EP2934788B9 - Formstoffmischungen enthaltend metalloxide des aluminiums und zirkoniums in partikulärer form - Google Patents

Formstoffmischungen enthaltend metalloxide des aluminiums und zirkoniums in partikulärer form Download PDF

Info

Publication number
EP2934788B9
EP2934788B9 EP13830178.3A EP13830178A EP2934788B9 EP 2934788 B9 EP2934788 B9 EP 2934788B9 EP 13830178 A EP13830178 A EP 13830178A EP 2934788 B9 EP2934788 B9 EP 2934788B9
Authority
EP
European Patent Office
Prior art keywords
oxide
material mixture
mold material
mold
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13830178.3A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2934788B1 (de
EP2934788A2 (de
Inventor
Heinz DETERS
Henning ZUPAN
Martin Oberleiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASK Chemicals GmbH
Original Assignee
ASK Chemicals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50137455&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2934788(B9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ASK Chemicals GmbH filed Critical ASK Chemicals GmbH
Priority to SI201331460T priority Critical patent/SI2934788T1/sl
Publication of EP2934788A2 publication Critical patent/EP2934788A2/de
Application granted granted Critical
Publication of EP2934788B1 publication Critical patent/EP2934788B1/de
Publication of EP2934788B9 publication Critical patent/EP2934788B9/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/107Refractories by fusion casting
    • C04B35/109Refractories by fusion casting containing zirconium oxide or zircon (ZrSiO4)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/162Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents use of a gaseous treating agent for hardening the binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass

