EP2947290A1 - Procédé de post-traitement de gaz d'échappement - Google Patents

Procédé de post-traitement de gaz d'échappement Download PDF

Info

Publication number
EP2947290A1
EP2947290A1 EP15167318.3A EP15167318A EP2947290A1 EP 2947290 A1 EP2947290 A1 EP 2947290A1 EP 15167318 A EP15167318 A EP 15167318A EP 2947290 A1 EP2947290 A1 EP 2947290A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
exhaust
reaction zone
thermoreactor
aftertreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15167318.3A
Other languages
German (de)
English (en)
Other versions
EP2947290B1 (fr
Inventor
Friedhelm Hillen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innio Jenbacher GmbH and Co OG
Original Assignee
GE Jenbacher GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Jenbacher GmbH and Co OHG filed Critical GE Jenbacher GmbH and Co OHG
Publication of EP2947290A1 publication Critical patent/EP2947290A1/fr
Application granted granted Critical
Publication of EP2947290B1 publication Critical patent/EP2947290B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/26Construction of thermal reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/10Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/12Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a thermal reactor

Definitions

  • the invention relates to a method for exhaust aftertreatment having the features of the preamble of claim 1, as well as an exhaust aftertreatment device having the features of the preamble of claim 2.
  • RTO regenerative thermal oxidation
  • unburned hydrocarbons and other oxidizable exhaust gas constituents are thermally oxidized.
  • the regenerative thermal oxidation of the exhaust gas is first passed through a, usually made of ceramic bulk material or honeycomb bodies, heat storage to finally reach the reaction chamber.
  • the exhaust gas can be further heated by additional heaters until a thermal oxidation of the undesirable exhaust gas constituents can take place. Subsequently, the exhaust gas flows through another heat storage to the exhaust and is released into the environment.
  • the flow direction is changed alternately, whereby the exhaust gas is preheated before reaching the reaction chamber, whereby an energy saving in the further heating of the exhaust gas sets.
  • the additional heating can be set up by gas injection or burner (so-called support gas) or an additional electric heater.
  • the reaction chamber usually has a free flow cross-section, whereby the residence time of the exhaust gas is increased in the reaction chamber and the oxidation can proceed in the form of a gas phase reaction.
  • Particularly relevant among the species to be oxidized in the exhaust gas are carbon monoxide (CO) and methane (CH 4 ).
  • CO carbon monoxide
  • CH 4 methane
  • Such a device is z. B. known under the brand name CL.AIR ® by GE Jenbacher.
  • the CL.AIR ® thermal reactor is constructed as a regenerative heat exchanger and consists of two storage masses, a reaction chamber and a switching mechanism.
  • the exhaust gas flows at a temperature of about 530 ° C from the engine via a switching mechanism in a first storage mass, where it is heated to about 800 ° C.
  • the exhaust gas reacts with the existing oxygen, whereby carbon monoxide and unburned hydrocarbons are oxidized to carbon dioxide and water.
  • the exhaust gas is again from heat and reaches at a temperature of 550 to 570 ° C, the switching mechanism, which it feeds the chimney or a downstream waste heat recovery.
  • Regenerative thermal oxidation offers a robust process with which even large exhaust gas mass flows can be economically treated.
  • Thermoreactors previously described are designed to oxidize both methane and carbon monoxide. This brings some disadvantages in operation.
  • thermoreactor In order to reduce carbon monoxide, a relatively high temperature and a relatively long residence time are required in the thermoreactor.
  • thermoreactor is catalytically oxidized, preferably catalytically oxidized in the thermoreactor, thus ensures that the thermoreactor must be designed for lower temperatures and a shorter residence time of the exhaust gas, and yet the carbon monoxide can be reduced to a satisfactory extent. It is thus provided according to the invention that methane is first reduced by thermal oxidation.
  • the parameters in the thermoreactor are chosen to allow for partial oxidation of methane to produce carbon monoxide instead of being reduced as conventionally provided in thermoreactors.
  • the resulting pretreated exhaust gas thus contains a larger amount of carbon monoxide than in the original exhaust gas while unburned hydrocarbons, especially methane, are already oxidized.
