EP2940859B1 - Module d'estimation d'angle de rotation pour commande vectorielle sans capteur de pmsm - Google Patents

Module d'estimation d'angle de rotation pour commande vectorielle sans capteur de pmsm Download PDF

Info

Publication number
EP2940859B1
EP2940859B1 EP15163779.0A EP15163779A EP2940859B1 EP 2940859 B1 EP2940859 B1 EP 2940859B1 EP 15163779 A EP15163779 A EP 15163779A EP 2940859 B1 EP2940859 B1 EP 2940859B1
Authority
EP
European Patent Office
Prior art keywords
flux
fixed
coordinate system
axis
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15163779.0A
Other languages
German (de)
English (en)
Other versions
EP2940859A1 (fr
Inventor
Kwang Woon Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Electric Co Ltd
Original Assignee
LSIS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSIS Co Ltd filed Critical LSIS Co Ltd
Publication of EP2940859A1 publication Critical patent/EP2940859A1/fr
Application granted granted Critical
Publication of EP2940859B1 publication Critical patent/EP2940859B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P31/00Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00

Definitions

  • the present disclosure relates to a sensorless vector control system of a permanent magnet synchronous motor (PMSM), and more particularly, to a rotation angle estimation module for sensorless vector control of a PMSM.
  • PMSM permanent magnet synchronous motor
  • a separate location sensor such as an encoder or resolver is used for detecting the location.
  • a sensor less control method may estimate information on the speed and location of the rotor without installing a separate location sensor.
  • Typical sensorless vector control methods of a PMSM include a method of using counter electromotive force, a method of using a voltage model, a method of using a model reference controller, a method of using a status estimation module, a Kalman filter, non-linear control, and intellectual control, but since they need a significant amount of calculation and an estimation error occurs in a low-speed region, there was a limitation in that they are not easy to actually use.
  • Korean Patent Nos. 1025640 and 0845110 Korean Patent Laid-Open Publication No. 2010-0058905 , etc. are found as arts related to sensorless vector control of a motor, but they are not related to the control method of the PMSM and irrelevant to the present invention that intends to decrease the amount of calculation and increase accuracy.
  • US 2013/093370 A1 discloses a parameter estimating apparatus for permanent magnet synchronous motor driving system is disclosed, the apparatus estimating an inductance and a magnet flux linkage of a permanent magnet through a real-time magnetic flux estimation, whereby an operation performance of the PMSM can be enhanced.
  • Embodiments provide a rotation angle estimation module and a sensorless vector control system of a permanent magnet synchronous motor (PMSM) employing the module that decrease an amount of calculation for the rotation angle estimation of the PMSM and minimize an estimation error, in the sensorless vector control of the PMSM.
  • PMSM permanent magnet synchronous motor
  • a rotation angle estimation module of a permanent magnetic synchronous motor (PMSM) for sensorless vector control of the PMSM includes: a fixed flux instruction estimation unit calculating a rotating flux ( ⁇ sd , ⁇ sq ) and a fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *) based on a rotation angle ⁇ and the current (I s ⁇ , I s ⁇ ) of a fixed coordinate system; a fixed flux estimation unit calculating a fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ) based on the voltage (V s ⁇ , V s ⁇ ) of the fixed coordinate system, and the current (I s ⁇ , I s ⁇ ) and fixed flux error ( ⁇ s ⁇ , ⁇ s ⁇ ) of the fixed coordinate system; a fixed flux error estimation unit using the difference between the fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *) and the fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ) to calculate the fixed flux error ( ⁇
  • the trigonometric function calculation unit may finally calculate the rotation angle ⁇ and feeds a calculated angle back to the fixed flux instruction estimation unit.
  • the fixed flux instruction estimation unit may calculate the rotating flux ( ⁇ sd , ⁇ sq ) based on the current (I s ⁇ , I s ⁇ ) of the fixed coordinate system, the rotation angle ⁇ , the inductance (L d , L q ) of a rotary coordinate system, and the flux ⁇ PM of a permanent magnet.
  • the fixed flux instruction estimation unit may compensate for the rotation angle ⁇ by using the rotating flux ( ⁇ sd , ⁇ sq ) to calculate a fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *).