Definitions

  • the invention relates to molding material mixtures containing an oxide of aluminum and an oxide of zirconium as a particulate mixed metal oxide, in combination with refractory molding materials and water glass as a binder.
  • the particulate mixed metal oxide is a mixture of at least two oxides, a mixture of at least one mixed oxide and at least one oxide or a mixed oxide or a mixture of mixed oxides. These mixed metal oxides show no or only a very low reactivity with alkaline water glass at room temperature.
  • the molding material mixtures also in the form of Mehrkomponenten ⁇ systems, are used for the production of molds and cores for the foundry industry.
  • Molds are essentially composed of cores and molds, which represent the negative molds of the casting to be produced. These cores and forms consist of a refractory material, such as quartz sand, and a suitable binder, which gives the mold after removal from the mold sufficient mechanical strength. For the production of molds so you use a refractory molding material, which is coated with a suitable binder.
  • the refractory molding base material is preferably present in a free-flowing form, so that it can be filled into a suitable mold and compacted there.
  • the binder produces a firm cohesion between the particles of the molding base material, so that the casting mold obtains the required mechanical stability.
  • Molds must meet different requirements. In the casting process itself, they must first have sufficient strength and temperature resistance in order to be able to absorb the liquid metal in the cavity formed from one or more casting molds. After the start of the solidification process, the mechanical stability of the casting is ensured by a solidified metal layer which forms along the walls of the casting mold.
  • the material of the casting mold must now decompose under the influence of the heat given off by the metal in such a way that it loses its mechanical strength, that is to say the cohesion between individual particles of the refractory material is removed. Ideally, the mold decays back to a fine sand that can be easily removed from the casting.
  • inorganic bonding systems have been developed or developed in recent years, the use of which results in emissions of CO 2 and hydrocarbons in the production of metal molds can be avoided or at least significantly minimized.
  • inorganic binder systems is often associated with other disadvantages, which are described in detail in the following.
  • Inorganic binders have the disadvantage, in comparison to organic binders, that the casting molds produced therefrom have relatively low strengths. This is especially evident immediately after the removal of the mold from the tool. Good strength at this time, however, are particularly important for the production of complicated and / or thin-walled moldings and their safe handling. The resistance to air humidity is also significantly reduced compared to organic binders.
  • the DE 102004042535 A1 ( US 7770629 B2 ) discloses that higher immediate strengths and higher resistance to atmospheric moisture can be realized through the use of a refractory molding base, a water glass based binder and a proportion of a particulate metal oxide selected from the group of silica, alumina, titania and zinc oxide. Closer is the use of particulate amorphous silica.
  • molding mixtures containing refractory molding material, water glass, a particulate metal oxide, preferably amorphous silica, and carbohydrates.
  • Inorganic binder systems have the further disadvantage over organic binder systems that molds made therefrom often lead to strong sand deposits and penetrations on the casting, which is associated with a considerable cleaning effort and thus additional costs for the foundries.
  • the Entkern i.
  • the ability of the mold to disintegrate rapidly (under mechanical stress) into a readily pourable form after casting metal is often inferior in purely inorganically produced molds (eg those using waterglass as a binder) compared to molds made with an organic binder ,
  • This latter property, a poor Entkern is particularly disadvantageous when thin-walled or filigree or complex molds are used, which can be difficult to remove after casting in principle.
  • so-called water jacket cores can be attached here, which are necessary in the production of certain areas of an internal combustion engine.
  • the US 3203057 discloses molding material mixtures consisting of a fine refractory material, a liquid binder, this being in particular an alkali-silicate solution, and an Al 2 O 3 -containing active ingredient, which improves the Entkern the mold after casting metal.
  • Al 2 O 3 -containing active ingredients are pure alumina, known mixed oxides such as aluminosilicates, clay minerals such as bentonite or montmorillonite, naturally occurring Al 2 O 3 -containing active ingredients such as bauxite and other minerals such as cement and kaolin understood.
  • the Al2O 3 -containing active ingredients are very generally described herein, and there are no exact figures, which are suitable these materials particularly suitable for the core removal of the mold, the processing time of the molding mixture, the cast surface quality of that casting.
  • the US 4233076 discloses molding material mixtures consisting of sand, an alkali metal silicate binder, at least one curing agent which is selected from the group of alkylene carbonate, an organic monocarboxylic or dicarboxylic acid or its methyl ester, carbon dioxide or blast furnace slag, and an Al 2 O 3 -containing substance, the average Grain size distribution between 0.2 and 5 microns. It is described that the alumina-containing solid preferably has a BET surface area between 3 and 40 m 2 / g. As preferred, Al 2 O 3 .3H 2 O is disclosed.
  • the JP 4920794 B1 discloses molding mixtures consisting of a foundry sand, an alkali silicate binder and amorphous spheroids formed by acidic spherical silica and acidic spherical alumina. These amorphous spheroids are said to act as "superplasticizers" and aid curing, eventually leading to higher strengths.
  • the invention therefore an object of the invention to provide a molding material mixture for the production of molds for metal processing available, which corresponds to the requirements described above (a) - (f).
  • the molding material mixture according to the invention is characterized in that it improves the casting surface of the casting in question, without relying on the addition of organic additives. This observation can be made especially in iron and steel casting, but also in light metal and non-ferrous metal casting.
  • casting molds based on inorganic binders can be prepared for the molding material mixture, which have high strength both immediately after preparation and during prolonged storage .
  • a particular advantage is that after casting a casting, in particular of iron or steel is obtained with very high surface quality, so that after the removal of the mold only little or no post-processing of the surface of the casting is required.
  • a refractory coating can be achieved with so-called sizings, which must be applied after the casting mold to just such.
  • the advantage of the molding material mixture according to the invention is therefore also that this coating process can be omitted for many casting geometries, which is associated with considerable cost savings for the respective foundries.
  • the molding material mixture contains no organic components, so that no emissions of CO 2 and other pyrolysis arise. For this reason, pollution, especially at the workplace, can be reduced by harmful emissions. Also, the use of the molding material mixture according to the invention makes a contribution to the reduction of harmful emissions (by CO 2 and other, organic pyrolysis).
  • the particulate mixed metal oxide shows no or at least a very low reactivity with the inorganic binder, in particular the alkaline water glass, at room temperature.
  • a refractory molding base material can be used for the production of molds usual materials. Suitable examples are quartz or chrome ore sand, olivine, vermiculite, bauxite and chamotte, in particular more than 50% by weight of quartz sand, based on the refractory base molding material. It is not necessary to use only new sands. In terms of resource conservation and to avoid landfill costs, it is even advantageous to use the highest possible proportion of regenerated used sand.
  • the refractory molding base material preferably makes up more than 80% by weight, in particular greater than 90% by weight, of the molding material mixture.
  • regenerates which are obtained by washing and subsequent drying.
  • regenerates obtained by purely mechanical treatment.
  • the regenerates can replace at least about 70% by weight of the new sand (the refractory molding base materials), preferably at least about 80% by weight and more preferably at least about 90% by weight.
  • Preference is given to regenerates of the refractory molding base material which were heated to a temperature of at least 200 ° C. for regeneration and, in particular, were moved during this thermal treatment.
  • refractory mold base materials and artificial molding materials may be used such as glass beads, glass granules, the known under the name “Cerabeads” or “Carboaccucast” spherical ceramic mold bases or Aluminiumiumsilikatmikrohohlkugeln (so-called Microspheres).
  • Such aluminosilicate hollow microspheres are marketed for example by Omega Minerals Germany GmbH, Norderstedt, in various grades with different contents of aluminum oxide under the name “Omega Spheres”. Corresponding products are available from PQ Corporation (USA) under the name “Extendospheres”.
  • the average diameter of the refractory mold bases is generally between 100 .mu.m and 600 .mu.m, preferably between 120 .mu.m and 550 .mu.m, and more preferably between 150 .mu.m and 500 .mu.m.
  • the mean particle size can be e.g. by sieving according to DIN 66165 (Part 2) with test sieves DIN ISO 3310-1. Particularly preferred are particle shapes with the greatest length extension to the smallest length extension (in any spatial directions) of 1: 1 to 1: 5 or 1: 1 to 1: 3, i. such as e.g. are not fibrous.
