EP2947290A1 - Method for aftertreatment of exhaust gases - Google Patents

Method for aftertreatment of exhaust gases Download PDF

Info

Publication number
EP2947290A1
EP2947290A1 EP15167318.3A EP15167318A EP2947290A1 EP 2947290 A1 EP2947290 A1 EP 2947290A1 EP 15167318 A EP15167318 A EP 15167318A EP 2947290 A1 EP2947290 A1 EP 2947290A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
exhaust
reaction zone
thermoreactor
aftertreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15167318.3A
Other languages
German (de)
French (fr)
Other versions
EP2947290B1 (en
Inventor
Friedhelm Hillen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innio Jenbacher GmbH and Co OG
Original Assignee
GE Jenbacher GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Jenbacher GmbH and Co OHG filed Critical GE Jenbacher GmbH and Co OHG
Publication of EP2947290A1 publication Critical patent/EP2947290A1/en
Application granted granted Critical
Publication of EP2947290B1 publication Critical patent/EP2947290B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/26Construction of thermal reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/10Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/12Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a thermal reactor

Definitions

  • the invention relates to a method for exhaust aftertreatment having the features of the preamble of claim 1, as well as an exhaust aftertreatment device having the features of the preamble of claim 2.
  • RTO regenerative thermal oxidation
  • unburned hydrocarbons and other oxidizable exhaust gas constituents are thermally oxidized.
  • the regenerative thermal oxidation of the exhaust gas is first passed through a, usually made of ceramic bulk material or honeycomb bodies, heat storage to finally reach the reaction chamber.
  • the exhaust gas can be further heated by additional heaters until a thermal oxidation of the undesirable exhaust gas constituents can take place. Subsequently, the exhaust gas flows through another heat storage to the exhaust and is released into the environment.
  • the flow direction is changed alternately, whereby the exhaust gas is preheated before reaching the reaction chamber, whereby an energy saving in the further heating of the exhaust gas sets.
  • the additional heating can be set up by gas injection or burner (so-called support gas) or an additional electric heater.
  • the reaction chamber usually has a free flow cross-section, whereby the residence time of the exhaust gas is increased in the reaction chamber and the oxidation can proceed in the form of a gas phase reaction.
  • Particularly relevant among the species to be oxidized in the exhaust gas are carbon monoxide (CO) and methane (CH 4 ).
  • CO carbon monoxide
  • CH 4 methane
  • Such a device is z. B. known under the brand name CL.AIR ® by GE Jenbacher.
  • the CL.AIR ® thermal reactor is constructed as a regenerative heat exchanger and consists of two storage masses, a reaction chamber and a switching mechanism.
  • the exhaust gas flows at a temperature of about 530 ° C from the engine via a switching mechanism in a first storage mass, where it is heated to about 800 ° C.
  • the exhaust gas reacts with the existing oxygen, whereby carbon monoxide and unburned hydrocarbons are oxidized to carbon dioxide and water.
  • the exhaust gas is again from heat and reaches at a temperature of 550 to 570 ° C, the switching mechanism, which it feeds the chimney or a downstream waste heat recovery.
  • Regenerative thermal oxidation offers a robust process with which even large exhaust gas mass flows can be economically treated.
  • Thermoreactors previously described are designed to oxidize both methane and carbon monoxide. This brings some disadvantages in operation.
  • thermoreactor In order to reduce carbon monoxide, a relatively high temperature and a relatively long residence time are required in the thermoreactor.
  • thermoreactor is catalytically oxidized, preferably catalytically oxidized in the thermoreactor, thus ensures that the thermoreactor must be designed for lower temperatures and a shorter residence time of the exhaust gas, and yet the carbon monoxide can be reduced to a satisfactory extent. It is thus provided according to the invention that methane is first reduced by thermal oxidation.
  • the parameters in the thermoreactor are chosen to allow for partial oxidation of methane to produce carbon monoxide instead of being reduced as conventionally provided in thermoreactors.
