dans le cadre du procédé selon l’invention, l’outillage est essentiellement prévu pour maintenir le support dans un référentiel déterminé. Il n’est pas conçu pour l’empêcher de se déformer. C’est pourquoi l’outillage peut être prévu en périphérie du support, voire sur sa tranche, ce qui permet de libérer les deux faces du support. Il est également conçu pour s’adapter aux déformations du support.
Les deux faces du support peuvent donc recevoir un dépôt de matière sans qu’il soit nécessaire de démonter un outillage au préalable. Dans d’autres modes de mise en œuvre avantageux, on a de plus recours à l’une ou à l’autre des dispositions suivantes :
les étapes successives de dépôt de matière métallique peuvent être réalisées au moins en partie simultanément sur les deux faces du support
ces étapes successives de dépôt de matière métallique peuvent également être réalisées au moins en partie sensiblement en vis-à-vis sur les deux faces du support
au moins un desdits empilements est construit dans un sens qui n’est pas opposé à celui de la gravité
le support est disposé sensiblement horizontalement ou verticalement
les étapes successives de dépôt sur les deux faces du support contribuent à la formation d’une seule ébauche
les étapes successives de dépôt permettent la formation de deux ébauches, symétriques ou non par rapport au support
une seule matière métallique est déposée sur le support au moins deux matières métalliques différentes sont déposées sur le support
la matière métallique est apportée sous forme de fil ou de poudre les étapes de dépôt sont réalisées par un dispositif ou par une pluralité de dispositifs de fabrication additive
au moins un dispositif de fabrication additive est piloté en fonction d’un logiciel de commande préétabli
au moins un dispositif de fabrication additive est piloté par des mesures provenant de capteurs disposés à proximité du support.
L’invention concerne également un système de fabrication d’ébauche comportant un support métallique qui sera au moins partiellement intégré dans l’ébauche et au moins un dispositif de fabrication additive conçu pour déposer un matériau métallique sur ledit support dans un sens qui n’est pas opposé à celui de la gravité.
L’invention sera mieux comprise à la lecture de la description qui suit de modes de réalisation donnés à titre d’exemples non limitatifs.
La description se réfère aux dessins qui l’accompagnent dans lesquels :
La figure 1 illustre schématiquement un premier exemple de mise en œuvre du procédé selon l’invention.
La figure 2 illustre schématiquement un deuxième exemple de mise en œuvre du procédé selon l’invention.
La figure 3 qui correspond les figures 3A à 3D, illustre schématiquement un troisième exemple de mise en œuvre du procédé selon l’invention.
La figure 4 est une vue en perspective illustrant un exemple de pièce finale réalisée à partir d’un brut obtenu avec un procédé selon l’invention.
La figure 5 comprend les figures 5A et 5B qui sont des vues en perspective d’une ébauche théorique correspondant à la pièce finale illustrée à la figure 4.
La figure 6 comprend les figures 6A et 6B qui sont des vues en perspective d’une ébauche obtenue par un procédé de fabrication additive classique, sur la base de l’ébauche théorique illustrée à la figure 5.
La figure 7 comprend les figures 7A et 7B qui sont des vues en coupe selon respectivement les lignes A-A et B-B de la figure 6B.
La figure 8 est une vue en perspective représentant une variante de la figure 6B, avec un support plus long. La figure 9 comprend les figures 9A et 9B qui sont des vues en coupe selon respectivement les lignes A-A et B-B de la figure 8.
La figure 10 est une vue en perspective d’une ébauche obtenue par un procédé de fabrication selon l’invention, prévoyant la formation de redresseurs.
La figure 11 est une vue en perspective d’une ébauche obtenue par un procédé de fabrication selon l’invention, prévoyant la formation de redresseurs.
La figure 12 comprend les figures 12A et 12B qui sont des vues en coupe correspondant aux figures 7A et 7B ainsi que les figures 12C et 12D qui sont des vues en coupe selon les lignes C-C et D-D de la figure 11.
La figure 13 est une vue en perspective d’une variante de l’ébauche illustrée aux figures 10 et 11.
La figure 14 est une vue en perspective d’une variante de l’ébauche illustrée aux figures 10 et 11.
La figure 15 est un graphique illustrant schématiquement les déformations d’un support après mise en œuvre du procédé selon l’invention.
Les éléments communs aux différentes figures seront désignés par les mêmes références.
La figure 1 illustre un support 1 métallique par exemple réalisé en TA6V.
De façon préférée, l’épaisseur de ce substrat est inférieure à 20 mm.
Dans l’exemple illustré sur la figure 1 , le support 1 est sensiblement plan et définit deux faces opposées 10 et 11 également sensiblement planes. L’invention n’est cependant pas limitée à ce mode de réalisation et le support n’est pas nécessairement plan. En revanche, il doit comporter des surfaces en vis-à-vis.
Enfin, l’épaisseur du support n’est pas nécessairement constante. A titre d’exemple, le support peut résulter de la découpe en biais d’une plaque.
Dans cet exemple de mise en oeuvre du procédé selon l’invention, le support 1 est disposé sensiblement horizontalement. En d’autres termes, il définit un plan qui est sensiblement perpendiculaire à la direction de la force de gravité (illustrée par la flèche G).