  • artificial mold raw materials especially glass beads, glass granules or microspheres
  • the preferred proportion of the artificial molding base materials is at least about 3% by weight, particularly preferably at least 5% by weight, particularly preferably at least 10% by weight, preferably at least about 15% by weight, particularly preferably at least about 20% by weight. , based on the total amount of refractory molding material.
  • the refractory molding base material preferably has a free-flowing state, in particular in order to be able to process the molding material mixture according to the invention in conventional core shooting machines.
  • the water glasses as inorganic binder contain dissolved alkali silicates and can be prepared by dissolving glassy lithium, sodium and / or potassium silicates in water.
  • the water glass preferably has a molar modulus SiO 2 / M 2 O in the range of 1.6 to 4.0, in particular 2.0 to less than 3.5, where M is lithium, sodium or potassium.
  • the water glasses have a solids content in the range of 25 to 65 wt.%, Preferably from 30 to 60 wt.%.
  • the solids content refers to the amount of SiO 2 and M 2 O present in the water glass.
  • between 0.5% by weight and 5% by weight of the water glass-based binder are used, preferably between 0.75% by weight .% And 4 wt.%, Particularly preferably between 1 wt.% And 3.5 wt.%, Each based on the molding material.
  • casting molds based on inorganic binders can be prepared by the addition of above particulate mixed metal oxides to the molding material mixture, which not only have a high strength both immediately after production and during prolonged storage, but also to a good surface quality of Cast iron, especially of iron and steel lead.
  • Under particulate mixed metal oxides containing in addition to an oxide of aluminum additionally an oxide of zirconium are understood not only pure aluminas and zirconium oxides, but also mixed oxides such as aluminum silicates and zirconia or heterogeneous, ie consisting of several phases mixtures, which inter alia of one or more aluminum oxide-containing and zirconium oxide-containing solids or phases.
  • the particulate mixed metal oxide according to the invention is selected from one or more members of the group of a) corundum plus zirconium dioxide, b) zirconium mullite, c) zirconium corundum and d) aluminum silicates plus zirconium dioxide and can optionally additionally contain further metal oxides.
  • the aluminum silicates are in the case of a non-amorphous substance (ie, there is crystallinity or partial crystallinity here) preferably island silicates, ie the SiO 4 units contained in the structure (tetrahedral) are not directly linked (no Si-O-Si linkages) instead, there are links of the tetrahedral SiO 4 units to one or more Al atoms (Si-O-Al).
  • the Al atoms are present in 4-, 5-, and / or 6-fold coordination of oxygen atoms.
  • Typical representatives of these island silicates are (according to the Systematics of minerals after Strunz, 9th edition )
  • mullite melting and sintered mullite are meant here as well as ZrO 2 -containing mullite
  • sillimanite and other members of the sillimanite group for example kyanite or andalusite
  • sillimanite group particularly preferably kyanite
  • an amorphous aluminum silicate with greater than 50 atom% of aluminum atoms based on the sum of all silicon and aluminum atoms also containing zirconium / zirconium oxide or a aluminum oxide and zirconium oxide-containing dust, which is produced as a byproduct in zirconium corundum production and is described in more detail below ,
  • aluminum silicate is generally understood as meaning aluminum-silicon mixed oxides, i. also aluminosilicates and aluminosilicates.
  • the fineness of the particulate mixed metal oxides according to the invention can be determined by sieving.
  • the residue when passing through a sieve of 75 ⁇ m mesh size (200 mesh) is not more than about 50% by weight, preferably not more than about 30% by weight, more preferably not more than about 20% by weight. and more preferably not more than about 15% by weight.
  • Sieve residue is determined by sieve analysis according to DIN 66165 (Part 2) according to a machine screen method, wherein according to one embodiment no screen aid and according to another embodiment additionally a chain ring is used as screening aid.
  • the grain shape of the particulate mixed metal oxides may basically have any shape such as, for example, fibrous, splintery, edge-shaped, platelet-shaped, edge-rounded or even round.
  • edge-rounded and round particle shapes are preferred.
  • Particular preference is given to using round particle shapes, wherein these may be ellipsoidal or spherical - spherical ones are preferred here.
  • the ratio of the greatest linear expansion to the smallest linear expansion of the respective particle shapes is preferably less than 10: 1, particularly preferably less than 5: 1 and particularly preferably less than 3: 1. Since spherical particle shapes are particularly advantageous, a ratio of maximum length extension to minimum linear expansion of 1.1: 1 to 1: 1 is ideal.
  • the average primary particle size of the particulate mixed metal oxides according to the invention which can be determined by SEM images and by graphic evaluation is typically greater than 0.01 ⁇ m and preferably greater than 0.02 ⁇ m. This particle size is also typically less than 50 microns, preferably less than 20 microns, more preferably less than 10 microns and most preferably less than 5 microns.
  • the average specific surface area of the particulate mixed metal oxides was determined by gas adsorption (BET) measurements according to DIN 66131.
  • the specific surface area of this substance is typically less than 50 m 2 / g, preferably less than 30 m 2 / g, particularly preferably less than 17 m 2 / g.
  • the specific surface area of this substance is typically greater than 0.1 m 2 / g, preferably greater than 0.5 m 2 / g, particularly preferably greater than 1 m 2 / g.
  • the zirconia may be in tetragonal or monoclinic modification.
  • a particulate mixed metal oxide is used, which arises as a by-product in the zirconium corundum production and is described in more detail below.
  • the main constituents of this dust are Al 2 O 3 , ZrO 2 and SiO 2 , these oxides being able to be present in different modifications of the pure oxide or in the form of mixed oxides.
  • the proportion of aluminum calculated as Al 2 O 3 on the particulate mixed metal oxide, or the dust is advantageously greater than 25% by weight, preferably greater than 30% by weight, more preferably greater than 35% by weight and particularly preferably greater as 40% by weight.
  • the proportion of aluminum calculated as Al 2 O 3 on the particulate mixed metal oxide, or the dust is usually less than 80 wt.%, Preferably less than 70 wt.%, Particularly preferably less than 65 wt.% And particularly preferably less than 60% by weight.
  • the proportion of zirconium calculated as ZrO 2 on the particulate mixed metal oxide or the dust is advantageously greater than 2% by weight, preferably greater than 4% by weight, particularly preferably greater than 8% by weight.
  • the proportion of zirconium calculated as ZrO 2 on the particulate mixed metal oxide, or the dust is usually less than 50 wt.%, Preferably less than 40 wt.% And particularly preferably less than 30 wt.%.
  • the proportion of silicon (except particulate amorphous silica), calculated as SiO 2, on the particulate mixed metal oxide or dust is, if present, advantageously greater than 5% by weight, preferably greater than 15% by weight, more preferably greater than 20% by weight.
  • the proportion of silicon calculated as SiO 2 on the particulate mixed metal oxide, or the dust is usually less than 60 wt.%, Preferably less than 50 wt.% And particularly preferably less than 45 wt.%.
  • Other oxides may also be present as impurities in the particulate mixed metal oxide or dust, such as Fe 2 O 3 , Na 2 O, TiO 2 , MgO and CaO.
  • the proportion of these impurities is according to one embodiment usually less than 12 wt.%, Preferably less than 8 wt.% And particularly preferably less than 4 wt.%.
  • the aluminum occurs in several phases in the heterogeneous dust from zirconium corundum production.
  • the crystalline phase can be determined with the help of X-ray powder diffraction clearly corundum ( ⁇ -Al 2 O 3 ).
  • Such measurements can be carried out, for example, on a full-protection diffractometer from PANalytical (X'pert PW3040), which is equipped with a primary monochromator and a position-sensitive detector.
  • Small amounts of crystalline synthetic mullite (such as Al 2.4 Si 0.6 O 4.8 ) can also be found by this method.
  • Scanning electron micrographs revealed details of the primary particle shape down to the order of 0.01 ⁇ m.
  • SEM images with, for example, Nova NanoSEM 230 from FEI revealed details of the primary particle shape down to the order of 0.01 ⁇ m.
  • the average primary particle size of the spherical particles determinable by SEM images can be between 0.01 ⁇ m and 10 ⁇ m, in particular between 0.02 ⁇ m and 5 ⁇ m, particularly preferably between 0.02 ⁇ m and 2 ⁇ m.
  • the elemental composition of the spherical particles can be determined by means of energy-dispersive X-ray analysis.
  • the secondary electrons were detected by an in-lens SE detector (TLD-SE).
  • TLD-SE in-lens SE detector
  • the energy-dispersive X-ray analysis was carried out with a system of EDAX). In the course of this investigation, it was found that most of the spherical particles consist of aluminum silicate.
  • the particulate mixed metal oxide according to the invention in relation to the proportion of oxides or mixed oxides which comprise at least one oxide of aluminum and at least one oxide of zirconium is between 0.05% by weight and 2.0% by weight, preferably between 0.1% by weight. % and 2.0 wt.%, particularly preferably between 0.1 wt.% and 1.5 wt.% and particularly preferably between 0.2 wt.% and 1.2 wt.% or even between 0.2 wt. % and 0.8 wt.%, Contained in the molding composition, each based on the mold base, or is added in the above proportions of the molding composition.
