EP2972562A1 - Dispositif d'homogénéisation d'un faisceau laser - Google Patents

Dispositif d'homogénéisation d'un faisceau laser

Info

Publication number
EP2972562A1
EP2972562A1 EP14707789.5A EP14707789A EP2972562A1 EP 2972562 A1 EP2972562 A1 EP 2972562A1 EP 14707789 A EP14707789 A EP 14707789A EP 2972562 A1 EP2972562 A1 EP 2972562A1
Authority
EP
European Patent Office
Prior art keywords
lens
lens array
lens means
array
laser radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14707789.5A
Other languages
German (de)
English (en)
Inventor
Thomas Mitra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Limo GmbH
Original Assignee
Limo Patentverwaltung GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Limo Patentverwaltung GmbH and Co KG filed Critical Limo Patentverwaltung GmbH and Co KG
Publication of EP2972562A1 publication Critical patent/EP2972562A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/123The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses

Definitions

  • the present invention relates to a device for
  • Lens array can emerge, wherein at least one of the two optically functional interfaces comprises a plurality of lens means which are adapted to divide the laser radiation into a plurality of sub-beams, and a second lens array, which is arranged in the beam path behind the first lens array, with a first optically functional interface, through which the partial beams can enter the second lens array, and with a second optically functional interface, through which the partial beams can emerge from the second lens array, wherein at least one of the two optically functional interfaces a plurality of
  • laser beam In the propagation direction of the laser radiation means the mean propagation direction of the laser radiation, especially if this is not a plane wave or at least partially divergent.
  • laser beam, light beam, sub-beam or beam is, unless expressly stated otherwise, not an idealized beam of geometric optics meant, but a real light beam, such as a laser beam with a Gaussian profile or a modified Gaussian profile or a top Hat profile, which has no infinitesimal small, but an extended beam cross-section.
  • Devices for the homogenization of laser radiation of the type mentioned are known from the prior art in different embodiments. They serve the purpose in one
  • Imaging devices for homogenizing laser radiation are embodied in two stages and comprise a first lens array, which forms a first homogenization stage, with a plurality of lens means, in particular cylindrical lens means, on a first optically functional interface and / or a second optically functional interface. Furthermore, such include
  • Homogenization stage forms and in the propagation direction of the
  • Laser radiation is disposed behind the first lens array and on a first optically functional interface and / or a second optically functional interface, a plurality of lens means, in particular cylindrical lens means having.
  • such devices for homogenizing light often include a Fourier lens in the beam propagation direction behind the second lens array, usually as a spherical lens
  • the lens means of the first lens array are capable of dividing a collimated laser beam incident on the first lens array into a plurality of sub-beams.
  • the second lens array in combination with the Fourier lens is capable of superimposing the partial beams in the working plane in such a way that a homogeneous (uniform) intensity distribution can be obtained there in at least one direction.
  • Fourier lens may also be suitable in the second lens array be integrated, so that in a working plane a homogeneous
  • the cross-sectional profiles of the cylindrical lens means of the first lens array are formed transversely to their respective cylinder axes spherical and thus can mathematically very easily by a single radius
  • Energy density (or intensity) of the partial beams on the individual lens means of the second lens array can be so high that the damage threshold of an optionally applied there
  • the present invention is based on the object, a
  • Laser radiation is characterized in that the lens means of the first lens array are formed so that they the laser radiation split into a plurality of partial beams and can form them so that the partial beams, the lens means of the second
  • Lens arrays can illuminate substantially homogeneous. This approach exploits the fact that the first lens array of the two-stage (and thus imaging) device for homogenizing
  • Laser radiation essentially serves not to over-radiate the lens means of the second lens array and thus to expose an increased intensity.
  • the lens means of the second lens array, on which the partial beams are refracted, are predominantly for the homogeneity of the laser radiation in the working plane
  • Partial beams on the individual lens means of the second lens array can be reduced such that the damage threshold of the optionally applied there antireflection coating always
  • Antireflection coating can be effectively avoided.
  • aging effects that can occur when exposing the antireflection coating to electromagnetic radiation in the ultraviolet spectral range can be reduced in a particularly advantageous manner.
  • a homogeneous angular distribution of the partial beams is obtained, which leads in the far-field optical in a working plane far enough away from the second lens array to a substantially homogeneous intensity distribution.
  • the lens means of the first lens array are formed aspherical or acylindrical.
  • the provided according to claim 1 lighting conditions for the second lens array realized in a surprisingly simple manner become.
  • all lens means of the first lens array are formed aspherical or acylindrical.
  • the production of the first lens array can be effected in a particularly simple manner, since all lens means of the first lens array have (preferably identical) aspherical or acylindrical cross-sectional profiles.
  • the lens means of the second lens array preferably have a spherical
  • the lens means of the first lens array has a focal length fi and the
  • Focal length fi and the lens means of the second lens array have a focal length f 2 , wherein the focal lengths f- ⁇ , f 2 are selected so that fi> f 2 .
  • Focal length fi and the lens means of the second lens array having a focal length f 2 , wherein the focal lengths f- ⁇ , f 2 are selected so that fi ⁇ f 2 .
  • the lens means of the first lens array and / or the second lens array may be formed as a microlens means.
  • the device comprises a Fourier lens means, the like
  • Lens array is arranged so that it can be superimposed on the broken of the lens means of the second lens array partial beams in a working plane. As a result, a homogeneous intensity distribution can be obtained behind the second lens array in a working plane in the optical near field in the beam propagation direction.
  • the second lens array is designed such that it has the partial beams refracted by its lens means in a working plane
  • the Fourier lens function is advantageously integrated in the second lens array.
  • the lens means of the first lens array are formed as cylindrical lens means whose cylinder axes are parallel to each other in extend a first direction and which are adapted to divide the laser radiation into a plurality of partial beams, and / or
