EP2981842A1 - Radarvorrichtung und verfahren mit antennenarray mit zwei schaltzuständen unterschiedlicher modulation - Google Patents

Radarvorrichtung und verfahren mit antennenarray mit zwei schaltzuständen unterschiedlicher modulation

Info

Publication number
EP2981842A1
EP2981842A1 EP14706002.4A EP14706002A EP2981842A1 EP 2981842 A1 EP2981842 A1 EP 2981842A1 EP 14706002 A EP14706002 A EP 14706002A EP 2981842 A1 EP2981842 A1 EP 2981842A1
Authority
EP
European Patent Office
Prior art keywords
radar
antenna
antenna array
switching state
switched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP14706002.4A
Other languages
English (en)
French (fr)
Inventor
Michael Schoor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2981842A1 publication Critical patent/EP2981842A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/422Simultaneous measurement of distance and other co-ordinates sequential lobing, e.g. conical scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/002Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation

Definitions

  • the invention relates to a radar device with a switched antenna array and a method for operating a radar device with a switched antenna array.
  • Modern vehicles are increasingly equipped with driver assistance systems. These driver assistance systems assist a driver in flowing traffic or, for example, when parking the vehicle on the roadside.
  • driver assistance systems assist a driver in flowing traffic or, for example, when parking the vehicle on the roadside.
  • target parameters such as distance and relative velocity of a
  • DE 10 2009 029 503 A1 discloses a radar sensor device having a planar antenna device which has a plurality of vertically oriented antenna columns in the form of a thinned array.
  • the time-multiplex method is suitable, in which the switched antennas are used one after the other.
  • a possible movement of the target objects must also be taken into account.
  • Antenna array which allows short time intervals between the individual switching states. There is also a need for a radar apparatus that enables phase evaluation across the various switching states of an antenna array used. Disclosure of the invention
  • the present invention in one aspect, provides a radar apparatus having a switched antenna array configured to receive a first radar echo in a first switching state and a second radar echo in a second switching state
  • Radar echo receive wherein the first radar echo is based on a radar signal emitted with a first modulation, and the second radar echo based on a radar signal emitted with a second modulation.
  • the present invention provides a method of operating a radar apparatus having a switched antenna array, comprising the steps of adjusting a first switching state in the switched antenna array, transmitting a first radar signal having a first modulation, receiving a first radar echo in a first switching state the antenna array, setting a second switching state in the switched antenna array; the emission of a second radar signal with a second modulation and the
  • Antenna arrays in a radar device are thus each closely linked to individually modulated signals.
  • a further advantage is that the use of differently modulated signals makes the uniqueness of the distance and relative speed estimation possible.
  • an improved angle estimation can be achieved.
  • Antenna characteristic of the switched antenna array in the second switching state different.
  • the angular resolution of the radar device can be further improved.
  • the radar apparatus includes a transmitting antenna configured to emit the first radar signal and the second radar signal.
  • the transmitting antenna is a switched antenna array.
  • a switched antenna array By using a switched antenna array as
  • Transmitting antennas are also different for transmitting the radar signals
  • the first radar signal and the second radar signal are transmitted alternately over a predetermined period of time.
  • the first radar signal and the second radar signal are FMCW-modulated radar signals.
  • FMCW Frequency Modulated Continuous Wave modulated radar signals have been well-proven for determining distance and relative velocity.
  • the present invention further comprises a motor vehicle with a radar device according to the invention.
  • Fig. 1 is a schematic representation of a motor vehicle with a
  • Fig. 2 is a schematic representation of a radar device with a
  • Fig. 3 is a frequency-time diagram with a sequence of frequency-modulated
  • FIG. 4 shows a schematic representation of a method for operating a
  • Figure 1 shows a motor vehicle 1 with a radar device 10 according to a
  • the radar device 10 comprises an antenna array, preferably a switched antenna array.
  • an antenna array preferably a switched antenna array.
  • different directional characteristics 20, 21 result.
  • the antenna array can be operated on the one hand with a relatively large synthetic aperture for a good angular resolution.
  • switching states are possible in which, for example, the uniqueness of the resolution can be increased.
  • the radar device 1 with transmitting antennas the same
  • FIG. 2 shows a schematic representation of a radar device according to a
  • the radar device comprises a control device 13.
  • This control device 13 generates the transmission signals which are transmitted via the transmitting antenna 12.
  • the transmitting antenna 12 can be either on a single antenna element, or as shown, from an antenna array with several
  • Antenna elements 12a exist. If the transmitting antenna 12 from a
  • Antenna array is composed of several elements 12a, several different switching states are also possible for the transmitting antenna 12. In this way, the
  • Antenna characteristic of the transmitting antenna 12 can be adjusted.
  • the receiving antenna 1 1 is preferably an antenna array having a plurality of receiving elements 1 1 a.
  • the receiving antenna 1 1 can be implemented as a switched receiving antenna in which the individual antenna elements 1 1 a via suitable switching elements in different
  • Configurations can be interconnected with each other and optionally only a part of the available receiving antenna elements 1 1 a is selected for further processing.