  • a proportion of a particulate amorphous SiO 2 may be added to the molding material mixture according to the invention in order to increase the strength level of the casting molds produced with such molding material mixtures.
  • An increase in the strengths of the casting molds, in particular the increase in hot strengths, can be advantageous in the automated production process.
  • the particulate amorphous silica has a particle size of preferably less than 300 microns, preferably less than 200 microns, more preferably less than 100 microns and has, for example, an average primary particle size between 0.05 .mu.m and 10 .mu.m.
  • the particle size can be determined by sieve analysis.
  • the sieve residue on a sieve having a mesh width of 63 ⁇ m is particularly preferably less than 10% by weight, preferably less than 8% by weight.
  • the determination of the particle size or Siebrückstandes carried out by sieve analysis according to DIN 66165 (Part 2) by a machine screen process, wherein in one embodiment, no screen and in another embodiment additionally a chain ring is used as a screen.
  • the primary particle size is determined by dynamic light scattering and can be checked by SEM.
  • the particulate amorphous silica may be added as part of the particulate mixed metal oxide or separately.
  • the statements made herein on the concentration of the particulate mixed metal oxide and the particulate amorphous silica are each without the other component (s). In case of doubt the component has to be calculated out.
  • the amorphous SiO 2 preferably used according to the present invention has a water content of less than 15% by weight, in particular less than 5% by weight and particularly preferably less than 1% by weight.
  • the amorphous SiO 2 is used as a powder.
  • amorphous SiO 2 both synthetically produced and naturally occurring silicas can be used.
  • the latter known for example from DE 102007045649 , but are not preferred because they usually contain not inconsiderable crystalline components and are therefore classified as carcinogenic.
  • Synthetically , non-naturally occurring amorphous SiO 2 is understood, ie the production thereof comprises a chemical reaction, for example the preparation of silica sols by ion exchange processes from alkali silicate solutions, the precipitation from alkali silicate solutions, the flame hydrolysis of silicon tetrachloride, the reduction of quartz sand with coke in the electric arc furnace during production of ferro silicon and silicon.
  • the amorphous SiO 2 produced by the latter two methods is also referred to as pyrogenic SiO 2 .
  • synthetic amorphous SiO 2 is only precipitated silica ( CAS-No. 112926-00-8 ) and flame-hydrolysed SiO 2 (pyrogenic silica, fumed silica, CAS-No. 112945-52-5 ), while the product resulting from the production of ferrosilicon or silicon is merely understood as amorphous SiO 2 (silica fume, microsilica, CAS-No. 69012-64-12 ) referred to as.
  • the product formed in the production of ferrosilicon or silicon is also understood as a synthetic amorphous SiO 2 .
  • fused quartz powder (mainly amorphous SiO 2 ), which has been prepared by melting and rapid re-cooling from crystalline quartz, so that the particles are spherical and not splintered (see DE 102012020511 ).
  • the average primary particle size of the synthetic amorphous silicon dioxide may be between 0.05 ⁇ m and 10 ⁇ m, in particular between 0.1 ⁇ m and 5 ⁇ m, particularly preferably between 0.1 ⁇ m and 2 ⁇ m.
  • the primary particle size can be determined, for example, by means of dynamic light scattering (eg Horiba LA 950) and checked by scanning electron microscope images (SEM images with, for example, Nova NanoSEM 230 from FEI).
  • the specific surface area of the synthetic amorphous silicon dioxide was determined by means of gas adsorption measurements (BET method) according to DIN 66131.
  • the specific surface of the synthetic amorphous SiO 2 is between 1 and 200 m 2 / g, in particular between 1 and 50 m 2 / g, particularly preferably between 1 and 30 m 2 / g. If necessary.
  • the products can also be mixed, for example to obtain specific mixtures with certain particle size distributions.
  • the purity of the amorphous SiO 2 can vary greatly. Types having a content of at least 85% by weight of SiO 2 , preferably of at least 90% by weight and more preferably of at least 95% by weight, have proven to be suitable. Depending on the application and the desired strength level, between 0.1% by weight and 2% by weight of the particulate amorphous SiO 2 are used, preferably between 0.1% by weight and 1.8% by weight, particularly preferably between 0.1% by weight. % and 1.5 wt.%, in each case based on the molding material.
  • the ratio of water glass binder to particulate mixed metal oxide and, if present, amorphous SiO 2 can be varied within wide limits. This offers the advantage of greatly improving the initial strengths of the cores, ie, the strength immediately after removal from the tool, without significantly affecting the ultimate strengths. This is of great interest especially in light metal casting.
  • high initial strengths are desired in order to be able to easily transport the cores after their production or to assemble them into whole core packages, on the other hand, the final strengths should not be too high to avoid difficulties in core decay after casting, ie the molding base should be easily removed after casting from cavities of the mold.
  • the amorphous SiO 2 is preferably contained in a proportion of 2 to 60 wt.%, Particularly preferably 3 to 55 wt.% And particularly preferably 4 to 50 wt. %, or particularly preferably based on the ratio of solids content of the water glass to amorphous SiO 2 of 10: 1 to 1: 1.2 (parts by weight).
  • the binder or binder portion which may still be present and which is not used for the premix can be added to the refractory material before or after the addition of the premix or together with it.
  • the amorphous SiO 2 is added to the refractory prior to binder addition.
  • the molding material mixture may be added barium sulfate ( DE 102012104934 ) to further improve the surface of the casting, especially in light metal casting, such as aluminum casting.
  • the barium sulfate can be synthetically produced as well as natural barium sulfate, ie added in the form of minerals containing barium sulfate, such as barite or barite.
  • Synthetically produced barium sulfate (also known as blanc fixe) is produced, for example, by means of a precipitation reaction.
  • slightly soluble barium compounds barium salts
  • sparingly soluble barium sulfate is precipitated by addition of slightly soluble sulfate salts (such as sodium sulfate) or sulfuric acid.
  • slightly soluble sulfate salts such as sodium sulfate
  • sulfuric acid such as sodium sulfate
  • Natural barium sulphate is obtained as raw ore and then processed by various methods (eg density sorting, grinding, etc.).
  • the barium sulfate preferably has a purity of more than 85% by weight, particularly preferably more than 90% by weight.
  • the naturally derived barium sulfate may, for example, contain an impurity of calcium fluoride.
  • the proportion of calcium fluoride may typically be about 5% based on the total weight of natural barium sulfate.
  • the average particle size of the barium sulfate to be used according to the invention is preferably between 0.1 ⁇ m and 90 ⁇ m.
  • the particle size distribution can be determined, for example, by means of dynamic light scattering (e.g., Horiba LA 950).
  • the sieve residue on a sieve with a mesh size of 45 ⁇ m is preferably less than 20% by weight, more preferably less than 10% by weight, particularly preferably less than 5% by weight.
  • Sieve residue is determined by sieve analysis according to DIN 66165 (Part 2) according to a machine screen method, wherein according to one embodiment no screening aid and according to another embodiment additionally a chain ring is used as screening aid.
  • the barium sulfate is preferably used in an amount of 0.02 to 5.0% by weight, more preferably 0.05 to 3.0% by weight, particularly preferably 0.1 to 2.0% by weight, or 0.3 to 0 , 99% by weight, in each case based on the entire molding material mixture added.
  • Such a mixture of low-wetting substances which includes, inter alia, barium sulfate as a low-wetting agent, can also lead to a smooth, sandanhaftungselle casting surface.
  • the proportion of barium sulfate should be greater than 5% by weight, preferably greater than 10% by weight, particularly preferably greater than 20% by weight or greater than 60% by weight.
  • the upper limit is pure barium sulfate - the proportion of barium sulfate in non-wetting agents in this case is 100% by weight.
  • the mixture of low / low wetting substances is preferably used in an amount of 0.02 to 5.0% by weight, more preferably 0.05 to 3.0% by weight, particularly preferably 0.1 to 2.0% by weight or 0.3 to 0.99 wt.%, In each case based on the molding material mixture added.
  • the molding material mixture according to the invention may comprise a phosphorus-containing compound .
  • a phosphorus-containing compound This addition is preferred for very thin-walled sections of a mold. These are preferably inorganic phosphorus compounds in which the phosphorus is preferably present in the oxidation state +5.
  • the addition of phosphorus-containing compounds, the stability of the mold can be further increased. This is of particular importance if, during metal casting, the liquid metal strikes an oblique surface and because of the high metallostatic pressure exerts a high erosion effect there or can lead to deformations of thin-walled sections of the casting mold in particular.
  • the phosphorus-containing compound is preferably in the form of a phosphate or phosphorus oxide.
  • the phosphate can be present as alkali metal or as alkaline earth metal phosphate, with alkali metal phosphates and especially the sodium salts being particularly preferred.
  • ammonium phosphates or phosphates of other metal ions it is also possible to use ammonium phosphates or phosphates of other metal ions.
