EP2954082B1 - Zementiertes wolframcarbidmaterial, verfahren zu dessen herstellung und verwendung davon - Google Patents

Zementiertes wolframcarbidmaterial, verfahren zu dessen herstellung und verwendung davon Download PDF

Info

Publication number
EP2954082B1
EP2954082B1 EP14703394.8A EP14703394A EP2954082B1 EP 2954082 B1 EP2954082 B1 EP 2954082B1 EP 14703394 A EP14703394 A EP 14703394A EP 2954082 B1 EP2954082 B1 EP 2954082B1
Authority
EP
European Patent Office
Prior art keywords
tungsten carbide
cemented tungsten
carbide
cemented
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14703394.8A
Other languages
English (en)
French (fr)
Other versions
EP2954082A2 (de
Inventor
Igor Yurievich KONYASHIN
Bernd Heinrich Ries
Frank Friedrich Lachmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Element Six GmbH
Original Assignee
Element Six GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Element Six GmbH filed Critical Element Six GmbH
Publication of EP2954082A2 publication Critical patent/EP2954082A2/de
Application granted granted Critical
Publication of EP2954082B1 publication Critical patent/EP2954082B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides

Definitions

  • This disclosure is related to a cemented tungsten carbide material such as for use in high-pressure components for synthesis of diamond or c-BN or fabrication of poly-crystalline diamond or c-BN and a method of making same.
  • cemented carbides employed for high-pressure high-temperature (HPHT) components used for diamond synthesis and production of polycrystalline diamond (PCD), including anvils and dies, are subjected to high pressures, temperatures and loads. Such unfavorable conditions lead to their deformation and, if the deformation exceeds a certain level, the HPHT components fail. In this respect it is very important to have a cemented carbide material with a high level of Young's modulus to reduce the deformation at high pressures and consequently improve the deformation resistance and lifetime of the HPHT components.
  • cemented carbide material for use in the fabrication of high-pressure high-temperature components having improved resistance to deformation as well as high fracture toughness and strength.
  • JP 2011 235410 is directed to a cutting tool formed of WC-based cemented carbide, the content of Co as a binding phase component being 4 to 12 mass%. In the binding phase, 3-20 mass% of solid Re is soluble. On a surface of a WC particle of a hard phase, a diffusion thin layer of Re is formed.
  • US 2012/247028 is directed to a hard metal body comprising WC grains and a metal binder comprising cobalt.
  • the body has a surface region and a core region and the mean binder fraction of the core region is greater than that of the surface region and the mean carbon concentration within the binder being higher in the surface region than in the core region.
  • US 2002/112896 is directed to a cutting tool insert having a WC based substrate and a coating.
  • the hard metal consists of 4-15 wt% binder phase with FCC structure and 35-65wt% Fe and 35-65wt% Ni in addition to dissolved elements.
  • FR 2350403 is directed to hard materials consisting of tungsten carbide, and a binder metal such as cobalt, for the manufacture of cutting tools.
  • the hard material contains WC, Co, preferably an additional carbide such as TiC, TaC, NbC, HfC, VC or MoC and Re.
  • US 5649279 is directed to forming a coated carbide insert by enriching the binder phase for the cemented carbide material through dissolution of cubic phase to cause formation of stratified layers.
  • the invention provides a cemented tungsten carbide material further comprising between 3 to 10 wt.% Co and between 0.5 to 8 wt.% Re; and optionally grain growth inhibitors comprising one or more of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf or a carbide thereof;
  • a cutter comprising a substrate comprising the cemented carbide material defined above bonded to a body of polycrystalline superhard material adapted for a rotary drill bit for boring into the earth.
  • a PCD element for a rotary shear bit for boring into the earth, for a percussion drill bit or for a pick for mining or asphalt degradation comprising a cutter element comprising a body of superhard polycrystalline material bonded to a body of cemented tungsten carbide material as defined above.
  • a drill bit or a component of a drill bit for boring into the earth comprising a PCD element as defined above.
  • the invention provides a method of producing the cemented tungsten carbide material defined above, the method comprising: milling a cemented carbide mixture containing WC and carbon with Re, Co, and optionally grain growth inhibitors comprising one or more of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf or a carbide thereof; pressing the cemented carbide article from the mixture; sintering the article at a temperature of above 1450°C in vacuum for between 1 to 10 minutes and a pressure of Ar (HIP) for 5 to 120 minutes; and cooling the article from said temperature to 1300 degrees Centigrade (°C); wherein the step of cooling the article comprises:
  • a method of recycling the cemented tungsten carbide material defined above comprising subjecting the cemented tungsten carbide material to an acid leaching mixture to remove the binder phase from the cemented tungsten carbide material; and chemically recovering Co and Re from the removed binder phase.
  • a method of recycling the cemented tungsten carbide material defined above comprising oxidation of the cemented tungsten carbide material to dissolve the carbide, Re and Co, and recovering the Re.