La figure 1 illustre également deux dispositifs 20 et 21 de fabrication additive. Le premier dispositif 20 est disposé au-dessus de la face supérieure 10 du support, tandis que le deuxième dispositif 21 est disposé au-dessous de la face inférieure 11 du support.
Ces deux dispositifs peuvent être de structure différente.
Ils comportent chacun au moins une source d’énergie, par exemple faisceau d’électrons, laser, plasma, arc électrique ou gaz porteur chaud. Si l’un de ces dispositifs comporte plusieurs sources d’énergie, celles-ci peuvent être différentes les unes des autres.
Par ailleurs, chacun de ces dispositifs comporte des moyens pour apporter le métal sur le support, sous forme de poudre ou de fil.
Ce métal sera fondu grâce à la source d’énergie présente dans le dispositif 20 ou 21 , afin de le déposer sur le support 1.
Le support 1 est fixe en rotation. En revanche, le support 1 et les dispositifs 20 et 21 sont mobiles en translation l’un par rapport aux autres. Dans l’exemple représenté, ce sont les dispositifs 20 et 21 qui sont mobiles en translation, le support 1 étant fixe.
Dans l’exemple illustré à la figure 1 , le premier dispositif 20 a été piloté pour réaliser un empilement 12 formé ici de quatre couches superposées 120 à 23, tandis que le deuxième dispositif 21 a été piloté pour réaliser sur la face inférieure 11 du support 1 un empilement 13, lui-même formé de couches successives 130 à 133.
La flèche F12 indique le sens dans lequel l’empilement 12 est construit, ou en d’autres termes, le sens défini par la succession ou la progression des couches 120 à 123 depuis le support 1.
Chaque couche correspond à un cycle de dépôt au cours duquel toute la surface désirée du support ou de la couche précédente est recouverte d’un cordon de matière métallique d’une hauteur déterminée, cette hauteur étant définie selon une direction perpendiculaire au support. Cette hauteur peut varier d’une couche à l’autre, cette variation étant en général de faible amplitude.
Le sens de construction de l’empilement 12 est donc opposé au sens de la gravité, ce sens opposé étant matérialisé par la flèche G’.
Le sens de construction de l’empilement 13 est, quant à lui, matérialisé par la flèche F13 et il correspond au sens de la gravité, matérialisé par la flèche G.
Les empilements 12 et 13 constituent deux empilements distincts, c’est-à-dire qu’ils sont réalisés indépendamment l’un de l’autre ou encore qu’il existe une discontinuité entre la matière formant la première couche 120 de l’empilement 12 et la matière formant la première couche 130 de l’empilement 13.
L’invention n’est bien sûr pas limitée à ce mode de mise en œuvre et plusieurs empilements distincts pourraient être réalisés sur une face du support ou sur les deux.
De plus, le sens de construction des empilements n’est pas nécessairement perpendiculaire au support mais peut former un angle par rapport au support qui est inférieur à 90°.
Le pilotage des deux dispositifs 20 et 21 est effectué pour minimiser la déformation du support 1. En particulier, les couches de même rang de chacun des empilements 12 et 13 peuvent être réalisées simultanément à la fois pour compenser les déformations du support et pour obtenir une plus grande productivité dans la fabrication des ébauches.
Un dépôt de matière simultané sur les deux faces du support nécessite de connaître au préalable des déformations engendrées par le dépôt de matière.
On notera à cet égard que le procédé selon l’invention ne prévoit pas de limiter ou de supprimer les déformations du support, en le rigidifiant que ce soit en augmentant l’épaisseur du support ou en le bridant par un outillage approprié. Il a pour effet de compenser une déformation se produisant dans un sens par une déformation se produisant dans un sens opposé afin de maîtriser la déformation globale du support.
Le dépôt simultané de deux couches conduit à une élévation importante de la température du support. C’est pourquoi il peut également être avantageux de décaler dans le temps le dépôt de couches sur chaque face du support.
Afin de combiner la maîtrise de la température et des contraintes dans le support, les deux dispositifs 20 et 21 peuvent être pilotés de façon à alterner le dépôt simultané de couches sur chaque face du support et un dépôt décalé dans le temps.
Ainsi, de façon générale, dans le cas d’un fonctionnement alterné, le nombre de couches successives construites par un dispositif 20 ou 21 sur une même face, entre deux phases de dépôt sur l’autre face du support, est déterminé en fonction de l’ébauche à construire, en tenant compte de sa géométrie, des contraintes de température et des tolérances fixées pour les déformations.
Il convient de noter que les contraintes de température dépendent de la matière utilisée pour le support mais aussi des paramètres du procédé. Bien entendu, le nombre total de couches construites sur chaque face du support et leur localisation dépend de la géométrie de la pièce finale ainsi que du choix préalable de la stratégie de construction de l’ébauche.
Dans l’exemple illustré à la figure 1 , un dispositif de fabrication additive est prévu pour chaque face du substrat 1.
Cependant, l’invention n’est pas limitée à ce mode de mise en œuvre du procédé et celui-ci pourrait être mis en œuvre avec un seul dispositif. Par ailleurs, plus d’un dispositif de fabrication additive peuvent également être prévus pour chaque face du substrat. Ces dispositifs peuvent être identiques ou différents.
Ces dispositifs seront notamment choisis en fonction de la géométrie de l’ébauche.