  • the fixed flux error estimation unit may calculate the difference between the ⁇ axis flux instruction value ⁇ s ⁇ * of the fixed coordinate system input from the fixed flux instruction estimation unit and the ⁇ axis flux ⁇ s ⁇ input from the fixed flux estimation unit, calculate the difference between the ⁇ axis flux instruction value ⁇ s ⁇ * of the fixed coordinate system input from the fixed flux instruction estimation unit and the ⁇ axis flux ⁇ s ⁇ input from the fixed flux estimation unit, receive the difference from the ⁇ axis flux ⁇ s ⁇ to adjust a gain and calculate the ⁇ axis flux error ⁇ s ⁇ of the fixed coordinate system, and receive the difference from the ⁇ axis flux ⁇ s ⁇ to adjust a gain and calculate the ⁇ axis flux error ⁇ s ⁇ of the fixed coordinate system.
  • the trigonometric function calculation unit 40 may find angles ⁇ dq and ⁇ ⁇ by the applying of a trigonometric function to the rotating flux ( ⁇ sd , ⁇ sq ) and the fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ), respectively, and output the rotation angle ⁇ based on the angles ⁇ dq and ⁇ ⁇ .
  • the trigonometric function calculation unit 40 may receive the d axis flux ⁇ sd of the rotary coordinate system and the q axis flux ⁇ sq of the rotary coordinate system from the fixed flux instruction estimation unit to output the angle ⁇ dq of ⁇ dq based on the d axis by using a trigonometric function arctangent, receive the ⁇ axis flux ⁇ s ⁇ of the fixed coordinate system and the ⁇ axis flux ⁇ s ⁇ of the fixed coordinate system from the fixed flux estimation unit to output the angle ⁇ ⁇ of ⁇ ⁇ based on the ⁇ axis by using the trigonometric function arctangent, and find the difference between the angles ⁇ dq and ⁇ ⁇ to output the rotation angle ⁇ .
  • an operating method of a rotation angle estimation module of a motor for sensorless vector control of a PMSM includes: calculating a rotating flux ( ⁇ sd , ⁇ sq ) and a fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *) based on the current (I s ⁇ , I s ⁇ ) of a fixed coordinate system and a rotation angle ⁇ ; calculating a fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ) based on the voltage (V s ⁇ , V s ⁇ ) of the fixed coordinate system, and the current (I s ⁇ , I s ⁇ ) and fixed flux error ( ⁇ s ⁇ , ⁇ s ⁇ ) of the fixed coordinate system, through a fixed flux estimation unit; using the difference between the fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *) and the fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ) to calculate the fixed flux error ( ⁇ s ⁇ , ⁇ s ⁇ ) and feed the errors
  • Fig. 1 shows the principle of the sensorless vector control method of a permanent magnet synchronous motor (PMSM) according to an embodiment, by using a vector diagram.
  • PMSM permanent magnet synchronous motor
  • the vector control method divides and controls currents applied to the motor into a flux current Id se and a torque current Iq se based on a rotary coordinate system.
  • the vector control method of the PMSM fixes the flux current Id se to match a rotor location ⁇ , and applies the torque current Iq se to the sensorless vector control of the PMSM.
  • Fig. 1 represents a flux relationship according to a fixed coordinate system ⁇ and a rotary coordinate system dq in the vector control of the PMSM, an axis used for a vector control system is divided into the fixed coordinate system and the rotary coordinate system, the fixed coordinate system indicates a coordinate system having a coordinate axis not rotating but fixed, and the rotary coordinate system indicates a coordinate system that rotates at any angular velocity ⁇ .,
  • An embodiment estimates a final rotor location by using stator flux vector ⁇ ⁇ based on the fixed coordinate system ⁇ and rotor flux vector ⁇ dq based on the rotary coordinate system dq along with arctangent tan -1 and information on the estimated rotor location matches the location of an actual motor.
  • Fig. 2 shows a rotation angle estimation unit 100 estimating a rotation angle ⁇ , a distance that a rotor moves, based on the vector diagram of FIG. 1 and the rotation angle estimation unit 100 includes a fixed flux instruction estimation unit 10, a fixed flux estimation unit 20, a fixed flux error estimation unit 30, and a trigonometric function calculation unit 40.
  • the fixed flux instruction estimation unit 10 calculates a rotating flux ( ⁇ s ⁇ , ⁇ sq ) and a fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *) based on the current (I s ⁇ , I s ⁇ ) and the rotation angle ⁇ based on the fixed coordinate system ⁇ .
  • the fixed flux instruction estimation unit 10 receives the current (I s ⁇ , I s ⁇ ) and rotation angle ⁇ of the fixed coordinate system ⁇ and uses a rotor flux equation to calculate the fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *).