  • the resulting pretreated exhaust gas thus contains a larger amount of carbon monoxide than in the original exhaust gas while unburned hydrocarbons, especially methane, are already oxidized.
  • a catalytic oxidizer This can be provided, for example, as an oxidation catalyst consisting of a catalyst support medium, as is known, for example, for exhaust aftertreatment from the automotive sector.
  • the oxidation catalytic converter is set up by catalytic coating of volume sections of the thermal oxidation catalytic converter. This can be achieved, for example, by providing volume sections of the ceramic storage material present in the thermal oxidation catalyst with a catalytically active surface or introducing other catalytically active materials.
  • An exhaust aftertreatment device thus contains an input for exhaust gas, a thermal reaction zone and at least one catalytic reaction zone, wherein the at least one catalytic reaction zone downstream of the thermal reaction zone in the flow direction of the exhaust gas through the exhaust gas aftertreatment device.
  • the thermal reaction zone and the at least one catalytic reaction zone are arranged in a common housing.
  • This can be realized, for example, by integrating a volume section with catalytically active material into the reaction zone of the thermoreactor.
  • the catalytically active region is formed in the ceramic storage mass of the thermoreactor. This describes the case where a catalytically active region is formed by catalytic coating of part of the surface of the ceramic bulk material of the thermoreactor.
  • the catalytic reaction zone of the thermal reaction zone is connected downstream of the exhaust gas aftertreatment device in a housing separate from the thermal reaction zone in the flow direction of the exhaust gas.
  • This embodiment describes the case where the thermoreactor and the oxidation catalyst are realized as separate components.
  • a thermoreactor is provided which corresponds in terms of its design to the prior art and downstream of which an oxidation catalytic converter is connected downstream.
  • FIG. 1 shows a schematic representation of an internal combustion engine 1, which is connected via the exhaust manifold 2 with the exhaust gas aftertreatment device 3.
  • the flow direction of the exhaust gas through the thermoreactor 11 can be changed.
  • the flow direction of the exhaust gases can first be carried out alternately by the storage mass 5, the thermal reaction zone 7 and the storage mass 6.
  • the exhaust gas flows first through storage mass 6, then through the thermal reaction zone 7 and finally through storage mass 5.
  • the exhaust gas leaves the system via line 8 and becomes a chimney or a waste heat recovery (both not shown). fed.
  • FIG. 1 shows a schematic representation of an internal combustion engine 1, which is connected via the exhaust manifold 2 with the exhaust gas aftertreatment device 3.
  • the reaction chamber 7 facing volume sections 9 of the storage masses 5 and 6 provided with a catalytic coating or a catalytically active material.
  • the control / regulating device 12 which on the one hand can receive signals from the internal combustion engine 1 and the exhaust gas aftertreatment device 3, on the other hand also commands Can send actuators of the exhaust aftertreatment device 3.
  • the fuel line 13 via which the internal combustion engine 1 with fuel, such as propellant, is supplied.
  • a branch can be provided, via which the thermoreactor 11, if necessary supporting gas can be supplied to the additional heating.
  • FIG. 2 shows a schematic representation of an internal combustion engine 1 with an exhaust aftertreatment device 3 analog FIG. 1
  • the exhaust aftertreatment device 3 from a thermoreactor 11, consisting of storage masses 5 and 6, and a thermal reaction zone 7 and a downstream of the thermoreactor provided in line 8 oxidation catalyst 10 is formed.
  • the flow direction can be changed by the thermoreactor 11 alternately.
  • the thermoreactor 11 has no catalytically coated volume sections in this embodiment.
  • the pretreated in the thermoreactor 11 exhaust gas flows through the oxidation catalyst 10 and is directed from there to a chimney or exhaust gas heat recovery (both not shown).
  • FIG. 3 shows a schematic representation of an internal combustion engine 1 with an exhaust aftertreatment device according to the prior art. Here, a thermoreactor without catalytically coated zones is formed.

