EP2963660A1 - Ungesteuerter wechselstromentmagnetisierer - Google Patents

Ungesteuerter wechselstromentmagnetisierer Download PDF

Info

Publication number
EP2963660A1
EP2963660A1 EP15172263.4A EP15172263A EP2963660A1 EP 2963660 A1 EP2963660 A1 EP 2963660A1 EP 15172263 A EP15172263 A EP 15172263A EP 2963660 A1 EP2963660 A1 EP 2963660A1
Authority
EP
European Patent Office
Prior art keywords
circuit
capacitor
parallel
uncontrolled
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15172263.4A
Other languages
English (en)
French (fr)
Other versions
EP2963660B1 (de
Inventor
Albert Maurer
Marek Rohner
Boris Ziegenhagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2963660A1 publication Critical patent/EP2963660A1/de
Application granted granted Critical
Publication of EP2963660B1 publication Critical patent/EP2963660B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/006Methods and devices for demagnetising of magnetic bodies, e.g. workpieces, sheet material

Definitions

  • the present invention describes an uncontrolled Kirstrommagnetmagnetierer, comprising an AC circuit and an AC voltage source, wherein the AC circuit by means of actuation of a switch, the AC loading of a parallel resonant circuit, comprising a demagnetization and a demagnetizer parallel-connected parallel capacitor allows.
  • uncontrolled Konstromentmagnetisierer For degaussing ferromagnetic components or components with ferromagnetic components, uncontrolled Konstromentmagnetisierer be used for some time.
  • an alternating current flow is generated by at least one inductance and thereby an alternating magnetic field in the vicinity of the inductance.
  • the uncontrolled AC magneto In order to generate sufficiently high alternating magnetic fields, the uncontrolled AC magneto must be designed such that a current flow of several amps through the at least one inductor safely can flow.
  • the uncontrolled Schoolsstrommagnetmagnetierer usually available in the form of Plattenentmagnetisierern or handheld demagnetizers are manually operated and handy, with a simple electronic circuit is used.
  • the alternating alternating voltage can be easily switched on and off by means of a switch, wherein after switching on, the alternating voltage is applied uncontrolled to the at least one inductor and the corresponding alternating magnetic field is induced until it is switched off.
  • the alternating magnetic field has a defined amplitude and a constant frequency, defined by the applied alternating voltage.
  • the at least one inductance in the form of a correspondingly designed coil is usually magnetically coupled to C / E cores of ferromagnetic material.
  • the coils can be covered with plates, which also protects the coil.
  • the plates can each still be provided with a special coating, so that the components can slide over the plates almost smoothly.
  • a parallel resonant circuit comprising a parallel capacitor and a demagnetizing coil is used. After excitation of the parallel resonant circuit and switching off the supply of alternating voltage oscillates this, the Current amplitude automatically oscillates to zero and thus a magnetic alternating field with decreasing amplitude can be easily generated without control.
  • the parallel resonant circuit is applied after turning on a switch with an AC voltage, whereby the demagnetization process can be started.
  • a demagnetizing component is moved over the plate surface of the Plattenentmagnetisierers manually or for example by a transport device, wherein the component is moved into and out of the field lines again. For best demagnetization this should be done by approaching the Plattenentmagnetisierer, sweeping the plate as perpendicular to the pole transition of the C- or E-core Entmagnetisierpule and as far as possible removal of the component from the plate and thus from the field of magnetic field lines.
  • the demagnetizing process is carried out, optimum demagnetizing results can be obtained. In reality, however, the process looks different as part of a production process.
  • a hand demagnetizer If a hand demagnetizer is used, then in the optimal case, after being switched on, it is guided to a component to be demagnetized, then moved as uniformly as possible over the surface of the component at a minimum distance, and the hand demagnetizer is then removed continuously from the component. Due to the high alternating magnetic field, a continuous movement with a constant distance to the component is often not easy. The hand demagnetizer partially sticks firmly to the surface of the component and can only be moved jerkily. For simplicity, the hand demagnetizer is simply turned off to move it away from the surface. Again, unwanted residual magnetic fields remain in the component.
  • the component appears to be demagnetized because demagnetization has been performed from power on to turn off.
  • the resulting disturbing residual magnetic field is usually higher than before the demagnetization process.
  • the demagnetization process must be fast be performed and the competent persons often have no idea of the processes in the demagnetization, resulting in components with strong residual magnetism.
  • the prior art has gone from uncontrolled AC magnetic solenoids to more sophisticated electronically controlled automated demagnetizers. These are much more expensive and more complicated, but offer the user after placing the demagnetizing component the possibility of passing a controlled demagnetization curve.
  • the alternating magnetic field is controlled down controlled, with a residual magnetism within the component is achievable, which is less than the strength of the earth's magnetic field.
  • the controlled demagnetizers in the premium segment are extremely easy to use, which virtually eliminates errors during demagnetization.
  • This circuit can also be used for demagnetization coils, for example tunnel demagnetizers, which have no coupling due to an additional ferromagnetic laminated core.
  • the parts to be demagnetized themselves produce the magnetic coupling.
  • the Parts are de-magnetized through or over the opening of the coil.
  • the present invention has for its object to provide simple and inexpensive uncontrolled Konstromentmagnetisierer with which the error rate of demagnetization also by users who have no idea of the processes during demagnetization to minimize.
