EP2923142B1 - Verfahren und vorrichtung zur füllung eines behälters mit flüssiggas - Google Patents

Verfahren und vorrichtung zur füllung eines behälters mit flüssiggas Download PDF

Info

Publication number
EP2923142B1
EP2923142B1 EP13785544.1A EP13785544A EP2923142B1 EP 2923142 B1 EP2923142 B1 EP 2923142B1 EP 13785544 A EP13785544 A EP 13785544A EP 2923142 B1 EP2923142 B1 EP 2923142B1
Authority
EP
European Patent Office
Prior art keywords
pressure
tank
bar
determined
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13785544.1A
Other languages
English (en)
French (fr)
Other versions
EP2923142A1 (de
Inventor
Olivier BEUNEKEN
Fouad Ammouri
Sitra COLOM
Marie DELCLAUD
Arthur Thomas
Olga WOJDAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP2923142A1 publication Critical patent/EP2923142A1/de
Application granted granted Critical
Publication of EP2923142B1 publication Critical patent/EP2923142B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/044Methods for emptying or filling by purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/021Avoiding over pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/025Reducing transfer time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/063Fluid distribution for supply of refueling stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks

Definitions

  • the present invention relates to a method and filling device.
  • the invention relates more particularly to a method for filling a liquefied gas tank, in particular a cryogenic liquid tank, from a liquefied gas tank, in particular a cryogenic liquid tank, the tank being fluidly connected to the tank via a filling line, the method using a pressure differential generating member for transferring liquid from the tank to the tank at a predetermined pressure, the pressure differential generating member being switchable between a pressure state, operating and a stopped state, the filling line comprising a fluid flow regulating member disposed downstream of the pressure differential generating member, the flow regulating member being movable between a non-conducting position in which the flow of liquid is interrupted and at least one passing position in which the flow of liquid is transferred v
  • the method comprises measuring a first instantaneous pressure in the filling line downstream of the flow control member.
  • the invention can be applied to the filling of any cryogenic container (mobile or otherwise) from any other cryogenic container (mobile or otherwise).
  • the receiving tank and / or the filling device It is thus necessary to equip the receiving tank and / or the filling device with a safety system preventing overfilling or excessive pressure buildup of the tank which would cause the latter to break.
  • the number of tanks to be filled is significantly greater than the number of filling devices, the safety system is preferably applied to the filling devices.
  • a known solution consists in equipping the filling port of the reservoir with a pneumatic valve which closes when the pressure in the reservoir reaches a predetermined threshold.
  • This solution presents disadvantages among which the need to provide maintenance of this pneumatic valve, a high cost of installation on all tanks requiring protection.
  • Another known solution is to provide a calibrated orifice at the filling port of the tank to maintain the filling rate in secure ranges, typically at a rate that can be evacuated by the existing security organs of the storage. This solution is also installed on the tanks and penalizes the filling time.
  • Another solution consists in providing an electrical system for detecting overpressure at the reservoir (if necessary via a thermistor at the overflow gauge valve) which, in response, stops the filling pump.
  • This solution requires a specific connection between each tank and each filling device and if necessary is based on an action by the operator.
  • Another solution (see for example WO2005008121A1 ) consists in measuring the pressure at the reservoir via a safety hose provided for this purpose so as to stop the pump in case of a problem.
  • This solution requires an additional hose connection and circuitry adapted to the level of the tank.
  • Another solution consists in providing specific fluidic connections between filling devices and the reservoirs according to determined pressure ranges. This solution imposes obvious constraints in terms of logistics in particular.
  • the document US6212719 describes a system for automatically stopping a filling pump in case of rupture of the supply hose via two pressure sensors arranged at both ends of the transfer hose. The detection of a pressure drop triggers the shutdown of the pump.
  • the document EP1291575A describes a method of controlling a filling wherein the pressure is measured continuously.
  • the filling control is performed according to a predetermined program based on the intrinsic characteristics of the tank (maximum operating pressure ...) and communicated to the filling device at the beginning of filling.
  • This document provides for adjusting the predetermined program according to the current conditions (pressure in the tank, temperature, etc.).
  • An object of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
  • the method according to the invention may be essentially characterized in that, at the moment or after the setting in operation of the pressure differential generating member, the method comprises a step of determining the pressure in the tank via a first pressure measurement at the filling line, the method comprising, after the determination of the pressure in the tank, a step of limiting the first instantaneous pressure below a maximum pressure threshold, the maximum pressure threshold being defined as a function of the determined value of the pressure in the tank and exceeding the determined value of the pressure in the tank from two to twenty bar and preferably from two to nine bar.
  • the invention may also relate to any alternative device or method comprising any combination of the above or below features.
  • the figures 1 and 9 illustrate in simplified manner an example of a filling installation that can be used according to the invention.
  • the filling device comprises a tank 2 of cryogenic liquid.
  • This tank 2 is for example a double-walled tank whose inter-wall is isolated under vacuum.
  • the tank 2 is for example mobile and transportable if necessary on a delivery truck such as a semi-trailer.
  • the tank 2 contains liquefied gas and can be selectively fluidically connected to a tank 1 to be filled via a filling line 3.
  • the filling pipe 3 comprises an upstream end connected to the storage volume of the tank 2 and a downstream end selectively connectable to the tank 1.
  • the filling pipe 3 is provided with a member 4 for generating a fluid pressure differential. and, downstream of the latter, a valve 12 with variable opening.
  • the member 4 for generating a pressure differential is a pump.
  • the device for generating a differential of pressure can typically comprise a vaporizer and / or a heater associated with at least one valve for raising the pressure in the tank 2 and allow its transfer to a tank. Any other member for generating a pressure differential for causing the transfer of fluid from the tank 2 to the tank 1 can also be used.
  • the valve 12 with variable opening is preferably a manually operated valve (although this is not limiting for all that).
  • the device further comprises a first pressure sensor 13 disposed on the filling pipe 3 downstream of the variable opening valve 12.
  • the device further comprises an electronic logic 16 connected to the pump 4 and the pressure sensor 13.
  • the electronic logic 16 comprises for example a microprocessor and an associated memory.
  • the electronic logic 16 may be connected to at least one controlled valve 128, 12 located on the filling pipe 3.
  • the pressure differential generation member comprises a vaporizer 11 located in a pressurization pipe 10 associated with a valve 128 to increase the pressure in the tank 2.
  • the pressure increase is carried out by sampling of the liquid of the tank 2, by vaporizing and reintroducing it into the tank 2.
  • This rise in pressure in the tank 2 generates a pressure differential which makes it possible to create a flow of liquid in the filling line 3.
  • the actual filling and stopping of the filling can be defined by the state or not of a valve 12 on the pipe 3 filling.
  • the electronic logic 16 is configured to control or detect an M start or an AR stop of the generation member 4 of a pressure differential.
  • the operating state M or AR stop can respectively correspond to the on or off state of its drive motor.
  • the on and off state can correspond to the open / closed state of at least one valve or the actual pressurization or 2. The description which follows relates to the case of a pump but can be applied by analogy to the case of another member for generating a pressure differential.
  • the electronic logic 16 controls the start-up of the pump 4 (see step 100, figure 10 or step 300 figure 11 ) and can trigger an optional delay A to allow in particular the stabilization of the liquid transfer conditions to the reservoir 1.
  • the control logic 16 receives as input parameter the implementation information. run M of the pump and / or the opening information of a controlled valve in the filling pipe 3.