  • the rotor flux equation firstly calculates a rotating flux ( ⁇ sd , ⁇ sq ) and finally calculates the fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *) by using a calculation result.
  • the fixed flux estimation unit 20 calculates the fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ) based on the voltage (V s ⁇ , V s ⁇ ) of the fixed coordinate system ⁇ , and the current (I s ⁇ , I s ⁇ ) and fixed flux error ( ⁇ s ⁇ , ⁇ s ⁇ ) of the fixed coordinate system.
  • the fixed flux estimation unit 20 receives the voltage (V s ⁇ , V s ⁇ ) of the fixed coordinate system ⁇ , and the current (I s ⁇ , I s ⁇ ) and fixed flux error ( ⁇ s ⁇ , ⁇ s ⁇ ) of the fixed coordinate system ⁇ and uses a stator voltage equation to calculate the fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ) of the ⁇ and ⁇ axes.
  • the fixed flux error estimation unit 30 uses the difference between the fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *) and the fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ) to calculate the fixed flux error ( ⁇ s ⁇ , ⁇ s ⁇ ) and feeds the errors back to the fixed flux estimation unit.
  • the fixed flux error estimation unit 30 uses the difference between the fixed flux instruction ( ⁇ s ⁇ *, ⁇ s ⁇ *) output by the fixed flux instruction estimation unit 10 and the fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ) output by the fixed flux estimation unit 20 to calculate the fixed flux error ( ⁇ s ⁇ , ⁇ s ⁇ ) of the ⁇ and ⁇ axes and feeds the errors back to the fixed flux estimation unit 20.
  • the trigonometric function calculation unit 40 calculates the rotation angle ⁇ , a distance that a rotor moves, based on the rotating flux ( ⁇ sd , ⁇ sq ) and the fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ).
  • the trigonometric function calculation unit 40 performs calculation on the rotating flux ( ⁇ sd , ⁇ sq ) firstly calculated by the rotor flux equation of the fixed flux instruction estimation unit 10 and the fixed flux ( ⁇ s ⁇ , ⁇ s ⁇ ) output by the fixed flux estimation unit 20 by using trigonometric functions to find angles ⁇ dq and ⁇ ⁇ , respectively.
  • the rotation angle estimation unit 100 continues to calculate the rotation angle ⁇ by feedback between the fixed flux error estimation unit 30 and the fixed flux estimation unit 20, between the fixed flux estimation unit 20 and the trigonometric function calculation unit 40, and between the fixed flux instruction estimation unit 10 and the trigonometric function calculation unit 40.
  • FIG. 3 is a block diagram representing a particular circuit configuration of the rotation angle estimation unit 100.
  • the fixed flux instruction estimation unit 10 includes a first rotary coordinate conversion unit 101, a second rotary coordinate conversion unit 102, a first rotating flux calculation unit 103, a second rotating flux calculation unit 104, a first fixed coordinate conversion unit 105, and a second fixed coordinate conversion unit 106.
  • the first rotary coordinate conversion unit 101 receives the ⁇ axis current I s ⁇ of the fixed coordinate system and the rotation angle ⁇ in order to use a rotor flux equation and coordinate-converts into the d axis current value I sd of the rotary coordinate system.
  • the second rotary coordinate conversion unit 102 receives the ⁇ axis current I s ⁇ of the fixed coordinate system and the rotation angle ⁇ and coordinate-converts into the q axis current value I sq of the rotary coordinate system.
  • the d axis flux ⁇ sd and q axis flux ⁇ sq of the rotary coordinate system are input to the trigonometric function calculation unit 40.
  • the first fixed coordinate conversion unit 105 is a compensator compensating for a value coordinate-converted in order to use the rotor flux equation, compensates for the rotation angle ⁇ by using the output of the first rotating flux calculation unit 103 to coordinate-convert into the fixed coordinate system, and outputs the ⁇ axis flux instruction value ⁇ s ⁇ * of the fixed coordinate system.
  • the second fixed coordinate conversion unit 106 compensates for the rotation angle ⁇ by using the output of the second rotating flux calculation unit 104 to coordinate-convert into the fixed coordinate system, and outputs the ⁇ axis flux instruction value ⁇ s ⁇ * of the fixed coordinate system.
  • the fixed flux estimation unit 20 includes a first fixed flux change ratio calculation unit 201, a second fixed flux change ratio calculation unit 202, a first integrator 203, and a second integrator 204.
  • the first integrator 203 integrates the outputs of the first fixed flux change ratio calculation unit 201 to output the ⁇ axis flux ⁇ s ⁇ of the fixed coordinate system.