Ainsi, les dispositifs 20 et 21 peuvent être différents. De même, pour une même face, les dispositifs de fabrication additive peuvent être identiques ou différents.
Lorsque ces dispositifs sont différents, les sources d’énergie peuvent être différentes d’un dispositif à l’autre. De même, la nature et la composition des matériaux d’apport peuvent être différentes d’un dispositif de fabrication additive à l’autre.
On comprend donc que l’utilisation de dispositifs de fabrication additive différents permet de construire une ébauche réalisée en des matériaux différents.
En ce qui concerne maintenant l’ébauche obtenue par le procédé selon l’invention, celle-ci peut intégrer le support sur lequel la matière est déposée.
Ce sera par exemple le cas de l’ébauche illustrée sur la figure 1. Par ailleurs, lorsque la pièce à construire présente une symétrie partielle ou complète par rapport au support, ce sera également le cas de l’ébauche obtenue par le procédé.
Le procédé selon l’invention n’est cependant pas limité à ces applications. Il peut également être mis en œuvre pour réaliser au moins un empilement sur chaque face du support, une découpe dans le plan du support étant ensuite réalisée pour obtenir deux ébauches, chacune d’elles comprenant donc une partie du support. Si les empilements sont symétriques par rapport au support, ils permettront d’obtenir également deux pièces sensiblement symétriques, après usinage.
Dans tous les cas, la matière du support est au moins partiellement intégrée dans l’ébauche.
On comprend qu’en maîtrisant la déformation du support, le procédé permet effectivement une découpe du support en deux parties, alors que l’épaisseur du support est réduite par rapport aux procédés classiques.
Ainsi, le procédé selon l’invention peut être mis en œuvre sur des supports dont l’épaisseur est globalement ou localement inférieure à 10 mm même si la longueur du support atteint 500 mm par exemple, avec une largeur de 400 mm. En comparaison, avec les procédés connus, des supports d’épaisseur supérieure à 15 mm, voire 20 mm doivent sinon être utilisés dans ce cas.
L’invention pourrait atteindre les mêmes effets avec des longueurs plus importantes, par exemple égales à 1 m.
Il convient de noter que la découpe peut être réalisée de façon quelconque et qu’en particulier, dans le cas d’un support plan, elle n’est pas nécessairement réalisée dans un plan parallèle aux faces du support mais, par exemple, dans un plan incliné. La figure 2 illustre un autre mode de mise en oeuvre du procédé selon l’invention dans lequel le support 3 est disposé sensiblement verticalement ou encore sensiblement selon la direction de la force de gravité.
Comme le support 1 illustré à la figure 1 , le support 3 reste fixe en rotation pendant toute la mise en oeuvre du procédé.
En revanche, le support 3 d’une part, et les dispositifs 40 et 41 , d’autre part sont relativement mobiles en translation. Dans l’exemple illustré, le support 3 est fixe et les dispositifs sont mobiles en translation.
L’invention n’est pas limitée à ce mode de mise en œuvre du procédé et le support pourrait être mobile en rotation autour d’un axe. Cependant, le procédé selon l’invention présente l’intérêt de pouvoir être mis en œuvre avec un support fixe à la fois en rotation et en translation.
Le support 3 est sensiblement plan et définit deux faces 30 et 31 en vis-à-vis dont l’écartement correspond à l’épaisseur du support.
Un dispositif de fabrication additive est prévu du côté de chaque face latérale du support. Ainsi, un dispositif 40 est prévu du côté de la face latérale gauche 30 du support et un autre dispositif de fabrication additive 41 est prévu du côté de la face latérale droite 31 du support.
Le dispositif 40 permet de réaliser la construction 32 sur la face 30 du support 3 et le dispositif 41 permet de réaliser la construction 33 sur la face 31 du support.
Chacune de ces constructions est formée d’une succession de couches 320 à 323 pour l’empilement 32 et 330 à 333 pour l’empilement 33.
Pour chacun de ces empilements, est défini un sens de construction qui correspond à la direction dans laquelle augmente la hauteur de l’empilement par rapport au support. Ainsi, le sens de construction de l’empilement 32 est illustré par la flèche F32. Cette flèche est horizontale et elle part de la face latérale gauche 30 du support 3 vers l’extérieur. De même, la flèche F33 illustre le sens de construction de l’empilement 33. Elle est horizontale et part de la face latérale droite 31 du support 3 en se dirigeant vers l’extérieur.
On constate que ces deux flèches F32 et F33 s’étendent sensiblement à 90° du sens de la force de gravité illustré par la flèche G. Aucune des deux n’est donc opposée (c’est-à-dire à 180°) au sens de la force de gravité.
Les différents modes de mise en oeuvre du procédé tels que décrits en référence à la figure 1 sont également valables pour le procédé illustré à la figure 2. Il en est de même pour les dispositifs de fabrication additive.
Le procédé selon l’invention n’est pas limité aux deux modes de mise en oeuvre illustrés aux figures 1 et 2, c’est-à-dire à un support disposé sensiblement selon la direction de la force de gravité ou selon une direction perpendiculaire à cette force.