  • different switching states are possible. Depending on the switching state, for example, a few, preferably widely spaced, antenna elements 1 1 a can be selected in order to obtain the largest possible aperture. Alternatively, the selection of some closely spaced antenna elements 1 1 a is possible. Such a switching state preferably allows a directional characteristic with increased clarity.
  • the received signals of the antenna elements 1 1 a selected according to the switching state are supplied to the control unit 13.
  • the control unit 13 evaluates the received signals as a function of the corresponding transmission signal.
  • Receiving antenna elements 1 1 a is to be understood only as an example. Other, arbitrary numbers of transmitting antenna elements 12a and receiving antenna elements 11a are also possible. Also, the equidistant spacing of the individual antenna elements 1 1 a and 12 a shown in Figure 2 is only an example.
  • the antenna arrays 1 1 and 12 may also be a thinned-out antenna array in which there are at least partially larger gaps between the individual antenna elements. Thus, for example, relatively large apertures can be synthesized even with a relatively small number of antenna elements.
  • the arrangement of the individual antenna elements on a grid of ⁇ / 2 is possible, where ⁇ is the wavelength of the center frequency of the radar device used. But other distances for the antenna elements are possible.
  • the arrangement of the individual antenna elements is designed so that based on the switching states of the switched antenna arrays with as few
  • Antenna elements gives an optimal angle estimate.
  • FIG. 2 separate antenna arrays are shown for the transmitting antenna 12 and the receiving antenna 11. Moreover, it is also possible to use a common antenna array both for transmitting the transmission signals and for receiving the reflected signals. By this combination of transmitting antenna and receiving antenna in a common antenna array, a particularly efficient embodiment of the radar device is possible.
  • FIG. 3 shows a
  • Frequency-time diagram with two different modulations for the transmission signals Frequency-time diagram with two different modulations for the transmission signals.
  • the two modulations on the one hand an up-chirp with a rising frequency and on the other hand a down-chirp with a falling over time frequency are interleaved, ie it is alternately emitted in each case an up-chirp and a down-chirp.
  • a separate evaluation is carried out to make the combination of the two evaluations a unique one Determination of distance and relative speed.
  • more than two different modulations are possible in order to further improve the uniqueness. For example, multiple up-chirps and / or multiple down-chirps with different slopes may be used.
  • the antenna array of the transmitting antenna 12 and / or the antenna array of the receiving antenna 11 is operated in a different switching state.
  • Switching state can be received and the signals with a modulation with falling frequency can be received by the antenna array with a second switching state.
  • the antenna array of the transmitting antenna 12 can be operated in the same switching state.
  • different switching states for the transmitting antenna 12 for different modulations of the transmission signal are possible.
  • a different switching state of the transmitting antenna 12 can be used for each modulation of the transmission signal.
  • Switching state of the transmitting antenna 12 are emitted and the signals with decreasing frequency in a second switching state of the transmitting antenna 12.
  • the receiving antenna 1 1 can be operated for both modulations in the same switching state.
  • a different switching state of the receiving antenna 1 1 is also possible for both modulations.
  • each modulation of the emitted signals corresponds to an individual configuration of the switching states of the transmitting and / or receiving antenna.
  • the number of modulations for the transmission signal and the number of switching states for Distinguish transmitting and / or receiving antenna In this case, however, an increased effort for the evaluation is to be expected.
  • the signal processing takes place separately for each switching state of the antenna arrays. For the estimation of distance and relative velocity, a calibration is performed and the peaks from this calibration can be assigned to each other. After the
  • the phase offset resulting from the time delay between the modulations of distance and relative speed can be determined.
  • the information from both modulations can then be used for the angle estimation.
  • a plurality of frequency ramps (up-chirps and down-chirps) are interleaved, each for each one
  • Frequency ramps selected an individual configuration of the antenna switching state.
  • FMCW-modulated Frequency Modulated
  • FIG. 4 shows a schematic representation of a method for operating a radar device with a switched antenna array.
  • a first step 1 10 a first switching state of the antenna array is set.
  • a first radar signal is transmitted with a first modulation and in step 130 a radar echo is received via the antenna array.
  • step 140 a second switching state of the antenna array is set. Then, in step 150, a second radar signal having a second modulation is sent out, and in step 160, the second radar echo is received by means of the antenna array.
  • the present invention relates to a modulation concept for a radar with switched antennas.
  • Antenna arrays with the switched antennas closely meshed with the modulation of the radar signals. In this way, it is possible to use switched antennas in the time-multiplex method and thus to allow short times between the switching states. This also allows a phase evaluation across the switching states.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Die vorliegende Erfindung schafft ein Modulationskonzept für ein Radar mit geschalteten Antennen. Dabei werden einzelne Schaltzustände des Antennenarrays mit den geschalteten Antennen eng mit der Modulation der Radarsignale verzahnt. Auf diese Weise ist es möglich, gestaltete Antennen im Zeit-Multiplex-Verfahren zu verwenden und somit kurze Zeiten zwischen den Schaltzuständen zu ermöglichen. Hierdurch wird auch eine Phasenauswertung über die Schaltzustände hinweg ermöglicht.

