EP2920335B1 - Inoculant alloy for thick cast-iron parts - Google Patents

Inoculant alloy for thick cast-iron parts Download PDF

Info

Publication number
EP2920335B1
EP2920335B1 EP13801650.6A EP13801650A EP2920335B1 EP 2920335 B1 EP2920335 B1 EP 2920335B1 EP 13801650 A EP13801650 A EP 13801650A EP 2920335 B1 EP2920335 B1 EP 2920335B1
Authority
EP
European Patent Office
Prior art keywords
alloy
inoculant
antimony
cast iron
rare earths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13801650.6A
Other languages
German (de)
French (fr)
Other versions
EP2920335A1 (en
Inventor
Aurélie FAY
Mourad TOUMI
Thomas Margaria
Daniel BERRUEX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferroglobe France SAS
Original Assignee
Ferropem SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferropem SAS filed Critical Ferropem SAS
Priority to PL13801650T priority Critical patent/PL2920335T3/en
Priority to SI201331674T priority patent/SI2920335T1/en
Publication of EP2920335A1 publication Critical patent/EP2920335A1/en
Application granted granted Critical
Publication of EP2920335B1 publication Critical patent/EP2920335B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/20Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/08Manufacture of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/18Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys

Definitions

  • the present invention relates to an inoculating alloy for the treatment of cast iron.
  • Cast iron is a well-known iron-carbon alloy widely used for the manufacture of mechanical parts. Cast iron is obtained by mixing the constituents of the alloy in the liquid state at a temperature between 1320 and 1450 ° C before casting in a mold and cooling the alloy obtained.
  • the carbon can adopt several physicochemical structures depending on several parameters.
  • White cast iron has the characteristic of being hard and brittle, which is undesirable for certain applications.
  • gray cast iron If carbon appears as graphite, the resulting cast iron is called gray cast iron. Gray cast iron is softer and can be worked.
  • the liquid cast iron undergoes an inoculation treatment aimed at introducing into the cast iron graphitizing components or graphitization supports commonly called germs which will promote, during the cooling of the cast iron in the mold, the appearance of graphite. rather than iron carbide.
  • the components of an inoculant are therefore elements favoring the formation of graphite and the decomposition of iron carbide during the solidification of the cast iron.
  • an inoculant can be designed to perform other functions and to this end include other components having an effect particular. Cast iron can also undergo additional prior or subsequent treatments.
  • the graphite formed may therefore be desired, depending on the properties sought, for the graphite formed to be spheroidal, vermicular or lamellar.
  • Either graphitic form can be obtained preferentially by a particular treatment of the cast iron using specific components.
  • spheroidal graphite can be favored by a so-called nodulating treatment aiming mainly at bringing to the melting of magnesium in an amount sufficient for the graphite to be able to grow so as to form round particles (spheroids or nodules).
  • nodulizing components are generally added in the form of a specific alloy (nodulizing alloy) prior to the inoculating treatment of the cast iron during a particular treatment.
  • the nodulating alloy essentially makes it possible to influence the shape of the graphite nodules, while the inoculating product aims to increase the number of these nodules and to homogenize the graphitic structures.
  • These treatments can be carried out in one or more stages and at different times during the production of the cast iron.
  • inoculants are conventionally manufactured from a ferro-silicon alloy of the FeSi 45 , FeSi 65 or FeSi 75 type with adjustment of the chemistry according to the targeted composition of the inoculant. It can also be mixtures of several alloys.
  • the inoculation efficiency of the cast iron part also depends on its thickness (or else on the speed of solidification).
  • cooling will be slower (2 to 4 hours) and will favor the formation of graphite.
  • the addition of pure antimony into the liquid metal poses problems of precision because the rate of introduction is very low (of the order of 10 to 30 g per ton of liquid pig iron).
  • the addition yield of pure antimony is between 50 and 80% and the useful amount introduced is therefore difficult to control.
  • antimony will tend to greatly increase the proportion of perlite, an undesired phase in ferritic structures.
  • the founder In the case of addition of pure antimony, the founder must also combine Rare Earths (abbreviated as TR or RE for “Rare Earths”) in order to obtain a maximum improvement in the shape of the graphite. Likewise, if the quantity of Rare Earths is insufficient, the part will present a graphite defect of type "spiky". Conversely, if the quantity of Rare Earth is too strongly dosed, the graphite defect will be rather of the “chunky” type, which occurs mainly when the raw materials used are relatively pure
  • Such an inoculant according to these documents for thin parts comprises in particular an inoculating alloy based on ferro-silicon and comprising between 0.005 and 3% by mass of Rare Earths, in particular Lanthanum, as well as between 0.005 and 3% by mass of bismuth, lead or antimony in a ratio (Bismuth + Lead + Antimony) / Rare Earth between 0.9 and 2.2; bismuth being particularly preferred, the descriptions of these documents relating only to bismuth.
  • the document WO2006 / 068487A1 describes an inoculant comprising a phase modifier component (inoculating function) associated with an agent for modifying the structure of graphite which may be antimony.