  • the inventive solution can be integrated with little additional effort in conventional hand, plate or Tunnelentmagnetisierer.
  • the considerably more complex and expensive version with external power modules or control units for pulse / ramp control is thus eliminated.
  • An uncontrolled alternating current magnetizer 1 is described, which can also be used by laypersons to carry out an optimized, less fault-prone demagnetization method.
  • the alternating current magnetizer 1 has an AC circuit 10, which may be mounted in a housing 11.
  • the AC circuit 10 includes a parallel resonant circuit P having a demagnetizing coil L as an inductance and a parallel capacitor C1 as a capacitance. Both components are connected in parallel.
  • the demagnetizing coil L consists of a plurality of turns, which are advantageously wound as closely as possible so that high magnetic field strengths can be achieved and, depending on the embodiment, can have a cylindrical or rectangular design.
  • the parallel capacitor C1 is usually chosen as the standard motor capacitor. Typical capacitances of the parallel capacitor C1 are between 4 ⁇ F and 40 ⁇ F.
  • the parallel resonant circuit P is fed by an AC voltage source 100 which is likewise arranged parallel to the demagnetizing coil L and to the parallel capacitor C1, wherein an AC voltage having a constant frequency f and an AC voltage amplitude UAC can be acted upon by means of the AC voltage source 100.
  • the alternating voltage induces a current flow and a resulting alternating magnetic field in the demagnetizing coil L.
  • the frequency f can be the mains frequency of 50 Hz or 60 Hz in the simplest case, while the alternating amplitude should be constant.
  • the AC circuit 10 is made switchable by a switch S, wherein when the switch S is applied, the AC voltage at the parallel resonant circuit.
  • demagnetization of the AC circuit 10 is acted upon by turning on the switch S with the AC voltage.
  • An alternating magnetic field builds up in the region of the demagnetizing coil L.
  • Demagnetizing components 13 are subsequently guided along a plate side 12 on the demagnetizer or the demagnetizer on the components 13 to be demagnetized.
  • the demagnetizing components 13 dive into the alternating magnetic field and then move away from the alternating magnetic field, resulting in demagnetized components 14 with almost no residual magnetic field.
  • the invention is based on the idea by circuitry measures to minimize incorrect manipulation during demagnetization and thereby increase process reliability.
  • a semiconductor device D is integrated into the AC circuit 10, which is connected in series with the AC voltage source 100 and by means of the switch S is actuated.
  • the semiconductor device D is a triac, with which the alternating current in the AC circuit 10 controlled while avoiding a switch-on current pulse can be turned on.
  • the semiconductor device D is a current-limiting semiconductor device D, which switches the AC voltage in the zero crossing, whereby a high inrush current, which would arise due to the parallel capacitor C1, is avoided in the AC circuit 10.
  • a series capacitor C2 is connected in series with the demagnetizing coil L and thus arranged within the parallel resonant circuit P.
  • the series capacitor C2 prevents a current breakdown, which can occur during operation of the uncontrolled demagnetizer 1 by manipulating the inductance of the demagnetizing coil L by approaching the demagnetizing ferromagnetic components 13.
  • the series capacitor C2 is a standard motor capacitor.
  • parallel capacitor C1 and series capacitor C2 are configured identically.
  • the time course of a demagnetization is based on FIG. 2 explained.
  • the uncontrolled demagnetizer 1 is switched on by means of switch S at a time t0.
  • the AC circuit 10 is only at zero crossing of the AC voltage UAC time-delayed at time t1 applied to the AC voltage UAC, whereby the inrush current due to the capacitor C1 is effectively limited and the switch-on phase I passes into a mains-powered phase II ,
  • the alternating voltage UAC with a frequency f and defined amplitude leads to an alternating current in the alternating current circuit 10 and an alternating magnetic field induced in the demagnetizing coil L with a magnetic field amplitude A with frequency f.
  • the component to be demagnetized 13 is preferably only during the mains-powered phase II, which usually takes a few seconds, in the region of the demagnetizing coil L past the uncontrolled demagnetizer 1.
  • the switch S After passing the component to be demagnetized 13 and demagnetization, the switch S is switched at a time t3, whereby a switch-off phase III is started.
  • the AC voltage UAC is separated from the AC circuit 10 and there is a decay of the parallel resonant circuit P with the resonant frequency f0 of the parallel resonant circuit P to a magnetic field amplitude A of zero at a time t4.
  • the resonant frequency f0 of the resonant circuit is greater than the excitation frequency f of the AC voltage UAC.
  • the parallel resonant circuit consists of C1, C2 and L in this phase.
  • the AC voltage source 100 preferably supplies a constant peak-to-peak AC voltage amplitude UAC and the frequency f of the AC voltage is freely adjustable to a constant value in a frequency range of approximately 1 Hz to 100 Hz, so that the AC voltage source 100 for the desired demagnetization results at excitation frequencies f of 1 Hz to 100 Hz can be used.
  • the AC voltages with 50Hz and 230V or 60Hz and 115V supplies.
  • the semiconductor device D may be formed of a plurality of thyristors, which are connected accordingly.
  • two thyristors are connected in anti-parallel to each other.
  • the capacitances of the capacitors C1 and C2 and the inductance of the demagnetizing coil L should be chosen such that the resonant frequency f0 of the parallel resonant circuit P is approximately a factor of 2 to 4 times greater than the mains frequency of 50 Hz or 60 Hz should.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Treatment Devices (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