  • a catalytic oxidizer This can be provided, for example, as an oxidation catalyst consisting of a catalyst support medium, as is known, for example, for exhaust aftertreatment from the automotive sector.
  • the oxidation catalytic converter is set up by catalytic coating of volume sections of the thermal oxidation catalytic converter. This can be achieved, for example, by providing volume sections of the ceramic storage material present in the thermal oxidation catalyst with a catalytically active surface or introducing other catalytically active materials.
  • An exhaust aftertreatment device thus contains an input for exhaust gas, a thermal reaction zone and at least one catalytic reaction zone, wherein the at least one catalytic reaction zone downstream of the thermal reaction zone in the flow direction of the exhaust gas through the exhaust gas aftertreatment device.
  • the thermal reaction zone and the at least one catalytic reaction zone are arranged in a common housing.
  • This can be realized, for example, by integrating a volume section with catalytically active material into the reaction zone of the thermoreactor.
  • the catalytically active region is formed in the ceramic storage mass of the thermoreactor. This describes the case where a catalytically active region is formed by catalytic coating of part of the surface of the ceramic bulk material of the thermoreactor.
  • the catalytic reaction zone of the thermal reaction zone is connected downstream of the exhaust gas aftertreatment device in a housing separate from the thermal reaction zone in the flow direction of the exhaust gas.
  • This embodiment describes the case where the thermoreactor and the oxidation catalyst are realized as separate components.
  • a thermoreactor is provided which corresponds in terms of its design to the prior art and downstream of which an oxidation catalytic converter is connected downstream.
  • FIG. 1 shows a schematic representation of an internal combustion engine 1, which is connected via the exhaust manifold 2 with the exhaust gas aftertreatment device 3.
  • the flow direction of the exhaust gas through the thermoreactor 11 can be changed.
  • the flow direction of the exhaust gases can first be carried out alternately by the storage mass 5, the thermal reaction zone 7 and the storage mass 6.
  • the exhaust gas flows first through storage mass 6, then through the thermal reaction zone 7 and finally through storage mass 5.
  • the exhaust gas leaves the system via line 8 and becomes a chimney or a waste heat recovery (both not shown). fed.
  • FIG. 1 shows a schematic representation of an internal combustion engine 1, which is connected via the exhaust manifold 2 with the exhaust gas aftertreatment device 3.
  • the reaction chamber 7 facing volume sections 9 of the storage masses 5 and 6 provided with a catalytic coating or a catalytically active material.
  • the control / regulating device 12 which on the one hand can receive signals from the internal combustion engine 1 and the exhaust gas aftertreatment device 3, on the other hand also commands Can send actuators of the exhaust aftertreatment device 3.
  • the fuel line 13 via which the internal combustion engine 1 with fuel, such as propellant, is supplied.
  • a branch can be provided, via which the thermoreactor 11, if necessary supporting gas can be supplied to the additional heating.
  • FIG. 2 shows a schematic representation of an internal combustion engine 1 with an exhaust aftertreatment device 3 analog FIG. 1
  • the exhaust aftertreatment device 3 from a thermoreactor 11, consisting of storage masses 5 and 6, and a thermal reaction zone 7 and a downstream of the thermoreactor provided in line 8 oxidation catalyst 10 is formed.
  • the flow direction can be changed by the thermoreactor 11 alternately.
  • the thermoreactor 11 has no catalytically coated volume sections in this embodiment.
  • the pretreated in the thermoreactor 11 exhaust gas flows through the oxidation catalyst 10 and is directed from there to a chimney or exhaust gas heat recovery (both not shown).
  • FIG. 3 shows a schematic representation of an internal combustion engine 1 with an exhaust aftertreatment device according to the prior art. Here, a thermoreactor without catalytically coated zones is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
EP15167318.3A 2014-05-20 2015-05-12 Procédé de post-traitement de gaz d'échappement Active EP2947290B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA377/2014A AT515898B1 (de) 2014-05-20 2014-05-20 Verfahren zur Abgasnachbehandlung