  • the lens means of the second lens array are formed as cylindrical lens means whose cylinder axes extend parallel to each other in the first direction and the partial beams can break.
  • Lens arrays preferably all cylindrical lens means of the first
  • Lens arrays viewed transversely to their respective cylinder axes have an aspherical cross-sectional profile.
  • Cylinder lens means of the first lens array (preferably all cylindrical lens means of the first lens array) symmetrical to an orthogonal to the cylinder axis of the respective
  • Cylindrical lens means extending symmetry plane. It can also be provided according to a further embodiment, that the cross-sectional profiles of at least some of the cylindrical lens means of the first lens array are formed asymmetrically.
  • Antireflection coating can occur with electromagnetic radiation in the ultraviolet spectral range, effectively minimized.
  • the use of the device described above for the homogenization of laser radiation may be due to the homogeneity and / or the edge steepness of the
  • Fig. 1 is a schematically simplified side view of a
  • Fig. 2 is a schematic representation of an aspherical
  • a device for homogenizing laser radiation 100 which is embodied according to a preferred exemplary embodiment of the present invention, will be explained in more detail below. To simplify the rest
  • Fig. 1 a Cartesian coordinate system, which defines the y-direction and the orthogonal z-direction, which in this case is the propagation direction of the laser radiation 100.
  • the device for homogenizing laser radiation 100 is embodied in two stages and has a first lens array 1 with a first optically functional interface 10, which is embodied here flat, and with a second optically functional interface 11, which has a plurality of cylinder lens means arranged side by side in the y direction 3, whose cylinder axes extend parallel to each other in the x-direction (and thus in the drawing plane).
  • the first lens array 1 is thus formed plano-convex.
  • the first optically functional interface 10 of the first lens array 1 may have an antireflection coating to during the
  • a second lens array 2 is arranged, which forms a first optically functional interface 20, which is also planar and forms a light entrance surface, and a second optically functional interface 21, which forms a light exit surface and a plurality of juxtaposed in the y-direction
  • Cylindrical lens means 4 comprises.
  • the cylinder axes of the cylindrical lens means 4 in turn extend parallel to one another in the x-direction and thus into the plane of the drawing.
  • Lens array 21 is thus also plano-convex.
  • the first optically functional interface 20 of the second lens array 2 may preferably have an antireflection coating to
  • the second optically functional interface 21 of the first lens array 2 may have an antireflection coating.
  • the cylindrical lens means 3, 4 of the first lens array 1 and of the second lens array 2 are presently embodied as microcylinder lens means on a substrate.
  • the two lens arrays 1, 2 are therefore in other words monolithic.
  • the apparatus for homogenizing laser radiation 100 further comprises a spherically formed Fourier lens means 5, which in the
  • Beam path is disposed behind the second lens array 2.
  • the laser radiation 100 which is emitted by a laser light source not explicitly shown here, and with the aid of at least one
  • the collimated laser radiation 100 which may for example have an intensity profile in the form of a Gaussian profile, enters the first optically functional interface 10 in the first
  • Lens array 1 and is after the transmission at the
  • Partial beams 101, 102, 103 split. To present the
  • Lens array 1 deliberately only three partial beams 101, 102, 103 located.
  • the partial beams 101, 102, 103 enter the second lens array 2 through the first optically functional interface 20, pass through this and are optically focused on the second lens array 2
  • Cylinder lens means 4 again broken.
  • the Fourier lens means 5 arranged in the beam path behind the second lens array 2 is capable of dividing the partial beams 101, 102, 103 in the
  • Working plane 6 which is the focal plane of the Fourier lens means 5, to superimpose such that there at least in one direction, a homogeneous (uniform) intensity distribution can be obtained.
  • the cylindrical lens means 3 of the first lens array 1 are so
  • Cylinder lens means 4 of the second lens array 2 can be reduced such that the damage threshold of there optional
  • a cross-sectional profile of a cylindrical lens means 3 formed in this way is shown by way of example in FIG.
  • the aspherical shape of the cross-sectional profile can be clearly seen.
  • the cylindrical lens means 4 of the second lens array 2 viewed transversely to their respective cylinder axes on a spherical cross-sectional profile.
  • Lens arrays 1 symmetrical to a plane of symmetry 7. It may alternatively be provided that the cross-sectional profiles
  • the cylindrical lens means 3 of the first lens array 1 are formed asymmetrically.
  • the cylindrical lens means 3 of the first lens array 1 are formed asymmetrically.
  • Cylindrical lens means 3 of the first lens array 1 has a focal length fi and the cylindrical lens means 4 of the second lens array 2 a
  • Focal length f 2 wherein the focal lengths f- ⁇ , f 2 are selected so that fi> f is 2 .
  • the focal lengths f- ⁇ , f 2 are selected so that fi> f is 2 .
  • the focal lengths f- ⁇ , f 2 are chosen so that ⁇ f 2 . It has been shown that
  • the first lens array 1 and the second lens array 1 can improve.
  • Vertex points away from its associated cylindrical lens means 4 of the second lens array 2.
  • the second optically functional interfaces 11, 21 of the first and second lens arrays 1, 2 have a plurality of cylindrical lens means 3, 4.
  • the first optically functional interface 10 of the first lens array 1 comprises a number of cylinder lens means arranged side by side, the cylinder axes of which extend parallel to one another and perpendicular to the cylinder axes of the cylinder lens means 3 on the second optically functional interface 11.
  • the cylindrical lens means on the first optically functional interface 10 of the first lens array 1 also have an aspherical
  • first optically functional interface 20 of the second lens array 2 has a number of cylinder lens means arranged side by side, the cylinder axes of which are parallel to one another and
  • the cylindrical lens means on the first optically functional interface 20 of the second lens array 2 likewise have a spherical cross-sectional profile.
  • Lens array 2 is formed so that it can be superimposed on the part of his lens means 4 partial beams 101, 102, 103 in a working plane 6.
  • the Fourier lens means 5 in FIG. 1 The Fourier lens means 5 in FIG. 1
  • Beam propagation direction behind the second lens array 2 can be omitted in this variant, since the above-described function of the
  • Fourier lens 5 is integrated into the second lens array 2.
  • Fourier lens means 5 perform and the Fourier lens function also not to be integrated into the second lens array 2. After this