  • the second integrator 204 integrates the outputs of the second fixed flux change ratio calculation unit 202 to output the ⁇ axis flux ⁇ s ⁇ of the fixed coordinate system.
  • the ⁇ axis flux ⁇ s ⁇ and ⁇ axis flux ⁇ s ⁇ output by the first integrator 203 and the second integrator 204 are input to the trigonometric function calculation unit 40.
  • the fixe flux error estimation unit 30 includes a first subtractor 301, a second subtractor 302, a first controller 303 and a second controller 304 and performs the function of compensating for the estimated fixed coordinate system ⁇ - ⁇ axis flux, and an error is compensated for by a PI controller and input to the fixed flux estimation unit 20.
  • the first subtractor 301 calculates the difference between the ⁇ axis flux instruction value ⁇ s ⁇ * of the fixed coordinate system input from the fixed flux instruction estimation unit 10 and the ⁇ axis flux ⁇ s ⁇ input from the fixed flux estimation unit 20.
  • the second subtractor 302 calculates the difference between the ⁇ axis flux instruction value ⁇ s ⁇ * of the fixed coordinate system input from the fixed flux instruction estimation unit 10 and the ⁇ axis flux ⁇ s ⁇ input from the fixed flux estimation unit 20.
  • the first controller 303 receives the difference from the first subtractor 301, performs proportional-integral (PI) control by the equation K P ⁇ + K I ⁇ /S (K P ⁇ : proportional gain, K I ⁇ : integral gain, S: complex variable) to adjust a gain and calculates the ⁇ axis flux error ⁇ s ⁇ of the fixed coordinate system.
  • PI proportional-integral
  • the second controller 304 receives the difference from the second subtractor 302, performs PI control by the equation K P ⁇ + K I ⁇ /S (K P ⁇ : proportional gain, K I ⁇ : integral gain, S: complex variable) to adjust a gain and calculates the ⁇ axis flux error ⁇ s ⁇ of the fixed coordinate system.
  • the ⁇ axis flux error ⁇ s ⁇ and ⁇ axis flux error ⁇ s ⁇ are fed back to the fixe flux estimation unit 20.
  • the trigonometric function calculation unit 40 includes a first arctangent unit 401, a second arctangent unit 402, and a rotation angle subtraction unit 403.
  • the first arctangent unit 401 receives the d axis flux ⁇ sd of the rotary coordinate system and the q axis flux ⁇ sq of the rotary coordinate system from the fixed flux instruction estimation unit 10 and outputs the angle ⁇ dq of ⁇ dq based on the d axis by using a trigonometric function arctangent.
  • the second arctangent unit 402 receives the ⁇ axis flux ⁇ s ⁇ of the fixed coordinate system and the ⁇ axis flux ⁇ s ⁇ of the fixed coordinate system from the fixed flux estimation unit 20 and outputs the angle ⁇ ⁇ of ⁇ ⁇ based on the ⁇ axis by using the trigonometric function arctangent.
  • the rotation angle subtraction unit 403 finds the difference between the angles ⁇ ⁇ and ⁇ dq to output the rotation angle ⁇ , and the rotation angle ⁇ is fed back to the fixed flux instruction estimation unit 10.
  • the sensorless vector control system of the PMSM receives the rotation angle ⁇ and the speed W e from the rotation angle estimation unit 100 and controls the PMSM.
  • Fig. 4 is a block diagram representing a state in which the rotation angle estimation unit 100 according to an embodiment is applied to a sensorless vector control system inverter-controlling a typical PMSM, through which it is possible to understand how the outputs of the rotation angle estimation unit 100, the rotation angle ⁇ and the speed W e are input to a PMSM control unit 1.
  • the technical scope of an embodiment includes the sensorless vector control system of the PMSM to which the rotation angle estimation unit 100 is applied.
  • the embodiment describes a method of finding the stator flux vector and the rotor flux vector, the flux equation of a rotor circuit is coordinate-converted into the stator flux equation by the applying of the voltage equation of a stator circuit and the flux equation of the rotor circuit and then the stator flux vector is compensated for to finally find the stator flux vector and the rotor flux vector.
  • the rotation angle estimation unit 100 may also be applied to a vector control system having location and speed sensors as a backup in addition to the sensorless vector control system of the PMSM.
  • stator voltage equation and the rotor equation are together used, it is possible to rapidly and accurately estimate the rotation angle of a rotor at low and high speeds and by applying the estimated rotation angle to perform the sensorless vector control of the PMSM, it is possible to provide a more reliable and economical sensorless vector control system of the PMSM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Claims (15)