Bei einem ungesteuerter Wechselstromentmagnetisierer (1), umfassend einen Wechselstromschaltkreis (10) und eine Wechselspannungsquelle (100), wobei der Wechselstromschaltkreis (10) mittels Betätigung eines Schalters (S) die Wechselspannungsbeaufschlagung eines Parallelschwingkreises (P), umfassend eine Entmagnetisierspule (L) und einen zur Entmagnetisierspule (L) parallel geschalteten Parallelkondensator (C1) erlaubt, soll die Möglichkeit geschaffen werden die Fehleranfälligkeit beim Entmagnetisieren auch von Anwendern, die keine Kenntnis der Abläufe während des Entmagnetisierens haben, zu minimieren. Dies wird dadurch erreicht, dass der Wechselstrom in der Induktivität L beim Ausschalten des Halbleiterelements D frei ausschwingt. Zur Begrenzung des Einschaltstromstosses aufgrund des parallelen Kondensators C1 ist mindestens ein elektronisches Bauteil (D) in Reihe zur Wechselspannungsquelle (100) angeordnet und mittels Schalter (S) bedienbar. Der Wechselstromschaltkreis (10) wird dabei exakt im Nulldurchgang der Wechselspannungsquelle (100) eingeschaltet. Zweckmässig ist ein Seriekondensator (C2) in Serie mit der Entmagnetisierspule (L) im Wechselstromschaltkreis (10) verschaltet.