  • the device can optionally perform a stability check ST 301 of the first pressure PT3 in the filling line 3 (reference 301, figure 11 ).
  • This first pressure PT3 is the one measured (sensor 13) while the filling line 3 communicates with the interior of the tank 1. That is to say that this stable pressure reflects the pressure in the tank 1 to fill (opening of tank valves 1 downstream of the first pressure sensor 13).
  • Another possible cumulative condition could be that the first measured pressure PT3 is greater than the atmospheric pressure.
  • the first condition (i) above fulfilled indicates that the tank 1 to be filled is of the high pressure type and therefore that it is configured to withstand high pressures.
  • the second condition (ii) above filled can be measured in various ways.
  • the value of the first pressure PT3 can be read over several successive intervals of ten seconds, for example five intervals of ten seconds each. Within each time interval of ten seconds, the value of the first PT3 pressure must not deviate by more than 0.1bar.
  • the five ten-second intervals overlap in part.
  • the five ten-second intervals begin successively every second. Alternatively, an average of this pressure can be observed.
  • the definition of the intervals depends in particular on the accuracy of the pressure sensor. This control is preferably carried out after sweeping the filling pipe 3, especially if the latter comprises a non-return valve 119.
  • This second condition (ii) is fulfilled, for example, if, during five consecutive time intervals (if any overlapping), the first pressure PT3 within each interval does not diverge by more than 0.1 bar.
  • step 100 can determine a measurement of pressure PT4 in tank 1.
  • the pressure PT4 in the tank 1 is determined solely by a first pressure measurement (PT3 ⁇ PT4) at the level of the filling line 3 (step 302).
  • a predetermined correction coefficient (multiplicative K and / or additive C) can be used to determine the pressure PT4 in the tank 1 from the first measured pressure PT3.
  • the pressure PT4 in the tank 1 can be determined by a measurement of the first pressure PT3 at the filling line 3 (for example via the sensor 13 while all the valves are open between the sensor 13 and the tank 1 ) even before starting the pump 4.
  • this PT4 pressure in the tank can be checked again at the moment or after the start of the pump 4 (by measuring again the pressure PT3 in line 3 as before).
  • the method may include a flow test to determine that the flow rate provided by the pump 4 is sufficient and that the pump 4 does not cavitate.
  • the method may comprise a verification of a minimum flow rate at the pump outlet 4 to the reservoir (1), for example 30 liters per minute and / or a minimum pressure increase at the pump outlet 4 at the sensor level at the same time.
  • pressure 113 of the bypass line 8 and the first pressure sensor 13, for example 6bar and 1 bar respectively step 303, figure 11 and figure 9 ). If this check is negative, the pump 4 is stopped automatically (N, return to step 300). If this condition is positive, "O" the filling process can continue.
  • the method then comprises a step 304 for limiting the first instantaneous pressure PT3 below a maximum pressure threshold PT3sup.
  • This step of limiting the first instantaneous pressure PT3 below the maximum pressure threshold PT3sup is preferably performed for a finite determined duration of limitation.
  • the limitation of the first instantaneous pressure PT3 below a maximum pressure threshold PT3sup is preferably performed by the operator via a manual regulation of the fluid flow transferred via the flow control member 12 and / or via a regulating the pressure differential generated by the pump 4.
  • the determined limitation period is for example between thirty and one hundred and eighty seconds and preferably equal to ninety seconds.
  • the limitation period can be variable, in particular as a function of the rate delivered in the storage. If the flow is high, the duration is lower and vice versa.
  • the method comprises a measurement of the quantity Q of fluid transferred from the tank 2 to the tank 1.
  • this quantity of fluid Q transferred exceeds a threshold quantity Qs before the end of the determined limitation period, said initially planned limitation period is reduced, for example, a duration of five seconds is granted at most to complete the step 304 of limitation.
  • the maximum pressure threshold PT3sup is defined according to the previously determined value of the pressure PT4 in the tank 1 (before, at the moment or after the start of the pump 4).
  • the maximum pressure threshold PT3sup is preferably a value of predetermined fixed pressure between 5 and 9 bar and preferably equal to 7bar.
  • the maximum pressure threshold PT3sup in bar can be a fixed value. determined between 30 and 50 bar and preferably equal to 37bar.
  • the process can continue by then comparing the first instantaneous pressure PT3 with a high threshold Pmax and interrupting the filling if the high threshold Pmax is exceeded as described in more detail. hereinafter with reference to figure 10 (Steps referenced 103, 104, 105 and 106 in particular).
  • the actual filling R of the tank 1 can begin (see reference 101, figure 10 ).
  • Step A of delay (see 102, figure 10 ) preferably starts when the pump 4 is switched on and has a finite duration.
  • the electronic logic 16 can be configured to automatically interrupt the filling AR R as soon as the first instantaneous pressure PT3 measured in the filling line 3 during the filling exceeds a predetermined high threshold Pmax (see references 103 "O" and 104, figure 10 ).
  • the variations of the first pressure PT3 in the filling line 3 beyond the high threshold Pmax do not interrupt the filling (reference 102, figure 10 ).
  • This configuration makes it possible to detect effectively and early enough an overflow at the tank 1 that can lead to an overpressure in the reservoir 1 during filling without the need for expensive auxiliary systems for detection or communication.
  • the inventors have indeed found that this configuration also allows to avoid untimely detections of over-filling.
  • the operator is not forced to additional operations during a filling.
  • This configuration also contributes to stabilizing the tank filling conditions. This makes it possible to increase the life of the equipment by reducing harmful pressure variations.
  • the electronic logic 16 can be configured to control an average of first instantaneous pressures PT3max measured in the filling line 3 . That is to say that the device controls the stop filling as soon as this average of first pressure PT3 exceeds a predetermined high threshold Pmax.
  • the filling device preferably comprises a return pipe 8 (or bypass) provided with a bypass valve.
  • the bypass pipe 8 comprises a first end connected to the filling pipe 3 downstream of the pump 4 and a second end opening into the tank 2 for selectively returning pumped liquid.
  • the filling device may comprise a pipe 10 for selective pressurization of the tank 2.
  • the pressurizing pipe 10 may comprise two first ends connected to the filling pipe 3 respectively upstream and downstream of the pump 4 (cf. . Figures 1 and 2 ).
  • the pressurizing line comprises a second end connected to the storage volume of the tank 2.
  • the pressurizing line comprises a heat exchanger for selectively vaporizing the pumped liquid before it is reintroduced into the tank 2.
  • the filling pipe 3 may comprise an upstream portion 20 secured to the tank 2 and a downstream portion 30.
  • the downstream portion 30 is preferably flexible and has a first end 14 removably connected to the upstream portion 20 and a second end
  • the downstream circuitry 40 of the second end 15 of the downstream portion 30 may include a check valve 119 preventing the backflow of fluid from the tank 1 to the pipe 3. filling.
  • the circuitry 40 may then comprise two lines 21, 22 connected to the lower and lower parts respectively.
  • tank 1 through respective valves 121, 122.
  • the tank 1 is for example a vacuum insulated cryogenic tank.
  • the reservoir 1 further preferably comprises a lower pressure measurement system 25 and a higher pressure measurement system 24 (or a system for measuring a pressure differential between the upper and lower portions of the reservoir 1 ).
  • the figure 2 illustrates another more detailed example of a filling device architecture corresponding in particular to the upstream part 20 of the filling pipe of the figure 1 .
  • the filling pipe 3 is connected to the lower part of the tank 2 and may comprise, from upstream to downstream (that is to say from the tank 2 towards the end connected to a hose), a first 111 and a second 107 valves arranged in series upstream of the pump 4. As shown, a safety valve 207 and a filter 26 may be arranged upstream of the pump 4. Downstream of the pump 4, the pipe 3 of filling comprises the valve 12 with variable opening.
  • the filling pipe 3 may comprise at least one of: a temperature sensor 27 and a flow measurement member 9 such as a flow meter. Downstream of the variable opening valve 12, the pipe preferably comprises the first pressure sensor 13 mentioned above.
  • the filling line 3 may also comprise, downstream of the first pressure sensor 13, a purge line 60 provided with at least one controlled valve 6 for discharging liquid to a discharge zone 18.