  • a phase modifier component inoculating function
  • an agent for modifying the structure of graphite which may be antimony.
  • this structural modification agent is used in mixture with the inoculating compound (ferrosilicon) and not in alloyed form.
  • Antimony is furthermore clearly mentioned as being a promoter of perlite, a phase which, as mentioned previously, is generally not desired.
  • the amount of antimony used is between 3 and 15%, which corresponds to a significant amount probably responsible for the proportion of perlite formed.
  • JP2200718A describes an inoculant consisting of a mixture of ferrosilicon, antimony, calcium silicide and rare earths. Antimony is not used in an alloyed form.
  • JP57067146A describes an alloy based on ferrosilicon comprising between 5 and 50% by mass of antimony and up to 10% of rare earths. In addition to the high proportion of antimony, this alloy is used as a perlite inhibitor, not as an inoculant.
  • the present invention provides inoculating alloys according to claim 1 and claim 2.
  • the introduction of antimony in the form of an alloy makes it possible to achieve a high yield of use of the antimony, of the order of 97 to 99%.
  • the useful quantity introduced is therefore much more precisely known.
  • the increase in yield thus saves products and simplifies the management of product additions, including for rare earths.
  • an alloy according to the invention makes it possible to limit the gaseous evolution of antimony between 0.1 and 0.2 mg / m 3 and the use of a respirator mask is no longer necessary.
  • antimony and rare earths significantly prolongs the time of antimony fading. The effect produced therefore lasts longer in the complete foundry process. It will be noted that the fading time of antimony is even greater than the fading time of bismuth in inoculating alloys for thin parts.
  • the alloy according to the present application when added in a pouch or in the oven, can thus make it possible to replace or even eliminate an additional inoculation with a jet or late.
  • the alloy according to the present application also makes it possible in particular to greatly limit or even avoid the formation of defects in “chunky” or “spiky” type graphite, but also to improve the shape of the graphite by ensuring a nodularity greater than 95% while bringing the spheroids closer to the perfect sphere.
  • the alloy according to the present application thus ensures a ferrite / perlite matrix which is homogeneous according to the different thicknesses of the part produced, which in particular improves the conditions for subsequent machining of the part.
  • the antimony to rare earths ratio is between 0.9 and 2.2.
  • the Antimony to Rare Earths ratio will be greater than 1.4, preferably 1.6, and less than 2.5; preferably less than 2.
  • the proportion by mass of antimony is greater than 0.3%, preferably greater than 0.5%, more preferably still greater than 0.8%.
  • the proportion by mass of antimony is less than 1.5%, preferably less than 1.3%.
  • the rare earths comprise lanthanum, preferably only lanthanum.
  • the proportion by mass of rare earths is greater than 0.2%, preferably greater than 0.3%.
  • the proportion by mass of rare earths is less than 1.2%, preferably less than 1%.
  • the present invention also relates to the use of the inoculant according to the invention.
  • said inoculant is introduced in the form of powder.
  • said inoculant is introduced in the form of a solid insert placed in a casting mold.
  • the use of the inoculant according to the invention relates to the manufacture of cast iron parts having parts of thickness greater than 6 mm, preferably parts of thickness greater than 20mm, and even more preferably parts of thickness greater than 50mm.
  • the inoculant according to the invention will be used in the context of an inoculation of a cast iron bath. It can also be used as a precondition for said cast iron as well as as a nodulizer if necessary.
  • the composition of an inoculating alloy according to the invention comprises: Inoculating alloy - composition 1 Element Quantity (% mass) Yes 45 - 80 It 0.5 - 4 al 0.5 - 3 Sb 0.2 - 2 Rare Earths (especially Lanthanum) 0.2 - 3 Iron Balance
  • the inoculant may also include additional elements providing specific effects depending on the desired properties. This could be more particularly the case in the context of a pre-conditioning treatment of cast iron.
  • Another inoculating alloy according to the invention has the following composition: Inoculating alloy - composition 2 Element Quantity (% mass) Yes 45 - 80 It 0.5 - 8 al 0.5 - 3 Sb 0.2 - 2 Rare Earths (especially Lanthanum) 0.2 - 3 Ba 2 - 15 mn 2 - 6 Zr 2 - 6 Iron Balance
  • the particle size of the inoculant according to the invention may be adapted according to its methods of addition.
  • the inoculating alloy can also be successfully added as an inoculant before filling the casting mold or in bag or late inoculation, after adjusting the chemistry of the alloy (in particular Ba between 1.5 and 5% mass and Ca between 0.5 and 2% mass).
  • the composition of the alloy could be as follows: Nodulating alloy with inoculating effect - composition 3 Element Quantity (% mass) Yes 30 - 60 It 0.2 - 5 al 0.2 - 3 Sb 0.1 - 2 Rare Earths (especially Lanthanum) 0.1 - 3 mg 3 - 12 Iron Balance
  • the granulometry of the nodulizer (in particular with inoculating function) will be adapted according to the size of the treatment bags. For example, for pockets of 100 to 500 kg of cast iron, we will prefer a particle size between approximately 0.4 and approximately 2 mm, or even up to 7 mm. For pockets of 500 to 1000kg of cast iron, we will prefer a particle size between approximately 2 and approximately 7mm, or between approximately 10 and approximately 30mm. For pockets of more than 1000kg of cast iron, we will prefer a particle size between about 10 and about 30mm.