Description

    Technisches Gebiet
  • Die vorliegende Erfindung beschreibt einen ungesteuerten Wechselstromentmagnetisierer, umfassend einen Wechselstromschaltkreis und eine Wechselspannungsquelle, wobei der Wechselstromschaltkreis mittels Betätigung eines Schalters die Wechselspannungsbeaufschlagung eines Parallelschwingkreises, umfassend eine Entmagnetisierspule und einen zur Entmagnetisierspule parallel geschalteten Parallelkondensator, erlaubt.
  • Stand der Technik
  • Zur Entmagnetisierung ferromagnetischer Bauteile bzw. von Bauteilen mit ferromagnetischen Anteilen, werden seit geraumer Zeit ungesteuerte Wechselstromentmagnetisierer verwendet.
  • Mittels einer Wechselspannung, welche üblicherweise mit der Netzfrequenz alterniert, wird ein alternierender Stromfluss durch mindestens eine Induktivität erzeugt und dadurch ein alternierendes Magnetfeld in der Umgebung der Induktivität. Um ausreichend hohe alternierende Magnetfelder zu erzeugen, muss der ungesteuerte Wechselstromentmagnetisierer derart ausgelegt sein, dass ein Stromfluss von einigen Ampere durch die mindestens eine Induktivität gefahrlos fliessen kann. Die meist in Form von Plattenentmagnetisierern oder Handentmagnetisierern erhältlichen ungesteuerten Wechselstromentmagnetisierer sind manuell bedienbar und handlich ausgeführt, wobei eine einfache elektronische Schaltung genutzt wird. Die alternierende Wechselspannung ist mittels eines Schalters einfach ein- und ausschaltbar, wobei nach dem Einschalten die Wechselspannung ungesteuert an der mindestens einen Induktivität anliegt und das entsprechend alternierende Magnetfeld bis zum Ausschalten induziert wird. Das magnetische Wechselfeld weist im Betrieb eine definierter Amplitude und eine konstante Frequenz auf, definiert durch die anliegende Wechselspannung.
  • Die mindestens eine Induktivität in Form einer entsprechend ausgelegten Spule ist üblicherweise mit C-/ E- Kernen aus ferromagnetischem Material magnetisch gekoppelt. Zur Verstärkung der Magnetfeldwirkung können die Spulen mit Platten abgedeckt werden, wodurch die Spule auch geschützt wird.. Die Platten können jeweils noch mit einer Spezialbeschichtung versehen sein, sodass ein Gleiten der Bauteile über die Platten nahezu reibungslos erfolgen kann.
  • Im technisch einfachsten Fall der Ausgestaltung eines Plattenentmagnetisierers oder eines Handentmagnetisierers wird ein Parallelschwingkreis, umfassend einen Parallelkondensator und eine Entmagnetisierspule genutzt. Nach Anregung des Parallelschwingkreises und Ausschalten der Versorgung mit Wechselspannung schwingt dieser, wobei die Stromamplitude automatisch auf Null ausschwingt und somit ein magnetisches Wechselfeld mit abnehmender Amplitude einfach ohne Steuerung erzeugt werden kann. Wie in der US2240749 beschrieben wird der Parallelschwingkreis nach dem Einschalten eines Schalters mit einer Wechselspannung beaufschlagt, wodurch der Entmagnetisierprozess gestartet werden kann.
  • Während der elektrotechnische Aufbau beider ungesteuerter Entmagnetisierer identisch ist, ist die Verwendung unterschiedlich. In beiden Fällen wird aber eine Relativbewegung des zu entmagnetisierenden Bauteils zum Entmagnetisierer erzeugt.
  • Nach Einschalten des Plattenentmagnetisierers wird ein zu entmagnetisierendes Bauteil über die Plattenfläche des Plattenentmagnetisierers manuell oder beispielweise durch eine Transportvorrichtung bewegt, wobei das Bauteil in die Feldlinien hinein und aus diesen wieder hinaus bewegt wird. Zur bestmöglichen Entmagnetisierung sollte dies durch ein Annähern an den Plattenentmagnetisierer, ein Überstreichen der Platte möglichst senkrecht zum Polübergang der C- bzw. E-Kern-Entmagnetisierpule und ein möglichst weites Entfernen des Bauteils von der Platte und damit aus dem Bereich der Magnetfeldlinien erfolgen. Wenn das Entmagnetisierverfahren so durchgeführt wird, können optimale Entmagnetisierergebnisse erzielt werden. In der Realität sieht der Vorgang als Teil eines Produktionsprozesses aber anders aus. Durch eine zu kurze Auslaufstrecke der Bauteile vom Plattenentmagnetisierer weg, bleiben teilweise Restmagnetfelder im Bauteil stehen. Auch ist es üblich den Plattenentmagnetisierer bereits auszuschalten, obwohl das Bauteil noch nicht aus dem Bereich der Magnetfeldlinien entfernt wurde. Da diese Fehlbehandlung dem Bauteil nicht angesehen werden kann und häufig keine Magnetfeldmessgeräte zur Überprüfung der Entmagnetisierung vorhanden sind, bleiben diese Fehler unentdeckt.
  • Wird ein Handentmagnetisierer verwendet so wird dieser im optimalen Fall nach dem Einschalten an ein zu entmagnetisierendes Bauteil geführt, im Weiteren in einem minimalen Abstand möglichst gleichmässig über die Oberfläche des Bauteils bewegt und der Handentmagnetisierer danach kontinuierlich vom Bauteil entfernt. Aufgrund des hohen magnetischen Wechselfeldes ist eine kontinuierliche Bewegung mit möglichst konstantem Abstand zum Bauteil oft nicht einfach möglich. Der Handentmagnetisierer klebt teilweise förmlich fest an der Oberfläche des Bauteils und kann nur ruckartig bewegt werden. Zur Vereinfachung wird der Handentmagnetisierer einfach ausgeschaltet, um ihn von der Oberfläche weg zu bewegen. Auch hier bleiben ungewünschte Restmagnetfelder im Bauteil zurück.
  • Das Bauteil scheint entmagnetisiert, da der Entmagnetisiervorgang vom Einschalten bis zum Ausschalten durchgeführt wurde. Das resultierende störende Restmagnetfeld ist aber in der Regel höher als vor der Durchführung des Entmagnetisiervorganges. In der Produktion muss der Entmagnetisiervorgang zügig durchgeführt werden und da die zuständigen Personen oft keine Ahnung von den Vorgängen bei der Entmagnetisierung haben, resultieren Bauteile mit starkem Restmagnetismus.