Abstract

Verfahren zur Abgasnachbehandlung eines Abgases einer Verbrennungskraftmaschine (1) unter Verwendung eines Thermoreaktors (11), wobei das vom Thermoreaktor (11) vorbehandelte Abgas katalytisch oxidiert wird, vorzugsweise im Thermoreaktor (11) katalytisch oxidiert wird.A method for exhaust aftertreatment of an exhaust gas of an internal combustion engine (1) using a thermoreactor (11), wherein the pretreated by the thermoreactor (11) exhaust gas is catalytically oxidized, preferably in the thermoreactor (11) is catalytically oxidized.

Description

Die Erfindung betrifft ein Verfahren zur Abgasnachbehandlung mit den Merkmalen des Oberbegriffs von Anspruch 1, sowie eine Abgasnachbehandlungsvorrichtung mit den Merkmalen des Oberbegriffs von Anspruch 2.The invention relates to a method for exhaust aftertreatment having the features of the preamble of claim 1, as well as an exhaust aftertreatment device having the features of the preamble of claim 2.

Zur Einhaltung der Emissionsgrenzwerte von Verbrennungskraftmaschinen werden häufig Verfahren zur Abgasnachbehandlung eingesetzt. Ein auch aus dem Bereich der Abgasnachbehandlung von kalorischen Kraftwerken bekanntes Verfahren ist die regenerative thermische Oxidation (RTO), in welcher unverbrannte Kohlenwasserstoffe und andere oxidierbare Abgasbestandteile thermisch oxidiert werden. Bei der regenerativen thermischen Oxidation wird das Abgas zunächst über einen, meist aus keramischem Schüttgut oder Wabenkörpern bestehenden, Wärmespeicher geleitet, um schließlich in die Reaktionskammer zu gelangen. In der Reaktionskammer kann das Abgas durch zusätzliche Heizeinrichtungen weiter erwärmt werden, bis eine thermische Oxidation der unerwünschten Abgasbestandteile stattfinden kann. Anschließend strömt das Abgas durch einen weiteren Wärmespeicher zum Auspuff und wird in die Umgebung entlassen. Im Betrieb wird die Strömungsrichtung alternierend geändert, wodurch das Abgas vor Erreichen der Reaktionskammer vorgewärmt wird, wodurch sich eine Energieersparnis in der weiteren Erwärmung des Abgases einstellt. Die Zusatzheizung kann durch Gasinjektion oder Brenner (sogenanntes Stützgas) oder eine elektrische Zusatzheizung eingerichtet sein. Die Reaktionskammer weist meistens einen freien Strömungsquerschnitt auf, wodurch die Verweildauer des Abgases in der Reaktionskammer erhöht wird und die Oxidation in Form einer Gasphasenreaktion ablaufen kann. Besonders relevant unter den zu oxidierenden Spezies im Abgas sind Kohlenmonoxid (CO) und Methan (CH4). Eine solche Einrichtung ist z. B. unter dem Markennamen CL.AIR® von GE Jenbacher bekannt. In diesem Verfahren wird Abgas auf ca. 700-800 °C aufgeheizt und es erfolgt die Oxidation der unverbrannten Kohlenwasserstoffe und des Kohlenmonoxids zu Wasserdampf und Kohlenstoffdioxid. Der CL.AIR®-Thermoreaktor ist als regenerativer Wärmetauscher aufgebaut und besteht aus zwei Speichermassen, einer Reaktionskammer sowie einem Umschaltmechanismus. Das Abgas strömt mit einer Temperatur von etwa 530 °C vom Motor kommend über einen Umschaltmechanismus in eine erste Speichermasse, wo es auf ungefähr 800 °C aufgeheizt wird. In der Reaktionskammer reagiert das Abgas mit dem vorhandenen Sauerstoff, wobei Kohlenmonoxid und unverbrannte Kohlenwasserstoffe zu Kohlendioxid und Wasser oxidiert werden. Beim Durchströmen der zweiten Speichermasse gibt das Abgas wieder Wärme ab und erreicht mit einer Temperatur von 550 bis 570 °C den Umschaltmechanismus, der es dem Kamin oder einer nachgeschalteten Abwärmerückgewinnung zuleitet.In order to comply with the emission limit values of internal combustion engines, exhaust gas aftertreatment processes are frequently used. A known from the field of exhaust aftertreatment of caloric power plants process is the regenerative thermal oxidation (RTO), in which unburned hydrocarbons and other oxidizable exhaust gas constituents are thermally oxidized. In the regenerative thermal oxidation of the exhaust gas is first passed through a, usually made of ceramic bulk material or honeycomb bodies, heat storage to finally reach the reaction chamber. In the reaction chamber, the exhaust gas can be further heated by additional heaters until a thermal oxidation of the undesirable exhaust gas constituents can take place. Subsequently, the exhaust gas flows through another heat storage to the exhaust and is released into the environment. In operation, the flow direction is changed alternately, whereby the exhaust gas is preheated before reaching the reaction chamber, whereby an energy saving in the further heating of the exhaust gas sets. The additional heating can be set up by gas injection or burner (so-called support gas) or an additional electric heater. The reaction chamber usually has a free flow cross-section, whereby the residence time of the exhaust gas is increased in the reaction chamber and the oxidation can proceed in the form of a gas phase reaction. Particularly relevant among the species to be oxidized in the exhaust gas are carbon monoxide (CO) and methane (CH 4 ). Such a device is z. B. known under the brand name CL.AIR ® by GE Jenbacher. In this process, exhaust gas is heated to about 700-800 ° C and there is the oxidation of the unburned hydrocarbons and carbon monoxide to steam and carbon dioxide. The CL.AIR ® thermal reactor is constructed as a regenerative heat exchanger and consists of two storage masses, a reaction chamber and a switching mechanism. The exhaust gas flows at a temperature of about 530 ° C from the engine via a switching mechanism in a first storage mass, where it is heated to about 800 ° C. In the Reaction chamber, the exhaust gas reacts with the existing oxygen, whereby carbon monoxide and unburned hydrocarbons are oxidized to carbon dioxide and water. When flowing through the second storage mass, the exhaust gas is again from heat and reaches at a temperature of 550 to 570 ° C, the switching mechanism, which it feeds the chimney or a downstream waste heat recovery.

Die regenerative thermische Oxidation bietet ein robustes Verfahren, mit dem auch große Abgasmassenströme wirtschaftlich nachbehandelt werden können.Regenerative thermal oxidation offers a robust process with which even large exhaust gas mass flows can be economically treated.

Bisher beschriebene Thermoreaktoren sind darauf ausgerichtet, sowohl Methan als auch Kohlenmonoxid zu oxidieren. Dies bringt im Betrieb einige Nachteile mit sich.Thermoreactors previously described are designed to oxidize both methane and carbon monoxide. This brings some disadvantages in operation.

Um Kohlenmonoxid abbauen zu können, sind im Thermoreaktor eine relativ hohe Temperatur und eine relativ lange Verweildauer erforderlich.In order to reduce carbon monoxide, a relatively high temperature and a relatively long residence time are required in the thermoreactor.

Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren und eine geeignete Vorrichtung zur Abgasnachbehandlung anzugeben, wobei die Temperaturen im Thermoreaktor und die erforderliche Verweilzeit verringert werden können. Die Aufgabe wird gelöst durch ein Verfahren zur Abgasnachbehandlung mit den Merkmalen von Anspruch 1, sowie einer Abgasnachbehandlungseinrichtung mit den Merkmalen von Anspruch 2. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen definiert.It is therefore an object of the present invention to provide a method and a suitable device for exhaust aftertreatment, wherein the temperatures in the thermoreactor and the required residence time can be reduced. The object is achieved by a method for exhaust aftertreatment with the features of claim 1, as well as an exhaust aftertreatment device having the features of claim 2. Advantageous embodiments are defined in the dependent claims.

Es hat sich überraschend herausgestellt, dass es günstiger ist, die Oxidation von Methan und die Oxidation von Kohlenmonoxid gesondert durchzuführen. Dadurch, dass das vom Thermoreaktor vorbehandelte Abgas katalytisch oxidiert wird, vorzugsweise im Thermoreaktor katalytisch oxidiert wird, wird also erreicht, dass der Thermoreaktor für geringere Temperaturen und eine geringere Verweildauer des Abgases ausgelegt werden muss, und dennoch das Kohlenmonoxid in zufriedenstellendem Ausmaß reduziert werden kann. Es ist also erfindungsgemäß vorgesehen, dass durch thermische Oxidation zunächst Methan reduziert wird. Die Parameter im Thermoreaktor werden so gewählt, dass eine partielle Oxidation von Methan zugelassen wird, bei der Kohlenmonoxid entsteht, anstelle, dass es - wie üblicherweise in Thermoreaktoren vorgesehen - verringert wird. Das entstehende vorbehandelte Abgas enthält also eine größere Mengen an Kohlenmonoxid als im ursprünglichen Abgasstrom, während unverbrannte Kohlenwasserstoffe, insbesondere Methan, bereits oxidiert sind. Nachfolgend wird das solchermaßen vorbehandelte Abgas einer katalytischen Oxidationseinrichtung zugeführt. Diese kann beispielsweise als Oxidationskatalysator, bestehend aus einem Katalysatorträgermedium, wie es beispielsweise zur Abgasnachbehandlung aus dem Automobilbereich bekannt ist, vorgesehen sein.It has surprisingly been found that it is better to carry out the oxidation of methane and the oxidation of carbon monoxide separately. The fact that the exhaust gas pretreated by the thermoreactor is catalytically oxidized, preferably catalytically oxidized in the thermoreactor, thus ensures that the thermoreactor must be designed for lower temperatures and a shorter residence time of the exhaust gas, and yet the carbon monoxide can be reduced to a satisfactory extent. It is thus provided according to the invention that methane is first reduced by thermal oxidation. The parameters in the thermoreactor are chosen to allow for partial oxidation of methane to produce carbon monoxide instead of being reduced as conventionally provided in thermoreactors. The resulting pretreated exhaust gas thus contains a larger amount of carbon monoxide than in the original exhaust gas while unburned hydrocarbons, especially methane, are already oxidized. Subsequently, the thus pretreated exhaust gas is fed to a catalytic oxidizer. This can be provided, for example, as an oxidation catalyst consisting of a catalyst support medium, as is known, for example, for exhaust aftertreatment from the automotive sector.

Alternativ kann vorgesehen sein, dass der Oxidationskatalysator durch katalytische Beschichtung von Volumensabschnitten des thermischen Oxidationskatalysators eingerichtet ist. Dies kann beispielsweise dadurch realisiert werden, dass Volumensabschnitte der im thermischen Oxidationskatalysator vorhandenen keramischen Speichermasse mit einer katalytisch aktiven Oberfläche versehen oder andere, katalytisch wirksame Materialien eingebracht werden.Alternatively it can be provided that the oxidation catalytic converter is set up by catalytic coating of volume sections of the thermal oxidation catalytic converter. This can be achieved, for example, by providing volume sections of the ceramic storage material present in the thermal oxidation catalyst with a catalytically active surface or introducing other catalytically active materials.

Eine Abgasnachbehandlungseinrichtung gemäß der Erfindung enthält also einen Eingang für Abgas, eine thermischen Reaktionszone und wenigstens eine katalytische Reaktionszone, wobei in Strömungsrichtung des Abgases durch die Abgasnachbehandlungseinrichtung die wenigstens eine katalytische Reaktionszone der thermischen Reaktionszone nachgeschaltet ist.An exhaust aftertreatment device according to the invention thus contains an input for exhaust gas, a thermal reaction zone and at least one catalytic reaction zone, wherein the at least one catalytic reaction zone downstream of the thermal reaction zone in the flow direction of the exhaust gas through the exhaust gas aftertreatment device.

Durch diese Anordnung wird erreicht, dass das im Thermoreaktor vorbehandelte Abgas, welches reich an Kohlenmonoxid ist, zum Abbau von Kohlenmonoxid auf den Oxidationskatalysator trifft und dort das Kohlenmonoxid durch katalytische Oxidation abgebaut wird.By means of this arrangement it is achieved that the exhaust gas pretreated in the thermoreactor, which is rich in carbon monoxide, strikes the oxidation catalyst for the decomposition of carbon monoxide and there the carbon monoxide is decomposed by catalytic oxidation.