Il peut au contraire être mis en oeuvre avec un support incliné d’un angle quelconque par rapport à la direction de la force de gravité. Le choix entre les différentes positions possibles du support se fera en fonction de la priorité donnée à chacun des paramètres suivants : facilité de la mesure de la déformation, facilité de l’accès au support, complexité de l’outillage.
Il est maintenant fait référence à la figure 3 qui illustre de façon plus détaillée le mode de mise en oeuvre du procédé dans lequel les différentes couches sont déposées de manière alternée sur chaque face d’un support.
Les figures 3A à 3D illustrent un support 5 disposé sensiblement horizontalement, comme le support 1 illustré à la figure 1. Ce support définit deux faces planes en vis-à-vis, la face supérieure 50 et la face inférieure 51.
La figure 3A illustre une première étape dans laquelle est déposée une première couche 520 sur la face supérieure 50 du support 5.
La figure 3B illustre une deuxième étape du procédé dans laquelle une première couche 530 est déposée sur la face inférieure 51 du support.
La figure 3C illustre une troisième étape de mise en oeuvre du procédé dans laquelle une deuxième couche 521 est déposée sur la première couche 520 préalablement déposée sur la face supérieure 50 du support.
Enfin, la figure 3D illustre une quatrième étape de mise en œuvre du procédé dans laquelle une deuxième couche 531 est déposée sur la première couche 530 préalablement déposée sur la face inférieure 51 du support 5.
Dans cet exemple de mise en œuvre du procédé, les empilements 52 et 53 obtenus sont symétriques par rapport au support 5.
II s’agit bien de deux empilements distincts puisque les premières couches 520 et 530 ne sont pas dans la continuité l’une de l’autre.
Le sens de construction F52 de l’empilement 52 est donc opposé au sens de la gravité, ce sens opposé étant matérialisé par la flèche G’.
Le sens de construction F53 de l’empilement 53 est, quant à lui, matérialisé par la flèche F53 et il correspond au sens de la gravité, matérialisé par la flèche G.
Comme cela a été expliqué précédemment, le procédé selon l’invention n’est pas limité à ce mode de mise en œuvre. En particulier, il est possible de maîtriser les déformations du support, même dans le cas où les empilements ne sont pas symétriques par rapport au support. Ceci sera illustré dans la suite de la description.
Par ailleurs, les dispositifs de fabrication additive ne sont pas illustrés sur la figure 3.
Il peut s’agir d’un dispositif unique, de deux dispositifs prévus chacun pour une face du support ou encore d’une pluralité de dispositifs prévus sur au moins une face du support.
II est maintenant fait référence aux figures 4 à 12 pour décrire un autre mode de mise en oeuvre de l’invention dans lequel un empilement est réalisé sur une face du support, cet empilement étant destiné à former au moins en partie la pièce finale, l’autre face du support recevant des empilements qui ont une fonction de redresseur, c’est-à- dire destinés à compenser les déformations du support liées à la formation de l’empilement. Ces redresseurs seront absents de la pièce finale.
De manière générale, sur la base d’une pièce finale, dont un exemple est illustré à la figure 4, on conçoit une ébauche théorique qui pourra être réalisée par forgeage ou par fabrication additive.
Dans l’ébauche, certains détails sont simplifiés, par exemple les rayons de raccordement. De plus, la conception de l’ébauche intègre les contraintes de fabrication de l’ébauche, par exemple les dépouilles ou les plans de joint, selon le procédé employé.
Ainsi, la figure 5 illustre comment est conçue l’ébauche théorique de la pièce 6 illustrée à la figure 4, lorsque celle-ci est destinée à être réalisée par fabrication additive.
La figure 5A illustre un support plan 7 définissant une face supérieure 70 également plane sur laquelle est prévu un empilement 8 de quatre couches, chaque couche formant un carré. Ainsi, l’empilement 8 comporte deux paires de parois en vis-à- ' vis : les parois 80,81 , d’une part et les parois 82,83, d’autre part.
La figure 5B est une vue similaire à la figure 5A dans laquelle la pièce finale 6 est dessinée en pointillés à l’intérieur de l’empilement et du support.
Elle permet de visualiser les surépaisseurs et les surlongueurs que présente une ébauche théorique par rapport à la pièce finale usinée.
Ces surépaisseurs et surlongueurs sont définies par les contraintes liées aux procédés d’usinage et de contrôle non destructif destinés à assurer la qualité de la pièce.
A titre d’exemple, avec un support dont l’épaisseur, dans la pièce finie, est de 3 mm, l’épaisseur du support dans l’ébauche théorique sera de 10 mm (une surépaisseur de 0,5 mm est nécessaire sur chaque face pour réaliser l’usinage, une surépaisseur de 3 mm étant également nécessaire sur chaque face pour réaliser un contrôle par ultra-sons).
Lorsque l’ébauche est réalisée suivant la conception illustrée à la figure 5 et avec un procédé de fabrication additive classique, la déformation du support peut être si importante que la pièce souhaitéê ne peut être obtenue après usinage.
Ainsi, la figure 6A montre que le support 7 présente maintenant une forme concave et que les parois de l’empilement 8 sont également déformées.
La figure 6B illustre la position relative de l’ébauche et de la pièce finale 6. Les zones grisées correspondent aux parties de la pièce 6 qui ne pourront pas être obtenues du fait de la déformation du support 7.