  • Um eine gesicherte Entmagnetisierung ferromagnetischer Bauteile zu schaffen, ist der Stand der Technik weg von ungesteuerten Wechselstromentmagnetisierern hin zu aufwändigeren elektronisch gesteuerten automatisierten Entmagnetisiervorrichtungen übergegangen. Diese sind wesentlich teurer und komplizierter aufgebaut, bieten aber dem Anwender nach Platzierung des zu entmagnetisierenden Bauteils die Möglichkeit des Durchlaufs einer gesteuerten Entmagnetisierkurve. Dabei wird das alternierende Magnetfeld kontrolliert heruntergeregelt, wobei ein Restmagnetismus innerhalb des Bauteils erreichbar ist, welcher geringer als die Stärke des Erdmagnetfeldes ist. Die gesteuerten Entmagnetisierer im Premiumsegment sind äusserst einfach zu bedienen, womit Fehler beim Entmagnetisieren nahezu ausgeschlossen sind.
  • Für einige Anwendungen und für viele Anwender ist der Erwerb einer derartigen gesteuerten automatisierten Entmagnetisiervorrichtungen aber zu teuer und die Anschaffungskosten werden auf Kosten der Qualität gescheut.
    Diese Schaltung ist auch für Entmagnetisierspulen, z.B. Tunnelentmagnetisierer einsetzbar, welche keine Koppelung durch eine zusätzliches Ferromagnetisches Blechpaket besitzen. Die zu entmagnetisierenden Teile stellen dabei selber die magnetische Kopplung her. Die Teile werden zum entmagnetisieren durch oder über die Öffnung der Spule geführt.
  • Darstellung der Erfindung
  • Die vorliegende Erfindung hat sich zur Aufgabe gestellt einfache und kostengünstige ungesteuerte Wechselstromentmagnetisierer zu schaffen, mit welchen die Fehleranfälligkeit beim Entmagnetisieren auch von Anwendern, die keine Ahnung der Abläufe während des Entmagnetisierens haben, zu minimieren.
  • Die erfindungsgemässe Lösung lässt sich mit geringem Zusatzaufwand in übliche Hand-, Platten- bzw. Tunnelentmagnetisierer integrieren. Die deutlich aufwändigere und teurere Variante mit externen Leistungsmodulen bzw. Steuergeräten zur Puls- / Rampensteuerung entfällt somit.
  • Durch den erfindungsgemässen ungesteuerten Wechselstromentmagnetisierer wird eine gute Prozesssicherheit erreicht, wobei Fehlmanipulation minimiert sind.
  • Kurze Beschreibung der Zeichnungen
  • Ein bevorzugtes Ausführungsbeispiel des Erfindungsgegenstandes wird nachstehend im Zusammenhang mit den anliegenden Zeichnungen beschrieben.
  • Figur 1
    zeigt eine schematische Ansicht einer elektronischen Schaltung eines erfindungsgemässen ungesteuerten Wechselstromentmagnetisierers.
    Figur 2
    zeigt den zeitlichen Verlauf der alternierenden Magnetfeldamplitude bei Betrieb des ungesteuerten Wechselstromentmagnetisierers in einer schematischen Ansicht während des Einschaltens, dem Netzbetrieb und der Ausschaltphase, wobei der Netzbetrieb stark verkürzt dargestellt ist.
  • Es wird ein ungesteuerter Wechselstromentmagnetisierer 1 beschrieben, welcher zur Durchführung eines optimierten weniger störanfälligen Entmagnetisierverfahrens auch von Laien einsetzbar ist.
  • Der Wechselstromentmagnetisierer 1 weist einen Wechselstromschaltkreis 10 auf, welcher in einem Gehäuse 11 gelagert sein kann. Der Wechselstromschaltkreis 10 umfasst einen Parallelschwingkreis P mit einer Entmagnetisierspule L als Induktivität und einem Parallelkondensator C1 als Kapazität. Beide Bauteile sind parallel zueinander geschaltet. Die Entmagnetisierspule L besteht aus einer Mehrzahl von Windungen, die vorteilhaft möglichst eng gewickelt sind, damit hohe magnetische Feldstärken erreichbar sind und kann je nach Ausführungsform eine zylindrische oder rechteckige Bauform aufweisen. Der Parallelkondensator C1 wird üblicherweise als Standard Motorkondensator gewählt. Typische Kapazitäten des Parallelkondensators C1 liegen zwischen 4µF und 40µF.
  • Der Parallelschwingkreis P wird durch eine ebenfalls parallel zur Entmagnetisierspule L und zum Parallelkondensator C1 angeordnete Wechselspannungsquelle 100 gespeist, wobei mittels der Wechselspannungsquelle 100 eine Wechselspannung mit einer konstanten Frequenz f und einer Wechselspannungsamplitude UAC beaufschlagbar ist. Dabei induziert die Wechselspannung im Betrieb in der Entmagnetisierspule L einen Stromfluss und ein daraus resultierendes magnetisches Wechselfeld.
  • Da für ungesteuerte Wechselstromentmagnetisierer 1 und damit durchgeführte Entmagnetisierverfahren keine aktive Regelung benötigt wird, werden keine hohen Anforderungen an die Wechselspannungsquelle 100 gestellt. Die Frequenz f kann im einfachsten Fall die Netzfrequenz von 50 Hz bzw. 60 Hz sein, während die Wechselamplitude konstant sein sollte.
    Der Wechselstromschaltkreis 10 ist durch einen Schalter S schaltbar ausgeführt, wobei bei eingeschaltetem Schalter S die Wechselspannung am Parallelschwingkreis anliegt.
  • Zur Entmagnetisierung wird der Wechselstromschaltkreis 10 durch Einschalten des Schalters S mit der Wechselspannung beaufschlagt. Ein magnetisches Wechselfeld baut sich im Bereich der Entmagnetisierspule L auf. Zu entmagnetisierende Bauteile 13 werden anschliessend entlang einer Plattenseite 12 am Entmagnetisierer bzw. der Entmagnetisierer an den zu entmagnetisierenden Bauteilen 13 vorbeigeführt. Die zu entmagnetisierenden Bauteile 13 tauchen dabei in das magnetische Wechselfeld ein und entfernen sich anschliessend vom magnetischen Wechselfeld, wobei entmagnetisierte Bauteile 14 nahezu ohne Restmagnetfeld resultieren.
  • Der Erfindung liegt die Idee zugrunde durch schaltungstechnische Massnahmen Fehlmanipulationen beim Entmagnetisiervorgang zu minimieren und die Prozesssicherheit dadurch zu erhöhen.