  • a bypass pipe 28 may be provided to pressurize the tank via the pump 4.
  • This bypass pipe 28 comprises an upstream end connected downstream of the pump 4 and a downstream end connected to the tank 2.
  • the bypass pipe 28 comprises for example two pump bypass valves 128, 228 arranged in series.
  • the device comprises a pipe 10 for selective pressurization of the tank 2.
  • the pressurizing pipe 10 comprises a first end connected between the two pump bypass valves 128, 228 and a downstream end connected to the tank 2.
  • downstream end of the pressurizing pipe 10 may also be connected to a discharge line 17 having a discharge valve 310 and a valve 410.
  • a bypass pipe 8 is provided to selectively return the pumped liquid to the tank 2.
  • the bypass pipe 8 at an upstream end connected to the filling pipe 3, downstream of the pump 4 (for example between the temperature sensor 27 and the optional flow meter 9).
  • the bypass pipe 8 has a downstream end connected to the tank 2.
  • the bypass line 8 comprises at least one bypass valve 5 and, in the example shown, two bypass valves 5, 55 arranged in parallel, one of which is preferably controlled.
  • the bypass line 8 may comprise a pressure sensor PT2 upstream of the bypass valves 5, 55. This sensor 113 actually measures a second pressure PT2 in the filling line 3 upstream of the variable opening valve 12.
  • By-pass line 8 optionally includes another PT50 pressure sensor 29 disposed downstream of the bypass valves 5, 55.
  • the circuit Downstream of the first valve 111, the circuit may comprise a pipe 211 to fill the tank 2 which is parallel to the pipe 3 filling.
  • This pipe 211 comprises, from upstream to downstream, a first safety valve 411, a valve 311, a second safety valve 511 and an end 611 connectable to an application.
  • This pipe 211 can be connected to the bypass pipe 8, downstream of the bypass valves 5, 55 via a branch 31.
  • the filling operation of a tank 1 is at least partially manual and in particular an operator can manually control the valve 12 with variable opening.
  • all or part of these actions can be automated, in particular by using appropriate controlled devices (valve controlled in particular).
  • the pump 4 is of the type delivering a rate controlled by a frequency converter, including a centrifugal type pump.
  • a frequency converter including a centrifugal type pump.
  • any other type of pump is also appropriate.
  • the pump 4 Before starting the filling, if the pump model 4 requires it, the pump 4 is first cooled and stabilized for a determined period of time. To do this the operator can return in the tank 2 the liquid pumped via the bypass line 8 (for example by opening the bypass valve 5 and keeping the valve 12 with variable opening closed).
  • the operator can decrease gradually close the bypass valve 5 and begin the actual filling of the tank by opening the valve 12 with variable opening.
  • the first instantaneous PT3 pressure on the filling line 3 can be measured downstream of the variable opening valve 12 via the first sensor 13.
  • the variations of this first measured pressure PT3 reproduce the pressure variations in the tank 1 during filling.
  • the delay step A has for example a duration of between five and one hundred and eighty seconds and preferably between ten and ninety seconds and even more preferably between thirty and sixty seconds. This duration of the delay step A is preferably chosen as a function, in particular, of the technical characteristics of the pump 4 and the procedures necessary to control it.
  • an abnormal increase of the first pressure PT3 can be detected by monitoring the first instantaneous pressure PT3.
  • the device can determine a first reference instantaneous pressure PT3ref in the filling line 3.
  • the determination of the first reference instantaneous pressure PT3ref can comprise at least one measurement of the first instantaneous pressure PT3 in the line 3 in a time interval comprised between zero and ten seconds around the end of the delaying step A.
  • This first instant reference pressure PT3ref can be a point value, a maximum or minimum value measured by the sensor 13 during the at least one measurement or an average of several measurements.
  • the value of the pressure jump Po can itself be a value (in bar) fixed in bar and between 0.1 bar and 2 bar and preferably between 0.3 and 1 bar and even more preferentially between 0.4 and 0.6 bar.
  • value of the pressure jump Po as well as the duration of the delay step can be adjusted according to the characteristics of the filling device (type of pump, type of circuit, type of tank, etc.).
  • the value of the pressure jump is a function of the value of the first instantaneous reference pressure PT3ref.
  • the device automatically interrupts the filling.
  • the device can control an average mPT3ref of the first instantaneous maximum pressure PT3ref measured by the sensor 13. that is, the device calculates an average mPT3ref of several first measured maximum instantaneous PT3 pressures.
  • the average of the first instantaneous pressure mPT3 is, for example, the average of several instantaneous pressures PT3 measured successively during a time interval of, for example, between 0.1 and 10 seconds and preferably between 0.25 seconds and 1 second.
  • control of an overpressure can use other parameters that result from the first measured pressure PT3.
  • the first measured pressure PT3 (respectively the mean of the first pressure mPT3) should decrease below the reference value PT3ref retained (respectively mPT3ref)
  • this new value of reference PT3refb replaces the previous value (see steps 105 and 106 figure 10 ).
  • This new high threshold which is reduced compared to the previous high threshold, thus adapts to a decrease in the first pressure PT3 during filling, in particular due to the thermodynamic conditions of the filling.
  • the first pressure PT3 does not decrease ("N reference 105 to the figure 10 )
  • the high threshold Pmax is unchanged.
  • the first measured measured reference pressure PT3ref is the most recent minimum measured value.
  • This decrease of the high threshold Pmax can be updated as often as necessary.
  • This calculation of the high threshold Pmax, the monitoring of not exceeding the high threshold Pmax and the stopping if necessary of the filling can be carried out automatically by the electronic logic 16.
  • the exceeding of the high threshold Pmax is signaled to the operator who will then have the task of stopping the filling.
  • the electronic logic 16 preferably controls the automatic shutdown of the filling.
  • FIG. 3 to 8 illustrate in a simplified manner embodiments of the filling device.
  • the elements identical to those described above are designated by the same reference numerals.
  • figure 3 represents the electronic logic 16 connected to the first pressure sensor 13 and to the pump 4.
  • the electronic logic 16 is also connected, if necessary, to a display member 7 such as a man-machine interface for signaling all or part of the operating state of the device during filling.
  • the operation of the pump 4 can be interrupted. That is to say that the control setpoint of the pump 4 is reduced to a minimum and / or the motor of the pump 4 is switched from a running state to a stopped state and / or a pump member 4 driven by a motor is disconnected from the motor of the pump 4 (set "freewheeling"). If necessary the control of the pump 4 is achieved via a speed converter (not shown for the sake of simplification).
  • stopping the filling can be achieved by reducing or eliminating the flow of liquid in the filling line 3 upstream of the pump 4. As illustrated in FIG. figure 4 this can be done by closing a valve 111 of the filling line (for example the first valve 111 or the second valve 112 of the figure 2 ).
  • This measurement used in a complementary manner to the stopping of the pump 4 makes it possible to increase the efficiency of stopping the filling. in particular by decreasing the effect of inertia of the system and in particular the inertia of the pump 4. In fact, even after stopping the pump 4 can continue to supply liquid for a certain time.
  • This feature also makes it possible to reduce the possible effects of a vaporization of cryogenic liquid present in the circuit. It is thus possible to stop upstream several liters of liquid present in the circuit. In this way, the stop filling is faster and more effective to avoid overpressure in the tank 1.
  • stopping the filling can be achieved by purging at least a portion of the filling line 3 downstream of the pump 4 to a separate discharge zone 18 of the tank 1.
  • the device may comprise for this purpose, downstream of the pump 4, a purge pipe 60 provided with at least one valve 6 controlled by the electronic logic 16 for discharging liquid to a discharge zone 18.
  • This characteristic thus makes it possible to drain at least cryogenic fluid into the filling line 3 to the atmosphere.
  • this purge operation downstream of the pump 4 is preferably carried out during a limited purge time of for example between two and sixty seconds and preferably between five and thirty seconds.
  • the purge time can be adapted according to the characteristics of the purge valve (typically the flow coefficient Cv of the valve) and those of the pipe to be purged (typically length and diameter). This makes it possible in particular to limit the risk of hypoxia of the operators depending on the nature of the gas released. This purge thus makes it possible at least partially to empty, in particular, the downstream portion of the filling pipe 3, in particular in the flexible part.