  1. Un module d'estimation d'angle de rotation (100) d'un moteur synchrone à aimant permanent (PMSM) pour le contrôle vectoriel sans capteur du PMSM, le module d'estimation d'angle de rotation comprenant :
    une unité d'estimation de consigne de flux fixe (10) configurée pour calculer un flux tournant (λsd, λsq) et une consigne de flux fixe (λ*, λ*) sur la base d'un angle de rotation (θ) et du courant (I, I) d'un système de coordonnées fixe ;
    une unité d'estimation de flux fixe (20) configurée pour calculer un flux fixe (λ, λ) sur la base de la tension (V, V) du système de coordonnées fixe, et du courant (I, I) et d'une erreur de flux fixe (Δ, Δ) du système de coordonnées fixe ;
    une unité d'estimation d'erreur de flux fixe (30) configurée pour utiliser la différence entre la consigne de flux fixe (λ*, λ*) et le flux fixe (λ, λ) pour calculer l'erreur de flux fixe (Δ, Δ) et envoyer les erreurs en retour à l'unité d'estimation de flux fixe (20) ; et
    une unité de calcul de fonction trigonométrique configurée pour calculer l'angle de rotation (θ) d'une distance dont se déplace un rotor, sur la base du flux tournant (λsd, λsq) et du flux fixe (λ, λ).
  2. Le module d'estimation d'angle de rotation selon la revendication 1, dans lequel l'unité de calcul de fonction trigonométrique (40) calcule enfin l'angle de rotation θ et envoie un angle calculé en retour à l'unité d'estimation de consigne de flux fixe (10).
  3. Le module d'estimation d'angle de rotation selon la revendication 1, dans lequel l'unité d'estimation de consigne de flux fixe (10) calcule le flux tournant (λsd, λsq) sur la base du courant (I, I) du système de coordonnées fixe, de l'angle de rotation θ, de l'inductance (Ld, Lq) d'un système de coordonnées tournant, et du flux λPM d'un aimant permanent.
  4. Le module d'estimation d'angle de rotation selon la revendication 3, dans lequel l'unité d'estimation de consigne de flux fixe (10) compense l'angle de rotation θ par utilisation du flux tournant (λsd, λsq) pour calculer la consigne de flux fixe (λ*, λ*).
  5. Le module d'estimation d'angle de rotation selon la revendication 1, dans lequel l'unité d'estimation de flux fixe (20)
    reçoit la tension V sur l'axe α du système de coordonnées fixe, le courant I sur l'axe α du système de coordonnées fixe, et l'erreur de flux Δ sur l'axe α du système de coordonnées fixe pour calculer un ratio dλ/dt de variation du flux sur l'axe α du système de coordonnées par l'utilisation d'une équation dλ/dt = V - RsI + Δ (Rs : résistance du stator),
    reçoit la tension V sur l'axe β du système de coordonnées fixe, le courant I sur l'axe β du système de coordonnées fixe, et l'erreur de flux Δ sur l'axe β du système de coordonnées fixe pour calculer un ratio dλ/dt de variation du flux sur l'axe β du système de coordonnées par l'utilisation d'une équation dλ/dt = V - RsI + Δ (Rs : résistance du stator), intègre le ratio dλ/dt de variation du flux sur l'axe α du système de coordonnées fixe pour délivrer en sortie le flux λ sur l'axe α, et
    intègre la sortie du ratio dλ/dt de variation du flux sur l'axe β du système de coordonnées fixe pour délivrer en sortie le flux λ sur l'axe β du système de coordonnées fixe.
  6. Le module d'estimation d'angle de rotation selon la revendication 1, dans lequel l'unité d'estimation d'erreur de flux fixe (30)
    calcule la différence entre la valeur de consigne λ* de flux sur l'axe α de l'entrée du système de coordonnées fixe venant de l'unité d'estimation de consigne de flux fixe (10) et l'entrée λ de flux sur l'axe α venant de l'unité d'estimation de flux fixe (20),
    calcule la différence entre la valeur de consigne λ* de flux sur l'axe β de l'entrée de système de coordonnées fixe venant de l'unité d'estimation de consigne de flux fixe (10) et l'entrée λ de flux sur l'axe β venant de l'unité d'estimation de flux fixe (20),
    reçoit la différence par rapport au flux λ sur l'axe α pour ajuster un gain et calculer l'erreur Δ de flux sur l'axe α du système de coordonnées fixe, et
    reçoit la différence par rapport au flux λ sur l'axe β pour ajuster un gain et calculer l'erreur Δ de flux sur l'axe β du système de coordonnées fixe.
  7. Le module d'estimation d'angle de rotation selon la revendication 1, dans lequel l'unité de calcul de fonction trigonométrique (40) :
    trouve les angles θdq et θαβ par application d'une fonction trigonométrique respectivement au flux tournant (λsd, λsq) et au flux fixe (λ, λ), et
    délivre en sortie l'angle de rotation θ sur la base des angles θdq et θαβ.
  8. Le module d'estimation d'angle de rotation selon la revendication 7, dans lequel l'unité de calcul de fonction trigonométrique (40) :
    reçoit le flux λsd sur l'axe d du système de coordonnées tournant et le flux λsq sur l'axe θ du système de coordonnées tournant venant de l'unité d'estimation de consigne de flux fixe (10) pour délivrer en sortie l'angle θdq de λdq sur la base de l'axe d par utilisation d'une fonction trigonométrique arc tangente,