  • Example 1 (outside the invention): Foundry A - 8 mm thick part.
  • liquid pig iron was treated by adding 30 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.
  • the cast iron was then subjected to a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising a third of an FeSiMg alloy comprising 2% of rare earths and two thirds of a FeSiMg alloy comprising no rare earths.
  • the cast iron underwent an inoculation treatment by adding 0.1% by mass of a FeSiMnZr alloy and 0.1% of a FeSiAl alloy to the casting basin, the inoculating alloys being added in the form of insert inoculating in the mold.
  • the step of adding pure antimony was eliminated and the nodulating treatment was simplified by using only the nodulating alloy FeSiMg not containing rare earths.
  • Foundry A treated with an inoculant according to the present application has shown an increase in elongation in tension on test specimens for a grade EN-GJS-400-15.
  • Example 2 (outside the invention): Foundry B - 200 mm thick part.
  • liquid pig iron was treated by adding 20 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.
  • the cast iron was then subjected to a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising 1% by mass of rare earths and introduced into the cast iron in the form of a cored wire.
  • the cast iron underwent an inoculation treatment by adding 0.15% by mass of a FeSiBiTR alloy to the casting basin.
  • the step of adding pure antimony was eliminated and the nodulating treatment was simplified by using only a nodulating alloy FeSiMg not containing rare earths (also introduced in the form of cored wire).
  • Example 3 foundry C - thin parts (thickness less than 6mm).
  • liquid pig iron was treated by adding 25 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.
  • the cast iron was then subjected to a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising 6.7% by mass of magnesium as well as 1.2% of calcium and 0.98% of rare earths.
  • the cast iron underwent a late inoculation treatment by adding 0.12% by mass of an FeSiMnZrBa alloy having a particle size between 0.2 and 5 mm.
  • a nodulating alloy with inoculating function according to composition 3 mentioned above was used.
  • the step of adding pure antimony has been omitted.
  • the nodulating treatment was carried out using an alloy of the FeSiMg type according to composition 3 of the present application and comprising 6.4% by mass of magnesium as well as 1.3% of calcium, 0.6% of antimony and 1.2% rare earths.
  • a complementary inoculation was carried out according to a late inoculation method with 0.09% of an FeSiAlCa alloy and 0.009% of an FeSiMnZrBa alloy.
  • the additional inoculation could be done using a more economical inoculant of the FeSiAlCa type.
  • Example 4 foundry D - massive parts.
  • liquid pig iron was treated by adding 30 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.
  • the cast iron was then subjected to a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising 9.1% by mass of magnesium as well as 1.4% of calcium and 1.1% of rare earths.
  • the cast iron underwent an inoculation treatment by adding an insert of 10 kg per tonne of cast iron of an inoculating alloy FeSiMnZr.
  • the step of adding pure antimony has been omitted.
  • the nodulating treatment was carried out using the same alloy as for the reference, namely using a nodulating alloy of the FeSiMg type comprising 9.1% by mass of magnesium as well as 1.4% of calcium and 1.1%. of rare earths.
  • Cast iron D makes it possible to develop a shade of dark EN-GJS-400-18-LT used in particular in the wind power sector.
  • the use of the inoculant D2 made it possible to significantly increase the impact resistance.
  • Example 5 foundry E - thin parts and nodulating treatment.
  • the liquid pig iron underwent a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising 9.1% by mass of magnesium as well as 0.8% of bismuth and 0.7% of rare earths.
  • the cast iron was then subjected to an inoculation treatment according to a late inoculation method by adding 0.18% of an FeSiMnZr alloy having a particle size between 0.2 and 5 mm.
  • a nodulating alloy according to composition 3 mentioned above was used.
  • the alloy used is an FeSiMg type alloy comprising 9.1% magnesium as well as 0.75% antimony and 0.5% rare earths.
  • the cast iron was then subjected to an additional inoculation treatment according to a late inoculation method by adding 0.17% of an FeSiMnZr alloy having a particle size between 0.2 and 5 mm.
  • Example 6 (outside the invention): Foundry D on massive parts.
  • the foundry reference (F1) and the test (F2) using an inoculating alloy were carried out in accordance with Example 4 and the foundry D by inoculating massive parts.
  • Example 7 (outside the invention): Foundry D on massive parts.
  • the foundry reference (G1) and the test (G2) using an inoculating alloy were carried out in accordance with Example 4 and the foundry D by inoculating massive parts.
  • Example 8 foundry H - part 150 mm thick.
  • liquid pig iron was treated by adding 15 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.
  • the cast iron was then subjected to a nodulization treatment using a nodulating cored wire (diameter 13 mm, 32% of Mg, 1.2% of TR, 230 g / m of powder)
  • the cast iron underwent a late inoculation treatment by adding 0.15% by mass of a FeSiMnZr alloy to the casting jet.
  • the step of adding pure antimony was eliminated and the nodulating treatment was simplified by using only a nodulating alloy FeSiMg not containing rare earths (also introduced in the form of cored wire).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Hard Magnetic Materials (AREA)