  • Durch die Anordnung spezieller schaltungstechnischer Komponenten bzw. Massnahmen, wird verhindert, dass beim Einschalten und beim Ausschalten Strompulse bzw. Unstetigkeiten des resultierenden Wechselstromes zu unerwünschter Aufmagnetisierung der zu entmagnetisierenden Bauteile 13 führen.
  • Wie in Figur 1 erkennbar, wird ein Halbleiterbauelement D in den Wechselstromschaltkreis 10 integriert, welches in Reihe mit der Wechselspannungsquelle 100 geschaltet ist und mittels des Schalters S betätigbar ist. Bevorzugt ist das Halbleiterbauelement D ein Triac, mit welchem der Wechselstrom im Wechselstromschaltkreis 10 kontrolliert unter Vermeidung eines Einschaltstromimpulses eingeschaltet werden kann. Entsprechend ist das Halbleiterbauelement D ein einschaltstrombegrenzendes Halbleiterbauelement D, welches die Wechselspannung im Nulldurchgang schaltet, womit ein hoher Einschaltstromstoss, welcher sich aufgrund des Parallelkondensators C1 ergeben würde, im Wechselstromschaltkreis 10 vermieden wird. Somit ist ein frühzeitiger Ausfall des Halbleiterelementes D oder eines alternativ einsetzbaren, herkömmlichen mechanischen Schalters, aufgrund der hohen Einschaltströme verhindert.
  • Um ein ungewünschtes Aufmagnetisieren von zu entmagnetisierenden Bauteilen 13 beim Ausschalten des ungesteuerten Entmagnetisierers 1 zu verhindern, ist ein Seriekondensator C2 in Reihe zur Entmagnetisierspule L geschaltet und damit innerhalb des Parallelschwingkreises P angeordnet. Der Serienkondensator C2 verhindert einen Stromzusammenbruch, der im Betrieb des ungesteuerten Entmagnetisierers 1 durch Manipulation der Induktivität der Entmagnetisierspule L durch Annäherung zu entmagnetisierender ferromagnetischer Bauteile 13, auftreten kann. Vorzugsweise ist der Seriekondensator C2 ein Standard Motorkondensator. Besonders bevorzugt werden Parallelkondensator C1 und Serienkondensator C2 identisch ausgestaltet.
  • Anhand eines Ein- und Ausschaltspektrums 2 wird der zeitliche Verlauf eines Entmagnetisierprozesses anhand Figur 2 erläutert. Um einen Entmagnetisiervorgang zu starten, wird zu einem Zeitpunkt t0 der ungesteuerte Entmagnetisierer 1 mittels Schalter S eingeschaltet. Damit beginnt eine Einschaltphase I. Aufgrund des Halbleiterbauelementes D wird der Wechselstromkreis 10 erst bei Nulldurchgang der Wechselspannung UAC zeitverzögert zur Zeit t1 mit der Wechselspannung UAC beaufschlagt, wodurch der Einschaltstromstoss aufgrund des Kondensators C1 wirksam begrenzt wird und die Einschaltphase I in eine netzbetriebene Phase II übergeht.
  • In dieser netzbetriebenen Phase II führt die Wechselspannung UAC mit einer Frequenz f und definierter Amplitude zu einem Wechselstrom im Wechselstromschaltkreis 10 und einem in der Entmagnetisierspule L induzierten Wechselmagnetfeld mit einer Magnetfeldamplitude A mit Frequenz f. Das zu entmagnetisierende Bauteil 13 wird bevorzugt erst während der netzbetriebenen Phase II, welche üblicherweise einige Sekunden dauert, im Bereich der Entmagnetisierspule L am ungesteuerten Entmagnetisierer 1 vorbeigeführt.
  • Nach Vorbeiführen des zu entmagnetisierenden Bauteils 13 und erfolgter Entmagnetisierung wird der Schalter S zu einem Zeitpunkt t3 umgelegt, womit eine Ausschaltphase III gestartet wird. Die Wechselspannung UAC wird vom Wechselstromschaltkreis 10 getrennt und es erfolgt ein Ausschwingen des Parallelschwingkreises P mit der Resonanzfrequenz f0 des Parallelschwingkreises P auf eine Magnetfeldamplitude A von Null zu einer Zeit t4. Wie in Figur 2 angedeutet, ist die Resonanzfrequenz f0 des Schwingkreises grösser als die Anregungsfrequenz f der Wechselspannung UAC.
  • Selbst wenn sich ein zu entmagnetisierendes Bauteil 13 noch während der Ausschaltphase III im Bereich der Entmagnetisierspule L befinden würde, würde keine ungewünschte Aufmagnetisierung erfolgen, da ein automatisches Ausschwingen erfolgt. Der Parallelschwingkreis setzt sich in dieser Phase aus C1, C2 und L zusammen.
  • Bevorzugt liefert die Wechselspannungsquelle 100 eine konstante Spitze-Spitze Wechselspannungsamplitude UAC und die Frequenz f der Wechselspannung ist in einem Frequenzbereich von annähernd 1Hz bis 100Hz frei auf einen konstanten Wert einstellbar, damit die Wechselspannungsquelle 100 für die gewünschten Entmagnetisierergebnisse bei Anregungsfrequenzen f von 1 Hz bis 100 Hz einsetzbar ist. In der Praxis wird das übliche Stromnetz als Wechselspannungsquelle 100 genutzt, das Wechselspannungen mit 50Hz und 230V bzw. 60Hz und 115V liefert.
  • Anstelle eines Triacs kann das Halbleiterbauelement D aus einer Mehrzahl von Thyristoren gebildet sein, welche entsprechend verschaltet sind. Bevorzugt werden zwei Thyristoren antiparallel zueinander geschaltet.
  • Versuche haben gezeigt, dass die Kapazitäten der Kondensatoren C1 und C2, sowie die Induktivität der Entmagnetisierspule L derart gewählt werden sollten, dass die Resonanzfrequenz f0 des Parallelschwingkreises P etwa um einen Faktor 2 bis 4 mal über der Netzfrequenz von 50 Hz bzw. 60 Hz liegen sollte.
  • Bezugszeichenliste
  • 1
    ungesteuerter Wechselstromentmagnetisierer
    10 Wechselstromschaltkreis
    100 Wechselspannungsquelle
    UAC Wechselspannung
    f Anregungsfrequenz (Netzfrequenz 50 / 60Hz)
    fo Resonanzfrequenz
    S Schalter
    C2 Serienkondensator
    C1 Parallelkondensator
    L Entmagnetisierspule (Induktivität)
    D einschaltstrombegrenzendes Halbleiterbauelement
    P Parallelschwingkreis
    11 Gehäuse
    12 Plattenseite
    13 zu entmagnetisierendes Bauteil
    14 entmagnetisiertes Bauteil
    2
    Ein- und Ausschaltspektrum
    A
    Magnetfeldamplitude
    t
    Zeit
    I
    Einschaltphase
    II
    Netzbetriebene Phase
    III
    Ausschaltphase