    reçoit le flux λ sur l'axe α du système de coordonnées fixe et le flux λ sur l'axe β du système de coordonnées fixe venant de l'unité d'estimation de flux fixe (20) pour délivrer en sortie l'angle θαβ de λ sur la base de l'axe α par utilisation de la fonction trigonométrique arc tangente, et
    trouve la différence entre les angles θdq et θαβ pour délivrer en sortie l'angle de rotation θ.
  9. Un procédé de mise en oeuvre d'un module d'estimation d'angle de rotation (100) d'un moteur pour le contrôle vectoriel sans capteur d'un PMSM, le procédé de mise en oeuvre comprenant :
    le calcul d'un flux tournant (λsd, λsq) et d'une consigne de flux fixe (λ*, λ*) sur la base du courant (I, I) d'un système de coordonnées fixe et d'un angle de rotation (θ) ;
    le calcul d'un flux fixe (λ, λ) sur la base de la tension (V, V) du système de coordonnées fixe, et du courant (I, I) et d'une erreur de flux fixe (Δ, A) du système de coordonnées fixe, par l'intermédiaire d'une unité d'estimation de flux fixe (20) ;
    l'utilisation de la différence entre la consigne de flux fixe (λ*, λ*) et le flux fixe (λ, λ) pour calculer l'erreur de flux fixe (Δ, Δ) et envoyer les erreurs en retour à l'unité d'estimation de flux fixe (20) ; et
    le calcul de l'angle de rotation (θ) d'une distance dont se déplace un rotor, sur la base du flux tournant (λsd, λsq) et du flux fixe (λ, λ).
  10. Le procédé de mise en oeuvre selon la revendication 9, comprenant en outre le calcul final de l'angle de rotation pour l'envoi d'un angle calculé en retour à l'unité d'estimation de consigne de flux fixe (10).
  11. Le procédé de mise en oeuvre selon la revendication 9, dans lequel le calcul du flux tournant (λsd, λsq) et de la consigne de flux fixe (λ*, λ*) comprend le calcul du flux tournant (λsd, λsq) sur la base du courant (I, I) du système de coordonnées fixe, de l'angle de rotation θ, de l'inductance (Ld, Lq) d'un système de coordonnées tournant, et du flux λPM d'un aimant permanent.
  12. Le procédé de mise en oeuvre selon la revendication 11, dans lequel le calcul du flux tournant (λsd, λsq) et de la consigne de flux fixe (λ*, λ*) comprend la compensation de l'angle de rotation θ par utilisation du flux tournant (λsd, λsq) pour calculer la consigne de flux fixe (λ*, λ*).
  13. Le procédé de mise en oeuvre selon la revendication 9, dans lequel le calcul du flux fixe (λ, λ) comprend :
    la réception de la tension V sur l'axe α du système de coordonnées fixe, le courant I sur l'axe α du système de coordonnées fixe, et l'erreur de flux Δ sur l'axe α du système de coordonnées fixe pour calculer un ratio dλ/dt de variation du flux sur l'axe α du système de coordonnées par l'utilisation d'une équation dλ/dt = V - RsI + Δ (Rs : résistance du stator),
    la réception de la tension V sur l'axe β du système de coordonnées fixe, le courant I sur l'axe β du système de coordonnées fixe, et l'erreur de flux Δ sur l'axe β du système de coordonnées fixe pour calculer un ratio dΔ/dt de variation du flux sur l'axe β du système de coordonnées par l'utilisation d'une équation dλ/dt = V - RsI + Δ (Rs : résistance du stator),
    l'intégration du ratio dλ/dt de variation du flux sur l'axe α du système de coordonnées fixe pour délivrer en sortie le flux λ sur l'axe α, et
    l'intégration des sorties du ratio dλ/dt de variation du flux sur l'axe β du système de coordonnées fixe pour délivrer en sortie le flux λ sur l'axe β du système de coordonnées fixe.
  14. Le procédé de mise en oeuvre selon la revendication 9, dans lequel le calcul du flux fixe (λ, λ) comprend :
    le calcul de la différence entre la valeur de consigne λ* de flux sur l'axe α de l'entrée du système de coordonnées fixe venant de l'unité d'estimation de consigne de flux fixe (10) et l'entrée λ de flux sur l'axe α venant de l'unité d'estimation de flux fixe (20),
    le calcul de la différence entre la valeur de consigne λ* de flux sur l'axe β de l'entrée de système de coordonnées fixe venant de l'unité d'estimation de consigne de flux fixe (10) et l'entrée λ de flux sur l'axe β venant de l'unité d'estimation de flux fixe (20),
    la réception de la différence par rapport au flux λ sur l'axe α pour ajuster un gain et calculer l'erreur Δ de flux sur l'axe α du système de coordonnées fixe, et
    la réception de la différence par rapport au flux λ sur l'axe β pour ajuster un gain et calculer l'erreur Δ de flux sur l'axe β du système de coordonnées fixe.
  15. Le procédé de mise en oeuvre selon la revendication 9, dans lequel le calcul de l'angle de rotation θ comprend :
    l'obtention des angles θdq et θαβ par application d'une fonction trigonométrique respectivement au flux tournant (λsd, λsq) et au flux fixe (λ, λ), et
    la délivrance en sortie de l'angle de rotation θ sur la base des angles (θdq, θαβ).
EP15163779.0A 2014-04-29 2015-04-16 Module d'estimation d'angle de rotation pour commande vectorielle sans capteur de pmsm Not-in-force EP2940859B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140051180A KR101840509B1 (ko) 2014-04-29 2014-04-29 동기전동기 센서리스 벡터제어를 위한 회전각 추정장치