  • the stop filling can be achieved by activating a by-pass returning the liquid downstream of the pump 4 to the tank 2. As illustrated in FIG. figure 6 this can be achieved by opening the bypass valve 55 of the bypass line 8.
  • This solution also increases the efficiency and speed of stopping the filling and avoids rejecting a dangerous fluid around the tank 2.
  • variable opening valve 12 is of the type preventing the return of fluid upstream, this return of fluid to the tank 2 does not allow to evacuate the fluid fraction present downstream of the valve 12. However, this This characteristic makes it possible to improve the stopping of the pressure increase in the tank 1.
  • this opening of the bypass valve 8 of the bypass duct 8 is preferably carried out for a limited time, for example between two and sixty seconds and preferably between two and thirty seconds.
  • the device avoids any risk of cavitation of the pump 4 and any risk of fluid return from the tank 1 to the tank 2 in the case where the valve 12 variable opening leaks.
  • the electronic logic 16 or the pump 4 itself prevents a restart of the pump 4 after a determined waiting time preferably between one second and fifteen minutes.
  • the device described above While being simple and inexpensive structure, the device described above and allows to detect sufficiently rapidly and non-inadvertently abnormally high pressure in the tank 1 during filling.
  • the device also makes it possible to limit this abnormally high pressure by effectively stopping the filling to avoid a rupture of the tank 1.
  • the start M of the pump 4 may comprise a pre-control of the flow actually delivered by the pump 4 to the tank 1 for a predetermined period TQ pre-flow control (step 200 figure 12 ).
  • This pre-flow control comprises a determination of an effective transfer of liquid in the tank 1 by the pump 4 during this time TQ pre-flow control.
  • the determination of an effective transfer of liquid in the tank 1 by the pump 4 may consist in determining whether the operator (or the device if it is partially automated) begins the actual transfer of liquid to the tank 1.
  • the pump 4 can be cooled and stabilized during a determined period of time during which the liquid pumped into the tank 2 is returned to the tank via the bypass line 8 (for example by opening the valve 5 of by-pass and keeping the variable opening valve 12 closed).
  • the electronic logic 16 is configured to compare the transfer of liquid in the tank 1 with a determined threshold S and, when the transfer of liquid in the tank 1 does not reach this threshold S during the duration TQ of pre - flow control, the electronic logic 16 interrupts the operation of the pump 4 (see references 201 and 202 figure 12 ). Such a stoppage of the pump 4 means that the start is not satisfactory to continue the process of priming the filling.
  • the determination of a transfer of liquid in the tank 1 may comprise for example a measurement 9 of the flow rate Q of instantaneous liquid in the filling line 3 downstream of the pump 4 and upstream of the tank 1 (cf. figure 8 ).
  • the filling line may comprise a flow meter 9 connected to the electronic logic 16.
  • the electronic logic 16 can compare the instantaneous flow rate Q of the measured liquid with a minimum flow rate threshold Qmin determined and, when the instantaneous flow rate Q of the measured liquid does not reach the threshold of minimum flow rate Qmin during the determined duration TQ of pre - flow control, an interruption step AR of the operation of the pump 4.
  • the minimum flow rate threshold Qmin determined can be chosen beforehand according to the technical characteristics of the filling device (type of pump, etc.). This threshold minimum flow Qmin is for example between one and fifty liters per minute and preferably between ten and forty liters per minute or between three and eight liters per minute, for example five liters per minute.
  • the predetermined duration TQ pre-flow control may be between twenty and two hundred and forty seconds and preferably between thirty and one hundred and twenty seconds, for example ninety seconds.
  • the determination of a transfer of liquid in the tank 1 can be performed differently.
  • the determination of a transfer of liquid in the tank 1 may comprise a measurement of the first instantaneous pressure PT3 in the filling line 3 downstream of the pump 4 and upstream of the tank 1, in particular downstream of the valve 12 with variable opening via the first pressure sensor 13 described above.
  • This instantaneous pressure PT3 can be compared with a predetermined reference level and, when this measurement of the first instantaneous pressure PT3 in the filling line 3 does not reach the reference level during the predetermined time TQ pre-flow control, pump 4 is stopped.
  • the determination of a transfer of liquid in the tank 1 is carried out by controlling the evolutions or pressure differentials.
  • the device controls in real time the instantaneous PT3 and PT50 pressures respectively at the filling line 3 downstream of the variable opening valve 12, and at the return line 8.
  • the device can use the PT50 pressure sensor 29 upstream of the bypass valves 5, 55 (cf. figure 2 ).
  • an increase of the first pressure PT3 above a threshold determined simultaneously with a decrease in the pressure PT50 determined in the bypass line 8 corresponds to a sufficient effective transfer.
  • the first instantaneous pressure PT3 in the filling line 3 is measured downstream of the pump 4 at the moment when the transfer of liquid into the tank 1 reaches the determined threshold S (PT3 (S). 204 figure 12 ).
  • This value can be stored by the electronic logic. This value can be stored by the electronic logic.
  • the method further comprises an additional pre-check of the first pressure PT3 in the filling line.
  • the method may then comprise a step of pre-checking the first pressure PT3 in the filling line 3 downstream of the variable opening valve 12 during a determined duration TP pre-pressure control.
  • the operation of the pump 4 is interrupted AR (see references 205 and 206, figure 10 ).
  • This pre-pressure control is preferably provided to ensure that the pressure regulated in the filling line 3 downstream of the pump 4 is maintained in a determined range.
  • the inventors have indeed determined that such an action improves the filling and in particular the possible subsequent detection of abnormal overpressure as previously described.
  • the maximum pressure threshold PT3sup in bar can be identical to that described in the example of the figure 11 .
  • the minimum pressure threshold PT3min is a predetermined fixed value, possibly adjustable, for example between two bar and ten bar and preferably between four and ten bar, in particular five bar.
  • the determined duration TP pre-pressure control is for example between five and one hundred eighty seconds and preferably between ten and thirty seconds, for example fifteen seconds.
  • the method may then comprise a filling control as described above with particular reference to the figure 10 .
  • the figure 12 reproduced by way of example the steps 103, 104, 105 and 106 of the figure 9 .
  • this process will not be described a second time.
  • the predetermined high threshold Pmax used to interrupt the filling, if any, mentioned above is calculated or defined at the end of the determined duration TP pre-pressure control. That is, the first PT3 pressure measurement or measurements used to define the first reference pressure PT3ref (or an average of these pressures mPT3ref) is carried out at the end of the determined pre-control duration TP. pressure (in the case of course where the pump 4 is not stopped).
  • timer A mentioned above may include the controls described with reference to the figure 12 .
  • first reference pressure PT3ref used initially to calculate the first high threshold Pmax is for example the value of the first pressure PT3 measured at the end or after a step 304 of positive limitation of the process of the figure 11 .
  • the value of the first reference pressure PT3ref used initially to calculate the first high threshold Pmax is, for example, the value of the first pressure PT3 measured in line 3 in a time interval between zero and 180s seconds after an implementation. running the pump 4.
  • this first reference pressure PT3ref is measured in a determined time interval between zero and 180s seconds after the start of the actual transfer of a liquid flow to the tank 1.
  • the first reference instantaneous pressure PT3ref is the measured value during the at least one pressure measurement or an average of this at least one pressure measurement.
  • the pump 4 is automatically stopped (reference 400, figure 11 ).
  • This safety measure makes it possible to detect a pressure drop corresponding to an abnormally late opening of the valves of the tank 1. That is, if this decrease in the first pressure PT3 occurs during filling, this means that previously the tank 1 was isolated from the filling pipe 3 and that the previous measurements and calculations were erroneous, in particular the determination of the pressure PT4 in the tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Claims (14)

