EP2953706A1 - Gastrennung mit einer membrantrenneinheit - Google Patents

Gastrennung mit einer membrantrenneinheit

Info

Publication number
EP2953706A1
EP2953706A1 EP14700253.9A EP14700253A EP2953706A1 EP 2953706 A1 EP2953706 A1 EP 2953706A1 EP 14700253 A EP14700253 A EP 14700253A EP 2953706 A1 EP2953706 A1 EP 2953706A1
Authority
EP
European Patent Office
Prior art keywords
gas
retentate
separation unit
membrane separation
inlet line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP14700253.9A
Other languages
English (en)
French (fr)
Inventor
Johannes Szivacz
Johannes WINTERSPERGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axiom Angewandte Prozesstechnik Ges mbH
Original Assignee
Axiom Angewandte Prozesstechnik Ges mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axiom Angewandte Prozesstechnik Ges mbH filed Critical Axiom Angewandte Prozesstechnik Ges mbH
Priority to EP14700253.9A priority Critical patent/EP2953706A1/de
Publication of EP2953706A1 publication Critical patent/EP2953706A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method and a device for increasing the percentage of a gas A in a gaseous mixture emerging as a retentate from a membrane separation unit.
  • Weak gases are fuel gas mixtures with a reduced calorific value (eg below 8.5 MJ / m 3 ), the combustible gases (usually methane or other gaseous hydrocarbons, such as hydrogen and / or carbon monoxide) are in lean gas with non-combustible components, such as. As nitrogen (from the air), water vapor or carbon dioxide so strong that an independent, stable oxidation (combustion) can be implemented only with great technical and financial effort. Low gases are mostly free of or low in oxygen. For direct combustion, it is therefore necessary to increase the percentage of oxygen in the lean gas until the resulting gas mixture of oxygen and lean gas is combustible.
  • the combustible gases usually methane or other gaseous hydrocarbons, such as hydrogen and / or carbon monoxide
  • nitrogen from the air
  • water vapor or carbon dioxide so strong that an independent, stable oxidation (combustion) can be implemented only with great technical and financial effort.
  • Low gases are mostly free of or low in oxygen
  • Weak gases are produced, for example, during the biological-enzymatic, anaerobic decomposition of organic material such as sewage sludge and manure (biogas, biogas) or landfills (landfill gas). Dome gases from the mining industry are also known as lean gas with low calorific value. Similarly, the product gas produced in wood gasification is often referred to in the literature as lean gas (LCV - low calorific value gas). Low gases also occur in mining or disused mines, especially in the extraction of mine gas (when the methane content of the excavated mine gas is, for example, 20 vol .-%). Such a lean gas would theoretically combustible by itself from the methane content, but contains no oxygen.
  • the methane concentration necessarily falls below 17.5 vol .-%, which must be used for the combustion of this gas special burner.
  • An example of this is the so-called EFLOX burner, with which a combustion of a gas mixture with between 2.5 and 17.5 vol .-% methane without additional fuel is possible
  • offgas waste product
  • concentration of the combustible component CH 4 in the offgas was due to the rapid technological development of the various treatment technologies of originally 5-10 vol .-%, at which concentration of EFLOX burner very well functional, lowered to 0.5 vol .-%, at which concentration the EFLOX burner stops working.
  • a general disadvantage of lean gas is that it is thermally difficult to recycle due to its low methane content, for the power and energy production Zündstrahlmotoren must be used.
  • Conventional gas engines require for the purpose of power generation a combustible gas mixture, engines of CHP can be operated with a fuel gas containing up to 38 vol .-% CH 4 economically, micro gas turbines to 30 vol .-%. It is therefore possible the power generation of mine gas or comparable gas types with a minimum CH 4 concentration of about 30 vol .-%. With CH 4 concentrations below this limit, power generation or the operation of a gas engine is only limited, with high costs associated with high technical complexity or not at all possible.
  • the weak gas described above with a methane concentration of, for example, less than 17.5% by volume or even less than 2.5% by volume or less than 0.5% by volume can not be readily vented into the atmosphere, since methane Due to its high impact (25 times as effective as C0 2 ) it contributes around 20% to the anthropogenic greenhouse effect, but the time it takes for methane to stay in the atmosphere is significantly shorter at 9 to 15 years than at C0 2 .
  • the global mean methane content of the atmosphere has increased from pre-industrial times (1750) from around 600 ppb to 1, 750 ppb in 1999. In the period from 1999 to 2006, the methane content of the atmosphere remained largely constant, but since 2007 has again increased significantly to over 1800 ppb.
  • the legislator in Germany has set up financial support measures for biogas plants, in which however the maximum amount of methane that can be emitted in the exhaust gas is limited to 0.2% by volume of the methane mass produced in the biogas process.
  • a biogas upgrading plant with a very high recovery of 99.5% by volume ie 99.5% by volume of the methane entering the biogas upgrading plant is fed back to the product gas for further use, eg fed into the gas grid.
  • at a CH 4 concentration of 53 vol .-% in the feed (crude gas) and a CH 4 concentration of 98 vol .-% in the product gas has a CH 4 concentration of 0.57 vol .-% in the offgas.
  • the difference between the allowed and the actually expected CH 4 emission is as follows.
  • the permissible emission value is exceeded by twice.
  • the exhaust gas is usually thermally or catalytically oxidized.
  • FLOX burners ie burners with flameless oxidation, and up to a methane concentration of up to 0.5% by volume are known as RTO burners (Regenerative Thermal Oxidation) or catalytic afterburning (KNV).
  • a disadvantage of the RTO Benner is the deteriorating ratio of volume to the surface, since the heat losses increase as in any heat engine in this ratio and thereby decreases the efficiency, therefore, in order to carry out the afterburning, either biogas, natural gas or Liquid gas can be added as additional fuel or the CH 4 content in lean gas can be increased again.
  • the membrane separation unit fed feed gas comprises a gas A, for example methane, and a gas B, for example C0 2 , and a depletion of gas B, for example C0 2 , is provided via the separating membrane in the retentate, wherein a proportion of oxygen is preferably also provided in the retentate.
  • the permeate of the membrane separation unit may be discharged as the legal requirements appropriate exhaust gas, if appropriate, directly into the atmosphere.
  • Object of the present invention is a two gases A and B and optionally also other gases comprising feed gas, such as lean gas, by means of a Separate membrane separation unit such that the permeate of the membrane separation unit may pass as the legal requirements corresponding exhaust gas into the atmosphere and at the same time the retentate readily, for example, without the addition of an additional fuel, a meaningful, for example thermal, recovery can be supplied.
  • feed gas which can be used according to the invention can contain, for example, 1% by volume of methane and 99% by volume of CO 2 , but virtually no oxygen.
  • Such a gas mixture can not be easily discharged as exhaust gas into the atmosphere, on the other hand, it is not self-combustible and can at best be thermally exploited by means of support burners or it must be aftertreated by its content of methane due to legal requirements as described above, for example oxidized.
  • a separation membrane is used, through which the gas B passes faster than the gas A, and the separation membrane is permeat mineral purged with a gas stream, which comprises the gas B in a lower percentage than the feed gas or at all not included.