Publications (2)

Publication Number Publication Date
EP2940859A1 EP2940859A1 (fr) 2015-11-04
EP2940859B1 true EP2940859B1 (fr) 2018-08-15

Family

ID=52875050

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15163779.0A Not-in-force EP2940859B1 (fr) 2014-04-29 2015-04-16 Module d'estimation d'angle de rotation pour commande vectorielle sans capteur de pmsm

Country Status (6)

Country Link
US (1) US9667186B2 (fr)
EP (1) EP2940859B1 (fr)
JP (1) JP6027176B2 (fr)
KR (1) KR101840509B1 (fr)
CN (1) CN105048919B (fr)
ES (1) ES2697424T3 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953557A (zh) * 2017-03-17 2017-07-14 深圳市大地和电气股份有限公司 旋转变压器转换器、旋转变压器信号采集系统及采集方法
CN107370429B (zh) * 2017-06-29 2020-03-31 江苏大学 无轴承永磁同步电机模糊神经网络逆解耦控制器
CN107425775A (zh) * 2017-07-04 2017-12-01 武汉理工大学 一种基于改进最小二乘法的永磁同步电机参数辨识系统
CN107681941B (zh) * 2017-10-10 2020-03-31 江苏大学 一种无轴承永磁同步电机无径向位移传感器的构造方法
CN109951118A (zh) * 2017-12-20 2019-06-28 广州汽车集团股份有限公司 控制直流母线放电方法、装置、设备及存储介质
US10658963B2 (en) * 2018-10-10 2020-05-19 GM Global Technology Operations LLC Flux observer-based control strategy for an induction motor
US11196371B2 (en) 2020-01-10 2021-12-07 DRiV Automotive Inc. Sensorless position detection for electric motor
US11588426B2 (en) * 2020-01-17 2023-02-21 Infineon Technologies Ag Rotor angle error compensation for motors
KR102494526B1 (ko) * 2020-06-01 2023-02-03 경북대학교 산학협력단 유도 전동기 옵셋 추정기 및 옵셋 추정 방법
KR102586189B1 (ko) 2021-11-23 2023-10-06 주식회사 브이씨텍 전기자동차용 영구자석 동기전동기의 고효율 운전 제어 장치 및 그 제어 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001571A1 (en) * 2006-06-28 2008-01-03 Sanyo Electric Co., Ltd. Motor control device

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108119B2 (ja) * 1987-08-08 1995-11-15 三菱電機株式会社 誘導電動機制御装置
JPH0870598A (ja) 1994-08-29 1996-03-12 Meidensha Corp 誘導電動機の速度センサレスベクトル制御装置
US5668459A (en) * 1995-05-09 1997-09-16 Lg Industrial Systems Co., Ltd. Apparatus for generating magnetic flux of induction motor
KR100299457B1 (ko) 1997-12-17 2002-04-17 홍상복 유도전동기의속도제어방법
US6137258A (en) * 1998-10-26 2000-10-24 General Electric Company System for speed-sensorless control of an induction machine
KR100484818B1 (ko) 2002-10-10 2005-04-22 엘지전자 주식회사 동기 릴럭턴스 모터의 센서리스 제어시스템
JP2004166408A (ja) 2002-11-13 2004-06-10 Yoichi Hayashi 永久磁石同期電動機制御方法
US6924617B2 (en) * 2003-06-23 2005-08-02 General Motors Corporation Position sensorless control algorithm for AC machine
JP4576857B2 (ja) 2004-03-12 2010-11-10 株式会社富士通ゼネラル 回転子位置推定方法、モータの制御方法、およびプログラム
KR100645807B1 (ko) * 2004-12-06 2007-02-28 엘지전자 주식회사 모터 기동 제어장치 및 그 방법
JP4383442B2 (ja) * 2006-12-27 2009-12-16 三洋電機株式会社 モータ制御装置及びモータ駆動システム
KR100845110B1 (ko) 2006-12-29 2008-07-09 엘에스산전 주식회사 센서리스 인버터의 관성 모멘트 추정방법
US8242721B2 (en) * 2008-10-31 2012-08-14 R&D Dynamics Corporation Position-sensorless control system and method of operation for a synchronous motor
GB2465379A (en) 2008-11-17 2010-05-19 Technelec Ltd Controller for electrical machines
KR101547313B1 (ko) 2008-11-25 2015-09-07 삼성전자주식회사 유전막을 포함하는 반도체 소자
EP2192413A1 (fr) * 2008-12-01 2010-06-02 ABB Oy Procédé et appareil pour estimer la vitesse de rotation d'un moteur électrique
JP5256009B2 (ja) * 2008-12-12 2013-08-07 日立アプライアンス株式会社 磁石モータの速度制御装置
US8339081B2 (en) * 2009-09-11 2012-12-25 GM Global Technology Operations LLC Method and apparatus for low speed permanent magnet motor operation
CN101719753B (zh) * 2009-12-30 2012-05-23 国网电力科学研究院 抽水蓄能电站静止变频启动电机转子初始位置检测方法
US8294413B2 (en) * 2010-01-05 2012-10-23 GM Global Technology Operations LLC Induction motor control systems and methods
US8378605B2 (en) * 2010-01-06 2013-02-19 GM Global Technology Operations LLC Method and apparatus for monitoring a system including a sensorless electric motor
KR101534518B1 (ko) 2010-03-08 2015-07-07 존슨 컨트롤스 테크놀러지 컴퍼니 영구자석 동기모터를 제어하기 위한 방법 및 장치
JP5556381B2 (ja) 2010-05-28 2014-07-23 サンケン電気株式会社 誘導電動機の制御装置及び制御方法
US8736222B2 (en) * 2010-10-15 2014-05-27 Lsis Co., Ltd. Flux controller for induction motor
KR101376389B1 (ko) * 2010-11-30 2014-03-20 엘에스산전 주식회사 유도전동기용 자속 제어장치
KR101549283B1 (ko) * 2011-10-12 2015-09-01 엘에스산전 주식회사 영구자석 동기 전동기 구동 시스템의 파라미터 추정장치
US9106177B2 (en) * 2012-01-05 2015-08-11 GM Global Technology Operations LLC Method and system for sensorless control of an electric motor
KR101961106B1 (ko) 2012-03-20 2019-03-25 삼성전자 주식회사 센서리스 제어 방법 및 장치
US9954624B2 (en) 2012-04-27 2018-04-24 The Board Of Trustees Of The University Of Illinois Angle-based speed estimation of alternating current machines utilizing a median filter
EP2706659A1 (fr) 2012-09-06 2014-03-12 Siemens Aktiengesellschaft Système pour corriger une position estimée d'un rotor d'une machine électrique
JP5660191B2 (ja) 2013-11-21 2015-01-28 ダイキン工業株式会社 電動機制御装置
CN103731082B (zh) 2014-01-03 2016-05-18 东南大学 一种基于直接转矩控制的永磁同步电机定子磁链估计方法
CN103701386B (zh) 2014-01-03 2016-02-03 哈尔滨工业大学 基于观测磁链误差的异步电机无速度传感器的全阶磁链观测器的获取方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001571A1 (en) * 2006-06-28 2008-01-03 Sanyo Electric Co., Ltd. Motor control device