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Lenses (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)

Abstract

L'invention concerne un dispositif d'homogénéisation (100) d'un faisceau laser, comprenant - un premier ensemble de lentilles (1) doté d'une première interface optiquement fonctionnelle (10) par laquelle le faisceau laser (100) peut entrer dans le premier ensemble de lentilles (1), et d'une deuxième interface optiquement fonctionnelle (11) par laquelle le faisceau laser (100) peut sortir de l'ensemble de lentilles (1), au moins une des deux interfaces optiquement fonctionnelles (10, 11) comprenant une pluralité de moyens formant lentilles (3) conçus pour diviser le faisceau laser (100) en une pluralité de faisceaux partiels (101, 102, 03), et - un deuxième ensemble de lentilles (2) qui est disposé en aval du premier ensemble de lentilles (1) dans le trajet de rayonnement, et qui est doté d'une première interface optiquement fonctionnelle (20) par laquelle les faisceaux partiels (101, 102, 103) peuvent entrer dans le deuxième ensemble de lentilles (2), et d'une deuxième interface optiquement fonctionnelle (21) par laquelle les faisceaux partiels (101, 102, 03) peuvent sortir du deuxième ensemble de lentilles (2); au moins une des deux interfaces optiquement fonctionnelles (20, 21) comportant une pluralité de moyens formant lentilles (4) qui permettent la réfraction des faisceaux partiels (101, 102, 103); les moyens formant lentilles (3) du premier ensemble de lentilles (1) étant conçus de telle façon qu'ils divisent le faisceau laser (100) en une pluralité de faisceaux partiels (101, 102, 103) et permettent leur mise en forme de manière que les faisceaux partiels (101, 102, 103) puissent éclairer de façon sensiblement homogène les moyens formant lentilles (4) du deuxième ensemble de lentilles (2).
EP14707789.5A 2013-03-13 2014-03-04 Dispositif d'homogénéisation d'un faisceau laser Withdrawn EP2972562A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013102553.6A DE102013102553B4 (de) 2013-03-13 2013-03-13 Vorrichtung zur Homogenisierung von Laserstrahlung
PCT/EP2014/054164 WO2014139835A1 (fr) 2013-03-13 2014-03-04 Dispositif d'homogénéisation d'un faisceau laser