Description

Beschreibung Titel
RADARVORRICHTUNG UND VERFAHREN MIT ANTENNENARRAY MIT ZWEI SCHALTZUSTÄNDEN UNTERSCHIEDLICHER MODULATION
Die Erfindung betrifft eine Radarvorrichtung mit einem geschalteten Antennenarray sowie ein Verfahren zum Betrieb einer Radarvorrichtung mit einem geschalteten Antennenarray. Stand der Technik
Moderne Fahrzeuge werden zunehmend mit Fahrassistenzsystemen ausgestattet. Diese Fahrassistenzsysteme unterstützen einen Fahrzeugführer im fließenden Verkehr oder beispielsweise beim Einparken des Fahrzeugs am Straßenrand. Für die Bestimmung von Zielparametern, wie beispielsweise Entfernungs- und Relativgeschwindigkeit eines
Objekts haben sich Radarsysteme bewährt, die mit modulierten Signalen arbeiten. Durch eine geeignete Wahl des Modulationsverfahrens ist dabei eine genaue Schätzung der Zielparameter und auch die Trennung von einzelnen Zielen anhand dieser Parameter möglich.
Für eine Winkelschätzung der Zielparameter kommen verschiedene Arten von Antennen zum Einsatz. Neben klassischen, parallel abtastenden Systemen sind dabei auch vermehrt geschaltete Antennenkonzepte interessant. Beispielsweise offenbart die
Druckschrift DE 10 2009 029 503 A1 eine Radarsensorvorrichtung mit einer planaren Antenneneinrichtung, die mehrere vertikal ausgerichtete Antennenspalten in Form eines ausgedünnten Arrays aufweist.
Für den Betrieb geschalteter Antennen eignet sich beispielsweise das Zeit-Multiplex- Verfahren, bei dem die geschalteten Antennen nacheinander verwendet werden. Dabei muss allerdings auch eine mögliche Bewegung der Zielobjekte berücksichtigt werden.
Es besteht daher ein Bedarf nach einer Radarvorrichtung mit einem geschalteten
Antennenarray, das zwischen den einzelnen Schaltzuständen kurze Zeitintervalle erlaubt. Es besteht ferner ein Bedarf nach einer Radarvorrichtung, das eine Phasenauswertung über die verschiedenen Schaltzustände eines verwendeten Antennenarrays hinweg ermöglicht. Offenbarung der Erfindung
Die vorliegende Erfindung schafft gemäß einem Aspekt eine Radarvorrichtung mit einem geschalteten Antennenarray, das dazu ausgelegt ist, in einem ersten Schaltzustand ein erstes Radarecho zu empfangen und in einem zweiten Schaltzustand ein zweites
Radarecho zu empfangen, wobei das erste Radarecho auf einem ausgesendeten Radarsignal mit einer ersten Modulation basiert, und das zweite Radarecho auf einem ausgesendeten Radarsignal mit einer zweiten Modulation basiert.
Gemäß einem weiteren Aspekt schafft die vorliegende Erfindung ein Verfahren zum Betrieb einer Radarvorrichtung mit einem geschalteten Antennenarray mit den Schritten des Einstellens eines ersten Schaltzustands in dem geschalteten Antennenarray, des Aussendens eines ersten Radarsignals mit einer ersten Modulation, des Empfangens eines ersten Radarechos in einem ersten Schaltzustand des Antennenarrays, des Einstellens eines zweiten Schaltzustands in dem geschalteten Antennenarray; des Aussendens eines zweiten Radarsignals mit einer zweiten Modulation und des
Empfangens eines zweiten Radarechos in einem zweiten Schaltzustand des
Antennenarrays.
Es ist eine Idee der vorliegenden Erfindung, die einzelnen Schaltzustände eines
Antennenarrays in einer Radarvorrichtung und deren Umschaltung mit der Modulation der verwendeten Radarsignale zu verzahnen. Die einzelnen Schaltzustände eines
Antennenarrays in einer Radarvorrichtung sind somit jeweils eng mit individuell modulierten Signalen verknüpft.
Durch die Verknüpfung unterschiedlicher Modulationen der Radarsignale mit
verschiedenen Schaltzuständen eines Antennenarrays ist es möglich, ein geschaltetes Antennenarray im Zeit-Multiplex-Betrieb zu verwenden und dabei kurze Zeiten zwischen den einzelnen Schaltzuständen zu ermöglichen. Somit ist auch eine Phasenauswertung über die Schaltzustände hinweg möglich.
Ein weiterer Vorteil besteht darin, dass durch die Verwendung unterschiedlich modulierter Signale die Eindeutigkeit der Entfernungs- und Relativgeschwindigkeitsschätzung ermöglicht wird. Darüber hinaus kann durch die Umschaltung der Antennen eine verbesserte Winkelschätzung erzielt werden. Gemäß einer Ausführungsform der vorliegenden Erfindung ist die Antennencharakteristik des geschalteten Antennenarrays in dem ersten Schaltzustand von der
Antennencharakteristik des geschalteten Antennenarrays in dem zweiten Schaltzustand verschieden. Durch die Variation der Antennencharakteristik in den einzelnen
Schaltzuständen kann die Winkelauflösung der Radarvorrichtung weiter verbessert werden.
In einer weiteren Ausführungsform umfasst die Radarvorrichtung eine Sendeantenne, die dazu ausgelegt ist, das erste Radarsignal und das zweite Radarsignal auszusenden.
Gemäß einer speziellen Ausführungsform ist die Sendeantenne ein geschaltetes Antennenarray. Durch die Verwendung eines geschalteten Antennenarrays als
Sendeantenne sind auch für das Aussenden der Radarsignale unterschiedliche
Antennenkonfigurationen möglich. Somit kann die Auflösung der Radarvorrichtung zusätzlich verbessert werden.
In einer weiteren Ausführungsform werden das erste Radarsignal und das zweite Radarsignal über einen vorbestimmten Zeitraum abwechselnd ausgesendet. Durch die kontinuierliche Aussendung der beiden unterschiedlichen Radarsignale über einen Zeitraum hinweg ist eine zuverlässige Schätzung von Entfernung und
Relativgeschwindigkeit der Objekte im Sichtbereich der Radarvorrichtung möglich.
Gemäß einer speziellen Ausführungsform sind das erste Radarsignal und das zweite Radarsignal FMCW-modulierte Radarsignale. Solche FMCW (Frequency Modulated Continuous Wave) modulierten Radarsignale haben sich für eine Bestimmung von Entfernung und Relativgeschwindigkeit bestens bewährt.
Die vorliegende Erfindung umfasst ferner ein Kraftfahrzeug mit einer erfindungsgemäßen Radarvorrichtung.
Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügten Zeichnungen. Kurze Beschreibung der Zeichnungen Es zeigen:
Fig. 1 eine schematische Darstellung eines Kraftfahrzeuges mit einer
Radarvorrichtung gemäß einer Ausführungsform der vorliegenden
Erfindung;
Fig. 2 eine schematische Darstellung einer Radarvorrichtung mit einem
geschalteten Antennenarray gemäß einer Ausführungsform der vorliegenden Erfindung;
Fig. 3 ein Frequenz-Zeitdiagramm mit einer Folge von frequenzmodulierten