Besonders bevorzugt kann vorgesehen sein, dass die thermische Reaktionszone und die wenigstens eine katalytische Reaktionszone in einem gemeinsamen Gehäuse angeordnet sind. Dies kann beispielsweise dadurch realisiert sein, dass in die Reaktionszone des Thermoreaktors ein Volumensabschnitt mit katalytisch aktivem Material integriert ist. Alternativ kann vorgesehen sein, dass der katalytisch aktive Bereich in der keramischen Speichermasse des Thermoreaktors ausgebildet ist. Dies beschreibt den Fall, wo durch katalytische Beschichtung eines Teils der Oberfläche des keramischen Schüttgutes des Thermoreaktors ein katalytisch aktiver Bereich gebildet wird.Particularly preferably, it can be provided that the thermal reaction zone and the at least one catalytic reaction zone are arranged in a common housing. This can be realized, for example, by integrating a volume section with catalytically active material into the reaction zone of the thermoreactor. Alternatively it can be provided that the catalytically active region is formed in the ceramic storage mass of the thermoreactor. This describes the case where a catalytically active region is formed by catalytic coating of part of the surface of the ceramic bulk material of the thermoreactor.

Alternativ oder zusätzlich kann vorgesehen sein, dass die katalytische Reaktionszone der thermischen Reaktionszone in einem von der thermischen Reaktionszone gesonderten Gehäuse in Strömungsrichtung des Abgases durch die Abgasnachbehandlungseinrichtung nachgeschaltet ist. Dieses Ausführungsbeispiel beschreibt den Fall, wo der Thermoreaktor und der Oxidationskatalysator als separate Komponenten realisiert sind. Es ist also in diesem Fall ein Thermoreaktor vorgesehen, der bezüglich seiner Ausgestaltung dem Stand der Technik entspricht und dem stromabwärts ein Oxidationskatalysator nachgeschaltet ist.Alternatively or additionally, it can be provided that the catalytic reaction zone of the thermal reaction zone is connected downstream of the exhaust gas aftertreatment device in a housing separate from the thermal reaction zone in the flow direction of the exhaust gas. This embodiment describes the case where the thermoreactor and the oxidation catalyst are realized as separate components. Thus, in this case, a thermoreactor is provided which corresponds in terms of its design to the prior art and downstream of which an oxidation catalytic converter is connected downstream.

Die Erfindung wird nachfolgend durch die Figuren näher erläutert. Dabei zeigt:

Fig. 1
eine schematische Darstellung einer Verbrennungskraftmaschine mit einer Abgasnachbehandlungseinrichtung,
Fig. 2
eine schematische Darstellung einer Verbrennungskraftmaschine mit einer Abgasnachbehandlungseinrichtung in einer alternativen Ausführungsform,
Fig.3
schematische Darstellung einer Verbrennungskraftmaschine mit Abgasnachbehandlung nach Stand der Technik.
The invention will be explained in more detail by the figures. Showing:
Fig. 1
a schematic representation of an internal combustion engine with an exhaust gas aftertreatment device,
Fig. 2
1 is a schematic representation of an internal combustion engine with an exhaust gas aftertreatment device in an alternative embodiment,
Figure 3
schematic representation of an internal combustion engine with exhaust aftertreatment according to the prior art.