Description

La présente invention se rapporte à un alliage inoculant pour le traitement de la fonte.The present invention relates to an inoculating alloy for the treatment of cast iron.

La fonte est un alliage fer-carbone bien connu et largement utilisé pour la fabrication de pièces mécaniques. La fonte est obtenue par mélange des constituants de l'alliage à l'état liquide à une température comprise entre 1320 et 1450 °C avant coulée dans un moule et refroidissement de l'alliage obtenu.Cast iron is a well-known iron-carbon alloy widely used for the manufacture of mechanical parts. Cast iron is obtained by mixing the constituents of the alloy in the liquid state at a temperature between 1320 and 1450 ° C before casting in a mold and cooling the alloy obtained.

Lors de son refroidissement, le carbone peut adopter plusieurs structures physico-chimiques dépendant de plusieurs paramètres.During its cooling, the carbon can adopt several physicochemical structures depending on several parameters.

Lorsque le carbone s'associe au fer et forme du carbure de fer Fe3C (également appelé cémentite), la fonte résultante est appelée fonte blanche. La fonte blanche présente la caractéristique d'être dure et cassante, ce qui n'est pas souhaitable pour certaines applications.When carbon combines with iron and forms iron carbide Fe 3 C (also called cementite), the resulting cast iron is called white cast iron. White cast iron has the characteristic of being hard and brittle, which is undesirable for certain applications.