  1. Verfahren zum Befüllen eines Flüssiggasbehälters (1), insbesondere eines Behälters für kryogene Flüssigkeit, über eine Befüllvorrichtung, welche einen Flüssiggastank (2), insbesondere einen Tank (2) für kryogene Flüssigkeit umfasst, wobei der Tank (2) über eine Befüllleitung (3) fluidisch mit dem Behälter (1) verbunden ist, wobei die Befüllvorrichtung das Verwenden eines Druckdifferenz-Erzeugungsorgans (4) umfasst, um Flüssigkeit bei einem bestimmten Druck aus dem Tank (2) zu dem Behälter (1) zu transportieren, wobei das Druckdifferenz-Erzeugungsorgan (4) zwischen einem eingeschalteten Zustand (M) und einem ausgeschalteten Zustand (AR) schaltbar ist, wobei die Befüllleitung (3) ein Organ (12) zur Durchflussregelung der Flüssigkeit umfasst, das stromabwärts des Druckdifferenz-Erzeugungsorgan (4) angeordnet ist, wobei das Durchflussregelorgan (12) beweglich ist zwischen einer nicht durchlässigen Position, in welcher der Flüssigkeitsstrom unterbrochen ist, und mindestens einer durchlässigen Position, in welcher der Flüssigkeitsstrom mit einem bestimmten Durchsatz zu dem Behälter (1) transportiert wird, wobei das Verfahren eine Messung eines ersten momentanen Drucks (PT3) in der Befüllleitung (3) stromabwärts des Durchflussregelorgans (12) umfasst, wobei das Verfahren einen Schritt umfasst des Bestimmens des Drucks (PT4) in dem Behälter (1) über eine Messung des ersten Drucks auf Höhe der Befüllleitung (3), während die Befüllleitung (3) fluidisch mit dem Inneren des Behälters (1) kommuniziert, das heißt dass die Leitung (3) zwischen dem Punkt der Messung des ersten Drucks (PT3) und dem Inneren des Behälters durchlässig ist, wobei dieser Druck (PT4) in dem Behälter (1) dem Wert des ersten Drucks (PT3), der auf Höhe der Befüllleitung (3) gemessen wurde, gleich ist (PT3=PT4), wobei das Verfahren einen Schritt des Schaltens des Durchflussregelorgans (12) in die durchlässige Position umfasst, um Flüssigkeit aus dem Tank zu dem Behälter (1) zu transportieren, dadurch gekennzeichnet, dass der Schritt des Bestimmens des Drucks (PT4) in dem Behälter (1) über eine Messung des ersten Drucks auf Höhe der Befüllleitung erfolgt, nachdem mindestens eine der folgenden Bedingungen erfüllt ist:
    (i) der in der Leitung (3) gemessene erste momentane Druck (PT3) ist größer einem vorbestimmten Druck, der bevorzugt zwischen 15 und 25 Bar umfasst ist,
    (ii) die während mindestens einer bestimmten Zeitspanne gemessene Schwankung des ersten momentanen Drucks (PT3) ist kleiner einer bestimmten Schwankungshöhe, welche einer Schwankung entspricht, die zwischen 0,005 und 0,020 Bar pro Sekunde umfasst ist und bevorzugt 0,01 Bar pro Sekunde beträgt, wobei das Verfahren nach dem Bestimmen des Drucks (PT4) in dem Behälter einen Schritt umfasst des Begrenzens des ersten momentanen Drucks (PT3) unterhalb einer maximalen Druckgrenze (PT3sup), wobei der Schritt des Begrenzens des ersten momentanen Drucks (PT3) unterhalb einer maximalen Druckgrenze (PT3sup) ausgeführt wird, wenn sich das Durchflussregelorgan (12) in durchlässiger Position befindet, wobei der Schritt des Begrenzens des ersten momentanen Drucks (PT3) unterhalb einer maximalen Druckgrenze (PT3sup) mindestens eines umfasst aus: einer manuellen oder automatischen Regelung des über das Durchflussregelorgan (12) transportierten Flüssigkeitsdurchsatzes, einer manuellen oder automatischen Regelung der von dem Druckdifferenz-Erzeugungsorgan (4) erzeugten Druckdifferenz, wobei der Schritt des Begrenzens des ersten momentanen Drucks (PT3) unterhalb der maximalen Druckgrenze (PT3sup) ausgeführt wird während einer bestimmten endlichen Begrenzungsdauer, die zwischen fünfzehn und einhundertachtzig Sekunden umfasst ist und dadurch, dass wenn der erste momentane Druck (PT3) am Ende der bestimmten Begrenzungsdauer über der maximalen Druckgrenze (PT3sup) bleibt, das Befüllen automatisch unterbrochen (AR) wird, wobei die maximale Druckgrenze in Abhängigkeit von dem bestimmten Wert des Drucks (PT4) in dem Behälter (1) definiert ist und den bestimmten Wert des Drucks (PT4) in dem Behälter um zwei bis zwanzig Bar und bevorzugt um zwei bis neun Bar übersteigt, wenn der bestimmte Wert des Drucks (PT4) in dem Behälter (1) kleiner oder gleich einer ersten bestimmten Höhe ist, die zwischen drei und fünf Bar umfasst ist, die maximale Druckgrenze ein vorbestimmter fester Druckwert ist, der zwischen fünf und zehn Bar umfasst ist und gleichermaßen bevorzugt zwischen sechs 6 und 9 neun Bar umfasst ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt des Bestimmens des Drucks (PT4) in dem Behälter (1) über eine Messung des ersten Drucks auf Höhe der Befüllleitung vor dem Einschalten (M) des Druckdifferenz-Erzeugungsorgans (4) ausgeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Schritt des Bestimmens des Drucks (PT4) in dem Behälter (1) über eine Messung des ersten Drucks auf Höhe der Befüllleitung im Moment des oder nach dem Einschalten (M) des Druckdifferenz-Erzeugungsorgans (4) ausgeführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass wenn der bestimmte Druck (PT4) in dem Behälter zwischen der ersten Höhe und einer zweiten Höhe liegt, wobei die zweite Höhe die erste Höhe um ein bis drei Bar übersteigt, und bevorzugt gleich 4 Bar beträgt, die maximale Druckgrenze (PT3sup) in Bar von der folgenden Formel wiedergegeben wird: PT3sup=z.PT4+PA, wobei z ein vorbestimmter fester Koeffizient ohne Einheit ist, der zwischen 1,5 und 3 umfasst ist und bevorzugt gleich zwei beträgt, und wobei PA ein fester Druckanstieg in Bar ist, der zwischen Null und zwei Bar umfasst ist und bevorzugt gleich Null beträgt.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass wenn der bestimmten Druck (PT4) in dem Behälter zwischen der zweiten Höhe und einer dritten Höhe liegt, wobei die dritte Höhe die zweite Höhe um vier bis zehn Bar übersteigt und bevorzugt gleich 8 Bar beträgt, die maximale Druckgrenze (PT3sup) in Bar von der folgenden Formel wiedergegeben wird: PT3sup=z.PT4+PA, wobei z ein vorbestimmter fester Koeffizient ohne Einheit ist, der zwischen 0,80 und 1 umfasst ist und bevorzugt gleich 0,98 beträgt, und wobei PA ein fester Druckanstieg in Bar ist, der zwischen zwei und vier Bar umfasst ist und bevorzugt gleich vier Bar beträgt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die bestimmte Dauer des Schrittes des Begrenzens zwischen dreißig und neunzig Sekunden umfasst ist und bevorzugt gleich sechzig Sekunden beträgt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass dem Einschalten des Druckdifferenz-Erzeugungsorgans (4) eine Kontrolle der Stabilität des ersten momentanen Drucks (PT3) in der Befüllleitung (3) vorausgeht, wobei die Kontrolle der Stabilität des Drucks positiv ist, wenn mindestens eine der nachfolgenden Bedingungen erfüllt ist:
    (i) der in der Leitung (3) gemessene erste momentane Druck (PT3) ist größer einem vorbestimmten Druck, der bevorzugt zwischen 15 und 25 Bar umfasst ist,
    (ii) die während mindestens einer bestimmten Zeitspanne gemessene Schwankung des ersten momentanen Drucks (PT3) ist kleiner einer bestimmten Schwankungshöhe, welche einer Schwankung entspricht, die zwischen 0,005 und 0,020 Bar pro Sekunde umfasst ist und bevorzugt 0,01 Bar pro Sekunde beträgt, und dadurch, dass das Einschalten des Druckdifferenz-Erzeugungsorgans (4) erst nach einer positiven Kontrolle der Stabilität des ersten momentanen Drucks (PT3) möglich ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass nach Einschalten (M) des Druckdifferenz-Erzeugungsorgans (4) und Bewegen des Durchflussregelorgans (12) aus seiner nicht durchlässigen Position in eine durchlässige Position, im Falle des Erkennens eines Absinkens des ersten momentanen Drucks (PT3) in der Befüllleitung (3) mit einem Rhythmus von mindestens einem Bar pro Sekunde, das Druckdifferenz-Erzeugungsorgan (4) automatisch abgeschaltet wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es ein Einschalten (M) des Druckdifferenz-Erzeugungsorgans (4) umfasst und dadurch, dass der Betrieb des Druckdifferenz-Erzeugungsorgans (4) in Reaktion auf mindestens eine der folgenden Situationen automatisch unterbrochen (AR) wird:
    - die Schwankung des ersten momentanen Drucks (PT3) in der Befüllleitung (3) ist während einer bestimmten Dauer (T) vor tatsächlichem Transport eines Flüssigkeitsstroms zu dem Behälter (1) größer einer bestimmten Schwankung (V) (ΔPT3>V),
    - eine bestimmte Schwankung des Durchsatzes (Q) und/oder eine bestimmte Schwankung des ersten momentanen Drucks (PT3) in der Leitung (3) stromabwärts des Druckdifferenz-Erzeugungsorgans (4) wird erkannt, obwohl sich das Druckdifferenz-Erzeugungsorgan (4) nicht in eingeschaltetem Zustand befindet,
    - nach einer bestimmten Dauer nach Einschalten des Druckdifferenz-Erzeugungsorgans (4) bleibt die Schwankung des ersten momentanen Drucks (PT3) in der Leitung (3) unter einer bestimmten Höhe,
    - nach einer bestimmten Dauer nach Einschalten des Druckdifferenz-Erzeugungsorgans (4) ist eine bestimmte Flüssigkeitsmenge in den Behälter (1) transportiert worden und der erste momentane Druck (PT3) in der Leitung (3) bleibt über der maximalen Druckgrenze (PT3sup),
    - die Differenz (PT2-PT3) zwischen einem zweiten momentanen Druck (PT2), gemessen am Ausgang des Druckdifferenz-Erzeugungsorgans (4) stromaufwärts des Durchflussregelorgans (12) einerseits, und dem ersten momentanen Druck (PT3), gemessen in der Leitung stromabwärts des Durchflussregelorgans (12) andererseits, ist kleiner einer Mindestdifferenz, die bevorzugt zwischen 0,5 Bar und 2 Bar umfasst ist,
    - der Flüssigkeitsstrom aus dem Tank (2) zu dem Behälter (1) bleibt unter einer bestimmten Höhe.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass nach dem Schritt des Begrenzens des ersten momentanen Drucks (PT3) unterhalb der maximalen Druckgrenze (PT3sup), und im Laufe des Transports von Flüssigkeit in den Behälter (1), das Verfahren einen Vergleich des ersten momentanen Drucks (PT3) in der Befüllleitung (3) oder eines Mittelwerts (mPT3) dieses ersten momentanen Drucks mit einer bestimmten Obergrenze (Pmax) umfasst, und, wenn der erste momentane Druck (PT3) in der Befüllleitung (3), oder beziehungsweise der Mittelwert des ersten momentanen Drucks (PT3) die Obergrenze (Pmax) übersteigt, einen Schritt des Unterbrechens (AR) des Befüllens (R), wobei die Obergrenze (Pmax) definiert ist durch die Summe einerseits eines als Referenz bezeichneten Werts des ersten momentanen Drucks (PT3ref), der in der Befüllleitung (3) am Ende des Schrittes des Begrenzens gemessen wird, oder beziehungsweise eines Mittelwerts von mehreren gemessenen Werten des ersten momentanen Referenzdrucks (mPT3ref), der in der Befüllleitung (3) am Ende des Schrittes des Begrenzens gemessen wird (als "Mittelwert der Referenz mPT3ref" bezeichnet), und andererseits eines bestimmten Druckansprungs (Po), der zwischen 0,2 und 2 Bar umfasst ist: (Pmax=PT3ref+Po, beziehungsweise Pmax=mPT3ref+PO).
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Wert des Druckansprungs (Po) abhängig ist von dem Wert des ersten momentanen Referenzdrucks (PT3ref), oder beziehungsweise dem Mittelwert der Referenz mPT3ref, und dadurch, dass wenn der erste momentane Referenzdruck (PT3ref), oder beziehungsweise der Mittelwert der Referenz mPT3ref kleiner oder gleich einem Wert ist, der zwischen 6 bis 9 Bar umfasst ist, der Druckansprung zwischen 0,1 und 0,9 Bar umfasst ist und bevorzugt zwischen 0,3 und 0,7 Bar umfasst ist.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass wenn der erste momentane Referenzdruck (PT3ref), oder beziehungsweise der Mittelwert der Referenz mPT3ref größer einem bestimmten Wert ist, der zwischen 6 und 9 Bar umfasst ist, und kleiner einem bestimmten Wert, der zwischen 15 und 25 Bar und bevorzugt zwischen 18 und 22 Bar umfasst ist, der Druckansprung zwischen 0,8 und 1,4 Bar umfasst ist und bevorzugt zwischen 0,9 und 1,2 Bar umfasst ist.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass wenn der erste momentane Referenzdruck (PT3ref), oder beziehungsweise der Mittelwert der Referenz mPT3ref größer einem bestimmten Wert ist, der zwischen 15 und 25 Bar und bevorzugt zwischen 18 und 22 Bar umfasst ist, der Druckansprung zwischen 1,2 und 3 Bar umfasst ist und bevorzugt zwischen 1,2 und 2 Bar umfasst ist.
  14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass im Laufe des Befüllens und nach dem Bestimmen des ersten Referenzdrucks (PT3ref) oder eines Mittelwerts der Referenz (mPT3), der erste momentane Druck (PT3) in der Leitung (3) regelmäßig gemessen wird und, wenn der in der Leitung (3) gemessene erste momentane Druck (PT3) beziehungsweise sein Mittelwert (mPT3) kleiner dem ersten momentanen Referenzdruck (PT3ref) beziehungsweise kleiner dem zuvor festgehaltenen Mittelwert der Referenz (mPT3) wird, ein neuer momentaner Referenzdruck (PT3refb) beziehungsweise ein neuer Mittelwert der Referenz (mPT3refb) festgehalten wird, um eine neue Obergrenze (Pmax=PT3refb+Po), beziehungsweise Pmax=mPT3refb+Po, zu definieren.
EP13785544.1A 2012-11-23 2013-10-10 Verfahren und vorrichtung zur füllung eines behälters mit flüssiggas Active EP2923142B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1261154A FR2998643B1 (fr) 2012-11-23 2012-11-23 Procede de remplissage d'un reservoir de gaz liquefie
PCT/FR2013/052415 WO2014080100A1 (fr) 2012-11-23 2013-10-10 Procédé de remplissage d'un réservoir de gaz liquéfié