Radarsignalen gemäß einer Ausführungsform der vorliegenden Erfindung; und Fig. 4 eine schematische Darstellung eines Verfahrens zum Betrieb einer
Radarvorrichtung gemäß einer Ausführungsform der Erfindung.
Die in den Figuren dargestellten Zeichnungen sind zum Teil perspektivische
Darstellungen von Elementen, die aus Gründen der Übersichtlichkeit nicht
notwendigerweise maßstabsgetreu abgebildet sind. Gleiche Bezugszeichen bezeichnen im Allgemeinen gleichartige oder gleichwirkende Komponenten.
Figur 1 zeigt ein Kraftfahrzeug 1 mit einer Radarvorrichtung 10 gemäß einer
Ausführungsform der vorliegenden Erfindung. Die Radarvorrichtung 10 umfasst dabei ein Antennenarray, vorzugsweise ein geschaltetes Antennenarray. Je nach Schaltzustand des Antennenarrays ergeben sich dabei unterschiedliche Richtcharakteristika 20, 21 . Somit kann das Antennenarray einerseits mit einer relativ großen synthetischen Apertur für eine gute Winkelauflösung betrieben werden. Andererseits sind auch Schaltzustände möglich, in denen beispielsweise die Eindeutigkeit der Auflösung gesteigert werden kann.
Ebenso ist es auch möglich, die Radarvorrichtung 1 mit Sendeantennen gleicher
Richtcharakteristik, jedoch mit unterschiedlichen Phasenzentren zu betreiben. Durch die unterschiedlichen Phasenzentren ergibt sich in diesem Fall eine richtungsabhänge Phasenantwort. Diese richtungsabhängige Phasenantwort kann ebenfalls zur
Weiterverarbeitung in der Radarvorrichtung 10 genutzt werden. Figur 2 zeigt eine schematische Darstellung einer Radarvorrichtung gemäß einer
Ausführungsform der Erfindung. Die Radarvorrichtung umfasst eine Steuervorrichtung 13. Diese Steuervorrichtung 13 erzeugt die Sendesignale, die über die Sendeantenne 12 ausgesendet werden. Die Sendeantenne 12 kann dabei entweder auf einem einzelnen Antennenelement, oder wie dargestellt, aus einem Antennenarray mit mehreren
Antennenelementen 12a bestehen. Sofern die Sendeantenne 12 aus einem
Antennenarray mit mehreren Elementen 12a besteht, sind auch für die Sendeantenne 12 mehrere verschiedene Schaltzustände möglich. Auf diese Weise kann auch die
Antennencharakteristik der Sendeantenne 12 angepasst werden.
Nachdem die Steuervorrichtung 13 ein Sendesignal erzeugt hat und dieses über die Sendeantenne 12 ausgesendet wurde, wird dieses Signal von einem oder mehreren Objekten reflektiert. Die reflektierten Anteile des Sendesignals werden daraufhin von der Empfangsantenne 1 1 erfasst. Die Empfangsantenne 1 1 ist dabei vorzugsweise ein Antennenarray, das mehrere Empfangselemente 1 1 a aufweist.
Falls die Empfangsantenne 1 1 mehrere Empfangselemente 1 1 a aufweist, so können diese Empfangselemente direkt der Steuereinheit 13 zugeführt werden. Alternativ kann die Empfangsantenne 1 1 als geschaltete Empfangsantenne ausgeführt werden, in der die einzelnen Antennenelemente 1 1 a über geeignete Schaltelemente in unterschiedlichen
Konfigurationen miteinander verschaltet werden können und dabei gegebenenfalls nur ein Teil der verfügbaren Empfangsantennenelemente 1 1 a für die Weiterverarbeitung ausgewählt wird. Für die geschaltete Empfangsantenne 1 1 sind dabei unterschiedliche Schaltzustände möglich. Je nach Schaltzustand können dabei beispielsweise einige, vorzugsweise weit beabstandete, Antennenelemente 1 1 a ausgewählt werden, um eine möglichst große Apertur zu erhalten. Alternativ ist auch die Auswahl einiger dicht beieinander liegender Antennenelemente 1 1 a möglich. Ein solcher Schaltzustand ermöglicht vorzugsweise eine Richtcharakteristik mit gesteigerter Eindeutigkeit.
Die Empfangssignale der je nach Schaltzustand ausgewählten Antennenelemente 1 1 a werden der Steuereinheit 13 zugeführt. Die Steuereinheit 13 wertet die empfangenen Signale in Abhängigkeit des korrespondierenden Sendesignals aus. Somit können nach erfolgreicher Prozessierung durch die Steuervorrichtung 13 Informationen über
Entfernung, Relativgeschwindigkeit und Winkelschätzung ausgegeben werden. Somit kann durch die Ansteuerung der Empfangsantenne 1 1 und/oder der Sendeantenne 12 eine verbesserte Winkelschätzung der Radarvorrichtung erzielt werden.
Die dargestellte Anzahl von zwei Sendeantennenelementen 12a und vier
Empfangsantennenelementen 1 1 a ist dabei nur beispielhaft zu verstehen. Andere, beliebige Anzahlen von Sendeantennenelementen 12a und Empfangsantennenelementen 1 1 a sind ebenso möglich. Auch der in Figur 2 dargestellte äquidistante Abstand der einzelnen Antennenelemente 1 1 a und 12a ist dabei nur beispielhaft. Insbesondere kann es sich bei den Antennenarrays 1 1 und 12 auch um ein ausgedünntes Antennenarray handeln, bei dem zumindest teilweise zwischen den einzelnen Antennenelementen größere Lücken vorhanden sind. Somit können beispielsweise auch mit einer relativ geringen Anzahl von Antennenelementen relativ große Aperturen synthetisiert werden. In einer speziellen Ausführungsform ist darüber hinaus beispielsweise die Anordnung der einzelnen Antennenelemente auf einen Raster von λ/2 möglich, wobei λ die Wellenlänge der verwendeten Mittenfrequenz der Radarvorrichtung ist. Aber auch andere Abstände für die Antennenelemente sind möglich. Vorzugsweise ist die Anordnung der einzelnen Antennenelemente dabei so ausgestaltet, dass sich basierend auf den verwendeten Schaltzuständen der geschalteten Antennenarrays mit möglichst wenigen
Antennenelementen eine optimale Winkelschätzung ergibt.
In Figur 2 sind für die Sendeantenne 12 und die Empfangsantenne 1 1 jeweils getrennte Antennenarrays dargestellt. Darüber hinaus ist es ebenso möglich, ein gemeinsames Antennenarray sowohl für das Aussenden der Sendesignale als auch für den Empfang der reflektierten Signale zu verwenden. Durch diese Kombination von Sendeantenne und Empfangsantenne in einem gemeinsamen Antennenarray ist eine besonders effiziente Ausgestaltung der Radarvorrichtung möglich.
Um neben der Winkelschätzung eine eindeutige Entfernungs- und
Relativgeschwindigkeitsschätzung zu ermöglichen, werden durch die Sendeantenne 12 Radarsignale mit unterschiedlichen Modulationen ausgesendet. Figur 3 zeigt ein