  • the alkali metal or alkaline earth metal phosphates mentioned as being preferred are readily available and are available inexpensively in any desired amounts.
  • Phosphates of polyvalent metal ions, especially trivalent metal ions are not preferred. It has been observed that when using such phosphates of polyvalent metal ions, in particular trivalent metal ions, the processing time of the molding material mixture is shortened. If the phosphorus-containing compound is added to the molding material mixture in the form of a phosphorus oxide, the phosphorus oxide is preferably present in the form of phosphorus pentoxide. However, it can also find Phosphortri- and Phosphortetroxid use.
  • phosphates both orthophosphates and polyphosphates, pyrophosphates or metaphosphates can be used.
  • the phosphates can be prepared, for example, by neutralization of the corresponding acids with a corresponding base, for example an alkali metal base, such as NaOH, or optionally also an alkaline earth metal base, wherein not necessarily all negative charges of the phosphate must be saturated by metal ions.
  • a corresponding base for example an alkali metal base, such as NaOH, or optionally also an alkaline earth metal base, wherein not necessarily all negative charges of the phosphate must be saturated by metal ions.
  • metal phosphates and the metal hydrogen phosphates and the metal dihydrogen phosphates for example Na 3 PO 4 , Na 2 HPO 4 , and NaH 2 PO 4 .
  • the anhydrous phosphates as well as hydrates of the phosphates can be used.
  • the phosphates can be introduced into the molding material mixture both in crystalline and in
  • Polyphosphates are understood in particular to be linear phosphates which comprise more than one phosphorus atom, the phosphorus atoms being connected to one another via oxygen bridges in each case.
  • Polyphosphates are obtained by condensation of orthophosphate ions with elimination of water, so that a linear chain of PO 4 tetrahedra is attached, which are each connected via corners.
  • Polyphosphates have the general formula (O (PO 3 ) n) (n + 2) - , where n corresponds to the chain length.
  • a polyphosphate may comprise up to several hundred PO 4 tetrahedra. However, polyphosphates with shorter chain lengths are preferably used.
  • N preferably has values of 2 to 100, particularly preferably 5 to 50. It is also possible to use higher-condensed polyphosphates, ie polyphosphates, in which the PO 4 tetrahedra are connected to one another via more than two corners and therefore exhibit polymerization in two or three dimensions.
  • Metaphosphates are understood to mean cyclic structures composed of PO 4 tetrahedra, which are connected to each other via vertices. Metaphosphates have the general formula ((PO 3 ) n) n- , where n is at least 3. Preferably, n has values of 3 to 10.
  • Both individual phosphates and mixtures of different phosphates and / or phosphorus oxides can be used.
  • the preferred proportion of the phosphorus-containing compound, based on the refractory molding material, is between 0.05 and 1.0 wt .-%. With a content of less than 0.05% by weight, no significant influence on the dimensional stability of the casting mold is noted. If the proportion of the phosphate exceeds 1.0% by weight, the hot strength of the casting mold sharply decreases.
  • the proportion of the phosphorus-containing compound is preferably selected to be between 0.1 and 0.5% by weight.
  • the phosphorus-containing, inorganic compound preferably contains between 40 and 90% by weight, particularly preferably between 50 and 80% by weight, of phosphorus, calculated as P 2 O 5 .
  • the phosphorus-containing compound may be added per se in solid or dissolved form of the molding material mixture. The phosphorus-containing compound is preferably added to the molding material mixture as a solid. If the phosphorus-containing compound is added in dissolved form, water is preferred as the solvent.
  • organic compounds (according to EP 1 802 409 B1 and WO 2008/046651 ) may be added.
  • a slight addition of organic compounds may be advantageous for specific applications - for example, to regulate the thermal expansion of the cured molding material mixture.
  • such addition is not preferred since this in turn is associated with emissions of CO 2 and other pyrolysis products.
  • Binders containing water have a poorer flowability compared to organic solvent-based binders. This means that molds with narrow passages and several deflections can be filled worse.
  • the molding material mixture according to the invention contains a proportion of platelet-shaped lubricants, in particular graphite or MoS 2 .
  • platelet-shaped lubricants in particular graphite or MoS 2 .
  • the amount of added platelet-shaped lubricant, in particular graphite is preferably 0.05 to 1 wt.%, Particularly preferably 0.05 to 0.5 wt.%, Based on the molding material.
  • surface-active substances in particular surfactants
  • surfactants in order to improve the flowability of the molding material mixture.
  • a surface-active substance is understood as meaning a substance which can form a monomolecular layer on an aqueous surface, that is, for example, is capable of forming a membrane. Furthermore, a surface-active substance reduces the surface tension of water. Suitable surface-active substances are, for example, silicone oils.
  • the surfactant is a surfactant.
  • Surfactants comprise a hydrophilic part (head) and a long hydrophobic part (tail), which are so well balanced in their properties that the surfactants in an aqueous phase, for example, can form micelles or accumulate at the interface.
  • surfactants can be used per se in the molding material mixture according to the invention.
  • anionic surfactants nonionic surfactants, cationic surfactants and amphoteric surfactants are also suitable.
  • nonionic surfactants are, for example, ethoxylated or propoxylated long-chain alcohols, amines or acids, such as fatty alcohol ethoxylates, alkylphenol ethoxylates, fatty amine ethoxylates, fatty acid ethoxylates, the corresponding propoxylates or else sugar surfactants, such as, for example, fatty alcohol-based polyglycosides.
  • the fatty alcohols preferably comprise 8 to 20 carbon atoms.
  • Suitable cationic surfactants are alkyl ammonium compounds and imidazolinium compounds.
  • Anionic surfactants are preferably used for the molding material mixture according to the invention.
  • the anionic surfactant comprises as polar, hydrophilic group preferably a sulfate, sulfonate, phosphate or carboxylate group, with sulfate and phosphate groups being particularly preferred. If sulfate-containing anionic surfactants are used, preference is given to using the monoesters of sulfuric acid. If phosphate groups are used as the polar group of the anionic surfactant, the mono- and diesters of orthophosphoric acid are particularly preferred.
  • nonpolar hydrophobic portion is preferably formed by alkyl, aryl and / or aralkyl groups which preferably comprise more than 6 carbon atoms, particularly preferably 8 to 20 carbon atoms.
  • the hydrophobic portion can have both linear chains and branched structures.
  • mixtures of different surfactants can be used.
  • Particularly preferred anionic surfactants are selected from the group of oleyl sulfate, stearyl sulfate, palmitylsulfate, myristyl sulfate, lauryl sulfate, decyl sulfate, octyl sulfate, 2-ethylhexyl sulfate, 2-ethyloctyl sulfate, 2-ethyldecyl sulfate, palmitoleyl sulfate, linolyl sulfate, laurylsulfonate, 2-ethyldecylsulfonate, palmitylsulfonate, stearylsulfonate, 2-Ethyl stearyl sulfonate, linolyl sulfonate, hexyl phosphate, 2-ethylhexyl phosphate, capryl phosphate, lauryl
  • the pure surface-active substance is preferably present in a proportion of 0.001 to 1% by weight, particularly preferably 0.01 to 0.2% by weight, based on the weight of the refractory molding base material.
  • such surfactants are commercially available as a 20 to 80% solution. In this case, especially the aqueous solutions of the surfactants are preferred.
  • the surface-active substance can be added both in dissolved form, for example in the binder, as a separate component or via a solid component which acts as a carrier material, for example in an additive, to the molding material mixture.
  • the surface-active substance is dissolved in the binder.
  • the molding material mixture according to the invention may also comprise further additives.
  • internal release agents can be added which facilitate the separation of the molds from the mold. Suitable internal release agents are e.g. Calcium stearate, fatty acid esters, waxes, natural resins or special alkyd resins.
  • silanes can also be added to the molding material mixture according to the invention in order to increase the resistance of the molds and cores to high humidity and / or water-based molding coatings.
  • the molding material mixture according to the invention contains a proportion of at least one silane. Suitable silanes are, for example, aminosilanes, epoxysilanes, mercaptosilanes, hydroxysilanes and ureidosilanes.
  • silanes examples include aminopropyltrimethoxysilane, hydroxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, mercaptopropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, (3,4-epoxycyclohexyl) trimethoxysilane and N- (aminoethyl) aminopropyltrimethoxysilane.
  • Based on the binder typically 0.1 to 2% by weight of silane is used, preferably 0.1 to 1% by weight.
  • alkali metal siliconates for example potassium methyl siliconate, of which 0.5 to 15% by weight, preferably 1 to 10% by weight and more preferably 1 to 5% by weight, based on the binder, can be used.
  • the molding material mixture according to the invention represents an intensive mixture of at least the constituents mentioned.
  • the particles of the refractory molding material are preferably coated with a layer of the binder.
  • evaporating the water present in the binder about 40-70 wt.%, Based on the weight of the binder
  • a solid cohesion between the particles of the refractory mold base material can be achieved.