Les figures 7A et 7B permettent de mieux visualiser les emplacements où la matière manque pour obtenir la pièce finale. Il convient de souligner que ce phénomène est encore plus accentué lorsque la longueur du support augmente.
Ainsi, la figure 8 montre que le support 7’, qui présente la même largeur que le support 7 mais une plus grande longueur, présente une forme concave plus accentuée que celle du support 7.
Elle illustre la position relative de l’ébauche et de la pièce finale 6’. Les zones grisées correspondent aux parties de la pièce 6’ qui ne pourront pas être obtenues du fait de la déformation du support 7’.
Les figures 9A et 9B permettent de mieux visualiser les emplacements où la matière manque pour obtenir la pièce finale.
La solution à ce problème (si l’on exclut le bridage) consiste à augmenter fortement l’épaisseur du support, par rapport à l’épaisseur prévue dans l’ébauche théorique pour pouvoir réaliser la pièce finale en dépit des déformations du support, ce qui augmente la quantité de matière ainsi que le temps d’usinage nécessaires à l’obtention de la pièce finale.
Dans le cadre de l’invention, on prévoit, soit de maintenir l’épaisseur calculée théoriquement pour le support, soit de l’augmenter mais dans une mesure moindre de ce qu’imposent les procédés connus et de réaliser des redresseurs sur la face du support opposée à celle sur laquelle l’empilement est réalisé ainsi qu’éventuellement, sur la face du support sur laquelle l’empilement est réalisé.
Ainsi, s’il est nécessaire d’augmenter légèrement l’épaisseur du support, celle-ci est choisie la plus proche possible de l’épaisseur déterminée dans l’ébauche théorique et elle est inférieure à celle nécessaire pour la mise en œuvre des procédés classiques.
En référence aux figures 10 et 1 1 , le procédé selon l’invention consiste à réaliser non seulement l’empilement 8 sur la face supérieure 70 du support, tel que prévu dans l’ébauche théorique illustrée à la figure 5, mais également plusieurs empilements 90 à 97 sur la face opposée 71 du support.
Ces empilements ont une fonction de redresseur, c’est-à-dire qu’ils sont prévus pour compenser la déformation du support lors de la formation de l’empilement 8 sur la face 70 du support.
Le sens de construction Fs de l’empilement 8 est donc opposé au sens de la gravité, ce sens opposé étant matérialisé par la flèche G’.
Le sens de construction F9 des redresseurs est, quant à lui, matérialisé par la flèche F9 et il correspond au sens de la gravité, matérialisé par la flèche G.
Dans l’exemple illustré aux figures 10 et 11 , deux redresseurs 90 et 91 sont sensiblement au droit des parois 80 et 81 de l’empilement et centrés par rapport à celles-ci, tandis que deux autres redresseurs 92 et 93 sont sensiblement au droit des parois 82 et 83 de l’empilement et centrés par rapport à celles-ci. Enfin, une paire de redresseurs respectivement 94,95 et 96,97 est prévue entre un bord 72,73 du support 7 et les redresseurs 90 à 93.
Ces deux figures montrent déjà que la déformation du support 7 est moins importante que celle illustrée aux figures 6 à 9.
Ceci ressort également des figures 12A à 12D.
Les figures 12A et 12C permettent de comparer les déformations du support selon sa longueur, avec un procédé classique (figure 12A) et avec le procédé selon l’invention (figure 12C) qui prévoit la réalisation de redresseurs 90, 91 sur la face du support opposée à l’empilement.
Les figures 12B et 12D permettent de comparer les déformations du support selon sa largeur, avec un procédé classique (figure 12B) et avec le procédé selon l’invention (figure 12D). Dans les deux cas, l’épaisseur du support est celle calculée pour l’ébauche théorique.
Il est maintenant fait référence aux figures 13 et 14 qui illustrent une variante de mise en œuvre du procédé illustré aux figures 10 et 11.
Le procédé selon l’invention consiste ici à réaliser l’empilement 8 sur la face supérieure 70 du support, tel que prévu dans l’ébauche théorique illustrée à la figure 5, mais également plusieurs empilements 90’ à 93’ à l’intérieur de l’empilement 8 et plusieurs empilements 94’ à 97’ sur la face opposée 71 du support.
Ces empilements 90’ à 97’ ont là encore une fonction de redresseur, c’est-à-dire qu’ils sont prévus pour compenser la déformation du support lors de la formation de l’empilement 8 sur la face 70 du support.
Le sens de construction Fs de l’empilement 8 et des empilements 90’ à 93’ est opposé au sens de la gravité, ce sens opposé étant matérialisé par la flèche G’.
Le sens de construction Fg des redresseurs 94’ à 97’ est, quant à lui, matérialisé par la flèche F9 et il correspond au sens de la gravité, matérialisé par la flèche G.
Dans l’exemple illustré aux figures 13 et 14, les redresseurs placés à l’intérieur de l’empilement forment deux paires, respectivement 90’, 91’ et 92’, 93’, disposées selon deux diagonales du carré formé par l’empilement 8 et perpendiculaires entre elles. Enfin, une paire de redresseurs respectivement 94’, 95’ et 96’, 97’ est prévue entre un bord 72,73 du support 7 et les redresseurs 90’ à 93’.