  • a separation process for biogas in which case the gas A is methane and the gas B is C0 2 , can according to the invention by adjusting (eg feed pressure and / or flow) of the corresponding gas streams of feed gas and purge gas, for example in a volume ratio of between 1 to 0 1 to 1 to 2, for example between 1 to 0.15 to 1 to 0.35, preferably in a ratio of between 1 to 0.20 to 1 to 0.30, more preferably in a ratio of about 1 to 0, 25, a permeate are obtained, which corresponds to the legal requirements (less than 0.2% by volume of methane based on the methane input in the separation process) and therefore can be discharged as exhaust gas directly into the atmosphere.
  • the method of the present invention can be applied to any separation method as long as a separation membrane is used in the membrane separation unit through which the gas B passes faster than the gas A, and the separation membrane is purged permeate side with a gas stream containing the gas B in a smaller percentage comprises as the feed gas or not at all included.
  • a separation membrane is used in the membrane separation unit through which the gas B passes faster than the gas A, and the separation membrane is purged permeate side with a gas stream containing the gas B in a smaller percentage comprises as the feed gas or not at all included.
  • the purge gas for the separation membrane in this case comprises only a small or no partial pressure of gas B Due to the difference of the partial pressures (little B m purge gas, much B in the feed gas) B passes from the feed gas into the permeate, through the higher passage rate of B through the separation membrane As already mentioned, the volume flow of the retentate simultaneously decreases, which also increases the concentration of A in the retentate. Due to the purge gas, the permeated gas mixture is transported away at an accelerated rate on the permeate side, as a result of which the partial pressure difference also increases or is kept constant.
  • the purge gas may also be provided a compressor or compressor.
  • the methane content in the permeate be kept so low that the permeate has less than 0.2% by volume of methane, based on the methane input, and thus complies with the legal requirements, so that it can be discharged into the atmosphere without prior post-oxidation.
  • the permeate C0 2 is transported away by the purging air, the partial pressure difference between the feed gas (up to more than 99% by volume C0 2 ) and permeate is thereby further increased and thus C0 2 is increasingly removed from the retentate.
  • oxygen can pass from the purge gas through the membrane into the retentate, whereby the oxygen content of the retentate increases or even an oxygen content is provided in the first place.
  • a retentate can thus be obtained which, despite theoretically too low methane content, can be burned due to the increased oxygen content.
  • the process according to the invention can also be carried out at a content of gas A (for example methane) in the feed gas of less than 3% by volume, in particular less than 2.0% by volume, more preferably less than 1.5% by volume become.
  • the partial pressure difference of, for example, gas A and gas B between permeate and retentate in the membrane separation unit is increased, preferably by pressurizing the feed gas, for example by connecting a compressor or compressor upstream of the membrane separation unit.
  • the partial pressure of the gas components is increased retentate side, on the largely pressureless permeate side of the partial pressure of the gas components remains unchanged, so that increases the partial pressure difference and thus the separation efficiency of the membrane separation unit.
  • the fibers are acted upon both internally and alternatively externally with feed gas, depending on where the pressure loss is procedurally better (ie smaller).
  • either weak gas can be conducted in the fibers or the weak gas is passed externally.
  • the pressure upstream of the membrane separation unit is built up; for small quantities, suction is ensured by a compressor or compressor preferably arranged on the permeate side.
  • suitable recovery units such as gas engines or burners, can be operated more cost-effectively, more stable and in a broader range of methane concentration without further ado.
  • the present invention is in the feed gas and purge gas, more preferably in feed gas, purge gas, retentate and permeate the membrane separation unit at least one parameter, eg the partial pressure, the concentration, the pressure, the flow rate or even the chemical nature, at least one gas component A and / or B, eg of methane and / or C0 2 , measured, compared with a desired value and on the determined values by means of, for example, a suitable adjusting device each provided in the feed gas, purge gas, retentate and / or permeate stream compressors, and / or control valves controlled.
  • a suitable adjusting device each provided in the feed gas, purge gas, retentate and / or permeate stream compressors, and / or control valves controlled.
  • a control valve is provided on the retentate side in an optional supply line to a utilization unit after the membrane separation unit, the control valve also having a sensor for determining at least one parameter, e.g. the partial pressure, the concentration, the pressure, the flow rate or even the chemical nature, at least one gas component can be assigned in the retentate, which control valve can also be actuated by said central control device.
  • the present invention relates to a device for separating a feed gas by means of gas permeation into retentate and permeate with at least one membrane separation unit (1) having a gas inlet line (2), a retentate outlet line (3) and a permeate outlet line (4) in that the membrane separation unit (1) has a flushing gas inlet line (5) on the permeate side.
  • the membrane separation unit (1) in the gas inlet line (2) has provided a compressor or compressor (6).
  • gas sensors are provided which are connected to an adjusting device (9) for controlling or regulating the compressors or compressors (6), (7) and / or (8) or optionally existing control valves in these lines.
  • a control valve (10) is provided in the retentate outlet line (3), which is preferably connected to the adjusting device (9).
  • FIG. 1 shows a device according to the invention with a membrane separation unit 1 with a gas inlet line 2 for feeding the feed gas together with a compressor 6 arranged therein, a retentate outlet line 3 with a control valve 10 preferably arranged therein, a permeate outlet line 4 together with a compressor 7 arranged therein and a flushing gas inlet line 5 together
  • gas inlet line 2 in the purge gas inlet line 5, in the Permeatausgangstechnisch 4 and in the retentate output line 3 respectively gas sensors are provided (shown in phantom), which with the adjusting device 9 for power control or regulation of the compressor or compressors 6, 7th and 8 or for opening and closing the control valve 10 are connected.
  • Such a device was in an example with a feed gas comprising 1, 0% CH 4 and 99% C0 2 and a pressurization of 140 millibars in a total amount of 0.995 m 3 .
  • the purge gas was air, about 79% N 2 and about 21% O 2 in a total of 0.387m 3 .
  • the product gas (retentate) had a composition of 24.8% O 2 and 1 1, 6% CH 4 , balance N 2 and C0 2 , in a total amount of about 0.06 m 3 that offgas (permeate) was with 0.24% CH 4 and 5% O 2 , balance N 2 and C0 2 , determined in a total amount of 1, 32 m 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Erhöhung des prozentualen Anteils eines Gases A in einem aus einer Membrantrenneinheit als Retentat austretendem Gasgemisch, wobei das Feedgas der Membrantrenneinheit einen Anteil an einem Gas A und einen Anteil an einem Gas B sowie gegebenenfalls noch weitere Gase umfasst, dadurch gekennzeichnet, dass in der Membrantrenneinheit eine Trennmembran eingesetzt wird, durch welche das Gas B schneller hindurchtritt als das Gas A, und die Trennmembran permeatseitig mit einem Gasstrom gespült wird, welcher das Gas B in einem geringeren Prozentsatz umfasst als das Feedgas bzw. überhaupt nicht umfasst. Weiters betrifft die vorliegende Erfindung eine Vorrichtung zur Durchführung eines solchen Verfahrens.