  • the casting molds produced with the molding material mixture according to the invention surprisingly show a good disintegration after casting, so that the molding material mixture can be re-poured after casting even from narrow and angular sections of the casting mold.
  • the moldings produced from the molding material mixtures according to the invention are generally suitable for casting metals, such as light metals, non-ferrous metals or ferrous metals.
  • the molding material mixture according to the invention is particularly preferably suitable for the casting of ferrous metals.
  • the molding material mixtures can be produced by bringing the components together in the quantities required for this purpose or by providing the component with the required amounts of the above-defined ingredients.
  • the procedure is generally such that initially the refractory molding base material is introduced and then the binder is added with stirring.
  • the water glass and the particulate mixed metal oxide according to the invention can be added per se in any order.
  • the binder is provided as a two-component system, wherein a first liquid component contains the water glass and optionally a surfactant (see above) and a second solid component comprises the particulate mixed metal oxide according to the invention next to optionally one or more of the components described above: synthetic amorphous silica, carbohydrate, phosphates, a preferably flaky lubricant and / or barium sulfate, in particular synthetic amorphous silica.
  • a first liquid component contains the water glass and optionally a surfactant (see above)
  • a second solid component comprises the particulate mixed metal oxide according to the invention next to optionally one or more of the components described above: synthetic amorphous silica, carbohydrate, phosphates, a preferably flaky lubricant and / or barium sulfate, in particular synthetic amorphous silica.
  • the refractory molding material is initially introduced in a mixer and then preferably first the solid component (s) in the form of particulate mixed metal oxides, and optionally the amorphous silicon dioxide, barium sulfate or further powdered solids added and with the refractory molding material mixed.
  • the mixing time is chosen so that an intimate mixing of refractory base molding material and added solid takes place.
  • the mixing time depends on the amount of the molding mixture to be produced and on the mixing unit used.
  • the mixing time is selected between 1 and 5 minutes.
  • the liquid component of the binder is then added and then the mixture is further mixed until a uniform layer of the binder has formed on the grains of the refractory base molding material.
  • the mixing time of the amount of the molding mixture to be produced as well as the mixing unit used depends.
  • the duration for the mixing process is selected between 1 and 5 minutes.
  • a liquid component is understood to mean both a mixture of different liquid components and the totality of all individual liquid components, the latter also being able to be added individually.
  • a solid component is understood as meaning both the mixture of individual or all of the solid components described above and the entirety of all solid individual components, the latter being able to be added to the molding material mixture jointly or else successively.
  • the liquid component of the binder may also first be added to the refractory base molding material and only then be fed to the solid component of the mixture.
  • first 0.05 to 0.3% of water, based on the weight of the molding base material, is added to the refractory base molding material and only then the solid and liquid components of the binder are added.
  • a surprising positive effect on the processing time of the molding material mixture can be achieved.
  • the inventors believe that the dehydrating effect of the solid components of the binder is thus reduced and the curing process is thereby delayed.
  • the molding material mixture is then brought into the desired shape.
  • the usual methods of shaping are used.
  • the molding material mixture can be shot by means of a core shooting machine with the aid of compressed air into the mold.
  • the molding material mixture is then cured using all methods known in waterglass binders, eg, heat curing, gasification with CO 2 or air, or a combination of both, and curing by liquid or solid catalysts.
  • a temperature of 100 ° C to 300 preferably 120 to 250 ° C.
  • water is removed from the molding material mixture.
  • condensation reactions between silanol groups are presumably also initiated, so that crosslinking of the water glass occurs.
  • the heating can be carried out, for example, in a mold, which preferably has a temperature of 100 to 300 ° C, particularly preferably a temperature of 120 to 250 ° C. It is possible to fully cure the mold already in the mold. But it is also possible to cure the mold only in its edge region, so that it has sufficient strength to be removed from the mold can.
  • the casting mold can then be completely cured by removing further water. This can be done for example in an oven. The dehydration can for example also be done by the water is evaporated at reduced pressure.
  • the curing of the molds can be accelerated by blowing heated air into the mold.
  • a rapid removal of the water contained in the binder is achieved, whereby the mold is solidified in suitable periods for industrial use.
  • the temperature of the injected air is preferably 100 ° C to 180 ° C, particularly preferably 120 ° C to 150 ° C.
  • the flow rate of the heated air is preferably adjusted to cure the mold in periods suitable for industrial use.
  • the periods depend on the size of the molds produced. It is desirable to cure in less than 5 minutes, preferably less than 2 minutes. For very large molds, however, longer periods may be required.
  • the removal of the water from the molding material mixture can also be carried out in such a way that the heating of the molding material mixture is effected by irradiation of microwaves.
  • the irradiation of the microwaves is preferably carried out after the casting mold has been removed from the molding tool.
  • the casting mold must already have sufficient strength. As already explained, this can be achieved, for example, by curing at least one outer shell of the casting mold already in the molding tool.
  • the processes according to the invention are in themselves suitable for the production of all casting molds customary for metal casting, that is to say, for example, of cores and molds.
  • the molds produced from the molding material mixture according to the invention or with the inventive method have a high strength immediately after the production, without the strength of the molds after curing is so high that difficulties after the production of the casting occur during removal of the mold. Furthermore, these molds have a high stability at elevated humidity, i. Surprisingly, the casting molds can also be stored without problems for a long time. As an advantage, the mold has a very high stability under mechanical stress, so that even thin-walled portions of the mold can be realized without these being deformed by the metallostatic pressure during the casting process. Another object of the invention is therefore a mold, which was obtained by the inventive method described above.
  • mixtures 1.02 and 1.03 to 1.09 clearly indicates that non-inventive alumina-containing powder leads to poorer strength or reduces the processing time of the molding mixture (see strength values of the mixture 1.08).
  • mixtures 1.10 and 1.11 according to the invention show that the strengths are less strongly or not at all influenced. Also, the processing time (greater than 2 hours) is sufficient.
  • AEROXIDE Alu 130 (pyrogenic alumina with a BET surface area of 130 m 2 / g, from Evonik Industries AG)
  • AEROXIDE Alu 65 (pyrogenic aluminum oxide with a BET surface area of 65 m 2 / g, from Evonik Industries AG)
  • ARGICAL-M 1000 metalakaolin, calcined kaolin, amorphous material consisting of lamellar particles, BET surface area of 17 m 2 / g, AGS Mineraux (IMERYS)
  • ARGICAL-M 1200S metalakaolin, calcined kaolin, amorphous material consisting of lamellar particles, BET surface area of 19 m 2 / g, AGS Mineraux (IMERYS))
  • g) kaolin FP 80 ground BET surface area of 19 m 2 / g, from
  • Fig. 2 is the step core shown from above.
  • the production was carried out with the aid of a hot-box core shooter whose mold was heated to 180 ° C.
  • the molding material mixture was introduced by means of pressure into the mold and to accelerate the hot curing hot air was passed through the molding material mixture.
  • the molding compound mixtures 1.02 and 1.09 and 1.10 in Table 1 were incorporated into a sand mold such that only the underside of the widest step (the footprint of the pyramidal core) does not come into contact with the casting metal during the casting process.
  • the cast cut of mixture 1.02 shows significantly more sand buildup / mineralization or roughness than the cast cutouts of mixtures 1.09 and 1.10.
  • the positive effect of the powder according to the invention on the casting surfaces becomes very clear here. Particularly advantageous results are obtained with the pulverulent by-product from zirconium corundum production. Therefore, the use of this substance is particularly preferred.
  • the surface quality is significantly improved by the use of sandblasting, since remaining sand residue can be completely removed - also the surface is slightly smoothed by this use. However, it was very important to irradiate all castings under the same conditions. Therefore, the differences are due only to the compositions of the molding material mixtures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mold Materials And Core Materials (AREA)
EP13830178.3A 2012-12-22 2013-12-20 Formstoffmischungen enthaltend metalloxide des aluminiums und zirkoniums in partikulärer form Active EP2934788B9 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201331460T SI2934788T1 (sl) 2012-12-22 2013-12-20 Zmesi materialov za formanje, ki vsebujejo kovinske okside aluminija in cirkonija v obliki delcev