Publications (2)

Publication Number Publication Date
EP2923142A1 EP2923142A1 (de) 2015-09-30
EP2923142B1 true EP2923142B1 (de) 2017-02-01

Family

ID=47628222

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13785544.1A Active EP2923142B1 (de) 2012-11-23 2013-10-10 Verfahren und vorrichtung zur füllung eines behälters mit flüssiggas
EP13785545.8A Withdrawn EP2923143A1 (de) 2012-11-23 2013-10-10 Verfahren zum füllen eines tanks mit flüssiggas

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13785545.8A Withdrawn EP2923143A1 (de) 2012-11-23 2013-10-10 Verfahren zum füllen eines tanks mit flüssiggas

Country Status (8)

Country Link
US (2) US9982841B2 (de)
EP (2) EP2923142B1 (de)
CN (2) CN104884857A (de)
BR (2) BR112015011814A2 (de)
CA (2) CA2887108A1 (de)
ES (1) ES2617740T3 (de)
FR (1) FR2998643B1 (de)
WO (2) WO2014080100A1 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998642B1 (fr) * 2012-11-23 2015-10-30 Air Liquide Procede et dispositif de remplissage d'un reservoir de gaz liquefie
FR2998643B1 (fr) * 2012-11-23 2015-11-13 Air Liquide Procede de remplissage d'un reservoir de gaz liquefie
KR20150142332A (ko) * 2014-06-11 2015-12-22 삼성전자주식회사 센서값을 측정하는 방법 및 이를 수행하는 전자 장치
US9864823B2 (en) 2015-03-30 2018-01-09 Uop Llc Cleansing system for a feed composition based on environmental factors
JP6371268B2 (ja) * 2015-11-24 2018-08-08 株式会社アドヴィックス 車両用制動装置
US10222787B2 (en) 2016-09-16 2019-03-05 Uop Llc Interactive petrochemical plant diagnostic system and method for chemical process model analysis
SG11201906786YA (en) * 2017-02-24 2019-09-27 Exxonmobil Upstream Res Co Method of purging a dual purpose lng/lin storage tank
US10678272B2 (en) 2017-03-27 2020-06-09 Uop Llc Early prediction and detection of slide valve sticking in petrochemical plants or refineries
US10754359B2 (en) 2017-03-27 2020-08-25 Uop Llc Operating slide valves in petrochemical plants or refineries
US11130111B2 (en) 2017-03-28 2021-09-28 Uop Llc Air-cooled heat exchangers
US10816947B2 (en) 2017-03-28 2020-10-27 Uop Llc Early surge detection of rotating equipment in a petrochemical plant or refinery
US11037376B2 (en) 2017-03-28 2021-06-15 Uop Llc Sensor location for rotating equipment in a petrochemical plant or refinery
US10670027B2 (en) 2017-03-28 2020-06-02 Uop Llc Determining quality of gas for rotating equipment in a petrochemical plant or refinery
US10844290B2 (en) 2017-03-28 2020-11-24 Uop Llc Rotating equipment in a petrochemical plant or refinery
US10752845B2 (en) 2017-03-28 2020-08-25 Uop Llc Using molecular weight and invariant mapping to determine performance of rotating equipment in a petrochemical plant or refinery
US10670353B2 (en) 2017-03-28 2020-06-02 Uop Llc Detecting and correcting cross-leakage in heat exchangers in a petrochemical plant or refinery
US10794644B2 (en) 2017-03-28 2020-10-06 Uop Llc Detecting and correcting thermal stresses in heat exchangers in a petrochemical plant or refinery
US11396002B2 (en) 2017-03-28 2022-07-26 Uop Llc Detecting and correcting problems in liquid lifting in heat exchangers
US10752844B2 (en) 2017-03-28 2020-08-25 Uop Llc Rotating equipment in a petrochemical plant or refinery
US10663238B2 (en) 2017-03-28 2020-05-26 Uop Llc Detecting and correcting maldistribution in heat exchangers in a petrochemical plant or refinery
US10962302B2 (en) 2017-03-28 2021-03-30 Uop Llc Heat exchangers in a petrochemical plant or refinery
US10794401B2 (en) * 2017-03-28 2020-10-06 Uop Llc Reactor loop fouling monitor for rotating equipment in a petrochemical plant or refinery
US10695711B2 (en) 2017-04-28 2020-06-30 Uop Llc Remote monitoring of adsorber process units
FR3067092B1 (fr) * 2017-05-31 2020-08-14 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Station et procede de remplissage de reservoir(s) de gaz sous pression
US10913905B2 (en) 2017-06-19 2021-02-09 Uop Llc Catalyst cycle length prediction using eigen analysis
US11365886B2 (en) 2017-06-19 2022-06-21 Uop Llc Remote monitoring of fired heaters
US10739798B2 (en) 2017-06-20 2020-08-11 Uop Llc Incipient temperature excursion mitigation and control
US11130692B2 (en) 2017-06-28 2021-09-28 Uop Llc Process and apparatus for dosing nutrients to a bioreactor
US10994240B2 (en) 2017-09-18 2021-05-04 Uop Llc Remote monitoring of pressure swing adsorption units
US11194317B2 (en) 2017-10-02 2021-12-07 Uop Llc Remote monitoring of chloride treaters using a process simulator based chloride distribution estimate
US11676061B2 (en) 2017-10-05 2023-06-13 Honeywell International Inc. Harnessing machine learning and data analytics for a real time predictive model for a FCC pre-treatment unit
US11105787B2 (en) 2017-10-20 2021-08-31 Honeywell International Inc. System and method to optimize crude oil distillation or other processing by inline analysis of crude oil properties
US10901403B2 (en) 2018-02-20 2021-01-26 Uop Llc Developing linear process models using reactor kinetic equations
US10734098B2 (en) 2018-03-30 2020-08-04 Uop Llc Catalytic dehydrogenation catalyst health index
JP7096062B2 (ja) * 2018-04-27 2022-07-05 トキコシステムソリューションズ株式会社 ガス充填装置
FR3089599B1 (fr) * 2018-12-06 2020-11-13 Air Liquide Réservoir de stockage de fluide cryogénique
US10953377B2 (en) 2018-12-10 2021-03-23 Uop Llc Delta temperature control of catalytic dehydrogenation process reactors
FR3092384B1 (fr) * 2019-01-31 2021-09-03 Air Liquide Procédé et un dispositif de remplissage d’un stockage de gaz liquéfié
US11988543B2 (en) * 2019-12-06 2024-05-21 Fujikin Incorporated Abnormality detection method for flow rate control device, and flow rate monitoring method
CN114484272B (zh) * 2021-12-15 2023-04-07 中国空气动力研究与发展中心计算空气动力研究所 储气罐群组合状态监测方法、装置、系统和存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411374A (en) * 1993-03-30 1995-05-02 Process Systems International, Inc. Cryogenic fluid pump system and method of pumping cryogenic fluid
US5373702A (en) * 1993-07-12 1994-12-20 Minnesota Valley Engineering, Inc. LNG delivery system
DE19653048A1 (de) * 1996-12-19 1998-06-25 Messer Griesheim Gmbh Verfahren und Vorrichtung zum Überwachen der Befüllung eines Kryotanks
US5868179A (en) * 1997-03-04 1999-02-09 Gilbarco Inc. Precision fuel dispenser
US6212719B1 (en) 1997-10-10 2001-04-10 D2Rm Corp. Air massager cushioning device
DE10142758C1 (de) * 2001-08-31 2003-04-17 Messer Griesheim Gmbh Vorrichtung und Verfahren zum Betanken von mit kryogenem Kraftstoff betriebenen Fahrzeugen
CA2362844C (en) * 2001-11-30 2004-08-31 Westport Research Inc. Method and apparatus for delivering a high pressure gas from a cryogenic storage tank
FR2857432B1 (fr) 2003-07-10 2005-09-23 Air Liquide Systeme de remplissage d'un reservoir de fluide cryogenique d'une citerne mobile
CN201014185Y (zh) * 2007-02-12 2008-01-30 查特深冷工程系统(常州)有限公司 移动式深冷液体即时配送充装装置
FR2922992B1 (fr) * 2007-10-26 2010-04-30 Air Liquide Procede de determination en temps reel du niveau de remplissage d'un reservoir cryogenique
FR2922991B1 (fr) * 2007-10-26 2015-06-26 Air Liquide Procede d'estimation de parametres caracteristiques d'un reservoir cryogenique et notamment de parametres geometriques du reservoir
FR2998642B1 (fr) * 2012-11-23 2015-10-30 Air Liquide Procede et dispositif de remplissage d'un reservoir de gaz liquefie
FR2998643B1 (fr) * 2012-11-23 2015-11-13 Air Liquide Procede de remplissage d'un reservoir de gaz liquefie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014080101A1 (fr) 2014-05-30
CA2887108A1 (fr) 2014-05-30
CN104884857A (zh) 2015-09-02
US20150330571A1 (en) 2015-11-19
US9982841B2 (en) 2018-05-29
EP2923142A1 (de) 2015-09-30
CA2887114A1 (fr) 2014-05-30
ES2617740T3 (es) 2017-06-19
US20150345704A1 (en) 2015-12-03
FR2998643B1 (fr) 2015-11-13
CN104797876A (zh) 2015-07-22
US9759381B2 (en) 2017-09-12
BR112015011816A2 (pt) 2017-07-11
BR112015011814A2 (pt) 2017-07-11
WO2014080100A1 (fr) 2014-05-30
FR2998643A1 (fr) 2014-05-30
EP2923143A1 (de) 2015-09-30