  • the invention defines a use of a cemented tungsten carbide material in a high- pressure component for synthesis of diamond or c-BN, or in fabrication of polycrystalline diamond or c-BN operating at a pressure of above 5 GPa and a temperature of above 1100°C, wherein the cemented tungsten carbide material comprises:
  • ETC equivalent total carbon
  • a "superhard material” is a material having a Vickers hardness of at least about 25GPa. Diamond and cubic boron nitride (cBN) material are examples of superhard materials.
  • a "superhard construction” means a construction comprising polycrystalline superhard material or superhard composite material, or comprising polycrystalline superhard material and superhard composite material bonded to a cemented carbide substrate.
  • polycrystalline diamond is a PCS material comprising a mass of diamond grains, a substantial portion of which are directly inter-bonded with each other and in which the content of diamond is at least about 80 volume percent of the material.
  • interstices between the diamond gains may be at least partly filled with a binder material comprising a catalyst for diamond.
  • interstices or "interstitial regions” are regions between the diamond grains of PCD material.
  • interstices or interstitial regions may be substantially or partially filled with a material other than diamond, or they may be substantially empty.
  • Embodiments of PCD material may comprise at least a region from which catalyst material has been removed from the interstices, leaving interstitial voids between the diamond grains.
  • polycrystalline cubic boron nitride (PCBN) material is a PCS material comprising a mass of cBN grains dispersed within a wear resistant matrix, which may comprise ceramic or metal material, or both, and in which the content of cBN is at least about 50 volume percent of the material.
  • the content of cBN grains is at least about 60 volume percent, at least about 70 volume percent or at least about 80 volume percent.
  • Embodiments of superhard material may comprise grains of superhard materials dispersed within a hard matrix, wherein the hard matrix preferably comprises ceramic material as a major component, the ceramic material preferably being selected from silicon carbide, titanium nitride and titanium carbo-nitride.
  • a cemented carbide material comprises a mass of grains of a hard material comprising a carbide phase and interstices between the hard grains which are filled with a binder material which constitutes the binder phase.
  • the carbide phase is WC and the binder phase comprises an alloy of Co and Re with some W and C dissolved in it.
  • Figure 3 shows, for comparison, a conventional cemented carbide material comprising WC as the carbide phase and Co as the binder phase.
  • the cemented carbide material further comprises a carbide of one or more metals in the form of a second carbide phase or dissolved in the binder phase, the one or more metals comprising Ti, V, Cr, Mn, Zr, Nb, Mo, Hf and/or Ta.
  • the cemented carbide material is free of eta-phase and free carbon.
  • the cemented carbide material comprises between 0.5 to 8 wt% Re.
  • the cemented carbide material comprises between 3 to 10 wt.% Co.
  • the cemented carbide material comprises between 0.5 to around 6 wt.% Re.
  • the WC in the cemented carbide material may, for example, have a mean grain size below around 0.6 microns.
  • the equivalent total carbon (ETC) content with respect to WC lies between 6.3 wt% to 6.9 wt%.
  • the magnetic properties of the cemented carbide material may be related to important structural and compositional characteristics and is understood to be an indication of the carbon content in the cemented carbide material.
  • the most common technique for measuring the carbon content in cemented carbides is indirectly, by measuring the concentration of tungsten dissolved in the binder to which it is indirectly proportional. The higher the content of carbon dissolved in the binder the lower the concentration of tungsten dissolved in the binder.
  • the magnetic saturation 4 ⁇ or magnetic moment ⁇ of a hard metal, of which cemented tungsten carbide is an example, is defined as the magnetic moment or magnetic saturation per unit weight.
  • the magnetic moment, ⁇ , of pure Co is 16.1 micro-Tesla times cubic metre per kilogram ( ⁇ T.m 3 /kg), and the induction of saturation, also referred to as the magnetic saturation, 4 ⁇ , of pure Co is 201.9 ⁇ T.m 3 /kg.
  • Ms magnetic saturation
  • cemented carbide material have an associated magnetic saturation of at least around 40 percent to around 80 percent of the magnetic saturation of nominally pure Co.
  • the mean grain size of carbide grains may be determined by examination of micrographs obtained using a scanning electron microscope (SEM) or light microscopy images of metallurgically prepared cross-sections of a cemented carbide material body, applying the mean linear intercept technique, for example.
  • the mean size of the WC grains may be estimated indirectly by measuring the magnetic coercivity of the cemented carbide material, which indicates the mean free path of Co intermediate the grains, from which the WC grain size may be calculated using a simple formula well known in the art. This formula quantifies the inverse relationship between magnetic coercivity of a Co-cemented WC cemented carbide material and the Co mean free path, and consequently the mean WC grain size. Magnetic coercivity has an inverse relationship with MFP.
  • the "mean free path" (MFP) of a composite material such as cemented carbide is a measure of the mean distance between the aggregate carbide grains cemented within the binder material.
  • the mean free path characteristic of a cemented carbide material may be measured using a micrograph of a polished section of the material. For example, the micrograph may have a magnification of about 1500x.