Les déformations correspondantes du support sont proches de celles obtenues pour l’ébauche illustrée sur les figures 10 et 11 et illustrées aux figures 12C et 12D. Il est maintenant fait référence à la figure 15 qui illustre schématiquement les déformations du support lorsque l’on met en œuvre le procédé selon l’invention.
Cette figure illustre ainsi (en traits pointillés) un support 7 utilisé dans le cadre du procédé selon l’invention pour y réaliser des empilements par fabrication additive (ces empilements ne sont pas illustrés sur la figure).
L’épaisseur de ce support est sensiblement identique à celle de l’ébauche théorique, par exemple celle illustrée à la figure 5. Cette épaisseur est par exemple sensiblement égale à 10 mm, comme celle prévue dans l’ébauche théorique, alors que celle nécessaire pour un procédé classique est d’au moins 15 mm.
A l’intérieur de ce support, est représentée la partie 6 du support qui sera présente dans la pièce finie, après usinage. La face supérieure 60, respectivement la face inférieure 61 sont situées à une distance e de la face supérieure 70 du support, respectivement de sa face inférieure 71. Cette distance e correspond à la surépaisseur prévue dans l’ébauche théorique.
Enfin, est représenté en traits pleins le support à l’issue de la mise en œuvre du procédé, c’est-à-dire lorsqu’ont été formés à la fois les empilements et les redresseurs, comme illustré par exemple sur les figures 10,11 et 13,14.
Ce support 7A est déformé. Cependant, en tout point de la face supérieure 70A ou de la face inférieure 71 A du support, sa déformation dy est inférieure à la valeur e de la surépaisseur. Les déformations dy0 et dyn sont illustrées sur la figure 15 en deux points différents du support. Ces deux déformations se produisent dans des directions opposées.
Ainsi, le support 7A présente des déformations alternées, ce qui lui donne une forme générale de sinusoïde alors que le support illustré par exemple sur les figures 12A et 12B est déformé dans un seul sens et présente une forme générale en cuvette.
Les faces du support déformé encadrent les faces du support après usinage ou, en d’autres termes, restent à l’écart de ces faces 60 et 61 , ce qui permet d’obtenir effectivement ce support après usinage. De ce fait, à l’intérieur du support, même déformé, pourra être obtenue la partie du support destinée à être présente dans la pièce finale.
Ce résultat est obtenu grâce à la réalisation d’empilements sur les deux faces du support, de façon à générer des déformations dans des sens opposés par rapport au support, certains de ces empilements n’étant pas présents dans la pièce finale et étant seulement prévus pour remplir une fonction de redresseur.
La matière nécessaire à l’obtention de ces empilements formant redresseurs est bien inférieure à celle qui serait présente dans un support plus épais, sur lequel l’ébauche serait obtenue par un procédé classique, son épaisseur étant choisie pour s’affranchir des déformations.
On rappelle à cet égard que les redresseurs peuvent être réalisés dans une matière dont le coût est inférieur à celle de la matière formant effectivement la, pièce finale puisqu’ils sont destinés à être éliminés lors de l’usinage de l’ébauche.
Il convient encore de souligner que le gain de matière obtenu grâce au procédé selon l’invention est encore plus significatif quand la longueur du support augmente.
II ressort de la description qui précède que, dans le cadre de l’invention, la notion d’ébauche peut avoir une signification un peu différente de celle généralement admise.
En effet, on entend généralement par ébauche, une matière répartie de manière spécifique dans l’espace qui sera présente dans l’objet final après usinage, à l’exception de la part de la matière formant des surépaisseurs et surlongueurs par rapport à l’objet final ou prévue pour tenir compte des contraintes liées au procédé employé. A titre d’exemple, il peut s’agir d’une contredépouille nécessaire pour assurer le démoulage de la pièce lorsque celle-ci est obtenue par forgeage.
Or, dans le cadre de l’invention, l’ébauche pourra comprendre un empilement dont la matière sera totalement absente de l’objet final. C’est le cas lorsque cet empilement constitue un redresseur dont la présence est prévue pour compenser la déformation du support.
Il convient également de noter que le procédé selon l’invention peut être mis en oeuvre de façon manuelle. Cependant, il sera avantageusement mis en oeuvre grâce à un logiciel.
Il peut s’agir alors d’un logiciel préétabli pouvant s’appliquer à une série de pièces identiques et qui est défini par des mesures préalables, des mises au point ou encore par modélisation et simulation numérique.
Il peut également s’agir d’un logiciel qui utilise à la fois l’impact sur l’ébauche à construire de motifs de dépôt types et des mesures provenant de capteurs présents sur une face du support pour en déduire les apports de matière sur l’autre face du support et vice versa.
Ce dernier type de logiciel permet d’ajuster en continu le pilotage des dispositifs de fabrication additive. En particulier, certaines zones de l’ébauche pourront être construites plus ou moins rapidement et la quantité d’énergie délivrée par les dispositifs de fabrication additive pourra également être limitée si nécessaire.
Ces logiciels peuvent mettre en œuvre des outils de simulation numérique connus tels que le logiciel SYSWELD de la société ESI ou le logiciel ABAQUS.
Le logiciel SYSWELD est un logiciel multi-physique d’analyse des éléments finis qui est classiquement utilisé pour le soudage et convient donc à la technique de fabrication additive avec apport de fil. Le logiciel ABAQUS permet également de modéliser les déformations et les contraintes.