Es folgt die detaillierte Figurenbeschreibung. Figur 1 zeigt in einer schematischen Darstellung eine Verbrennungskraftmaschine 1, die über die Abgassammelleitung 2 mit der Abgasnachbehandlungseinrichtung 3 verbunden ist. Über den Umschaltmechanismus 4 kann die Strömungsrichtung des Abgases durch den Thermoreaktor 11 verändert werden. So kann im Betrieb alternierend die Strömungsrichtung der Abgase zuerst durch die Speichermasse 5, die thermische Reaktionszone 7 und Speichermasse 6 erfolgen. Bei Umkehr der Strömungsrichtung strömt das Abgas zuerst durch Speichermasse 6, anschließend durch die thermische Reaktionszone 7 und schließlich durch Speichermasse 5. Nach Durchströmen der Abgasnachbehandlungseinrichtung 3 verlässt das Abgas über die Leitung 8 die Anlage und wird einem Kamin oder einer Abwärmerückgewinnung (beides nicht gezeigt) zugeführt. Im Ausführungsbeispiel gemäß Figur 1 sind die der Reaktionskammer 7 zugewandten Volumensabschnitte 9 der Speichermassen 5 bzw. 6 mit einer katalytischen Beschichtung oder einem katalytisch aktiven Material versehen. Die Volumensabschnitte 9 übernehmen also im Betrieb der Abgasnachbehandlungseinrichtung 3 die Aufgabe der katalytischen Oxidation des in der thermischen Reaktionszone 7 des Thermoreaktors vorbehandelten Abgases. Der Vollständigkeit halber eingezeichnet ist die Steuer- / Regelungseinrichtung 12, die einerseits Signale von der Verbrennungskraftmaschine 1 und der Abgasnachbehandlungseinrichtung 3 empfangen kann, anderseits auch Befehle an Stellglieder der Abgasnachbehandlungseinrichtung 3 senden kann. Ebenso gezeigt ist die Kraftstoffleitung 13, über welche die Verbrennungskraftmaschine 1 mit Kraftstoff, beispielsweise Treibgas, versorgt wird. An der Kraftstoffleitung 13 kann eine Abzweigung vorgesehen sein, über welche dem Thermoreaktor 11 bei Bedarf Stützgas zur Zusatzheizung zugeführt werden kann.The following is the detailed description of the figures. FIG. 1 shows a schematic representation of an internal combustion engine 1, which is connected via the exhaust manifold 2 with the exhaust gas aftertreatment device 3. Through the switching mechanism 4, the flow direction of the exhaust gas through the thermoreactor 11 can be changed. Thus, during operation, the flow direction of the exhaust gases can first be carried out alternately by the storage mass 5, the thermal reaction zone 7 and the storage mass 6. Upon reversal of the flow direction, the exhaust gas flows first through storage mass 6, then through the thermal reaction zone 7 and finally through storage mass 5. After flowing through the exhaust gas aftertreatment device 3, the exhaust gas leaves the system via line 8 and becomes a chimney or a waste heat recovery (both not shown). fed. In the embodiment according to FIG. 1 are the reaction chamber 7 facing volume sections 9 of the storage masses 5 and 6 provided with a catalytic coating or a catalytically active material. During operation of the exhaust gas aftertreatment device 3, the volume sections 9 thus assume the task of catalytic oxidation of the exhaust gas pretreated in the thermal reaction zone 7 of the thermoreactor. For the sake of completeness, the control / regulating device 12, which on the one hand can receive signals from the internal combustion engine 1 and the exhaust gas aftertreatment device 3, on the other hand also commands Can send actuators of the exhaust aftertreatment device 3. Also shown is the fuel line 13, via which the internal combustion engine 1 with fuel, such as propellant, is supplied. On the fuel line 13, a branch can be provided, via which the thermoreactor 11, if necessary supporting gas can be supplied to the additional heating.

Figur 2 zeigt eine schematische Darstellung einer Verbrennungskraftmaschine 1 mit einer Abgasnachbehandlungseinrichtung 3 analog Figur 1, wobei hier aber die Abgasnachbehandlungseinrichtung 3 aus einem Thermoreaktor 11, bestehend aus Speichermassen 5 und 6, sowie einer thermischen Reaktionszone 7 und einem stromabwärts des Thermoreaktors in Leitung 8 vorgesehenen Oxidationskatalysators 10 ausgebildet ist. Wieder kann über den Umschaltmechanismus 4 die Strömungsrichtung durch den Thermoreaktor 11 alternierend verändert werden. Der Thermoreaktor 11 weist in diesem Ausführungsbeispiel keine katalytisch beschichteten Volumensabschnitte auf. Das im Thermoreaktor 11 vorbehandelte Abgas strömt durch den Oxidationskatalysator 10 und wird von dort zu einem Kamin oder einer Abgaswärmenutzung geleitet (beides nicht gezeigt). FIG. 2 shows a schematic representation of an internal combustion engine 1 with an exhaust aftertreatment device 3 analog FIG. 1 Here, however, the exhaust aftertreatment device 3 from a thermoreactor 11, consisting of storage masses 5 and 6, and a thermal reaction zone 7 and a downstream of the thermoreactor provided in line 8 oxidation catalyst 10 is formed. Again, via the switching mechanism 4, the flow direction can be changed by the thermoreactor 11 alternately. The thermoreactor 11 has no catalytically coated volume sections in this embodiment. The pretreated in the thermoreactor 11 exhaust gas flows through the oxidation catalyst 10 and is directed from there to a chimney or exhaust gas heat recovery (both not shown).

Figur 3 zeigt in einer schematischen Darstellung eine Verbrennungskraftmaschine 1 mit einer Abgasnachbehandlungseinrichtung nach Stand der Technik. Hier ist ein Thermoreaktor ohne katalytisch beschichtete Zonen ausgebildet. FIG. 3 shows a schematic representation of an internal combustion engine 1 with an exhaust aftertreatment device according to the prior art. Here, a thermoreactor without catalytically coated zones is formed.

Liste der verwendeten Bezugszeichen:List of reference numbers used:

11
VerbrennungskraftmaschineInternal combustion engine
22
AbgassammelleitungExhaust manifold
33
Abgasnachbehandlungseinrichtungexhaust treatment device
44
Umschaltmechanismusswitching mechanism
5, 65, 6
thermische Speichermassenthermal storage masses
77
Thermische ReaktionszoneThermal reaction zone
88th
Abgasleitungexhaust pipe
99
katalytisch beschichtete / katalytisch aktive Zone(n)Catalytically coated / catalytically active zone (s)
1010
Oxidationskatalysatoroxidation catalyst
1111
Thermoreaktorthermoreactor
1212
Steuer- / RegelungseinrichtungControl / regulation device
1313
KraftstoffleitungFuel line

Claims (4)