Si le carbone apparaît sous forme de graphite, la fonte résultante est appelée fonte grise. La fonte grise est plus tendre et peut être travaillée.If carbon appears as graphite, the resulting cast iron is called gray cast iron. Gray cast iron is softer and can be worked.

Pour obtenir des pièces en fonte possédant de bonnes propriétés mécaniques, il faut donc obtenir une structure de la fonte comprenant le maximum de carbone sous forme graphite et limiter le plus possible la formation de ces carbures de fer qui durcissent et fragilisent l'alliage.To obtain cast iron parts having good mechanical properties, it is therefore necessary to obtain a structure of the cast iron comprising the maximum of carbon in graphite form and to limit as much as possible the formation of these iron carbides which harden and weaken the alloy.

En l'absence de tout traitement particulier d'inoculation, le carbone a toutefois tendance à s'associer au fer pour former du carbure de fer. Il est donc nécessaire de traiter la fonte à l'état liquide de manière à modifier les paramètres d'association du carbone et obtenir la structure souhaitée.In the absence of any particular inoculation treatment, however, carbon tends to associate with iron to form iron carbide. It is therefore necessary to treat the cast iron in the liquid state so as to modify the carbon association parameters and obtain the desired structure.

A cette fin, la fonte liquide subit un traitement d'inoculation visant à introduire dans la fonte des composants graphitisants ou des supports à la graphitisation couramment appelés germes qui vont favoriser, lors du refroidissement de la fonte dans le moule, l'apparition de graphite plutôt que de carbure de fer.To this end, the liquid cast iron undergoes an inoculation treatment aimed at introducing into the cast iron graphitizing components or graphitization supports commonly called germs which will promote, during the cooling of the cast iron in the mold, the appearance of graphite. rather than iron carbide.

De manière générale, les composants d'un inoculant sont donc des éléments favorisant la formation de graphite et la décomposition du carbure de fer pendant la solidification de la fonte. On peut citer, à titre d'exemple, le carbone, le silicium, le calcium, l'aluminium,...In general, the components of an inoculant are therefore elements favoring the formation of graphite and the decomposition of iron carbide during the solidification of the cast iron. By way of example, mention may be made of carbon, silicon, calcium, aluminum, etc.

Bien évidemment, un inoculant peut être conçu pour remplir d'autres fonctions et comprendre à cette fin d'autres composants présentant un effet particulier. La fonte peut également subir des traitements additionnels préalables ou subséquents.Obviously, an inoculant can be designed to perform other functions and to this end include other components having an effect particular. Cast iron can also undergo additional prior or subsequent treatments.

On peut ainsi notamment souhaiter, selon les propriétés recherchées, que le graphite formé soit sphéroïdal, vermiculaire ou lamellaire.In particular, it may therefore be desired, depending on the properties sought, for the graphite formed to be spheroidal, vermicular or lamellar.

L'une ou l'autre forme graphitique pourra être obtenue de manière préférentielle par un traitement particulier de la fonte à l'aide de composants spécifiques.Either graphitic form can be obtained preferentially by a particular treatment of the cast iron using specific components.

Ainsi, par exemple la formation de graphite sphéroïdal peut être favorisée par un traitement dit nodulisant visant principalement à apporter à la fonte du magnésium en quantité suffisante pour que le graphite puisse croître de manière à former des particules rondes (sphéroïdes ou nodules).Thus, for example the formation of spheroidal graphite can be favored by a so-called nodulating treatment aiming mainly at bringing to the melting of magnesium in an amount sufficient for the graphite to be able to grow so as to form round particles (spheroids or nodules).

Ces composants nodulisants sont généralement ajoutés sous forme d'alliage spécifique (alliage nodulisant) préalablement au traitement inoculant de la fonte au cours d'un traitement particulier.These nodulizing components are generally added in the form of a specific alloy (nodulizing alloy) prior to the inoculating treatment of the cast iron during a particular treatment.

Ainsi, l'alliage nodulisant permet essentiellement d'influer sur la forme des nodules de graphite, tandis que le produit inoculant vise à augmenter le nombre de ces nodules et homogénéiser les structures graphitiques.Thus, the nodulating alloy essentially makes it possible to influence the shape of the graphite nodules, while the inoculating product aims to increase the number of these nodules and to homogenize the graphitic structures.