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012113074.4A DE102012113074A1 (de) 2012-12-22 2012-12-22 Formstoffmischungen enthaltend Metalloxide des Aluminiums und Zirkoniums in partikulärer Form
PCT/DE2013/000814 WO2014094722A2 (de) 2012-12-22 2013-12-20 Formstoffmischungen enthaltend metalloxide des aluminiums und zirkoniums in partikulärer form

Publications (3)

Publication Number Publication Date
EP2934788A2 EP2934788A2 (de) 2015-10-28
EP2934788B1 EP2934788B1 (de) 2019-02-27
EP2934788B9 true EP2934788B9 (de) 2019-09-04

Family

ID=50137455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13830178.3A Active EP2934788B9 (de) 2012-12-22 2013-12-20 Formstoffmischungen enthaltend metalloxide des aluminiums und zirkoniums in partikulärer form

Country Status (15)

Country Link
US (1) US10294161B2 (pt)
EP (1) EP2934788B9 (pt)
JP (1) JP6337006B2 (pt)
KR (1) KR102182461B1 (pt)
CN (1) CN105073299B (pt)
BR (1) BR112015014591B1 (pt)
DE (1) DE102012113074A1 (pt)
ES (1) ES2733962T3 (pt)
HU (1) HUE044842T2 (pt)
MX (1) MX2015008144A (pt)
RU (1) RU2654406C2 (pt)
SI (1) SI2934788T1 (pt)
TR (1) TR201908032T4 (pt)
WO (1) WO2014094722A2 (pt)
ZA (1) ZA201504159B (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022013129A1 (de) 2020-07-17 2022-01-20 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung VERFAHREN ZUR HERSTELLUNG EINES ARTIKELS ZUR VERWENDUNG IN DER GIEßEREIINDUSTRIE, ENTSPRECHENDE FORM, KERN, SPEISERELEMENT ODER FORMSTOFFMISCHUNG SOWIE VORRICHTUNGEN UND VERWENDUNGEN

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012113073A1 (de) * 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Aluminiumoxide und/oder Aluminium/Silizium-Mischoxide in partikulärer Form
DE102013106276A1 (de) 2013-06-17 2014-12-18 Ask Chemicals Gmbh Lithiumhaltige Formstoffmischungen auf der Basis eines anorganischen Bindemittels zur Herstellung von Formen und Kernen für den Metallguss
DE102013111626A1 (de) 2013-10-22 2015-04-23 Ask Chemicals Gmbh Formstoffmischungen enthaltend eine oxidische Bor-Verbindung und Verfahren zur Herstellung von Formen und Kernen
DE102013114581A1 (de) 2013-12-19 2015-06-25 Ask Chemicals Gmbh Verfahren zur Herstellung von Formen und Kernen für den Metallguss unter Verwendung einer Carbonylverbindung sowie nach diesem Verfahren hergestellte Formen und Kerne
JP6903651B2 (ja) * 2015-07-10 2021-07-14 センター フォア アブラシブズ アンド リフラクトリーズ リサーチ アンド ディベロップメント ツェー アー エァ エァ デー ゲゼルシャフト ミット ベシュレンクテル ハフツング インベストメントキャスティング用モールド、このようなモールドを作製する方法及びその使用
CN105499404A (zh) * 2016-02-20 2016-04-20 杨鑫 一种模具冲头
CN106862480B (zh) * 2017-01-23 2019-03-12 中国第一汽车股份有限公司 一种高模数无机粘结剂
WO2018184042A1 (en) 2017-04-03 2018-10-11 Lenzing Ag A nonwoven web designed for use in an industrial cleaning wipe
DE102017107531A1 (de) * 2017-04-07 2018-10-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Gießformen, Kernen und daraus regenerierten Formgrundstoffen
DE102017114628A1 (de) 2017-06-30 2019-01-03 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Formstoffmischung und eines Formkörpers daraus in der Gießereiindustrie sowie Kit zur Anwendung in diesem Verfahren
WO2019027038A1 (ja) * 2017-08-03 2019-02-07 旭有機材株式会社 鋳型材料及びその製造方法、鋳型の製造方法、並びに回収耐火性骨材の再生方法
US11077488B2 (en) * 2018-05-11 2021-08-03 Compagnie Generale Des Etablissements Michelin Casting process with variable index
ES2883555T3 (es) * 2018-09-07 2021-12-09 Huettenes Albertus Chemische Werke Gmbh Método para preparar una composición refractaria en partículas para su uso en la producción de moldes y machos de fundición, usos correspondientes y mezcla de recuperación para tratamiento térmico
DE102019113008A1 (de) * 2019-05-16 2020-11-19 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verwendung eines partikulären Materials umfassend ein teilchenförmiges synthetisches amorphes Siliciumdioxid als Additiv für eine Formstoffmischung, entsprechende Verfahren, Mischungen und Kits
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
KR102136575B1 (ko) * 2019-06-19 2020-07-22 한국생산기술연구원 식물성 왁스를 포함하는 주조용 무기 바인더와 그 제조방법
DE102019131241A1 (de) 2019-08-08 2021-02-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechendes Granulat sowie Kit, Vorrichtungen und Verwendungen
RU2759346C1 (ru) * 2021-04-13 2021-11-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Связующее для формовочных и стержневых смесей литейного производства
CN115141016A (zh) * 2022-07-28 2022-10-04 宜兴市海科耐火材料制品有限公司 一种高反应活性的精铸专用结配型锆英粉的制备方法
CN116120044B (zh) * 2022-12-22 2024-01-19 宜兴市隆昌耐火材料有限公司 一种节能耐磨型锆刚玉复合空心球浇注材料