Frequenz-Zeit-Diagramm mit zwei verschiedenen Modulationen für die Sendesignale. Die beiden Modulationen, einerseits ein Up-Chirp mit einer ansteigenden Frequenz und andererseits ein Down-Chirp mit einer über die Zeit abfallenden Frequenz sind dabei ineinander verschachtelt, d.h. es wird abwechselnd jeweils ein Up-Chirp und ein Down- Chirp ausgesendet. Für jede dieser beiden Modulationen wird eine getrennte Auswertung durchgeführt, um aus der Kombination der beiden Auswertungen eine eindeutige Bestimmung von Entfernungs- und Relativgeschwindigkeit durchführen zu können. Neben den hier dargestellten zwei unterschiedlichen Modulationen sind darüber hinaus auch mehr als zwei unterschiedliche Modulationen möglich, um die Eindeutigkeit weiter zu verbessern. Beispielsweise können mehrere Up-Chirps und/oder mehrere Down-Chirps mit unterschiedlichen Steigungen verwendet werden.
Für jede der verwendeten Modulationen des Sendersignals wird das Antennenarray der Sendeantenne 12 und/oder das Antennenarray der Empfangsantenne 1 1 in einem unterschiedlichen Schaltzustand betrieben. Beispielsweise können die Signale mit ansteigender Frequenz gemäß Figur 3 von einem Antennenarray in einem ersten
Schaltzustand empfangen werden und die Signale mit einer Modulation mit fallender Frequenz können von dem Antennenarray mit einem zweiten Schaltzustand empfangen werden. In diesem Fall kann für das Aussenden der Sendesignale in beiden Modulationen das Antennenarray der Sendeantenne 12 im gleichen Schaltzustand betrieben werden. Alternativ sind auch unterschiedliche Schaltzustände für die Sendeantenne 12 für verschiedene Modulationen des Sendesignals möglich.
In einer weiteren Ausführungsform kann für jede Modulation des Sendesignals ein unterschiedlicher Schaltzustand der Sendeantenne 12 verwendet werden. Beispielsweise können die Signale mit ansteigender Frequenz gemäß Figur 3 in einem ersten
Schaltzustand der Sendeantenne 12 ausgesendet werden und die Signale mit abfallender Frequenz in einen zweiten Schaltzustand der Sendeantenne 12. In diesem Fall kann die Empfangsantenne 1 1 für beide Modulationen im gleichen Schaltzustand betrieben werden. Alternativ ist auch für beide Modulationen ein unterschiedlicher Schaltzustand der Empfangsantenne 1 1 möglich.
Im Falle von mehr als zwei unterschiedlichen Modulationen für die Sendesignale ist es auch möglich, für einigen Modulationen des Sendesignals den Schaltzustand der
Sendeantenne zu variieren und dabei den Schaltzustand der Empfangsantenne unverändert zu belassen und für einige weitere Modulationen des Sendesignals den Schaltzustand der Sendeantenne gleich zu lassen und den Schaltzustand der
Empfangsantenne zu variieren. Vorzugsweise entspricht dabei jeder Modulation der ausgesendeten Signale einer individuellen Konfiguration der Schaltzustände von Sende- und/oder Empfangsantenne. Grundsätzlich ist es jedoch auch möglich, dass sich die Anzahl der Modulationen für das Sendesignal und die Anzahl der Schaltzustände für Sende- und/oder Empfangsantenne unterscheiden. In diesem Fall ist jedoch mit einem erhöhten Aufwand für die Auswertung zu rechnen.
Die Signalverarbeitung erfolgt für jeden Schaltzustand der Antennenarrays getrennt. Für die Schätzung von Entfernung und Relativgeschwindigkeit erfolgt ein Abgleich und die Peaks aus diesem Abgleich können einander zugeordnet werden. Nachdem die
Entfernung und die Relativgeschwindigkeit eines Ziels bekannt sind, kann der durch den Zeitversatz zwischen den Modulationen entstehende Phasenversatz aus Entfernung und Relativgeschwindigkeit bestimmt werden. Daraufhin können für die Winkelschätzung die Informationen aus beiden Modulationen verwendet werden. Somit ergibt sich durch den zuvor beschriebenen Ansatz eine Steigerung der Genauigkeit in der Winkelschätzung und/oder in der Eindeutigkeit der detektierten Ziele.
Gemäß dem zuvor beschriebenen Ansatz werden mehrere Frequenzrampen (Up-Chirps und Down-Chirps) ineinander verschachtelt und dabei für jede der einzelnen
Frequenzrampen eine individuelle Konfiguration des Antennschaltzustands ausgewählt. Dabei sind gemäß dem Ansatz einer FMCW-modulierten (Frequency Modulated
Continuous Wave) Radarkonfiguration die einzelnen Frequenzrampen für gleiche Schaltzustände der Antennenkonfiguration jeweils stets gleich.
Alternative Modulationsverfahren, die dazu geeignet sind, die einzelnen Frequenzrampen ineinander zu verschachteln und jeweils individuellen Antennen-Schaltzuständen zuzuordnen sind darüber hinaus jedoch ebenso möglich. Beispielsweise eignet sich hierzu besonders auch ein Verfahren, bei dem die einzelnen Rampen der Up- und Down- Chirps noch mit einer sogenannten langsamen Rampe überlagert werden, so dass sich über die Zeit Anfangs- und Endpunkt der Frequenzen für die Rampen ändern. Dieses Verfahren ist beispielsweise unter dem Namen Multispeed Frequency Modulated
Continuous Wave (MSFMCW)-Verfahren bekannt. Ebenso ist eine Chirp-Sequence-Modulation möglich. In diesem Fall sind jedoch verschiedene Rampen mit identischen oder zumindest sehr ähnlichen
Modulationseigenschaften angebracht. Durch die getrennt stattfindende Detektion und Schätzung von Entfernung und Relativgeschwidigkeit kann wiederum der Phasenversatz bestimmt werden. Figur 4 zeigt eine schematische Darstellung eines Verfahrens zum Betrieb einer Radarvorrichtung mit einem geschalteten Antennenarray. Einem ersten Schritt 1 10 wird ein erster Schaltzustand des Antennenarrays eingestellt. Daraufhin wird in Schritt 120 ein erstes Radarsignal mit einer ersten Modulation ausgesendet und in Schritt 130 ein Radarecho über das Antennenarray empfangen.
Weiter wird in Schritt 140 ein zweiter Schaltzustand des Antennenarrays eingestellt. Daraufhin wird in Schritt 150 ein zweites Radarsignal mit einer zweiten Modulation ausgesendet und in Schritt 160 wird das zweite Radarecho mittels des Antennenarrays empfangen.
Zusammenfassend betrifft die vorliegende Erfindung ein Modulationskonzept für ein Radar mit geschalteten Antennen. Dabei werden einzelne Schaltzustände des
Antennenarrays mit den geschalteten Antennen eng mit der Modulation der Radarsignale verzahnt. Auf diese Weise ist es möglich, geschaltete Antennen im Zeit-Multiplex- Verfahren zu verwenden und somit kurze Zeiten zwischen den Schaltzuständen zu ermöglichen. Hierdurch wird auch eine Phasenauswertung über die Schaltzustände hinweg ermöglicht.