Publications (1)

Publication Number Publication Date
EP2972562A1 true EP2972562A1 (fr) 2016-01-20

Family

ID=50193519

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14707789.5A Withdrawn EP2972562A1 (fr) 2013-03-13 2014-03-04 Dispositif d'homogénéisation d'un faisceau laser

Country Status (7)

Country Link
US (1) US10025108B2 (fr)
EP (1) EP2972562A1 (fr)
JP (1) JP6467353B2 (fr)
KR (1) KR20150143436A (fr)
CN (1) CN105143962B (fr)
DE (1) DE102013102553B4 (fr)
WO (1) WO2014139835A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015115064A1 (de) * 2015-09-08 2017-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beleuchtungseinheit und Vorrichtung zur lithografischen Belichtung
DE102017108936A1 (de) * 2017-04-26 2018-10-31 Trumpf Laser Gmbh Homogenisierung von Pumplaserstrahlung
US10748737B2 (en) * 2017-10-10 2020-08-18 Kla-Tencor Corporation Electron beam generation and measurement
JPWO2019182073A1 (ja) * 2018-03-20 2021-04-08 Agc株式会社 ホモジェナイザ、照明光学系および照明装置
DE102018211972B4 (de) * 2018-07-18 2020-04-23 Trumpf Laser Gmbh Optische Anordnung zur variablen Erzeugung eines Multifoki-Profils, sowie Verfahren zum Betrieb und Verwendung einer solchen Anordnung
JP7507356B2 (ja) * 2019-12-09 2024-06-28 パナソニックIpマネジメント株式会社 光源装置
CN212618084U (zh) * 2020-04-30 2021-02-26 华域视觉科技(上海)有限公司 光学透镜、光学透镜组、车灯系统及车辆
DE102020114077A1 (de) * 2020-05-26 2021-12-02 Limo Display Gmbh Vorrichtung zur Homogenisierung von Laserlicht und Anordnung einer Mehrzahl derartiger Vorrichtungen
KR102425180B1 (ko) * 2020-07-15 2022-07-29 (주)프로옵틱스 라인빔 형성장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066706A2 (fr) * 2004-12-22 2006-06-29 Carl Zeiss Laser Optics Gmbh Systeme d'eclairage optique pour formation de faisceaux lineaires

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438368C3 (de) * 1994-10-27 2003-12-04 Fraunhofer Ges Forschung Anordnung zur Führung und Formung von Strahlen eines geradlinigen Laserdiodenarrays
JP4588153B2 (ja) 1999-03-08 2010-11-24 株式会社半導体エネルギー研究所 レーザー照射装置
DE19915000C2 (de) * 1999-04-01 2002-05-08 Microlas Lasersystem Gmbh Vorrichtung und Verfahren zum Steuern der Intensitätsverteilung eines Laserstrahls
US6567219B1 (en) * 1999-08-13 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
GB0019454D0 (en) * 2000-08-09 2000-09-27 Stevens Brian T Laser system
DE10049557B4 (de) * 2000-10-06 2004-09-02 Microlas Lasersystem Gmbh Vorrichtung zum Umwandeln der Intensitätsverteilung eines Laserstrahls
JP2003131165A (ja) 2001-10-25 2003-05-08 Sony Corp レーザー光源を備えた照明装置及び画像表示装置
JP4207478B2 (ja) * 2002-07-12 2009-01-14 株式会社ニコン オプティカルインテグレータ、照明光学装置、露光装置および露光方法
DE10327733C5 (de) * 2003-06-18 2012-04-19 Limo Patentverwaltung Gmbh & Co. Kg Vorrichtung zur Formung eines Lichtstrahls
DE102004020250A1 (de) * 2004-04-26 2005-11-10 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Vorrichtung und Verfahren zur optischen Strahlhomogenisierung
JP4865382B2 (ja) 2005-04-01 2012-02-01 株式会社半導体エネルギー研究所 ビームホモジナイザ及びレーザ照射装置
JP4650837B2 (ja) 2005-09-22 2011-03-16 住友電気工業株式会社 レーザ光学装置
JP4509975B2 (ja) 2005-10-14 2010-07-21 大日本印刷株式会社 光制御シート、面光源装置、透過型表示装置
DE102006047941B4 (de) * 2006-10-10 2008-10-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Homogenisierung von Strahlung mit nicht regelmäßigen Mikrolinsenarrays
WO2008087012A1 (fr) * 2007-01-15 2008-07-24 Limo Patentverwaltung Gmbh & Co. Kg Dispositif pour homogénéiser la lumière et dispositif pour produire une distribution linéaire de l'intensité dans un plan de travail
DE102009021251A1 (de) 2009-05-14 2010-11-18 Limo Patentverwaltung Gmbh & Co. Kg Vorrichtung zur Formung von Laserstrahlung sowie Laservorrichtung mit einer derartigen Vorrichtung
JP2011091177A (ja) * 2009-10-22 2011-05-06 V Technology Co Ltd レーザ露光装置
US8596823B2 (en) * 2010-09-07 2013-12-03 Coherent, Inc. Line-projection apparatus for arrays of diode-laser bar stacks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066706A2 (fr) * 2004-12-22 2006-06-29 Carl Zeiss Laser Optics Gmbh Systeme d'eclairage optique pour formation de faisceaux lineaires