Comme il va de soi et comme il résulte également de ce qui précède, la présente invention n’est pas limitée aux modes de réalisation plus particulièrement décrits. Elle en embrasse au contraire toutes les variantes.

Claims

Revendications
1. Procédé de fabrication d’au moins une ébauche d’un objet métallique final à partir d’un objet numérique, ladite ébauche comprenant au moins deux empilements distincts de couches superposées sur un support (1 , 3,5, 7) métallique, le procédé comprenant des étapes successives de dépôt de matière métallique en fusion sur ledit support par apport local de matière métallique, combiné à un apport local d’énergie, ledit support (1 ,3,5, 7) définissant deux faces (10, 11 ; 30, 31 ; 50,51 ; 70 , 71 ) en vis-à-vis, le procédé étant caractérisé en ce que le dépôt de matière est réalisé sur les deux faces
(10, 11 ; 30, 31 ;50,51 ; 70, 71 ) du support pour réaliser au moins un empilement sur chaque face, en ce que le support est au moins partiellement intégré dans ladite ébauche et en ce que la totalité de la matière d’au moins un empilement est absente de l’objet final obtenu après usinage de l’ébauche.
2. Procédé selon la revendication 1 , caractérisé en ce qu’au moins un empilement (12,13;32,33;52,53) est réalisé sur chaque face du support, le support (1 , 3,5) étant destiné à être séparé en deux parties pour former deux ébauches.
3. Procédé selon la revendication 2, caractérisé en ce que sur au moins une face du support, sont réalisés au moins un empilement (12,13;32,33;52,53) qui fera partie au moins partiellement de l’objet final ainsi qu’au moins un empilement formant redresseur qui est destiné à être absent de l’objet final.
4. Procédé selon la revendication 1 , caractérisé en ce qu’au moins un empilement (8) est réalisé sur une première face (70) du support (7), au moins un empilement formant redresseur (90 à 97; 94’ à 97’) étant réalisé sur la deuxième face pour former une ébauche, ledit au moins un empilement formant redresseur étant destiné à être totalement absent de l’objet final.
5. Procédé selon la revendication 4, caractérisé en ce que ladite ébauche comprenant au moins trois empilements distincts, au moins un autre empilement formant redresseur (90’ à 93’) est réalisé sur la première face du support (1 ,3,5).
6. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que les étapes successives de dépôt de matière métallique sont réalisées au moins en partie simultanément sur les deux faces du support.
7. Procédé selon l’une des revendications 1 à 6, caractérisé en ce que les étapes successives de dépôt de matière métallique sont réalisées au moins en partie sensiblement en vis-à-vis sur les deux faces du support.
8. Procédé selon l’une quelconque des revendications 1 à 7, caractérisé en ce qu’au moins deux matières métalliques différentes sont déposées sur le support.
9. Procédé selon l’une quelconque des revendications 1 à 8, caractérisé en ce qu’au moins un desdits empilements est construit dans un sens (F13 ; F32, F33 ;Fs3 ; F9 ) qui n’est pas opposé à celui de la gravité.
10. Système de fabrication d’ébauche conçu pour la mise en oeuvre du procédé de fabrication selon l'une quelconque des revendications 1 à 9, comportant un support (1 ,3,5,7) métallique qui sera au moins partiellement intégré dans l’ébauche et au moins un dispositif de fabrication additive (20, 21 ; 40, 41 ) conçu pour déposer un matériau métallique sur ledit support dans un sens de construction qui n’est pas opposé à celui de la gravité.
11. Système selon la revendication 10, caractérisé en ce qu’au moins un dispositif de fabrication additive est piloté en fonction d’un logiciel de commande préétabli.
12. Système selon l’une des revendications 10 ou 11 , caractérisé en ce qu’au moins un dispositif de fabrication additive est piloté par des mesures provenant de capteurs disposés à proximité du support.