  • the MFP may be determined by measuring the distance between each intersection of a line and a grain boundary on a uniform grid.
  • the matrix line segments, Lm are summed and the grain line segments, Lg, are summed.
  • the mean matrix segment length using both axes is the "mean free path". Mixtures of multiple distributions of tungsten carbide particle sizes may result in a wide distribution of MFP values for the same matrix content.
  • the grain sizes are expressed in terms of Equivalent Circle Diameter (ECD) according to the ISO FDIS 13067 standard.
  • ECD Equivalent Circle Diameter
  • the carbide phase of the cemented carbide material is formed of carbide grains having a mean grain size of at least around 0.1 ⁇ m to at most around 10 ⁇ m and the cemented carbide material may have an associated magnetic coercive force varying from around 2kA/m to around 70 kA/m.
  • the carbide phase comprises WC and the binder phase comprises Co and Re.
  • the binder phase of the cemented carbide material may, for example, be a solid solution of Re, carbon and W and one of more of Fe, Co, and Ni.
  • the binder phase comprises at least about 0.1 weight percent to at most about 5 weight percent of one or more of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf in solid solution and/or in the form of carbide compounds.
  • the material comprises at least about 0.01 weight percent and at most about 2 weight percent of one or more of Ru, Rh, Pd, Os, Ir and Pt.
  • the cemented carbide has an associated hardness and, in some embodiments, the hardness decrease at 300°C is at most 20%, or, in some other embodiments, is at most 17%.
  • Hardness measurements were carried out according to the DIN ISO 3878 on metallurgical cross-sections at a load of 30 kgf at room temperature as well as at 300°C, 500°C and 800°C in an Ar atmosphere. After achieving the elevated temperatures the cross-section was annealed for 10 min, after which a Vickers indentation was made under the load of 30 kgf and the load was applied for 15 sec.
  • the cemented carbide material may, for example, have a hardness decrease at 500°C of at most 30% or, in some other embodiments, at most 27%.
  • the hardness-toughness coefficient may be calculated by multiplying the Vickers hardness in GPa and indentation fracture toughness in MPa m 1/2 , and, in some embodiments, this is above 150.
  • the cemented carbide material has a Vickers hardness
  • the binder phase of the cemented carbide material has one or more residual compressive stresses and these may, for example, be between around -5 MPa to around 100 MPa.
  • An embodiment of a cemented carbide material may be made by a method including milling a cemented carbide mixture containing carbides with Re, Co, Ni and/or Fe and optionally grain growth inhibitors including V, Cr, Ta, Ti, Mo, Zr,, Nb and Hf or their carbides and then pressing a cemented carbide article from the mixture.
  • the article is then sintered at temperatures of above 1450°C in vacuum for 1 to 10 min and afterwards under pressure of Ar (HIP) for 5 to 120 min.
  • the article is then cooled from the sintering temperatures to 1300 degrees Centigrade (°C) in an atmosphere comprising inert gases, nitrogen, hydrogen or a mixture thereof, or in a vacuum, at a cooling rate of approximately 0.2 to 2 degrees per minute.
  • Tungsten carbide powder wherein the WC grains had an average grain size of about 0.6 ⁇ m with carbon content of 6.13 wt.%, was milled with 5.5%Re powder and 3.7%Co powder.
  • the Co grains had an average grain size of about 1 ⁇ m.
  • the powder mixture was produced by milling the powders together for 24 hours using a ball mill in a milling medium comprising hexane with 2 wt.% paraffin wax, and using a powder-to-ball ratio of 1:6. After milling 0.35 wt.% carbon black was added and additional milling was performed for 1 hr resulting in the fact that the equivalent total carbon (ETC) content with respect to WC of the mixture was equal to 6.51 wt.%.
  • ETC equivalent total carbon
  • a control batch of conventional WC-Co cemented carbides without Re was made from the same WC powder batch and 6 wt.% Co, which corresponds to the same volume percentage of binder as in the WC-Co-Re material, without adding carbon black.
  • the batch was milled in the same way as the WC-Co-Re carbide and sintered at 1440°C for 1 hr including 30 sintering vacuum and 30 min sintering under pressure (HIP).
  • the carbon content was measured on sintered samples in the same way as for the WC-Co-Re cemented carbides and found to be equal to 5.77 wt.% providing evidence that the equivalent total carbon (ETC) content with respect to WC is equal to 6.13 wt%.
  • Metallurgical cross-sections of the WC-Co-Re and WC-Co cemented carbides were made and examined by optical microscopy and SEM.
  • the hardness (HV20), indentation fracture toughness (K 1C ), transverse rupture strength (TRS), compressive strength and Young's modulus as well as coercive force and magnetic moment (saturation) of the sintered bodies were examined.
  • the WC mean grain size was measured on the basis of the EBSD image of the cross-sections according to the procedure described in: K.P. Mingard, B. Roebuck a, E.G. Bennett, M.G. Gee, H. Nordenstrom, G. Sweetman, P. Chan . Comparison of EBSD and conventional methods of grain size measurement of hard metals. Int. Journal of Refractory Metals & Hard Materials 27 (2009) 213-223 .
  • Figures 1 and 2 show SEM and EBSD images respectively of the WC-Co-Re cemented carbide formed according to Example 1, and Figure 3 shows the microstructure of the conventional WC-Co cemented carbides without Re and having the Equivalent Total Carbon content with respect to WC of 6.13 wt.%.