Also Published As

Publication number Publication date
KR20150143436A (ko) 2015-12-23
JP6467353B2 (ja) 2019-02-13
JP2016512614A (ja) 2016-04-28
WO2014139835A1 (fr) 2014-09-18
US10025108B2 (en) 2018-07-17
DE102013102553B4 (de) 2020-12-03
CN105143962B (zh) 2019-03-05
US20160011426A1 (en) 2016-01-14
CN105143962A (zh) 2015-12-09
DE102013102553A1 (de) 2014-09-18

Similar Documents

Publication Publication Date Title
DE102013102553B4 (de) Vorrichtung zur Homogenisierung von Laserstrahlung
EP1839083B1 (fr) Dispositif d'homogeneisation de la lumiere
WO2009146949A1 (fr) Dispositif et procédé de mise en forme de faisceau
DE102009021251A1 (de) Vorrichtung zur Formung von Laserstrahlung sowie Laservorrichtung mit einer derartigen Vorrichtung
EP2681605B1 (fr) Ensemble optique et procédé de balayage optique d'un plan d'objet au moyen d'un système d'imagerie à plusieurs canaux
DE102007061358B4 (de) Vorrichtung zur Formung von Laserstrahlung
EP3317580B1 (fr) Module d'éclairage pour un phare de véhicule
EP2976672B1 (fr) Dispositif d'homogénéisation d'un rayon laser
EP2972548B1 (fr) Dispositif d'eclairage pour une barrette de diodes laser
DE102012107456A1 (de) Anordnung zur Formung von Laserstrahlung
EP2996835A1 (fr) Dispositif d'application d'un rayonnement laser sur la face extérieure d'un composant symétrique en rotation
EP3577514B1 (fr) Procédé pour la collimation d'un rayonnement lumineux, laser haute puissance et optique de focalisation et procédé de collimation d'un rayonnement lumineux
DE102012203683B4 (de) Projektionsvorrichtung
DE102021130604B3 (de) Vorrichtung zur Formung einer Laserstrahlung und Laservorrichtung
DE102013007541B4 (de) Zylinderlinsenarray und Optikbaugruppe mit Zylinderlinsenarray
DE102017113947A1 (de) Modulares optisches Baukastensystem für kollimierte Top-Hat Verteilung
DE102020202549B4 (de) Optische Anordnung mit einem F-Theta-Objektiv
DE102022118491A1 (de) Optische Anordnung zur Umwandlung eines Eingangslaserstrahls in einen linienartigen Ausgangsstrahls
DE10345177B3 (de) Linsensystem zum Homogenisieren von Laserpulsen
DE102011102588A1 (de) Optische Anordnung zum Umformen eines einfallenden Lichtstrahlbündels, Verfahren zum Umformen eines Lichtstrahlbündels zu einem Linienfokus sowie optische Vorrichtung dafür
EP2880485A2 (fr) Dispositif de scannage achromatique avec objectif f-thêta monochromatique
WO2023111137A1 (fr) Dispositif laser
DE102022110651A1 (de) Kompaktes optisches Spektrometer
WO2014083158A1 (fr) Dispositif de balayage destiné à balayer un faisceau laser au sein d'un plan de travail
DE102012012992A1 (de) Laservorrichtung sowie Vorrichtung und Verfahren zur Formung von Laserstrahlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LIMO GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190719

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211027