Claims

Patentansprüche Radarvorrichtung (10), mit einem geschalteten Antennenarray (1 1 ), das dazu ausgelegt ist, in einem ersten Schaltzustand ein erstes Radarecho zu empfangen und in einem zweiten
Schaltzustand ein zweites Radarecho zu empfangen, wobei das erste Radarecho auf einem ausgesendeten Radarsignal mit einer ersten Modulation basiert, und das zweite Radarecho auf einem ausgesendeten Radarsignal mit einer zweiten Modulation basiert.
Radarvorrichtung (10) nach Anspruch 1 , wobei die Antennencharakteristik des geschalteten Antennenarrays (1 1 ) in dem ersten Schaltzustand und die
Antennencharakteristik des geschalteten Antennenarrays (1 1 ) in dem zweiten Schaltzustand verschieden ist.
Radarvorrichtung (10) nach Anspruch 1 oder 2, ferner umfassend eine
Sendeantenne (13), die dazu ausgelegt ist, das erste Radarsignal und das zweite Radarsignal auszusenden.
Radarvorrichtung (10) nach Anspruch 3, wobei die Sendeantenne (13) ein geschaltetes Antennenarray ist.
Radarvorrichtung (10) nach einem der Ansprüche 1 bis 4, wobei das erste und das zweite Radarsignal über einen vorbestimmten Zeitraum abwechselnd ausgesendet werden.
Radarvorrichtung (10) nach einem der Ansprüche 1 bis 5, wobei das erste
Radarsignal und das zweite Radarsignal FMCW-modulierte Radarsignale sind.
Kraftfahrzeug (1 ) mit einer Radarvorrichtung (10) nach einem der vorherigen Ansprüche.
Verfahren (100) zum Betrieb einer Radarvorrichtung (10) mit einem geschalteten Antennenarray, mit den Schritten: Einstellen (1 10) eines ersten Schaltzustands in dem geschalteten Antennenarray;
Aussenden (120) eines ersten Radarsignals mit einer ersten Modulation;
Empfangen (130) eines ersten Radarechos in dem ersten Schaltzustand des Antennenarrays;
Einstellen (140) eines zweiten Schaltzustands in dem geschalteten
Antennenarray;
Aussenden (150) eines zweiten Radarsignals mit einer zweiten Modulation;
Empfangen (160) eines zweiten Radarechos in dem zweiten Schaltzustand des Antennenarrays.
EP14706002.4A 2013-04-03 2014-02-14 Radarvorrichtung und verfahren mit antennenarray mit zwei schaltzuständen unterschiedlicher modulation Ceased EP2981842A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013205892.6A DE102013205892A1 (de) 2013-04-03 2013-04-03 Radarvorrichtung und Verfahren zum Betrieb einer Radarvorrichtung
PCT/EP2014/052907 WO2014161687A1 (de) 2013-04-03 2014-02-14 Radarvorrichtung und verfahren mit antennenarray mit zwei schaltzuständen unterschiedlicher modulation

Publications (1)

Publication Number Publication Date
EP2981842A1 true EP2981842A1 (de) 2016-02-10

Family

ID=50156747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14706002.4A Ceased EP2981842A1 (de) 2013-04-03 2014-02-14 Radarvorrichtung und verfahren mit antennenarray mit zwei schaltzuständen unterschiedlicher modulation

Country Status (6)