Verfahren zur Abgasnachbehandlung eines Abgases einer Verbrennungskraftmaschine (1) unter Verwendung eines Thermoreaktors (11), dadurch gekennzeichnet, dass das vom Thermoreaktor (11) vorbehandelte Abgas katalytisch oxidiert wird, vorzugsweise im Thermoreaktor (11) katalytisch oxidiert wird.A method for exhaust aftertreatment of an exhaust gas of an internal combustion engine (1) using a thermoreactor (11), characterized in that the pretreated by the thermoreactor (11) exhaust gas is catalytically oxidized, preferably in the thermal reactor (11) is catalytically oxidized. Abgasnachbehandlungseinrichtung (3) für eine Verbrennungskraftmaschine (1) mit einem Eingang für Abgas, einer thermischen Reaktionszone (7) und wenigstens einer katalytischen Reaktionszone (9), wobei in Strömungsrichtung des Abgases durch die Abgasnachbehandlungseinrichtung (3) die wenigstens eine katalytische Reaktionszone (9) der thermischen Reaktionszone (7) nachgeschaltet ist.Exhaust after-treatment device (3) for an internal combustion engine (1) with an inlet for exhaust gas, a thermal reaction zone (7) and at least one catalytic reaction zone (9), wherein in the flow direction of the exhaust gas through the exhaust aftertreatment device (3) the at least one catalytic reaction zone (9) the thermal reaction zone (7) is connected downstream. Abgasnachbehandlungseinrichtung (3) nach Anspruch 2, dadurch gekennzeichnet, dass die thermische Reaktionszone (7) und die wenigstens eine katalytische Reaktionszone (9) in einem gemeinsamen Gehäuse angeordnet sind.Exhaust after-treatment device (3) according to claim 2, characterized in that the thermal reaction zone (7) and the at least one catalytic reaction zone (9) are arranged in a common housing. Abgasnachbehandlungseinrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die katalytische Reaktionszone (9) der thermischen Reaktionszone (7) in einem von der thermischen Reaktionszone (7) gesonderten Gehäuse in Strömungsrichtung des Abgases durch die Abgasnachbehandlungseinrichtung (3) nachgeschaltet ist.Exhaust after-treatment device according to claim 2, characterized in that the catalytic reaction zone (9) of the thermal reaction zone (7) in a separate from the thermal reaction zone (7) housing downstream of the exhaust gas aftertreatment device (3) in the flow direction of the exhaust gas.
EP15167318.3A 2014-05-20 2015-05-12 Method for aftertreatment of exhaust gases Active EP2947290B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA377/2014A AT515898B1 (en) 2014-05-20 2014-05-20 Process for exhaust aftertreatment

Publications (2)

Publication Number Publication Date
EP2947290A1 true EP2947290A1 (en) 2015-11-25
EP2947290B1 EP2947290B1 (en) 2017-07-12

Family

ID=53189652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15167318.3A Active EP2947290B1 (en) 2014-05-20 2015-05-12 Method for aftertreatment of exhaust gases

Country Status (5)

Country Link
US (1) US9657619B2 (en)
EP (1) EP2947290B1 (en)
CN (1) CN105114159B (en)
AT (1) AT515898B1 (en)
CA (1) CA2892397C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516110B1 (en) 2014-07-21 2016-08-15 Ge Jenbacher Gmbh & Co Og exhaust treatment device
DE102019102928A1 (en) * 2019-02-06 2020-08-06 Volkswagen Aktiengesellschaft Exhaust gas aftertreatment system and method for exhaust gas aftertreatment of an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826089A (en) * 1971-07-07 1974-07-30 Nissan Motor Air-pollution preventive arrangement
US3854288A (en) * 1971-06-11 1974-12-17 Volkswagenwerk Ag Arrangement for exhaust gas cleaning
DE3045666A1 (en) * 1980-03-31 1982-07-08 Hans Karl Dr. 7891 Küssaberg Leistritz Exhaust after-treatment and engine harmonisation system - has externally ignited thermal reactor controlling temp. of catalyst on surfaces downstream
EP0668471A2 (en) * 1994-02-17 1995-08-23 PFEFFERLE, William C. Catalytic method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172251A (en) * 1963-01-14 1965-03-09 Minnesota Mining & Mfg Afterburner system
US3211534A (en) * 1963-12-19 1965-10-12 Trw Inc Exhaust control apparatus
US3276202A (en) 1965-05-20 1966-10-04 Wright W Gary Low temperature afterburner
IT1095302B (en) 1977-04-28 1985-08-10 Leistritz Hans Karl CONDUCTION SYSTEM FOR GAS APPLIANCES WITH DISCHARGE IN THE FREE ATMOSPHERE, IN PARTICULAR FOR MOTOR DRIVE ELEMENTS
US5437152A (en) 1991-01-09 1995-08-01 Pfefferle; William C. Catalytic method
CZ289693B6 (en) * 1994-04-11 2002-03-13 Scambia Industrial Developments Catalyst for catalytic treatment of exhaust gas
US6261093B1 (en) * 1999-02-02 2001-07-17 Monsanto Company Heat regenerative oxidizer and method of operation
DE10042010C2 (en) * 2000-08-26 2002-08-22 Bosch Gmbh Robert Exhaust gas treatment device
CN2537823Y (en) * 2002-04-24 2003-02-26 华南理工大学 Comprhensive purifier for exhaust gas of diesel engine
CA2406386C (en) * 2002-10-02 2004-05-18 Westport Research Inc. Method and apparatus for regenerating nox adsorbers
US6955042B1 (en) * 2004-06-30 2005-10-18 Hydrogensource Llc CPO regenerated lean NOx trap with no moving parts
US7213395B2 (en) * 2004-07-14 2007-05-08 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
US7571602B2 (en) * 2005-05-19 2009-08-11 Gm Global Technology Operations, Inc. Exhaust aftertreatment system and method of use for lean burn internal combustion engines
WO2009082035A1 (en) * 2007-12-26 2009-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
DE102008038719A1 (en) * 2008-08-12 2010-02-18 Man Nutzfahrzeuge Aktiengesellschaft Method and device for regenerating a particle filter arranged in the exhaust gas line of an internal combustion engine
JP5449009B2 (en) * 2010-04-28 2014-03-19 日野自動車株式会社 Exhaust purification device
CN103348108B (en) * 2011-01-31 2015-10-07 丰田自动车株式会社 Waste gas intensification firing unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854288A (en) * 1971-06-11 1974-12-17 Volkswagenwerk Ag Arrangement for exhaust gas cleaning
US3826089A (en) * 1971-07-07 1974-07-30 Nissan Motor Air-pollution preventive arrangement
DE3045666A1 (en) * 1980-03-31 1982-07-08 Hans Karl Dr. 7891 Küssaberg Leistritz Exhaust after-treatment and engine harmonisation system - has externally ignited thermal reactor controlling temp. of catalyst on surfaces downstream
EP0668471A2 (en) * 1994-02-17 1995-08-23 PFEFFERLE, William C. Catalytic method