Description

GASTRENNUNG MIT EINER MEMBRANTRENNEINHEIT
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erhöhung des prozentualen Anteils eines Gases A in einem aus einer Membrantrenneinheit als Retentat austretendem Gasgemisch.
Schwachgase sind Brenngas-Gemische mit reduziertem Heizwert (z.B. unter 8,5 MJ/m3), die brennbaren Gase (für gewöhnlich Methan oder andere gasförmige Kohlenwasserstoffe, wie Wasserstoff und/oder Kohlenmonoxid) sind im Schwachgas mit nicht brennbaren Komponenten, wie z. B. Stickstoff (aus der Luft), Wasserdampf oder Kohlendioxid so stark verdünnt, dass eine selbstständige, stabile Oxidation (Verbrennung) nur mit hohem technischen und finanziellen Aufwand umgesetzt werden kann. Schwachgase sind zumeist frei von bzw. arm an Sauerstoff. Zur direkten Verbrennung ist es daher erforderlich, den prozentualen Anteil an Sauerstoff im Schwachgas soweit zu erhöhen, bis das resultierende Gasgemisch aus Sauerstoff und Schwachgas brennbar ist.
Schwachgase entstehen beispielsweise bei der biologisch-enzymatischen, anaeroben Zersetzung von organischem Material wie Klärschlamm und Gülle (Faulgas, Biogas) oder auf Mülldeponien (Deponiegas). Auch Kuppelgase aus der Montanindustrie werden bei geringem Heizwert als Schwachgas bezeichnet. Ebenso wird das bei der Holzvergasung entstehende Produktgas in der Literatur häufig als Schwachgas (LCV - low calorific value - gas) bezeichnet. Schwachgase entstehen auch im Bergbau bzw. in stillgelegten Bergwerken, insbesondere bei der Absaugung von Grubengas (wenn der Methangehalt des abgesaugten Grubengases beispielsweise 20 Vol.-% beträgt). Ein derartiges Schwachgas wäre vom Methangehalt her zwar theoretisch von alleine brennbar, enthält jedoch keinen Sauerstoff. Bei Zumischung von genügend Sauerstoff für die Verbrennung, beispielsweise in Form von Luft, fällt die Methankonzentration notwendigerweise auf unter 17,5 Vol.-%, wodurch für die Verbrennung dieses Gases Spezialbrenner zum Einsatz kommen müssen. Ein Beispiel dafür ist der sogenannte EFLOX-Brenner, mit dem eine Verbrennung eines Gasgemisches mit zwischen 2,5 und 17,5 Vol.-% Methan ohne Zusatzbrennstoff möglich ist
Neuerdings kommen zunehmend Schwachgase auch als Abfallprodukt (Offgas) von Biogasaufbereitungsanlagen vor, welche Offgase überwiegend nicht unbehandelt in die Atmosphäre abgelassen werden dürfen. Die Konzentration der brennbaren Komponente CH4 im Offgas wurde im Zuge der raschen technologischen Entwicklung der verschiedenen Aufbereitungstechnologien von ursprünglich 5-10 Vol.-%, bei welcher Konzentration der EFLOX-Brenner sehr gut funktionelle, auf bis zu 0,5 Vol.-% abgesenkt, bei welcher Konzentration der EFLOX-Brenner nicht mehr funktioniert.
Allgemein nachteilig an Schwachgas ist, dass es aufgrund seines niedrigen Methangehalts thermisch nur schwierig zu verwerten ist, zur Strom- bzw. Energiegewinnung müssen Zündstrahlmotoren eingesetzt werden. Herkömmliche Gasmotoren benötigen zum Zwecke der Verstromung ein brennfähiges Gasgemisch, Motoren von BHKW's können mit einem Brenn Gas enthaltend bis ca. 38 Vol.-% CH4 wirtschaftlich betrieben werden, Mikrogasturbinen bis 30 Vol.-%. Möglich ist daher die Verstromung von Grubengas oder vergleichbarer Gasarten mit einer minimalen CH4-Konzentration von etwa 30 Vol.-%. Bei CH4-Konzentrationen unterhalb dieses Grenzwertes ist eine Verstromung bzw. der Betrieb eines Gasmotors nur eingeschränkt, mit mit hohen Kosten verbundenem hohen technischen Aufwand bzw. gar nicht möglich.
Andererseits kann das oben beschriebene Schwachgas mit einer Methankonzentration von beispielsweise unter 17,5 Vol.-% oder auch unter 2,5 Vol.-% bzw. unter 0,5 Vol.-% nicht ohne weiteres in die Atmosphäre abgeblasen werden, da Methan aufgrund seiner hohen Wirkung (25-mal so wirksam wie C02) mit rund 20 % zum anthropogenen Treibhauseffekt beiträgt, die Verweildauer von Methan in der Atmosphäre ist jedoch mit 9 bis 15 Jahren deutlich kürzer als bei C02. Der globale mittlere Methan-Gehalt der Atmosphäre hat sich seit vorindustriellen Zeiten (1750) von rund 600 ppb auf 1 .750 ppb im Jahr 1999 erhöht. Im Zeitraum von 1999 bis 2006 blieb der Methan-Gehalt der Atmosphäre weitgehend konstant, steigt aber seit 2007 wieder signifikant auf über 1800 ppb.
Um die Freisetzung von Methan in die Umwelt zu minimieren, hat der Gesetzgeber in Deutschland beispielsweise für Biogasanlagen finanzielle Fördermaßnahmen eingerichtet, bei denen jedoch die maximal emittierbare Methanmenge im Abgas auf 0,2 Vol.-% der im Biogasprozess produzierten Methanmasse begrenzt wird. Dies bedeutet, dass beispielsweise eine Biogasaufbereitungsanlage mit einer sehr hohen Recovery von 99,5 Vol.-%, ( d.h. 99,5 Vol.-% des in die Biogasaufbereitungsanlage eintretenden Methans wird wieder über das Produktgas einer Weiterverwendung zugeführt, z.B. ins Gasnetz eingespeist) bei einer CH4 Konzentration von 53 Vol.-% im Feed (Rohgas) und einer CH4 Konzentration von 98 Vol.-% im Produktgas eine CH4-Konzentration von 0,57 Vol.-% im Offgas hat.