Similar Documents

Publication Publication Date Title
EP2923142B1 (de) Verfahren und vorrichtung zur füllung eines behälters mit flüssiggas
EP2923141A1 (de) Verfahren und vorrichtung zur füllung eines behälters mit flüssiggas
EP1974164B1 (de) Verfahren und vorrichtung zum füllen von druckgasbehältern
FR3068114B1 (fr) Systeme d'alimentation en fluide pour turbomachine, comprenant une pompe a cylindree variable suivie d'un doseur de fluide
FR2983257A1 (fr) Dispositif de compression, et systeme thermodynamique comprenant un tel dispositif de compression
CA2491022C (fr) Procede de regulation en pression d'un reservoir de fluide cryogenique, et reservoir correspondant
EP2683948B1 (de) Vorrichtung mit mindestens einem hydropneumatischen druckspeicher mit automatisierter wartung
WO2008029056A2 (fr) Agencement pour le remplissage en huile de lubrification, et la vidange d'un moteur sur un banc d'essais
EP3702661A1 (de) Verfahren und vorrichtung zum füllen von tanks mit unter unter druck stehendem gas
EP1789722A2 (de) Station zum einfüllen von kohlendioxid in einen mobilen tank
FR2983903A1 (fr) Procedes de detection et de suppresson d'un bouchon dans un dispositif de reduction catalytique selective, systeme et vehicule automobile correspondants
WO2017060627A1 (fr) Procédé de délivrance de liquide cryogénique et installation pour la mise en oeuvre de ce procédé
FR3035213A1 (fr) Procede de controle de la pression incluant une detection d'ebullition
EP3786514B1 (de) Station zur gravimetrischen verteilung von kondensiertem gas in flüssigem zustand, und verfahren zum betrieb einer solchen station
FR2980237A1 (fr) Detection du blocage d'un clapet de pressurisation sur le circuit d'huile d'une turbomachine
EP2678749B1 (de) Vorrichtung zur einspritzung eines additivs in ein rohr
EP0010464A1 (de) Startverfahren und -vorrichtung für eine Pumpe mit kryogener Flüssigkeit
EP3728934B1 (de) Vorrichtung und verfahren zur verteilung eines fluids in einer industriellen anlage
FR2751030A1 (fr) Regulateur de carburant pour turboreacteur
FR3090811A1 (fr) Ensemble pour le remplissage d'un réservoir d'oxygène liquide d'un sous-marin et procédé de remplissage associé
FR2938050A1 (fr) Boucle de climatisation comprenant une vanne en entree du compresseur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160621

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: COLOM, SITRA

Inventor name: AMMOURI, FOUAD

Inventor name: WOJDAS, OLGA

Inventor name: DELCLAUD, MARIE

Inventor name: THOMAS, ARTHUR

Inventor name: BEUNEKEN, OLIVIER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20161121

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BEUNEKEN, OLIVIER

Inventor name: DELCLAUD, MARIE

Inventor name: COLOM, SITRA

Inventor name: WOJDAS, OLGA

Inventor name: AMMOURI, FOUAD

Inventor name: THOMAS, ARTHUR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 865896

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013017097

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2617740

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170501

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170501

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013017097

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171010

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171010

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131010

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 865896

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231019

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231009

Year of fee payment: 11

Ref country code: SE

Payment date: 20231019

Year of fee payment: 11

Ref country code: RO

Payment date: 20231003

Year of fee payment: 11

Ref country code: IT

Payment date: 20231019

Year of fee payment: 11

Ref country code: FR

Payment date: 20231026

Year of fee payment: 11

Ref country code: DE

Payment date: 20231020

Year of fee payment: 11

Ref country code: AT

Payment date: 20231020

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231019

Year of fee payment: 11