  • the WC-Co-Re carbide shown in Figure 1 and Figure 2 has a WC mean grain size of 0.44 ⁇ m. It will be seen that there is neither eta-phase nor free carbon nor porosity in the microstructure of both carbide materials shown in Figures 1 and 2 .
  • Table 1 shows the grain size distribution in the microstructure of the WC-Co-Re cemented carbide shown in Figures 1 and 2 .
  • the magnetic moment of the WC-Co-Re carbide material of Figure 1 and Figure 2 was equal to 4.7 Gcm 3 /g, which is 64% of the theoretical value for cemented carbide with 3.7 % of nominally pure Co providing evidence for its specific magnetic saturation in per cent (SMS).
  • the hardness-toughness coefficient calculated by multiplying the Vickers hardness in GPa and fracture toughness in MPa m 1/2 was therefore equal to 195.
  • the compressive strength of the WC-Co-Re cemented carbide was determined to be 6020 MPa and its Young's modules to be equal to 712 GPa. Its hot hardness was found to be equal to 16.9 GPa at 300°C and 14.9 GPa at 500°C providing evidence that the hardness decrease at the elevated temperatures was about 9.1% and 19.8% correspondingly. The compressive strength almost did not change when increasing the temperatures from room temperature to 300°C and 500°C.
  • the residual stress in the Co-Re binder phase of the WC-Co-Re cemented carbide was measured using a Bruker D8 Discover diffractometer using the Cu-K ⁇ radiation. This wavelength of X-ray typically obtained diffraction information from a depth of around 5 ⁇ m.
  • the diffracted beam was collected using a Braun Position Sensivite Detector with a bin size of 0.01059°.
  • the residual stress measurement was performed by use of the Co (211) peak at an angle of 146.6° using a step size of 0.01059° and a count time of 10 sec. per step.
  • the residual stress measurements were performed using the standard iso.inclination sin 2 ⁇ technique in accordance with the ref. " Fitzpatrick M, Fry T, Holdway P, et al. NPL Good Practice Guide No. 52: Determination of Residual Stresses by X-ray Diffraction - Issue 2. September 2005 ".
  • Young's modulus is a type of elastic modulus and is a measure of the uni-axial strain in response to a uni-axial stress, within the range of stress for which the material behaves elastically.
  • a method of measuring the Young's modulus E is by means of measuring the transverse and longitudinal components of the speed of sound through the material using ultrasonic waves.
  • the longitudinal and transverse speeds of sound may be measured using ultrasonic waves, as is well known in the art.
  • the cemented carbide material of one or more embodiments may find particular application in use in high-pressure components for synthesis of diamond or c-BN, or in fabrication of polycrystalline diamond or c-BN operating at pressures of above 5 GPa and temperatures of above 1100°C.
  • PCD composite compact elements may comprise a PCD structure bonded along an interface to an embodiment of a cemented carbide substrate comprising particles of a metal carbide and the binder material described above.
  • An embodiment of a PCD composite compact element may be made by a method including providing the cemented carbide substrate, contacting an aggregated, substantially unbonded mass of diamond particles against a surface of the substrate to form an pre-sinter assembly, encapsulating the pre-sinter assembly in a capsule for an ultra-high pressure furnace and subjecting the pre-sinter assembly to a pressure of at least about 5.5 GPa and a temperature of at least about 1,250 degrees centigrade, and sintering the diamond particles to form a PCD composite compact element comprising a PCD structure integrally formed on and joined to the cemented carbide substrate.
  • the pre-sinter assembly may be subjected to a pressure of at least about 6 GPa, at least about 6.5 GPa, at least about 7 GPa or even at least about 7.5 GPa.
  • the hardness of cemented tungsten carbide substrate may be enhanced by subjecting the substrate to an ultra-high pressure and high temperature, particularly at a pressure and temperature at which diamond is thermodynamically stable.
  • the magnitude of the enhancement of the hardness may depend on the pressure and temperature conditions.
  • the hardness enhancement may increase the higher the pressure. Whilst not wishing to be bound by a particular theory, this is considered to be related to the Co drift from the substrate into the PCD during press sintering, as the extent of the hardness increase is directly dependent on the decrease of Co content in the substrate.
  • the cemented carbide material forming the substrate may comprise between 2 to 8 wt.% Re, and 3 to 9 wt.%Co, with the remainder being WC.
  • the working temperature on the surface of the high-pressure components may be at least around 200°C and at most around 800°C.
  • the cemented carbide contains cobalt (Co) and rhenium (Re) and the proportion of Re and Co lies in a certain range it may be possible to improve significantly the Young's modulus of the cemented carbide material.
  • the cemented carbide hot hardness at temperatures dramatically of up to 800°C.
  • the recycling procedure may comprise melting the cemented carbide material in a protective atmosphere with liquid Zn with consequent evaporation of Zn from the mixture, and milling the resulting product.
  • the cemented carbide material may be subjected to an acid leaching treatment to remove the binder phase of the cemented carbide article and chemically recover the Co and Re.
  • a further method of recycling the cemented carbide material may comprise oxidation of the cemented carbides articles with consequent dissolution of carbides, Re and Co and their recovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Carbon And Carbon Compounds (AREA)