CH4 53,00 132,50 0,57 0,66 98,00 131 ,84
C02 47,00 1 17,50 99,43 1 14,81 2,00 2,69
Summe 250,00 1 15,47 134,53
Bei dem angeführten Beispiel ergibt sich der Unterschied zwischen der erlaubten und der tatsächlich zu erwarteten CH4 Emission wie folgt.
Alle Ergebnisse aufgerundet
Wie man sieht wird bei dem angegebenen Beispiel der zulässige Emissionswert um das doppelte überschritten. Um nun die in dem oben genannten Beispiel aufgeführte Methankonzentration auf den geforderten Wert von 0,2 Vol.-% des CH4-Inputs zu reduzieren, wird das Abgas üblicherweise thermisch oder katalytisch oxidiert. Hierzu sind wie bereits erwähnt bis zu einer Methankonzentration bis zu 2,5 Vol.-% sog. FLOX-Brenner, d. h. Brenner mit einer flammenlosen Oxidation, und bis zu einer Methankonzentration von bis zu 0,5 Vol.-% sogenannte RTO-Brenner (Regenerative Thermische Oxidation) oder die katalytische Nachverbrennung (KNV) bekannt. Ein Nachteil der RTO-Benner ist das immer schlechter werdende Verhältnis von Volumen zur Oberfläche, da die Wärmeverluste wie bei jeder Wärmekraftmaschine in diesem Verhältnis zunehmen und dadurch der Wirkungsgrad abnimmt, deshalb muss, um die Nachverbrennung durchführen zu können, entweder gegebenenfalls Biogas, Erdgas oder Flüssiggas als Zusatzbrennstoff beigemengt werden oder der CH4 Gehalt im Schwachgas wieder erhöht werden.
Wünschenswert wäre es daher, den prozentualen Anteil an Methan bzw. eines Gases A in einem Gasgemisch als Retentat einer Membrantrenneinheit dadurch zu erhöhen, dass das der Membrantrenneinheit zugeführte Feedgas ein Gas A, beispielsweise Methan, sowie ein Gas B, beispielsweise C02, umfasst und über die Trennmembran im Retentat eine Abreicherung an Gas B, beispielsweise C02, vorgesehen wird, wobei im Retentat vorzugsweise auch ein Anteil an Sauerstoff vorgesehen wird. Weiters wäre es wünschenswert, wenn das Permeat der Membrantrenneinheit als den gesetzlichen Vorschriften entsprechendes Abgas gegebenenfalls direkt in die Atmosphäre abgegeben werden darf.
Aufgabe der vorliegenden Erfindung ist es, ein zwei Gase A und B sowie gegebenenfalls noch weitere Gase umfassendes Feedgas, wie beispielsweise Schwachgas, mittels einer Membrantrenneinheit derart aufzutrennen, dass das Permeat der Membrantrenneinheit als den gesetzlichen Vorschriften entsprechendes Abgas in die Atmosphäre gelangen darf und gleichzeitig das Retentat ohne weiteres, beispielsweise ohne Hinzufügung eines Zusatzbrennstoffes, einer sinnvollen, beispielsweise thermischen, Verwertung zugeführt werden kann. Allgemein besteht bei Schwachgasen das Problem, dass solche Gasgemische für den Betrieb von herkömmlichen Verwertungseinheiten, wie Gasmotoren oder Brenner, nicht direkt verwendet werden können. Ein erfindungsgemäß verwendbares Feedgas kann beispielsweise 1 Vol.-% Methan und 99 Vol.-% C02 enthalten, jedoch praktisch keinen Sauerstoff. Ein solches Gasgemisch kann nicht ohne weiteres als Abgas in die Atmosphäre abgelassen werden, andererseits ist es auch nicht selbst brennbar und kann bestenfalls mithilfe von Stützbrennern thermisch verwertet werden bzw. muss es durch seinen Gehalt an Methan aufgrund gesetzlicher Vorschriften wie bereits zuvor beschrieben nachbehandelt, beispielsweise oxidiert, werden.
Die obgenannte Aufgabe wird erfindungsgemäß dadurch gelöst, dass in einem Verfahren zur Erhöhung des prozentualen Anteils eines Gases A in einem aus einer Membrantrenneinheit als Retentat austretendem Gasgemisch, wobei das Feedgas der Membrantrenneinheit einen Anteil an einem Gas A und einen Anteil an einem Gas B sowie gegebenenfalls noch weitere Gase umfasst, in der Membrantrenneinheit eine Trennmembran eingesetzt wird, durch welche das Gas B schneller hindurchtritt als das Gas A, und die Trennmembran permeatseitig mit einem Gasstrom gespült wird, welcher das Gas B in einem geringeren Prozentsatz umfasst als das Feedgas bzw. überhaupt nicht umfasst. Bei einem Trennverfahren für Biogas, in welchem Fall das Gas A Methan und das Gas B C02 bedeutet, kann erfindungsgemäß durch Einstellen (z.B. Feeddruck und/oder Durchfluss) der entsprechenden Gasströme von Feedgas und Spülgas, beispielsweise in einem Volumsverhältnis von zwischen 1 zu 0,1 bis 1 zu 2, beispielsweise zwischen 1 zu 0,15 bis 1 zu 0,35, vorzugsweise in einem Verhältnis von zwischen 1 zu 0,20 bis 1 zu 0,30, besonders bevorzugt in einem Verhältnis von etwa 1 zu 0,25, ein Permeat erhalten werden, welches den gesetzlichen Vorschriften (kleiner 0,2 % Vol.