Also Published As

Publication number Publication date
US9657619B2 (en) 2017-05-23
AT515898A1 (en) 2015-12-15
US20150337706A1 (en) 2015-11-26
CN105114159A (en) 2015-12-02
CN105114159B (en) 2017-11-21
EP2947290B1 (en) 2017-07-12
CA2892397C (en) 2017-04-11
AT515898B1 (en) 2017-09-15
CA2892397A1 (en) 2015-11-20

Similar Documents

Publication Publication Date Title
EP1915518B1 (en) Device, reactor and method for reducing nitrogen oxides in the exhaust flow of internal combustion engines
DE3835939C2 (en) Exhaust system
EP3686404B1 (en) Device and method for treating the exhaust gas of an internal combustion engine
WO1995015431A1 (en) Process for reducing pollutant emissions of a diesel engine equipped with an oxidation-type catalytic converter
EP1607133A1 (en) Exhaust gas system with reducing agent supply
DE2232656B2 (en) CLEARING GAS GENERATOR FOR GENERATING A COMBUSTION GAS
EP3377815A1 (en) Method and apparatus for adjusting the ignition characteristic of a fuel, in particular in order to lower exhaust emissions of combustion devices
DE102005062398A1 (en) Regeneration process for particle filter involves running engine on air-fuel mixture of lambda value less than one and then blowing secondary air into exhaust gas
DE3920159A1 (en) Heat generation by flameless combustion in gas flow
DE102008030307A1 (en) Catalyst arrangement for purifying exhaust gas flow of internal combustion engine in motor vehicle, has electrical heater for heating catalyst and/or exhaust gas flow, and another heater for heating another catalyst and/or exhaust gas flow
EP2947290B1 (en) Method for aftertreatment of exhaust gases
EP3772576A1 (en) Method for heating a catalyst and exhaust gas treatment system
DE102022000400A1 (en) Device for exhaust aftertreatment with mass flow control
DE19855092B4 (en) Device and method for cleaning the exhaust gas of an internal combustion engine
WO2020182705A1 (en) Exhaust gas aftertreatment device, and method for operating the device
AT517670A1 (en) exhaust aftertreatment device
DE102010064020B4 (en) Exhaust system and heating method
EP2947291B1 (en) Method for starting a thermal reactor
DE102021000706A1 (en) Device for exhaust gas aftertreatment with exhaust gas heating
DE102008002469A1 (en) Method and device for exhaust gas purification
EP1517011A2 (en) Exhaust gas apparatus with particle filter, heater arrangement and method of regeneration
EP1451454B1 (en) Method for operating an internal combustion engine and internal combustion engine
DE2509861A1 (en) BURNER
DE102008037156A1 (en) Method and device for purifying an exhaust gas stream of a lean-running internal combustion engine
DE102020100532A1 (en) Method for heating up an exhaust gas sensor in the exhaust system of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160324

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160909

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GE JENBACHER GMBH & CO OG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 908558

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015001412

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170712

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171012

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171013

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015001412

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

26N No opposition filed

Effective date: 20180413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170712

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 908558

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200512

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230420

Year of fee payment: 9

Ref country code: FR

Payment date: 20230420

Year of fee payment: 9

Ref country code: DE

Payment date: 20230419

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 9