Claims (14)

  1. Zementiertes Wolframcarbid- (WC)-Material, das des Weiteren zwischen 3 und 10 Gew.% Co und zwischen 0,5 und 8 Gew.% Re und gegebenenfalls Kornwachstumsinhibitoren umfasst, die ein oder mehrere von V, Cr, Ta, Ti, Mo, Zr, Nb und Hf oder Carbid davon umfassen,
    wobei der Gehalt des zementierten Wolframcarbid- (WC)-Materials an äquivalentem Gesamtkohlenstoff (ETC) in Bezug auf das WC, wie in der Beschreibung definiert, zwischen 6,3 Gew.% und 6,9 Gew.% liegt,
    wobei das zementierte Wolframcarbidmaterial frei von eta-Phase und freiem Kohlenstoff ist.
  2. Zementiertes Wolframcarbidmaterial nach Anspruch 1, das zwischen 0,5 und 6 Gew.% Re umfasst, und/oder
    wobei das WC in dem Material eine mittlere Korngröße von weniger als 0,6 µm aufweist, und/oder
    das zementierte Wolframcarbidmaterial eine magnetische Sättigung von mindestens 40 Prozent bis 80 Prozent der magnetischen Sättigung von nominell reinem Co aufweist, und/oder
    die Wolframcarbidphase aus Wolframcarbidkörnern mit einer mittleren Korngröße von mindestens 0,1 µm bis höchstens 10 µm gebildet ist, und/oder
    das zementierte Wolframcarbidmaterial eine damit verbundene magnetische Koerzitivkraft aufweist, die von 2 kA/m bis 70 kA/m variiert, und/oder
    das zementierte Wolframcarbid Carbid von einem oder mehreren Metallen in Form der zweiten Carbidphase oder gelöst in einer Bindemittelphase in dem Material umfasst, wobei das eine oder die mehreren Metalle Ti, V, Cr, Mn, Zr, Nb, Mo, Hf und/oder Ta umfasst bzw. umfassen.
  3. Zementiertes Wolframcarbidmaterial nach einem der vorhergehenden Ansprüche, bei dem das Material Bindemittelphase mit einer oder mehreren Druckeigenspannungen umfasst.
  4. Zementiertes Wolframcarbidmaterial nach Anspruch 3, bei dem die Bindemittelphase Bindemittelmaterial umfasst, welches Co, Re, W und C umfasst, oder
    die Bindemittelphase Bindemittelmaterial umfasst, wobei das Bindemittelmaterial eine feste Lösung von Re, Kohlenstoff und W und einem oder mehreren von Fe, Co und Ni umfasst.
  5. Zementiertes Wolframcarbidmaterial nach einem der vorhergehenden Ansprüche, bei dem das zementierte Wolframcarbidmaterial eine Koerzitivkraft Hc in kA/m als Funktion der mittleren Korngröße von WC, DWC, in µm, bestimmt auf Grundlage der EBSD-Bilder der Carbidmikrostruktur, gleich oder kleiner als Werte hat, die durch die folgende Gleichung gegeben sind: Hc = 10 × D WC 0,62 .
    Figure imgb0004
  6. Zementiertes Wolframcarbidmaterial nach einem der vorhergehenden Ansprüche, bei dem das Material eine Druckfestigkeit von mehr als 5500 MPa bei Raumtemperatur und bei erhöhter Temperatur von bis zu 500°C aufweist.
  7. Zementiertes Wolframcarbidmaterial nach Anspruch 6, bei dem das Material eine Vickers-Härte aufweist und die Abnahme der Härte bei 300°C höchstens 12 % beträgt.
  8. Zementiertes Wolframcarbidmaterial nach einem der vorhergehenden Ansprüche, bei dem das Material eine Vickers-Härte aufweist und die Abnahme der Härte bei 500°C höchstens 21 % beträgt, und/oder
    der Youngsche Modul des Materials über 700 GPa liegt, und/oder der Härte-Zähigkeitkoeffizient, der berechnet wird, indem die Vickers-Härte in GPa mit der Bruchzähigkeit in MPa m1/2 multipliziert wird, über 190 liegt, und/oder
    das zementierte Wolframcarbidmaterial Bindemittelphase mit einem Bindemittelmaterial umfasst, das mindestens 0,1 Gewichtsprozent bis höchstens 5 Gewichtsprozent von einem oder mehreren von V, Cr, Ta, Ti, Mo, Zr, Nb und Hf in fester Lösung und/oder in Form von Carbidverbindungen umfasst, und/oder das Material mindestens etwa 0,01 Gewichtsprozent und höchstens 2 Gewichtsprozent von einem oder mehreren von Ru, Rh, Pd, Os, Ir und Pt umfasst.
  9. Polykristalline superharte Konstruktion, die
    ein Substrat, welches das zementierte Wolframcarbidmaterial gemäß einem der Ansprüche 1 bis 8 umfasst, und
    einen Körper aus polykristallinem superhartem Material umfasst, der entlang einer Grenzfläche an das Substrat gebunden ist.
  10. Polykristalline superharte Konstruktion nach Anspruch 9, bei der der Körper aus polykristallinem superhartem Material polykristallines Diamant- (PCD)-Material umfasst, oder der Körper aus polykristallinem superhartem Material PCBN umfasst.
  11. Verfahren zur Herstellung des zementierten Wolframcarbidmaterials nach einem der Ansprüche 1 bis 8, bei dem
    - eine zementierte Carbidmischung, die WC und Kohlenstoff mit Re, Co und gegebenenfalls Kornwachstumsinhibitoren enthält, die ein oder mehrere von V, Cr, Ta, Ti, Mo, Zr, Nb und Hf oder Carbid davon umfassen, gemahlen wird,
    - der zementierte Carbidartikel aus der Mischung gepresst wird,