-% Methan bezogen auf den Methaneintrag im Trennverfahren) entspricht und daher als Abgas direkt in die Atmosphäre abgelassen werden kann. Das erfindungsgemäße Verfahren kann jedoch für jegliche Trennverfahren angewendet werden, solange in der Membrantrenneinheit eine Trennmembran eingesetzt wird, durch welche das Gas B schneller hindurchtritt als das Gas A, und die Trennmembran permeatseitig mit einem Gasstrom gespült wird, welcher das Gas B in einem geringeren Prozentsatz umfasst als das Feedgas bzw. überhaupt nicht umfasst. Durch das Gas B im Gasgemisch des Feedgases, welches Gas B schneller durch die Trennmembran hindurch tritt als das Gas A, verringert sich der Volumenstrom des Retentats (Produktgas), da das Gas B bevorzugt durch die Membran hindurch ins Permeat bzw. Offgas übergeht. Das Spülgas für die Trennmembran umfasst dabei nur einen geringen oder keinen Partialdruck an Gas B Aufgrund der Differenz der Partialdrucke (wenig B m Spülgas, viel B im Feedgas) tritt B aus dem Feedgas ins Permeat über, durch die höhere Durchtrittsgeschwindigkeit von B durch die Trennmembran verringert sich wie bereits gesagt gleichzeitig der Volumenstrom des Retentats und dadurch erhöht sich auch die Konzentration von A im Retentat. Durch das Spülgas wird permeatseitig das permeierte Gasgemisch beschleunigt abtransportiert, wodurch die Partialdruckdifferenz ebenfalls steigt oder konstant gehalten wird. Für das Spülgas kann auch ein Verdichter oder Kompressor vorgesehen sein. Bei der Verwertung bzw. Behandlung von Grubengas als Schwachgas (Gas A CH4 und Gas B C02) und der Verwendung von Luft als Spülgas kann, wie oben bereits für Biogas ausgeführt, bei geeigneten Verfahrensbedingungen der Methangehalt im Permeat so niedrig gehalten werden, dass das Permeat weniger als 0,2 Vol.-% Methan, bezogen auf den Methaneintrag, aufweist und damit den gesetzlichen Vorschriften entspricht, so dass es ohne vorherige Nachoxidation in die Atmosphäre abgelassen werden kann. Auch wird durch die Spülluft permeatseitig C02 abtransportiert, die Partialdruckdifferenz zwischen Feedgas (bis zu über 99 Vol.-% C02) und Permeat dadurch weiter erhöht und damit C02 vermehrt aus dem Retentat entfernt. Weiters kann Sauerstoff aus dem Spülgas durch die Membran ins Retentat übertreten, wodurch der Sauerstoffgehalt des Retentat steigt bzw. überhaupt erst ein Sauerstoffgehalt vorgesehen wird. Durch geeignete Verfahrensführung kann so einen Retentat gewonnen werden, welches trotz theoretisch zu geringem Methangehalt aufgrund des gesteigerten Sauerstoffgehalts verbrannt werden kann. Das erfindungsgemäße Verfahren kann dabei auch bei einem Gehalt an Gas A (beispielsweise Methan) im Feedgas von unter 3 Vol.-%, insbesondere von unter 2,0 Vol.-%, besonders bevorzugt von unter 1 ,5 Vol.-%, durchgeführt werden.
Vorzugsweise wird im erfindungsgemäßen Verfahren die Partialdruckdifferenz von beispielsweise Gas A und Gas B zwischen Permeat und Retentat in der Membrantrenneinheit gesteigert, vorzugsweise durch Druckbeaufschlagung des Feedgases, etwa indem der Membrantrenneinheit ein Verdichter oder Kompressor vorgeschaltet wird. Bei Vorschalten eines Verdichters oder Kompressors zur Druckbeaufschlagung des Feedgases wird der Partialdruck der Gaskomponenten retentatseitig erhöht, auf der weitestgehend drucklosen Permeatseite bleibt der Partialdruck der Gaskomponenten unverändert, sodass sich die Partialdruckdifferenz und damit die Trennleistung der Membrantrenneinheit erhöht. Bei Verwendung von Hohlfasermembranen sind im vorliegenden Verfahren die Fasern sowohl innen als auch alternativ außen mit Feedgas beaufschlagbar, je nachdem wo der Druckverlust verfahrenstechnisch besser (d.h. kleiner) ist. Dies bedeutet, dass im erfindungsgemäßen Verfahren bei Verwendung von Hohlfasermembranen entweder Schwachgas in den Fasern geführt werden kann oder das Schwachgas außen geführt wird. Vorzugsweise wird bei großen zu verwertenden Mengen an Schwachgas der Druck vor der Membrantrenneinheit aufgebaut, bei kleinen Mengen ist eine Saugleistung durch einen vorzugsweise permeatseitig angeordneten Verdichter oder Kompressor gewährleistet.
Mit einem durch das erfindungsgemäße Verfahren an Methan und gleichzeitig Sauerstoff aus der Spülluft angereicherten Retentat, welches aus Schwachgas als Feedgas gewonnen wurde, können ohne weiteres geeignete Verwertungseinheiten, wie beispielsweise Gasmotoren oder Brenner, kostengünstiger, stabiler und in einem breiteren Bereich der Methankonzentration betrieben werden.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird im Feedgas und Spülgas, besonders bevorzugt in Feedgas, Spülgas, Retentat und Permeat der Membrantrenneinheit mindestens ein Parameter, z.B. der Partialdruck, die Konzentration, der Druck, die Durchflussmenge oder überhaupt die chemische Natur, zumindest einer Gaskomponente A und/oder B, z.B. von Methan und/oder C02, gemessen, mit einem Sollwert verglichen und über die ermittelten Werte mittels beispielsweise einer geeigneten Stelleinrichtung jeweils im Feedgas-, Spülgas-, Retentat- und/oder Permeatstrom vorgesehene Verdichter, Kompressoren und/oder Regelventile angesteuert.