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3203057A (en) 1963-03-13 1965-08-31 Charles R Hunt Process for making cores and molds, articles made thereby and binder compositions therefor
GB1261206A (en) * 1968-02-06 1972-01-26 Internat Meehanite Metal Compa The production of metal castings
CH616450A5 (en) 1975-11-18 1980-03-31 Baerle & Cie Ag Binder based on aqueous alkali metal silicate solutions
FR2411653A1 (fr) 1977-12-19 1979-07-13 Rhone Poulenc Ind Nouvelles compositions pour moules et noyaux en fonderie liees par des silicates
SU871997A1 (ru) 1979-04-04 1981-10-15 Конструкторско-Технологическое Бюро "Союзтехноприбор" Министерства Приборостроения,Средств Автоматизации И Систем Управления Смесь дл изготовлени опорного сло литейной двухслойной керамической формы
US4432798A (en) * 1980-12-16 1984-02-21 The Duriron Company, Inc. Aluminosilicate hydrogel bonded aggregate articles
PL137376B1 (en) 1983-06-09 1986-05-31 Politechnika Slaska Im Wincent Self-hardening sand mix for making moulds and cores
DE3445559C1 (de) 1984-12-14 1986-08-14 Martin & Pagenstecher GmbH, 5000 Köln Feuerfeste,thixotrope Vibrations-Masse sowie Verfahren und Vorrichtung zur Vibrationszustellung von metallurgischen Gefaessen mit dieser Masse
SU1577904A1 (ru) 1988-04-29 1990-07-15 Институт проблем литья АН УССР Смесь дл изготовлени литейных стержней
CN1022094C (zh) * 1990-09-30 1993-09-15 国营青岛电站阀门厂 铸造用型砂
DE9307468U1 (de) * 1993-05-17 1994-09-29 Huettenes Albertus Schlichte zur Herstellung von Formüberzügen
FR2737488B1 (fr) * 1995-07-31 1997-09-19 Vesuvius France Sa Materiau refractaire de silice vitreuse a faible corrosion par les metaux fondus, piece et procede de fabrication
US5770136A (en) * 1995-08-07 1998-06-23 Huang; Xiaodi Method for consolidating powdered materials to near net shape and full density
US5972102A (en) 1996-10-29 1999-10-26 North American Refractories Co. Hydraulically-bonded monolithic refractories containing a calcium oxide-free binder comprised of a hydratable alumina source and magnesium oxide
DK0891954T3 (da) * 1996-12-27 2004-08-09 Iberia Ashland Chem Sa Formsand, som er egnet til fremstilling af kerner og forme
DE59914938D1 (de) * 1999-04-09 2009-02-05 Shera Werkstofftechnologie Gmb Verfahren zur Herstellung von Gusswerkstücken
DE102004042535B4 (de) * 2004-09-02 2019-05-29 Ask Chemicals Gmbh Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, Verfahren und Verwendung
DE102006036381A1 (de) 2006-08-02 2008-02-07 Minelco Gmbh Formstoff, Gießerei-Formstoff-Gemisch und Verfahren zur Herstellung einer Form oder eines Formlings
DE102006049379A1 (de) * 2006-10-19 2008-04-24 Ashland-Südchemie-Kernfest GmbH Phosphorhaltige Formstoffmischung zur Herstellung von Giessformen für die Metallverarbeitung
AU2007312540B2 (en) * 2006-10-19 2011-09-22 Ashland-Sudchemie-Kernfest Gmbh Moulding material mixture containing carbohydrates
DE102007008149A1 (de) 2007-02-19 2008-08-21 Ashland-Südchemie-Kernfest GmbH Thermische Regenerierung von Gießereisand
DE102007045649B4 (de) 2007-09-25 2015-11-19 H2K Minerals Gmbh Verfahren zur Herstellung einer Form und/oder eines Kernes unter Verwendung von zerkleinerten natürlichen partikulären amorphen Kieselsäurematerialien im Gießereibereich und Binderzusammensetzung
DE102007051850A1 (de) 2007-10-30 2009-05-07 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fliessfähigkeit
JP2010131665A (ja) * 2008-12-08 2010-06-17 Okazaki Kosanbutsu Kk 鋳造用塗型剤
PL2248614T3 (pl) * 2009-04-30 2012-06-29 Evonik Degussa Gmbh Dyspersja, masa lejna i sposób wytwarzania formy odlewniczej do odlewu precyzyjnego przy zastosowaniu masy lejnej
PL2305603T3 (pl) 2009-10-05 2014-08-29 Cognis Ip Man Gmbh Roztwory szkła wodnego zawierające glin
JP4920794B1 (ja) 2011-11-02 2012-04-18 株式会社ツチヨシ産業 鋳型材料及び鋳型並びに鋳型の製造方法
DE102012103705A1 (de) * 2012-04-26 2013-10-31 Ask Chemicals Gmbh Verfahren zur Herstellung von Formen und Kernen für den Metallguss sowie nach diesem Verfahren hergestellte Formen und Kerne
DE102012104934A1 (de) 2012-06-06 2013-12-12 Ask Chemicals Gmbh Forstoffmischungen enthaltend Bariumsulfat
DE102012020509A1 (de) 2012-10-19 2014-06-12 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012020511A1 (de) 2012-10-19 2014-04-24 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012020510B4 (de) 2012-10-19 2019-02-14 Ask Chemicals Gmbh Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102012113073A1 (de) * 2012-12-22 2014-07-10 Ask Chemicals Gmbh Formstoffmischungen enthaltend Aluminiumoxide und/oder Aluminium/Silizium-Mischoxide in partikulärer Form

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022013129A1 (de) 2020-07-17 2022-01-20 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung VERFAHREN ZUR HERSTELLUNG EINES ARTIKELS ZUR VERWENDUNG IN DER GIEßEREIINDUSTRIE, ENTSPRECHENDE FORM, KERN, SPEISERELEMENT ODER FORMSTOFFMISCHUNG SOWIE VORRICHTUNGEN UND VERWENDUNGEN
DE102020119013A1 (de) 2020-07-17 2022-01-20 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechende Form, Kern, Speiserelement oder Formstoffmischung sowie Vorrichtungen und Verwendungen

Also Published As

Publication number Publication date
KR20150115744A (ko) 2015-10-14
KR102182461B1 (ko) 2020-11-25
MX2015008144A (es) 2015-09-23
CN105073299A (zh) 2015-11-18
RU2654406C2 (ru) 2018-05-17
SI2934788T1 (sl) 2019-07-31
RU2015129745A (ru) 2017-01-26
ES2733962T3 (es) 2019-12-03
HUE044842T2 (hu) 2019-11-28
TR201908032T4 (tr) 2019-06-21
ZA201504159B (en) 2016-08-31
EP2934788B1 (de) 2019-02-27
JP2016500338A (ja) 2016-01-12
BR112015014591A2 (pt) 2017-07-11
BR112015014591B1 (pt) 2019-09-10
US10294161B2 (en) 2019-05-21
EP2934788A2 (de) 2015-10-28
CN105073299B (zh) 2018-03-06
DE102012113074A1 (de) 2014-07-10
JP6337006B2 (ja) 2018-06-06
WO2014094722A3 (de) 2014-08-14
WO2014094722A2 (de) 2014-06-26
US20150315083A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
EP2934788B9 (de) Formstoffmischungen enthaltend metalloxide des aluminiums und zirkoniums in partikulärer form
EP2934787B1 (de) Formstoffmischungen enthaltend aluminiumoxide und/oder aluminium/silizium-mischoxide in partikulärer form
EP2858770B9 (de) Formstoffmischungen enthaltend bariumsulfat sowie verfahren zur herstellung von giessformen / kernen, verfahren zum aluminiumguss und form oder kern somit herstellbar
EP3010669B1 (de) Verfahren zur herstellung von lithiumhaltigen formstoffmischungen auf der basis eines anorganischen bindemittels zur herstellung von formen und kernen für den metallguss
WO2015058737A2 (de) Formstoffmischungen enthaltend eine oxidische bor-verbindung und verfahren zur herstellung von formen und kernen
EP3606690B1 (de) Verfahren zur herstellung von giessformen, kernen und daraus regenerierten formgrundstoffen
WO2014059967A2 (de) Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
EP2209572A1 (de) Formstoffmischung mit verbesserter fliessfähigkeit
WO2014059968A2 (de) Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
EP3986634A1 (de) Geschlichtete giessformen erhältlich aus einer formstoffmischung enthaltend ein anorganisches bindemittel und phosphahaltige verbindungen und oxidische borverbindungen und verfahren zu deren herstellung und deren verwendung
EP4363135A1 (de) Verfahren zum schichtweisen aufbau von formen und kernen mit einem wasserglashaltigen bindemittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150722

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160905

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180801

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20190122

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1100587

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012329

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 31162

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: SK

Ref legal event code: T4

Ref document number: E 31162

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502013012329

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E044842

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2733962

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191203

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: REINSICHT GMBH

Effective date: 20191127

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191220

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502013012329

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20210720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20211220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20211217

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20221220

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231213

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20231213

Year of fee payment: 11

Ref country code: SE

Payment date: 20231228

Year of fee payment: 11

Ref country code: IT

Payment date: 20231227

Year of fee payment: 11

Ref country code: FR

Payment date: 20231228

Year of fee payment: 11

Ref country code: CZ

Payment date: 20231207

Year of fee payment: 11

Ref country code: AT

Payment date: 20231227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240215

Year of fee payment: 11

Ref country code: CH

Payment date: 20240102

Year of fee payment: 11