    - der Artikel bei einer Temperatur von mehr als 1450°C im Vakuum zwischen 1 und 10 Minuten und mit einem Druck von Ar (HIP) 5 bis 120 Minuten lang gesintert wird, und
    - der Artikel von der Temperatur bis auf 1300 Grad Celsius (°C) abgekühlt wird, wobei
    der Schritt des Kühlens des Artikels umfasst, dass
    der Artikel in einer Atmosphäre, die ein oder mehrere von Inertgas, Stickstoff, Wasserstoff oder eine Mischung davon umfasst, mit einer Kühlrate von 0,2 bis 2 Grad pro Minute abgekühlt wird, oder
    der Artikel im Vakuum mit einer Kühlrate von 0,2 bis 2 Grad pro Minute abgekühlt wird.
  12. Verwendung von zementiertem Wolframcarbidmaterial in einer Hochdruckkomponente zur Synthese von Diamant oder c-BN oder in der Fertigung von polykristallinem Diamant oder c-BN, wobei mit einem Druck von mehr als 5 GPa und einer Temperatur von mehr als 1100°C gearbeitet wird, wobei das zementierte Wolframcarbidmaterial
    Carbid von einem oder mehreren Metallen in Form der zweiten Carbidphase oder gelöst in einer Bindemittelphase in dem Material, wobei das eine oder die mehreren Metalle Ti, V, Cr, Mn, Zr, Nb, Mo, Hf und/oder Ta umfasst bzw. umfassen,
    zwischen 0,5 und 8 Gew.% Re und zwischen 3 und 10 Gew.% Co umfasst,
    wobei der Gehalt des zementierten Carbidmaterials an äquivalentem Gesamtkohlenstoff (ETC) in Bezug auf WC zwischen 6,3 Gew.% und 6,9 Gew.% liegt,
    wobei das zementierte Wolframcarbidmaterial frei von eta-Phase und freiem Kohlenstoff ist.
  13. Verwendung des zementierten Wolframcarbidmaterials nach Anspruch 12, bei der
    das zementierte Wolframcarbidmaterial zwischen 0,5 und 6 Gew.% Re umfasst, und/oder
    das WC in dem Material eine mittlere Korngröße von weniger als 0,6 µm aufweist, und/oder
    das zementierte Wolframcarbidmaterial eine magnetische Sättigung von mindestens 40 Prozent bis 80 Prozent der magnetischen Sättigung von nominell reinem Co aufweist, und/oder
    die Wolframcarbidphase aus Carbidkörnern mit einer mittleren Korngröße von mindestens 0,1 µm bis höchstens 10 µm gebildet ist, und/oder
    das zementierte Wolframcarbidmaterial eine damit verbundene magnetische Koerzitivkraft aufweist, die von 2 kA/m bis 70 kA/m variiert, und/oder
    das zementierte Wolframcarbidmaterial Bindemittelphase mit Bindemittelmaterial umfasst, welches Co, Re, W und C umfasst, oder
    das zementierte Wolframcarbidmaterial Bindemittelphase mit Bindemittelmaterial umfasst, wobei das Bindemittelmaterial eine feste Lösung von Re, Kohlenstoff und W und einem oder mehreren von Fe, Co und Ni umfasst, und/oder
    das zementierte Wolframcarbidmaterial eine Koerzitivkraft Hc in kA/m als Funktion der mittleren Korngröße von WC, DWC, in µm, bestimmt auf Grundlage der EBSD-Bilder der Carbidmikrostruktur, gleich oder kleiner als Werte hat, die durch die folgende Gleichung gegeben sind: Hc = 10 x DWC -0,62 und/oder
    das Material eine Vickers-Härte aufweist, und wobei die Abnahme der Härte bei 300°C, verglichen mit derjenigen bei Raumtemperatur, höchstens 20 % beträgt, wobei die Abnahme der Härte bei 300°C vorzugsweise höchstens 17 % beträgt, und/oder das Material eine Vickers-Härte aufweist, und wobei die Abnahme der Härte bei 500°C höchstens 30 % beträgt, wobei vorzugsweise die Abnahme der Härte bei 500°C höchstens 27 % beträgt, und/oder der Härte-Zähigkeitkoeffizient, der berechnet wird, indem die Vickers-Härte in GPa mit der Bruchzähigkeit in MPa m1/2 multipliziert wird, über 150 liegt, und/oder
    das Material Bindemittelphase mit Bindemittelmaterial umfasst, das mindestens 0,1 Gew.% bis höchstens 5 Gewichtsprozent von einem oder mehreren von V, Cr, Ta, Ti, Mo, Zr, Nb und Hf in fester Lösung und/oder in Form von Carbidverbindungen umfasst, und/oder das Material mindestens 0,01 Gew.% und höchstens 2 Gewichtsprozent von einem oder mehreren von Ru, Rh, Pd, Os, Ir und Pt umfasst.
  14. Verfahren nach Anspruch 11, bei dem in dem Schritt des Mahlens des Weiteren
    die zementierte Carbidmischung mit Ni und/oder Fe zusätzlich zu dem WC, Co und Re gemahlen wird, und/oder
    das eine oder die mehreren Carbide mit zwischen 0,5 und 8 Gew.% Re gemahlen wird bzw. werden, um das zementierte Carbidmaterial zu bilden, welches zwischen 0,5 und 8 Gew.% Re umfasst.
EP14703394.8A 2013-02-11 2014-02-10 Zementiertes wolframcarbidmaterial, verfahren zu dessen herstellung und verwendung davon Active EP2954082B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361763343P 2013-02-11 2013-02-11
GBGB1302345.2A GB201302345D0 (en) 2013-02-11 2013-02-11 Cemented carbide material and method of making same
PCT/EP2014/052549 WO2014122306A2 (en) 2013-02-11 2014-02-10 Cemented carbide material and method of making same