PCT/FR2019/000213 2018-12-20 2019-12-20 Procédé de fabrication d'une ébauche et dispositif correspondant WO2020128169A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19845696.4A EP3898072A1 (fr) 2018-12-20 2019-12-20 Procédé de fabrication d'une ébauche et dispositif correspondant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873679 2018-12-20
FR1873679A FR3090438B1 (fr) 2018-12-20 2018-12-20 Procédé de fabrication d’une ébauche et dispositif correspondant

Publications (1)

Publication Number Publication Date
WO2020128169A1 true WO2020128169A1 (fr) 2020-06-25

Family

ID=67185137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/000213 WO2020128169A1 (fr) 2018-12-20 2019-12-20 Procédé de fabrication d'une ébauche et dispositif correspondant

Country Status (3)

Country Link
EP (1) EP3898072A1 (fr)
FR (1) FR3090438B1 (fr)
WO (1) WO2020128169A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242873A1 (fr) * 2021-05-21 2022-11-24 Norsk Titanium As Système de montage, système de support de broche et procédé de dépôt d'énergie dirigé permettant de produire une pièce métallique afin d'atténuer une distorsion
FR3141085A1 (fr) * 2022-10-24 2024-04-26 Psa Automobiles Sa ProcÉDÉ D’Application d’une impression 3D MÉtallique avec contre-DÉformations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121373A1 (fr) * 2021-04-06 2022-10-07 Institut De Recherche Technologique Jules Verne Procédé de fabrication additive d’une pièce métallique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181643A1 (en) * 2001-04-12 2007-08-09 Edward Craig Method and system for weld bead sequencing to reduce distortion and stress
WO2008110835A1 (fr) * 2007-03-13 2008-09-18 Airbus Uk Limited Préparation d'un composant destiné à être utilisé dans un joint
WO2012103603A1 (fr) * 2011-02-04 2012-08-09 Layerwise N.V. Procédé pour fabriquer des structures à paroi mince dans des couches
US20140052287A1 (en) * 2012-08-16 2014-02-20 Stratasys, Inc. Method for printing three-dimensional parts with additive manufacturing systems using scaffolds
FR3053632A1 (fr) * 2016-07-08 2018-01-12 Mecachrome France Procede de fabrication additive avec enlevement de matiere entre deux couches
EP3482932A1 (fr) * 2017-11-13 2019-05-15 General Electric Company Compensation de distorsion de partie de feuille pour la fabrication additive mobile à grande échelle utilisant des matériaux de construction à base de feuilles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181643A1 (en) * 2001-04-12 2007-08-09 Edward Craig Method and system for weld bead sequencing to reduce distortion and stress
WO2008110835A1 (fr) * 2007-03-13 2008-09-18 Airbus Uk Limited Préparation d'un composant destiné à être utilisé dans un joint
WO2012103603A1 (fr) * 2011-02-04 2012-08-09 Layerwise N.V. Procédé pour fabriquer des structures à paroi mince dans des couches
US20140052287A1 (en) * 2012-08-16 2014-02-20 Stratasys, Inc. Method for printing three-dimensional parts with additive manufacturing systems using scaffolds
FR3053632A1 (fr) * 2016-07-08 2018-01-12 Mecachrome France Procede de fabrication additive avec enlevement de matiere entre deux couches
EP3482932A1 (fr) * 2017-11-13 2019-05-15 General Electric Company Compensation de distorsion de partie de feuille pour la fabrication additive mobile à grande échelle utilisant des matériaux de construction à base de feuilles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242873A1 (fr) * 2021-05-21 2022-11-24 Norsk Titanium As Système de montage, système de support de broche et procédé de dépôt d'énergie dirigé permettant de produire une pièce métallique afin d'atténuer une distorsion
FR3141085A1 (fr) * 2022-10-24 2024-04-26 Psa Automobiles Sa ProcÉDÉ D’Application d’une impression 3D MÉtallique avec contre-DÉformations

Also Published As

Publication number Publication date
FR3090438A1 (fr) 2020-06-26
EP3898072A1 (fr) 2021-10-27
FR3090438B1 (fr) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2020128169A1 (fr) Procédé de fabrication d'une ébauche et dispositif correspondant
EP2983851B1 (fr) Procede de fabrication de piece dissymetrique par fabrication additive
CA3003368C (fr) Procede de fabrication d'une preforme d'aube, d'une aube et d'un secteur de distributeur par fusion selective sur lit de poudre
EP2156942B1 (fr) Procédé de réalisation d'une pièce par fusion ou frittage sélectif par laser de poudres de matériaux différents
EP0765711B1 (fr) Procédé de fabrication d'une aube creuse de turbomachine
EP0626231B1 (fr) Procédé de soudage laser d'un assemblage de deux pièces métalliques
WO2011054772A1 (fr) Plateau de support pour dispositif de frittage laser et procede de frittage ameliore
CA2449005C (fr) Procede de fabrication de profiles metalliques
EP3402626B1 (fr) Procédé et installation de fabrication d'un objet tridimensionnel
WO2020229784A1 (fr) Procédé de fabrication additive pour une pièce métallique
EP3624967B1 (fr) Aube de turbomachine d'aeronef et son procede de realisation par fabrication additive
WO2018007770A2 (fr) Procédé de fabrication additive avec enlèvement de matière entre deux couches
FR3030321B1 (fr) Fabrication par fusion laser d'une piece telle qu'un boitier d'un dispositif optronique ou avionique et pieces associees
FR3076233A1 (fr) Procede et dispositif pour la fabrication d’une coque de forme complexe
EP4212267A1 (fr) Procédé de reconstruction de pièces en superalliage inconel 713 par fabrication additive métallique
EP3762670B1 (fr) Echangeur thermique, ainsi que procédé de fabrication d'un tel échangeur thermique
FR3050391A1 (fr) Procede de fabrication additive et piece obtenue par un tel procede
FR3053631A1 (fr) Procede de fabrication additive utilisant des elements de surface discrets.
WO2022253904A1 (fr) Tête de dépôt pour les revêtements tubulaires/non planaires
FR2896176A1 (fr) Procede de fabrication d'un objet par projection laser de poudre metallique, tel qu'une pale de turbomachine
FR3041891A1 (fr) Procede de decoupe et/ou d'usinage de pieces dans un bloc et ensemble de pieces correspondantes
FR3046740A1 (fr) Procede de rechargement ou de fabrication d'une piece metallique
FR3037832A1 (fr) Procede de fabrication d'une piece par fabrication additive et dispositif associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019845696

Country of ref document: EP

Effective date: 20210720