Country Link
US (1) US10033098B2 (de)
EP (1) EP2981842A1 (de)
JP (1) JP6348572B2 (de)
CN (1) CN105074497B (de)
DE (1) DE102013205892A1 (de)
WO (1) WO2014161687A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10247820B2 (en) * 2015-01-07 2019-04-02 GM Global Technology Operations LLC Spatial cognitive radar
WO2016155822A1 (de) * 2015-04-01 2016-10-06 Vega Grieshaber Kg Antennenanordnung für ein füllstandmessgerät
US10097287B1 (en) * 2017-09-07 2018-10-09 Nxp B.V. RF radar device BIST using secondary modulation
US11693084B2 (en) 2018-07-19 2023-07-04 Qualcomm Incorporated Radar transmission time interval randomized radar transmissions
DE102018006128B8 (de) 2018-08-03 2019-10-10 Pepperl + Fuchs Gmbh Landwirtschaftliche Erfassungsvorrichtung und Erfassungsverfahren zur Erfassung von landwirtschaftlichen Objekten
US20210349181A1 (en) * 2018-10-05 2021-11-11 Kyocera Corporation Electronic device, control method of electronic device, and control program of electronic device
US11340335B2 (en) 2019-04-22 2022-05-24 Byton North America Corporation Multiple LIDAR processing methods and systems
CN112444803B (zh) * 2019-08-29 2024-02-27 比亚迪股份有限公司 车载雷达的目标检测方法和检测装置、车辆
US12088013B2 (en) 2021-03-30 2024-09-10 Skyworks Solutions, Inc. Frequency range two antenna array with switches for joining antennas for frequency range one communications
US20230350058A1 (en) * 2022-05-02 2023-11-02 Aptiv Technologies Limited Signal Modeling for Unambiguous Range Rate Estimation
CN118409334B (zh) * 2024-07-01 2024-10-11 浙江大学 基于时分复用技术的激光锁腔测风雷达系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032540A1 (de) * 2006-07-13 2008-01-17 Robert Bosch Gmbh Winkelauflösender Radarsensor
EP2031415A1 (de) * 2004-09-29 2009-03-04 Fujitsu Limited Schaltbare Antennenanordnung zur Abschätzung der Einfallsrichtung eines Empfangssignals
DE102010064348A1 (de) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836966A (en) * 1972-10-05 1974-09-17 Us Navy Dual mode radar system
US3949396A (en) * 1975-02-25 1976-04-06 The United States Of America As Represented By The Secretary Of The Navy Fast scan multimode radar
US4319242A (en) * 1980-03-04 1982-03-09 The United States Of America As Represented By The Secretary Of The Navy Integrated weapon control radar system
US5345470A (en) * 1993-03-31 1994-09-06 Alexander Richard O Methods of minimizing the interference between many multiple FMCW radars
JP2768439B2 (ja) 1994-11-08 1998-06-25 本田技研工業株式会社 Fm−cw方式マルチビームレーダー装置
JPH08136657A (ja) 1994-11-08 1996-05-31 Hitachi Medical Corp シンチレーションカメラ
FR2760536B1 (fr) * 1997-03-04 1999-05-28 Thomson Csf Procede et dispositif de detection radar a modulation de frequence a onde continue presentant une levee d'ambiguite entre la distance et la vitesse
DE10348226A1 (de) * 2003-10-10 2005-05-04 Valeo Schalter & Sensoren Gmbh Radarsystem mit umschaltbarer Winkelauflösung
JP3367516B2 (ja) 2000-08-04 2003-01-14 松下電器産業株式会社 部品の搭載装置および部品の搭載方法
DE10050278B4 (de) * 2000-10-10 2005-06-02 S.M.S., Smart Microwave Sensors Gmbh Verfahren und Vorrichtung zur Bestimmung von Abstand und Relativgeschwindigkeit eines entfernten Objektes
JP3988571B2 (ja) * 2001-09-17 2007-10-10 株式会社デンソー レーダ装置
US6750810B2 (en) * 2001-12-18 2004-06-15 Hitachi, Ltd. Monopulse radar system
US6492938B1 (en) * 2002-02-11 2002-12-10 Delphi Technologies, Inc. Method of associating target data in a multi-slope FMCW radar system
JP3988520B2 (ja) * 2002-04-25 2007-10-10 株式会社デンソー ホログラフィックレーダ
JP4032881B2 (ja) * 2002-08-28 2008-01-16 株式会社豊田中央研究所 Fm−cwレーダ装置
DE10261027A1 (de) * 2002-12-24 2004-07-08 Robert Bosch Gmbh Winkelauflösendes Antennensystem
JP3988653B2 (ja) * 2003-02-10 2007-10-10 株式会社デンソー アンテナの配列方法、及びレーダ装置
JP2006003097A (ja) * 2004-06-15 2006-01-05 Fujitsu Ten Ltd レーダ装置
JP4551145B2 (ja) * 2004-07-13 2010-09-22 富士通株式会社 レーダ装置、レーダ装置の制御方法
US7612706B2 (en) * 2004-07-16 2009-11-03 Fujitsu Ten Limited Monopulse radar apparatus and antenna switch
DE102004047086A1 (de) * 2004-09-29 2006-03-30 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge
DE102004052518A1 (de) * 2004-10-29 2006-05-04 Robert Bosch Gmbh Vorrichtung und Verfahren zur winkelaufgelösten Entfernungs- und Geschwindigkeitsbetimmung eines Objekts
DE102004052521A1 (de) * 2004-10-29 2006-05-04 Robert Bosch Gmbh FMCW-Radar mit Standzielunterdrückung
DE102004059915A1 (de) * 2004-12-13 2006-06-14 Robert Bosch Gmbh Radarsystem
DE102005008715A1 (de) * 2005-02-25 2006-08-31 Robert Bosch Gmbh Radarsystem für Kraftfahrzeuge
DE102006032539A1 (de) * 2006-07-13 2008-01-17 Robert Bosch Gmbh FMCW-Radarsensor
JP4977443B2 (ja) * 2006-10-31 2012-07-18 日立オートモティブシステムズ株式会社 レーダ装置及びレーダ検出方法
JP4871104B2 (ja) * 2006-11-24 2012-02-08 日立オートモティブシステムズ株式会社 レーダ装置及び信号処理方法
DE102007043535A1 (de) * 2007-09-12 2009-03-19 Robert Bosch Gmbh FMCW-Radarortungsvorrichtung und entsprechendes FMCW-Radarortungsverfahren
DE102007056910A1 (de) * 2007-11-26 2009-05-28 Robert Bosch Gmbh Verfahren zum Betreiben einer arraybasierten strahlschwenkbaren Antenne sowie Anordnung und Verwendung
US7973700B2 (en) * 2008-01-31 2011-07-05 Denso International America, Inc. Dual transmitting antenna system
CN101621714B (zh) * 2008-06-30 2013-06-12 华为技术有限公司 节点、数据处理系统和数据处理方法
GB2462148A (en) * 2008-07-31 2010-02-03 Mitsubishi Electric Inf Tech Automotive FMCW radar with multiple frequency chirps
EP2189809A1 (de) * 2008-11-24 2010-05-26 Mitsubishi Electric R&D Centre Europe B.V. Objektabstandsmessung
CN102414574B (zh) * 2009-04-23 2013-11-06 三菱电机株式会社 雷达装置及天线装置
DE102009029503A1 (de) 2009-09-16 2011-03-24 Robert Bosch Gmbh Radarsensorvorrichtung mit wenigstens einer planaren Antenneneinrichtung
KR101137088B1 (ko) * 2010-01-06 2012-04-19 주식회사 만도 통합 레이더 장치 및 통합 안테나 장치
US8125373B2 (en) * 2010-07-23 2012-02-28 Toyota Motor Engineering & Manufacturing North America, Inc. Microwave system utilizing elevational scanning by frequency hopping
DE102010041755A1 (de) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Radarsystem
DE102012102185A1 (de) * 2011-03-16 2012-09-27 Electronics And Telecommunications Research Institute Radarvorrichtung, die den kurz- und langreichweitigen Radarbetrieb unterstützt
US9024809B2 (en) * 2011-03-17 2015-05-05 Sony Corporation Object detection system and method
JP5602275B1 (ja) * 2013-04-22 2014-10-08 三菱電機株式会社 車載用レーダ装置および車載用レーダ装置に適用される注目ターゲット検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031415A1 (de) * 2004-09-29 2009-03-04 Fujitsu Limited Schaltbare Antennenanordnung zur Abschätzung der Einfallsrichtung eines Empfangssignals
DE102006032540A1 (de) * 2006-07-13 2008-01-17 Robert Bosch Gmbh Winkelauflösender Radarsensor
DE102010064348A1 (de) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014161687A1 *