Publications (2)

Publication Number Publication Date
EP2954082A2 EP2954082A2 (de) 2015-12-16
EP2954082B1 true EP2954082B1 (de) 2020-07-22

Family

ID=47998901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14703394.8A Active EP2954082B1 (de) 2013-02-11 2014-02-10 Zementiertes wolframcarbidmaterial, verfahren zu dessen herstellung und verwendung davon

Country Status (6)

Country Link
US (3) US20150376744A1 (de)
EP (1) EP2954082B1 (de)
JP (1) JP6275750B2 (de)
CN (1) CN105074029B (de)
GB (2) GB201302345D0 (de)
WO (1) WO2014122306A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111371A1 (de) 2021-05-03 2022-11-03 Betek Gmbh & Co. Kg Sinterkarbid-Material

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528272B (en) * 2014-07-15 2017-06-21 Tokamak Energy Ltd Shielding materials for fusion reactors
WO2016049449A1 (en) * 2014-09-26 2016-03-31 Diamond Innovations, Inc. Substrates for polycrystalline diamond cutters with unique properties
US10161017B2 (en) * 2015-06-08 2018-12-25 Korea Institute Of Geoscience And Mineral Resources Method for crushing hard tungsten carbide scraps
CN105154747B (zh) * 2015-09-14 2017-04-12 江西耀升钨业股份有限公司 一种复合碳化钨硬质合金棒材及其制备方法
JP6608941B2 (ja) * 2015-09-26 2019-11-20 京セラ株式会社 棒状体及び切削工具
WO2017057266A1 (ja) * 2015-09-29 2017-04-06 京セラ株式会社 棒状体及び切削工具
US10287824B2 (en) 2016-03-04 2019-05-14 Baker Hughes Incorporated Methods of forming polycrystalline diamond
CN105648296B (zh) * 2016-03-23 2018-06-19 水利部杭州机械设计研究所 一种含Re的抗高温碳化钨基金属陶瓷复合粉末、涂层及其制备工艺
CN105903955B (zh) * 2016-04-27 2018-05-22 石家庄蓝海工具有限公司 一种基于真空冷却设备的金刚石刀头生产工艺
CN106893915B (zh) * 2017-01-22 2018-12-04 苏州新锐合金工具股份有限公司 一种挤压多孔微通道铝合金扁管用硬质合金模具材料
JP6209300B1 (ja) * 2017-04-27 2017-10-04 日本タングステン株式会社 アンビルロール、ロータリーカッタ、及びワークの切断方法
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
CN107881389B (zh) * 2017-11-06 2019-06-25 株洲科力特新材料有限公司 Ti(C,N)基金属陶瓷及用于制备其的制备方法
CN108160997B (zh) * 2017-12-21 2019-12-13 株洲硬质合金集团有限公司 一种低钴硬质合金及减少低钴硬质合金焊接裂缝的方法
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods
WO2019244429A1 (ja) 2018-06-19 2019-12-26 住友電工ハードメタル株式会社 ダイヤモンド接合体及びダイヤモンド接合体の製造方法
KR102167990B1 (ko) * 2018-11-30 2020-10-20 한국야금 주식회사 난삭재용 절삭 인써트
DE102019110950A1 (de) 2019-04-29 2020-10-29 Kennametal Inc. Hartmetallzusammensetzungen und deren Anwendungen
JP6972508B2 (ja) * 2019-12-19 2021-11-24 株式会社タンガロイ 超硬合金及び被覆超硬合金、並びにそれらを有する工具
GB201919479D0 (en) * 2019-12-31 2020-02-12 Element Six Uk Ltd Polycrystalline diamond constructions & methods of making same
GB201919480D0 (en) * 2019-12-31 2020-02-12 Element Six Uk Ltd Polycrystalline diamond constructions & methods of making same
CN115466896B (zh) * 2022-07-18 2023-04-07 广东理工学院 一种稀土改性的超细WC-Co硬质合金的制备方法
KR102706141B1 (ko) * 2023-12-07 2024-09-12 주식회사 와이지-원 초경합금, 이의 제조방법 및 절삭공구