Also Published As

Publication number Publication date
CN105048919A (zh) 2015-11-11
EP2940859A1 (fr) 2015-11-04
ES2697424T3 (es) 2019-01-23
JP6027176B2 (ja) 2016-11-16
CN105048919B (zh) 2018-01-30
KR101840509B1 (ko) 2018-03-20
KR20150124578A (ko) 2015-11-06
JP2015211633A (ja) 2015-11-24
US20150311847A1 (en) 2015-10-29
US9667186B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
EP2940859B1 (fr) Module d'estimation d'angle de rotation pour commande vectorielle sans capteur de pmsm
JP3529752B2 (ja) Dcブラシレスモータのロータ角度検出装置
US6674261B2 (en) Motor control apparatus
JP5929863B2 (ja) 制御装置
RU2664782C1 (ru) Устройство управления для вращающейся машины переменного тока
EP2924874B1 (fr) Dispositif de commande de machine tournante à courant alternatif
KR20130086730A (ko) 전동기의 센서리스 제어 장치 및 방법
JP2010029028A (ja) モータ制御装置
JP3707528B2 (ja) 交流電動機の制御方法およびその制御装置
JP2006304478A (ja) モータ駆動制御装置及びそれを用いた電動パワーステアリング装置
JP5800763B2 (ja) 交流回転機の制御装置
JP5074318B2 (ja) 同期電動機のロータ位置推定装置
JP3675192B2 (ja) モータ制御装置および電気車用制御装置およびハイブリッド車用制御装置
KR102205254B1 (ko) 전동식 파워 스티어링 시스템의 모터 제어 장치 및 방법
JP2010035352A (ja) 同期電動機のロータ位置推定装置
JPH1118499A (ja) 永久磁石型同期電動機のセンサレス速度制御方法及びその脱調検出方法
JP6032047B2 (ja) モータ制御装置
JP4680754B2 (ja) Dcブラシレスモータのロータ角度推定方法及びdcブラシレスモータの制御装置
JP5726273B2 (ja) 永久磁石状態推定機能を備えた同期機制御装置およびその方法
WO2018159103A1 (fr) Procédé de commande de moteur, système de commande de moteur et système de direction assistée électrique
WO2018159104A1 (fr) Procédé de commande de moteur, système de commande de moteur et système de direction assistée électrique
JP5106295B2 (ja) 同期電動機のロータ位置推定装置
JP5167768B2 (ja) 電動機制御装置および電動機制御方法
KR101817674B1 (ko) 영구자석형 동기전동기의 초기위치 판별을 위한 장치 및 방법
JP2011010486A (ja) 永久磁石同期機の制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160427

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H02P 21/18 20160101ALI20180202BHEP

Ipc: H02P 6/18 20160101ALI20180202BHEP

Ipc: H02P 21/14 20160101AFI20180202BHEP

INTG Intention to grant announced

Effective date: 20180305

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 1030926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015014663

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1030926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2697424

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015014663

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190416

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200306

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200306

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200511

Year of fee payment: 6

Ref country code: DE

Payment date: 20200305

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200415

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150416

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015014663

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210416

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200416