Publications (2)

Publication Number Publication Date
EP2947290A1 true EP2947290A1 (fr) 2015-11-25
EP2947290B1 EP2947290B1 (fr) 2017-07-12

Family

ID=53189652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15167318.3A Active EP2947290B1 (fr) 2014-05-20 2015-05-12 Procédé de post-traitement de gaz d'échappement

Country Status (5)

Country Link
US (1) US9657619B2 (fr)
EP (1) EP2947290B1 (fr)
CN (1) CN105114159B (fr)
AT (1) AT515898B1 (fr)
CA (1) CA2892397C (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516110B1 (de) 2014-07-21 2016-08-15 Ge Jenbacher Gmbh & Co Og Abgasnachbehandlungseinrichtung
DE102019102928A1 (de) * 2019-02-06 2020-08-06 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826089A (en) * 1971-07-07 1974-07-30 Nissan Motor Air-pollution preventive arrangement
US3854288A (en) * 1971-06-11 1974-12-17 Volkswagenwerk Ag Arrangement for exhaust gas cleaning
DE3045666A1 (de) * 1980-03-31 1982-07-08 Hans Karl Dr. 7891 Küssaberg Leistritz Katalysator-endstufe thermisch reguliert durch vorgeschalteten thermoreaktor mit fremdzuendung
EP0668471A2 (fr) * 1994-02-17 1995-08-23 PFEFFERLE, William C. Procédé catalytique

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172251A (en) * 1963-01-14 1965-03-09 Minnesota Mining & Mfg Afterburner system
US3211534A (en) * 1963-12-19 1965-10-12 Trw Inc Exhaust control apparatus
US3276202A (en) * 1965-05-20 1966-10-04 Wright W Gary Low temperature afterburner
JPS5416041A (en) 1977-04-28 1979-02-06 Leistritz Hans Karl Multipleewall hollow mold material with blockade body for guiding thermal gas
US5437152A (en) 1991-01-09 1995-08-01 Pfefferle; William C. Catalytic method
CZ289693B6 (cs) * 1994-04-11 2002-03-13 Scambia Industrial Developments Katalyzátor na katalytické oąetření výfukových plynů
US6261093B1 (en) * 1999-02-02 2001-07-17 Monsanto Company Heat regenerative oxidizer and method of operation
DE10042010C2 (de) * 2000-08-26 2002-08-22 Bosch Gmbh Robert Vorrichtung zur Abgasbehandlung
CN2537823Y (zh) * 2002-04-24 2003-02-26 华南理工大学 柴油车排气综合型净化装置
CA2406386C (fr) * 2002-10-02 2004-05-18 Westport Research Inc. Methode et appareil de regeneration pour systemes d'adsorption de nox
US6955042B1 (en) * 2004-06-30 2005-10-18 Hydrogensource Llc CPO regenerated lean NOx trap with no moving parts
US7213395B2 (en) * 2004-07-14 2007-05-08 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
US7571602B2 (en) * 2005-05-19 2009-08-11 Gm Global Technology Operations, Inc. Exhaust aftertreatment system and method of use for lean burn internal combustion engines
US8534051B2 (en) * 2007-12-26 2013-09-17 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
DE102008038719A1 (de) * 2008-08-12 2010-02-18 Man Nutzfahrzeuge Aktiengesellschaft Verfahren und Vorrichtung zur Regeneration eines im Abgasstrang einer Brennkraftmaschine angeordneten Partikelfilters
JP5449009B2 (ja) * 2010-04-28 2014-03-19 日野自動車株式会社 排気浄化装置
CN103348108B (zh) * 2011-01-31 2015-10-07 丰田自动车株式会社 废气升温用燃烧装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854288A (en) * 1971-06-11 1974-12-17 Volkswagenwerk Ag Arrangement for exhaust gas cleaning
US3826089A (en) * 1971-07-07 1974-07-30 Nissan Motor Air-pollution preventive arrangement
DE3045666A1 (de) * 1980-03-31 1982-07-08 Hans Karl Dr. 7891 Küssaberg Leistritz Katalysator-endstufe thermisch reguliert durch vorgeschalteten thermoreaktor mit fremdzuendung
EP0668471A2 (fr) * 1994-02-17 1995-08-23 PFEFFERLE, William C. Procédé catalytique