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649279A (en) * 1992-12-18 1997-07-15 Sandvik Ab Cemented carbide with binder phase enriched surface zone

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT348264B (de) * 1976-05-04 1979-02-12 Eurotungstene Hartmetalle und verfahren zu ihrer herstellung
US5603075A (en) * 1995-03-03 1997-02-11 Kennametal Inc. Corrosion resistant cermet wear parts
RU2105825C1 (ru) * 1995-06-06 1998-02-27 Санкт-Петербургский государственный технологический институт Состав твердосплавного материала
SE521488C2 (sv) * 2000-12-22 2003-11-04 Seco Tools Ab Belagt skär med järn-nickel-baserad bindefas
US6911063B2 (en) * 2003-01-13 2005-06-28 Genius Metal, Inc. Compositions and fabrication methods for hardmetals
JP5393004B2 (ja) * 2007-06-27 2014-01-22 京セラ株式会社 超硬合金製小径棒状体および切削工具ならびにミニチュアドリル
RU2351676C1 (ru) * 2007-10-02 2009-04-10 Юлия Алексеевна Щепочкина Спеченный твердый сплав на основе карбида вольфрама
GB0903343D0 (en) * 2009-02-27 2009-04-22 Element Six Holding Gmbh Hard-metal body with graded microstructure
JP2011235410A (ja) * 2010-05-12 2011-11-24 Mitsubishi Materials Corp 耐熱合金の切削加工で優れた耐欠損性を発揮するwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
CN102699330A (zh) * 2012-04-30 2012-10-03 自贡硬质合金有限责任公司 一种硬质合金辊面柱钉的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649279A (en) * 1992-12-18 1997-07-15 Sandvik Ab Cemented carbide with binder phase enriched surface zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111371A1 (de) 2021-05-03 2022-11-03 Betek Gmbh & Co. Kg Sinterkarbid-Material

Also Published As

Publication number Publication date
JP2016513177A (ja) 2016-05-12
WO2014122306A3 (en) 2015-04-09
US20150376744A1 (en) 2015-12-31
CN105074029A (zh) 2015-11-18
GB2512983B (en) 2017-11-15
CN105074029B (zh) 2019-08-06
WO2014122306A2 (en) 2014-08-14
GB201302345D0 (en) 2013-03-27
GB2512983A (en) 2014-10-15
JP6275750B2 (ja) 2018-02-07
US20210222273A1 (en) 2021-07-22
GB201402248D0 (en) 2014-03-26
US20190368011A1 (en) 2019-12-05
EP2954082A2 (de) 2015-12-16

Similar Documents

Publication Publication Date Title
US20210222273A1 (en) Cemented carbide material and method of making same
EP2691198B1 (de) Hartmetallmaterial
US9970240B2 (en) Polycrystalline diamond composite compact
US9895789B2 (en) Polycrystalline diamond composite compact elements and methods of making and using same
US8490721B2 (en) Polycrystalline diamond
EP2499268B1 (de) Hartmetall und Verfahren zu seiner Herstellung
US9518308B2 (en) High-density and high-strength WC-based cemented carbide
Konyashin et al. Gradient WC-Co hardmetals: Theory and practice
CA2773609A1 (en) Polycrystalline diamond composite compact
KR20110079901A (ko) 텅스텐 카바이드를 주성분으로 하는 초경합금 제작용의 몰리브덴 함유 금속 분말
JP2012528780A (ja) 多結晶ダイヤモンド
WO2017055332A1 (en) Cemented carbide material and related producing method
EP3515636B1 (de) Hartmetallmaterial und herstellungsverfahren davon
US10953468B2 (en) Polycrystalline diamond composite compact elements and methods of making and using same
US20240287655A1 (en) Cemented carbide material, a polycrystalline diamond construction including cemented carbide material and method of making same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150730

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161124

RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 3/15 20060101ALN20191213BHEP

Ipc: C22C 29/06 20060101ALI20191213BHEP

Ipc: B22F 5/00 20060101ALN20191213BHEP

Ipc: C22C 26/00 20060101AFI20191213BHEP

Ipc: C22C 29/08 20060101ALI20191213BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 29/06 20060101ALI20200123BHEP

Ipc: C22C 29/08 20060101ALI20200123BHEP

Ipc: B22F 5/00 20060101ALN20200123BHEP

Ipc: B22F 3/15 20060101ALN20200123BHEP

Ipc: C22C 26/00 20060101AFI20200123BHEP

INTG Intention to grant announced

Effective date: 20200205

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 29/08 20060101ALI20200124BHEP

Ipc: C22C 26/00 20060101AFI20200124BHEP

Ipc: B22F 5/00 20060101ALN20200124BHEP

Ipc: B22F 3/15 20060101ALN20200124BHEP

Ipc: C22C 29/06 20060101ALI20200124BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014067968

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293448

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200722

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1293448

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014067968

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140210

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240220

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240222

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722