Also Published As

Publication number Publication date
WO2014161687A1 (de) 2014-10-09
CN105074497A (zh) 2015-11-18
DE102013205892A1 (de) 2014-10-09
JP6348572B2 (ja) 2018-06-27
CN105074497B (zh) 2019-06-25
US20160036124A1 (en) 2016-02-04
US10033098B2 (en) 2018-07-24
JP2016521357A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
WO2014161687A1 (de) Radarvorrichtung und verfahren mit antennenarray mit zwei schaltzuständen unterschiedlicher modulation
EP1864155B1 (de) Verfahren und vorrichtung zur abstands- und relativgeschwindigkeitsmessung mehrerer objekte
EP2044459B1 (de) Winkelauflösender radarsensor
DE102008014786B4 (de) Verfahren zur Bestimmung des Pegels eines Grundrauschens und Radar zur Anwendung des Verfahrens sowie eine Interferenzerfassungsvorrichtung
EP1761800B1 (de) Radarsensor und verfahren zur auswertung von objekten
DE19935265B4 (de) Vorrichtung zur Messung des Abstands und der Relativgeschwindigkeit zwischen Objekten und Verwendung dieser
EP3155444B1 (de) Verfahren zur objektortung mit einem fmcw-radar
EP2507649B1 (de) Verfahren zum eindeutigen bestimmen einer entfernung und/oder einer relativen geschwindigkeit eines objektes, fahrerassistenzeinrichtung und kraftfahrzeug
EP3794369A1 (de) Verfahren zur phasenkalibrierung von hochfreguenzbausteinen eines radarsensors
EP3538922A1 (de) Radarsensor für kraftfahrzeuge
EP3818390B1 (de) Verfahren zur ermittlung von wenigstens einer objektinformation wenigstens eines zielobjekts, das mit einem radarsystem insbesondere eines fahrzeugs erfasst wird, radarsystem und fahrerassistenzsystem
DE69826070T2 (de) Frequenzmoduliertes Dauerstrichradarsystem
DE102016118431A1 (de) Signalverarbeitungsvorrichtung einer Radarvorrichtung und Signalverarbeitungsverfahren für eine Radarvorrichtung
EP2569650A1 (de) Verfahren und vorrichtung zur bestimmung der position eines objektes relativ zu einem fahrzeug, insbesondere einem kraftfahrzeug, zur verwendung in einem fahrerassistenzsystem des fahrzeuges
EP2659284A1 (de) Radarsensor für kraftfahrzeuge
DE102012021973A1 (de) Verfahren zum Betreiben eines Radarsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102012219765A1 (de) Radarvorrichtung mit verschiedenen betriebsmodi
EP1929331A1 (de) Kraftfahrzeug-radarverfahren und -radarsystem
DE102013212079A1 (de) Winkelauflösender Radarsensor
DE102014114350A1 (de) Radarvorrichtung
WO2018137836A1 (de) Verfahren zur ermittlung von wenigstens einer objektinformation wenigstens eines objektes, das mit einem radarsystem insbesondere eines fahrzeugs erfasst wird, radarsystem und fahrerassistenzsystem
EP3596499A1 (de) Verfahren zum bestimmen eines abstandes und einer geschwindigkeit eines objektes
DE102013222618A1 (de) Radareinrichtung und Signalverarbeitungsverfahren
WO2017118632A1 (de) Radarsensor
EP1635188A1 (de) Verfahren und Vorrichtung zur Entfernungs- und Geschwindigkeitsmessung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180416

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200402