Weiters ist günstig, wenn nach der Membrantrenneinheit retentatseitig in einer gegebenenfalls vorhandenen Zuleitung zu einer Verwertungseinheit ein Regelventil vorgesehen ist, wobei dem Regelventil ebenfalls ein Sensor zur Ermittlung mindestens eines Parameters, z.B. des Partialdrucks, der Konzentration, des Drucks, der Durchflussmenge oder überhaupt der chemische Natur, zumindest einer Gaskomponente im Retentatstrom zugeordnet sein kann, welches Regelventil ebenfalls von der erwähnten zentralen Stelleinrichtung betätigt werden kann.
Gemäß einem weiteren Aspekt betrifft die vorliegende Erfindung eine Vorrichtung zur Auftrennung eines Feedgases mittels Gaspermeation in Retentat und Permeat mit mindestens einer Membrantrenneinheit (1 ) mit einer Gaseingangsleitung (2), einer Retentatausgangsleitung (3) und einer Permeatausgangsleitung (4), dadurch gekennzeichnet, dass die Membrantrenneinheit (1 ) permeatseitig eine Spülgaseingangsleitung (5) aufweist.
Bei einer solchen Vorrichtung ist vorzugsweise vorgesehen, dass die Membrantrenneinheit (1 ) in der Gaseingangsleitung (2) einen Verdichter oder Kompressor (6) vorgesehen hat. Dadurch kann, wie bereits zuvor erwähnt, die Partialdruckdifferenz einzelner Gasbestandteile verschoben werden.
Besonders bevorzugt ist, wenn bei der erfindungsgemäßen Vorrichtung in der Gaseingangsleitung (2) und in der Spülgaseingangsleitung (5), besonders bevorzugt in der Gaseingangsleitung (2), in der Spülgaseingangsleitung (5), in der Retentatausgangsleitung (3) und in der Permeatausgangsleitung (4), jeweils Gassensoren vorgesehen sind, welche mit einer Stelleinrichtung (9) zur Steuerung bzw. Regelung der Verdichter oder Kompressoren (6), (7) und/oder (8) bzw. gegebenenfalls vorhandenen Stellventilen in diesen Leitungen, verbunden sind.
Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist in der Retentatausgangsleitung (3) ein Stellventil (10) vorgesehen, dass vorzugsweise mit der Stelleinrichtung (9) verbunden ist.
Die vorliegende Erfindung wird anhand der nachfolgenden Figur näher erläutert, ohne auf diese eingeschränkt zu sein. Wenn in der vorliegenden Erfindung von Prozentangaben die Rede ist sind, wenn nicht ausdrücklich anders angeführt, immer Vol. -% gemeint.
Fig. 1 zeigt eine erfindungsgemäße Vorrichtung mit einer Membrantrenneinheit 1 mit einer Gaseingangsleitung 2 zur Zuführung des Feedgases samt darin angeordnetem Verdichter 6, einer Retentatausgangsleitung 3 mit einem darin vorzugsweise angeordnetem Stellventil 10, einer Permeatausgangsleitung 4 samt darin angeordnetem Verdichter 7 und einer Spülgaseingangsleitung 5 samt darin angeordnetem Verdichter 8. In der Gaseingangsleitung 2, in der Spülgaseingangsleitung 5, in der Permeatausgangsleitung 4 und in der Retentatausgangsleitung 3 sind jeweils Gassensoren vorgesehen (strichliert dargestellt), welche mit der Stelleinrichtung 9 zur leistungsmäßigen Steuerung bzw. Regelung der Verdichter oder Kompressoren 6, 7 und 8 bzw. zum Öffnen und Schließen des Stellventils 10 verbunden sind.
Eine derartige Vorrichtung wurde in einem Beispiel mit einem Feedgas umfassend 1 ,0 % CH4 und 99 % C02 und einer Druckbeaufschlagung von 140 Millibar in einer Gesamtmenge von 0,995 m3 beschickt. Das Spülgas war Luft, etwa 79 % N2 und etwa 21 % 02 in einer Gesamtmenge von 0,387 m3. Das Produktgas (Retentat) wies eine Zusammensetzung von 24,8 % 02 und 1 1 ,6 % CH4, Rest N2 und C02, in einer Gesamtmenge von etwa 0,06 m3 auf, dass Offgas (Permeat) wurde mit 0,24 % CH4 und 5 % 02, Rest N2 und C02, in einer Gesamtmenge von 1 ,32 m3 bestimmt. Aus den Ergebnissen ist ersichtlich, dass es durch das erfindungsgemäße Verfahren bzw. mit der erfindungsgemäßen Vorrichtung möglich ist, bei praktisch sauerstofffreiem Feedgas den Sauerstoffgehalt in Produktgas auf einen Wert zu erhöhen, der über dem Sauerstoffgehalt im Spülgas liegt. Gleichzeitig wird der Methangehalt derart erhöht, dass das Produktgas ohne Stützflamme verbrannt werden kann.
Feed Spülgas
Nm3/h Nm3/h
% %
Total 0,9949 0,3869
CH4 01 ,00 0,0099 0 0,0000
C02 98,56 0,9806 00,03 0,0001
N2 0 0,0000 78,00 0,3056
o2 0 0,0000 21 ,00 0,0812
Kontrolle 99,56 0,9906 99,03 0,3869
Produkt Offgas
Nm3/h Nm3/h
% %
Total 0,0584 1 ,3239
CH4 1 1 ,65 0,0068 00,24 0,0032
C02 00,03 0,0000 74,44 0,9855
N2 63,53 0,0371 20,28 0,2685
o2 24,79 0,0145 05,04 0,0667
Kontrolle 100,00 0,0584 100,00 1 ,3239