Claims (6)

  1. Ungesteuerter Wechselstromentmagnetisierer (1), umfassend einen Wechselstromschaltkreis (10) und eine Wechselspannungsquelle (100),
    wobei der Wechselstromschaltkreis (10) mittels Betätigung eines Schalters (S) die Wechselspannungsbeaufschlagung eines Parallelschwingkreises (P), umfassend eine Entmagnetisierspule (L) und einen zur Entmagnetisierspule (L) parallel geschalteten Parallelkondensator (C1), erlaubt,
    dadurch gekennzeichnet, dass
    der Wechselstromschaltkreis (10)
    mindestens ein elektronisches Bauteil (D) in Reihe zur Wechselspannungsquelle (100) angeordnet mittels Schalter (S) bedienbar aufweist, mit welchen der Wechselstromschaltkreis (10) exakt definiert bei Nulldurchgang der Wechselspannung mit Wechselspannung beaufschlagbar ist, wodurch ein Einschaltstrompuls vermeidbar ist,
    und
    einen Serienkondensator (C2) in Serie mit der Entmagnetisierspule (L) im Wechselstromschaltkreis (10) verschaltet aufweist.
  2. Ungesteuerter Wechselstromentmagnetisierer (1) nach Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine elektronische Bauteil (D) ein einschaltstrombegrenzendes Halbleiterbauelement in Form eines Triacs (D) ist.
  3. Ungesteuerter Wechselstromentmagnetisierer (1) nach Anspruch 1, dadurch gekennzeichnet, dass als mindestens ein elektronische Bauteil (D) eine Schaltung mit einer Mehrzahl von Thyristoren, bevorzugt eine Schaltung mit zwei zueinander antiparallel verschalteten Thyristoren als einschaltstrombegrenzendes Halbleiterbauelement gewählt ist.
  4. Ungesteuerter Wechselstromentmagnetisierer (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kapazitäten des Parallelkondensators (C1) und des Serienkondensators (C2), sowie die Induktivität der Entmagnetisierspule (L) derart gewählt sind, dass eine Resonanzfrequenz (f0) des Parallelschwingkreises (P) etwa um einen Faktor 2 bis 4 mal über der Anregungsfrequenz (f) der Wechselspannung (UAC) liegt.
  5. Ungesteuerter Wechselstromentmagnetisierer (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Seriekondensator (C2) ein Motorkondensator ist.
  6. Ungesteuerter Wechselstromentmagnetisierer (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Parallelkondensator (C1) und der Seriekondensator (C2) identisch ausgestaltet sind.
EP15172263.4A 2014-06-24 2015-06-16 Ungesteuerter wechselstromentmagnetisierer Active EP2963660B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00957/14A CH709808A2 (de) 2014-06-24 2014-06-24 Ungesteuerter Wechselstromentmagnetisierer.