Also Published As

Publication number Publication date
US20150337706A1 (en) 2015-11-26
CN105114159A (zh) 2015-12-02
CA2892397A1 (fr) 2015-11-20
CA2892397C (fr) 2017-04-11
US9657619B2 (en) 2017-05-23
EP2947290B1 (fr) 2017-07-12
CN105114159B (zh) 2017-11-21
AT515898A1 (de) 2015-12-15
AT515898B1 (de) 2017-09-15

Similar Documents

Publication Publication Date Title
EP1915518B1 (fr) Dispositif, reacteur et procede de reduction d'oxydes d'azote dans les gaz d'echappement de moteurs a combustion interne
DE3835939C2 (de) Abgasanlage
EP3686404B1 (fr) Dispositif et procédé de post-traitement des gaz d'échappement d'un moteur à combustion interne
EP0731875A1 (fr) Procede de reduction de l'emission de polluants d'un moteur diesel pourvu d'un convertisseur catalytique a oxydation
DE2232656B2 (de) Spaltgasgenerator zur erzeugung eines brenngases
EP3377815A1 (fr) Procédé et dispositif de réglage de la caractéristique d'allumage d'un combustible, en particulier pour diminuer les émissions d'échappement de dispositifs de combustion
DE102005017719A1 (de) Reformeranordnung
DE102005062398A1 (de) Regenerieren eines Partikelfilters mit einer oxidationskatalytischen Beschichtung
DE3920159A1 (de) Beheizung eines kraftfahrzeuges durch einen katalysator mit waermetauscher
DE102008030307A1 (de) Katalysatoranordnung zur Reinigung eines Abgasstroms eines Verbrennungsmotors
EP2947290B1 (fr) Procédé de post-traitement de gaz d'échappement
EP3772576A1 (fr) Procédé de chauffage d'un catalyseur et système de traitement ultérieur des gaz d'échappement
EP1643092A1 (fr) Véhicule entraîné par un moteur diesel comprenant un système d'épuration de gaz d'échappement à régénération discontinue par l'injection des vapeurs de carburant
DE102022000400A1 (de) Vorrichtung zur Abgasnachbehandlung mit Massenstromregelung
DE19855092B4 (de) Vorrichtung und Verfahren zum Reinigen des Abgases einer Brennkraftmaschine
WO2020182705A1 (fr) Dispositif de post-traitement de gaz d'échappement et procédé de fonctionnement du dispositif
AT517670A1 (de) Abgasnachbehandlungsvorrichtung
DE102010064020B4 (de) Abgasanlage und Aufheizverfahren
EP2947291B1 (fr) Procédé de démarrage d'un réacteur thermique
DE102014016447A1 (de) Verfahren und Steuerungseinrichtung zum Betreiben einer Brennkraftmaschine
DE102021000706A1 (de) Vorrichtung zur Abgasnachbehandlung mit Abgasaufheizung
DE102008002469A1 (de) Verfahren und Vorrichtung zur Abgasreinigung
EP1517011A2 (fr) Système de gas d'échappement avec filtre à particules, élément chauffant et méthode de régénération
EP1451454B1 (fr) Procede permettant de faire fonctionner un moteur a combustion interne et moteur a combustion interne associe
DE2509861A1 (de) Brenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160324

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160909

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GE JENBACHER GMBH & CO OG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 908558

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015001412

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170712

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171012

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171013

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015001412

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

26N No opposition filed

Effective date: 20180413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170712

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 908558

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200512

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230420

Year of fee payment: 9

Ref country code: FR

Payment date: 20230420

Year of fee payment: 9

Ref country code: DE

Payment date: 20230419

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 9