Claims

P a t e n t a n s p r ü c h e
1 . Verfahren zur Erhöhung des prozentualen Anteils eines Gases A in einem aus einer Membrantrenneinheit als Retentat austretendem Gasgemisch, wobei das Feedgas der Membrantrenneinheit einen Anteil an einem Gas A und einen Anteil an einem Gas B sowie gegebenenfalls noch weitere Gase umfasst, dadurch gekennzeichnet, dass in der Membrantrenneinheit eine Trennmembran eingesetzt wird, durch welche das Gas B schneller hindurchtritt als das Gas A, und die Trennmembran permeatseitig mit einem Gasstrom gespült wird, welcher das Gas B in einem geringeren Prozentsatz umfasst als das Feedgas bzw. überhaupt nicht umfasst.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Partialdruckdifferenz zwischen Permeat und Retentat in der Membrantrenneinheit durch Druckbeaufschlagung des Feedgases gesteigert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Retentat in einer der Membrantrenneinheit retentatseitig nachgeschalteten Einheit verwertet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass im Feedgas und Spülgas, besonders bevorzugt in Feedgas, Spülgas, Retentat und Permeat der Membrantrenneinheit mindestens ein Parameter zumindest einer Gaskomponente A und/oder B gemessen, mit einem Sollwert verglichen und über die ermittelten Werte jeweils im Feedgas-, Spülgas-, Retentat- und/oder Permeatstrom vorgesehene Verdichter, Kompressoren und/oder Regelventilen angesteuert werden.
5. Vorrichtung zur Auftrennung eines Feedgases mittels Gaspermeation in Retentat und Permeat mit mindestens einer Membrantrenneinheit (1 ) mit einer Gaseingangsleitung (2), einer Retentatausgangsleitung (3) und einer Permeatausgangsleitung (4), dadurch gekennzeichnet, dass die Membrantrenneinheit (1 ) permeatseitig eine Spülgaseingangsleitung (5) aufweist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass in der Gaseingangsleitung (2) ein Verdichter oder Kompressor (6) vorgesehen ist.
7. Vorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass in der Gaseingangsleitung (2), in der Retentatausgangsleitung (3), in der Permeatausgangsleitung (4) und/oder in der Spülgaseingangsleitung (5) jeweils ein Verdichter oder Kompressor (7) und/oder (8) bzw. gegebenenfalls Stellventile vorgesehen ist bzw. sind.
8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass in der Gaseingangsleitung (2) und in der Spülgaseingangsleitung (5), besonders bevorzugt in der Gaseingangsleitung (2), in der Spülgaseingangsleitung (5), in der Retentatausgangsleitung (3) und in der Permeatausgangsleitung (4), jeweils Gassensoren vorgesehen sind, welche mit einer Stelleinrichtung (9) zur Steuerung bzw. Regelung der Verdichter oder Kompressoren (6), (7) und/oder (8) bzw. gegebenenfalls vorhandenen Stellventilen in diesen Leitungen, verbunden sind.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass in der Retentatausgangsleitung (3) ein Stellventil (10) vorgesehen ist, dass vorzugsweise mit der Stelleinrichtung (9) verbunden ist.
pp
EP14700253.9A 2013-02-05 2014-01-08 Gastrennung mit einer membrantrenneinheit Ceased EP2953706A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14700253.9A EP2953706A1 (de) 2013-02-05 2014-01-08 Gastrennung mit einer membrantrenneinheit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13153972.8A EP2762220B1 (de) 2013-02-05 2013-02-05 Verfahren und Vorrichtung zur Verwertung von Schwachgas
PCT/EP2014/050226 WO2014121964A1 (de) 2013-02-05 2014-01-08 Gastrennung mit einer membrantrenneinheit
EP14700253.9A EP2953706A1 (de) 2013-02-05 2014-01-08 Gastrennung mit einer membrantrenneinheit

Publications (1)

Publication Number Publication Date
EP2953706A1 true EP2953706A1 (de) 2015-12-16

Family

ID=47665981

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13153972.8A Active EP2762220B1 (de) 2013-02-05 2013-02-05 Verfahren und Vorrichtung zur Verwertung von Schwachgas
EP14700253.9A Ceased EP2953706A1 (de) 2013-02-05 2014-01-08 Gastrennung mit einer membrantrenneinheit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13153972.8A Active EP2762220B1 (de) 2013-02-05 2013-02-05 Verfahren und Vorrichtung zur Verwertung von Schwachgas

Country Status (3)