Publications (2)

Publication Number Publication Date
EP2963660A1 true EP2963660A1 (de) 2016-01-06
EP2963660B1 EP2963660B1 (de) 2020-04-08

Family

ID=54196759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15172263.4A Active EP2963660B1 (de) 2014-06-24 2015-06-16 Ungesteuerter wechselstromentmagnetisierer

Country Status (3)

Country Link
US (1) US20150371749A1 (de)
EP (1) EP2963660B1 (de)
CH (1) CH709808A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201432A (zh) * 2020-10-27 2021-01-08 中国人民解放军海军工程大学 一种剩余磁场退磁装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2240749A (en) 1939-11-06 1941-05-06 O S Walker Co Inc Alternating current demagnetizer
US6111507A (en) * 1997-02-03 2000-08-29 Sensormatic Electronics Corporation Energizing circuit for EAS marker deactivation device
US20070278961A1 (en) * 2004-01-27 2007-12-06 Jean-Paul Louvel Circuit Arrangement for Degaussing a Picture Tube, and Respective Picture Display Device
US20080030916A1 (en) * 2006-07-26 2008-02-07 Elvir Kahrimanovic Thyristor controlled alternating current demagnetizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951127A (en) * 1955-02-24 1960-08-30 Kane Corp Du Magnetic recording and reproducing machine
US4730230A (en) * 1987-03-31 1988-03-08 Dowty Rfl Industries, Inc. Apparatus and method for degaussing magnetic storage media

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2240749A (en) 1939-11-06 1941-05-06 O S Walker Co Inc Alternating current demagnetizer
US6111507A (en) * 1997-02-03 2000-08-29 Sensormatic Electronics Corporation Energizing circuit for EAS marker deactivation device
US20070278961A1 (en) * 2004-01-27 2007-12-06 Jean-Paul Louvel Circuit Arrangement for Degaussing a Picture Tube, and Respective Picture Display Device
US20080030916A1 (en) * 2006-07-26 2008-02-07 Elvir Kahrimanovic Thyristor controlled alternating current demagnetizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201432A (zh) * 2020-10-27 2021-01-08 中国人民解放军海军工程大学 一种剩余磁场退磁装置及方法

Also Published As

Publication number Publication date
US20150371749A1 (en) 2015-12-24
EP2963660B1 (de) 2020-04-08
CH709808A2 (de) 2015-12-31

Similar Documents

Publication Publication Date Title
DE3856320T2 (de) Einstellbare Reaktanzvorrichtung und Verfahren
DE3316722C2 (de) Netzgerät zum Treiben von Spulen
EP2194629B1 (de) Verfahren zur Störstromkompensation eines elektrischen Systems sowie Störstromkompensationseinrichtung
EP1465217A1 (de) Verfahren und Vorrichtung zum Entmagnetisieren von Gegenständen
DE69410775T2 (de) Elektronisches Vorschaltgerät für Entladungslampen mit einem Resonanzkreis zur Begrenzung des Formfaktors und zur Verbesserung des Leistungsfaktors
DE3910810A1 (de) Schaltungsanordnung fuer ein elektromagnetisches ventil
EP2963660B1 (de) Ungesteuerter wechselstromentmagnetisierer
DE1938442A1 (de) Schaltungsanordnung zur Spannungsreglung
DE1082941B (de) Schaltung fuer die Zufuehrung elektrischer Schwingungen zu einem Verbraucher, bei der in den UEbertragungskreis ein elektrisches Geraet mit einer oder mehreren Entladungsroehren geschaltet ist
DE726303C (de) Anordnung zur Erzeugung von periodisch sich wiederholenden Stromimpulsen gleicher Richtung aus Wechselstrom
DE2023715A1 (de) Gesteuerte Antriebsvorrichtung der Wäschetrommel einer Waschmaschine
DE102014001935B4 (de) Verfahren zum Überwachen einer Einrichtung zum induktiven Erwärmen
DE2019933A1 (de) Anordnung zum Gleichrichten einer pulsfoermigen Wechselspannung
EP1353342B1 (de) Verfahren und Vorrichtung zum Entmagnetisieren von Gegenständen
CH624640A5 (de)
DE727560C (de) Einrichtung zur elektrischen Verstimmung eines Schwingungskreises
DE2460773B2 (de) Steuerbare Stromrichterschaltung
DE3008526C2 (de) Gleichstrom-Grenzwertgeber
DE875962C (de) Frequenzabhaengige Regeleinrichtung
DE736836C (de) Steuereinrichtung fuer einen Verstellmotor mit gleichstromvormagnetisierten Drosselspulen
DE2223439B2 (de) Verfahren und Gerät zum Entmagnetisieren ferromagneöscher Werkstoffe
DE1516181C (de) Elektronischer Wirkverbrauchszähler
DE3640235A1 (de) Ferromagnetischer energieumwandler
EP0207217A1 (de) Koordinatenmessvorrichtung
AT515851B1 (de) Verfahren und Vorrichtung zur Unterdrückung von parasitären Schwingungen im diskontinuierlichen Betrieb von Konvertern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160511

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 13/00 20060101AFI20191001BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1255482

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012199

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHNEIDER FELDMANN AG PATENT- UND MARKENANWAEL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MAURER, ALBERT, CH

Free format text: FORMER OWNER: MAURER, ALBERT, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012199

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200708

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1255482

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015012199

Country of ref document: DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015012199

Country of ref document: DE

Representative=s name: ZWICK, EVELYNE, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015012199

Country of ref document: DE

Owner name: MAURER MAGNETIC AG, CH

Free format text: FORMER OWNER: MAURER, ALBERT, GRUET, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015012199

Country of ref document: DE

Representative=s name: ZWICK, EVELYNE, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 9