Country Link
EP (2) EP2762220B1 (de)
DK (1) DK2762220T3 (de)
WO (1) WO2014121964A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201504130D0 (en) * 2015-03-11 2015-04-22 Johnson Matthey Davy Technologies Ltd Process
EP3141295A1 (de) * 2015-09-10 2017-03-15 Axiom Angewandte Prozeßtechnik Ges. m.b.H. Vorrichtung und verfahren zur auftrennung eines gasgemisches mittels einer membraneinheit
CN105486877B (zh) * 2016-01-05 2017-09-05 中国科学院武汉岩土力学研究所 垃圾填埋场沼气和渗沥液多参数一体化远程在线监控系统
CN106221839A (zh) * 2016-08-31 2016-12-14 武汉格瑞拓机械有限公司 一种高效节能沼气纯化与增压一体化装置
FR3089819B1 (fr) * 2018-12-14 2020-11-27 Air Liquide Installation et procédé de traitement par perméation membranaire d'un courant gazeux avec ajustement de la pression d’aspiration du second perméat
FR3089820B1 (fr) * 2018-12-14 2020-11-27 Air Liquide Installation et procédé de traitement par perméation membranaire d'un courant gazeux avec ajustement de la concentration en méthane
CN110921635B (zh) * 2019-12-13 2023-09-26 南京航空航天大学 一种结合空气冲洗与膜分离的机载制氮装置及其应用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008016134U1 (de) * 2008-07-14 2009-04-16 Erdgas Südwest GmbH Vorrichtung zur Anreicherung der Brenngasanteile in Schwachgasen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2497898A (en) * 1946-11-16 1950-02-21 Koppers Co Inc Method of changing the composition of a combustible gas by diffusion
GB1175688A (en) * 1965-12-22 1969-12-23 Du Pont Diffusion Systems for Separating Fluid Mixtures
ES2128856T3 (es) * 1995-05-12 1999-05-16 Gilbarco Inc Aparato y metodo para reducir la presion en un espacio vacio de un tanque de productos quimicos organicos volatiles
DE10047264B4 (de) * 2000-09-23 2006-05-04 G.A.S. Energietechnologie Gmbh Verfahren zur Nutzung von methanhaltigem Biogas
DE10047262B4 (de) * 2000-09-23 2005-12-01 G.A.S. Energietechnologie Gmbh Verfahren zur Nutzung methanhaltiger Gase
AT408954B (de) * 2000-09-26 2002-04-25 Axiom Angewandte Prozesstechni Vorrichtung und verfahren zur gaspermeation
FR2852255A1 (fr) * 2003-03-11 2004-09-17 Air Liquide Procede de traitement d'un melange gazeux par permeation
DE102010050214A1 (de) * 2010-11-04 2012-05-10 Wulf Clemens Verfahren zur Aufkonzentrierung von brenngashaltigen Gasgemischen auf Erdgasqualität

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008016134U1 (de) * 2008-07-14 2009-04-16 Erdgas Südwest GmbH Vorrichtung zur Anreicherung der Brenngasanteile in Schwachgasen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014121964A1 *

Also Published As

Publication number Publication date
DK2762220T3 (da) 2020-06-22
EP2762220A1 (de) 2014-08-06
WO2014121964A1 (de) 2014-08-14
EP2762220B1 (de) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2014121964A1 (de) Gastrennung mit einer membrantrenneinheit
DE10047262B4 (de) Verfahren zur Nutzung methanhaltiger Gase
EP1702176B1 (de) Wärmekraftanlage mit sequentieller verbrennung und reduziertem co2-ausstoss sowie verfahren zum betreiben einer derartigen anlage
DE19625559C1 (de) Verfahren zur Brandbekämpfung und Vorrichtung zu seiner Durchführung
DE10334590B4 (de) Verfahren zur Gewinnung von Wasserstoff aus einem methanhaltigen Gas, insbesondere Erdgas und Anlage zur Durchführung des Verfahrens
EP1643100B1 (de) Kraftwerksanlage und zugehöriges Betriebsverfahren
DE102007050783A1 (de) Systeme und Verfahren zur Energieerzeugung mit Kohlendioxydisolation
DE60112177T2 (de) Mit Wasserstoff betriebene Fackel
DE102009012668A1 (de) Verfahren und Anlage zur Verwertung von Biomasse
WO2010006910A4 (de) Verfahren und vorrichtung zur anreicherung der brenngasanteile in schwachgasen
EP2562237B1 (de) Verfahren zur bereitstellung eines gases mit sehr hohem methangehalt und dazu ausgelegte anlage
DE102008046879A1 (de) Verfahren zur Biogasaufbereitung und Biogasanlage
DE102008062495A1 (de) Verfahren und Vorrichtung zur katalytischen Entstickung von Gasströmen aus Großfeuerungsanlage
DE102006036749B3 (de) Verfahren und Vorrichtung zur Gewinnung von Edelgasen
EP1870636A1 (de) Rauchfreies verfahren zum verbrennen von gasen in einer fackelanlage
WO2020178330A1 (de) Verfahren zur herstellung von methanol oder methan
DE102007015309A1 (de) Betriebsverfahren für eine Turbogruppe
EP1862736A2 (de) Verfahren und Vorrichtung zum Einspeisen von Oxidationsmittel in eine Verbrennungseinrichtung
DE102012000569A1 (de) Verfahren zum farblosen An- und Abfahren von Salpetersäureanlagen
WO2014060168A2 (de) Vorrichtung zur erdgasverdichtung und verfahren zur methanherstellung
DE102016218800A1 (de) Brennstoffzellenvorrichtung
DE102005042176B4 (de) Kraftwerksanlage und zugehöriges Betriebsverfahren
DE112012003006B4 (de) Verfahren zum Betreiben einer stationären Kraftanlage sowie mit dem Verfahren betriebene stationäre Kraftanlage
CH701210A1 (de) Verfahren zum Betrieb eines Gasturbinenkraftwerkes mit Brennstoffzelle.
DE102022125444B4 (de) Verfahren zur Entfernung eines Methananteils aus Offgas und Biogasanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20220217