On peut encore citer l'addition de produits désulfurant, ou de produits permettant de traiter spécifiquement certains défauts de la fonte en fonction de la composition initiale du bain de fonte liquide, tels que les micro-retassures et les piqûres, susceptibles d'apparaître lors du refroidissement.Mention may also be made of the addition of desulphurizing products, or of products making it possible to specifically treat certain defects in the melting process as a function of the initial composition of the liquid melting bath, such as micro-shrinkage and pitting, which may appear during cooling.

Ces traitements peuvent s'effectuer en une ou plusieurs fois et à différents moments de la fabrication de la fonte.These treatments can be carried out in one or more stages and at different times during the production of the cast iron.

La plupart des inoculants sont classiquement fabriqués à partir d'un alliage ferro-silicium de type FeSi45, FeSi65 ou FeSi75 avec ajustement de la chimie suivant la composition visée de l'inoculant. Il peut également s'agir de mélanges de plusieurs alliages.Most inoculants are conventionally manufactured from a ferro-silicon alloy of the FeSi 45 , FeSi 65 or FeSi 75 type with adjustment of the chemistry according to the targeted composition of the inoculant. It can also be mixtures of several alloys.

Il convient de noter que l'efficacité d'inoculation de la pièce en fonte dépend également de son épaisseur (ou bien de la vitesse de solidification).It should be noted that the inoculation efficiency of the cast iron part also depends on its thickness (or else on the speed of solidification).

Dans les zones de faibles épaisseurs, refroidissant plus vite, on notera un risque plus élevé de formation de carbures.In areas of small thickness, cooling faster, there is a higher risk of carbide formation.

Inversement dans les zones de plus fortes épaisseurs, le refroidissement sera plus lent (2 à 4 heures) et favorisera la formation de graphite.Conversely in areas of greater thickness, cooling will be slower (2 to 4 hours) and will favor the formation of graphite.

Il s'ensuit que les pièces avec des zones d'épaisseurs différentes pourront avoir des structures physico-chimiques différentes d'une zone à l'autre, ce qui n'est pas souhaitable.It follows that the parts with zones of different thicknesses may have different physicochemical structures from one zone to another, which is not desirable.

En outre, le contrôle de la germination dans les zones de forte épaisseur reste difficile et peut conduire à l'obtention d'une structure non-uniforme.In addition, the control of germination in very thick areas remains difficult and can lead to obtaining a non-uniform structure.

Pour les pièces de fortes épaisseurs, quand le procédé d'inoculation n'est pas maîtrisé, la formation de graphite dégénéré et/ou du graphite « chunky » peut réduire les propriétés mécaniques de la fonte. Pour résoudre ces défauts, le fondeur procède généralement à l'ajout d'Antimoine pur dans le métal liquide.For very thick pieces, when the inoculation process is not mastered, the formation of degenerate graphite and / or "chunky" graphite can reduce the mechanical properties of cast iron. To resolve these defects, the founder generally proceeds to the addition of pure Antimony in the liquid metal.

L'ajout d'antimoine pur dans le métal liquide pose des problèmes de précision car le taux d'introduction est très faible (de l'ordre de 10 à 30g par tonne de fonte liquide). Le rendement d'addition de l'antimoine pur est compris entre 50 et 80% et la quantité introduite utile est donc difficilement contrôlable.The addition of pure antimony into the liquid metal poses problems of precision because the rate of introduction is very low (of the order of 10 to 30 g per ton of liquid pig iron). The addition yield of pure antimony is between 50 and 80% and the useful amount introduced is therefore difficult to control.

Si la quantité n'est pas suffisante, du graphite dégradé peut se former dans la structure.If the quantity is not sufficient, degraded graphite can form in the structure.

Réciproquement, si la quantité introduite dépasse l'objectif, l'antimoine va avoir tendance à faire croître fortement la proportion de perlite, phase non souhaitée dans les structures ferritiques.Conversely, if the quantity introduced exceeds the objective, antimony will tend to greatly increase the proportion of perlite, an undesired phase in ferritic structures.

Dans le cas d'ajout d'antimoine pur, le fondeur doit en outre associer des Terres Rares (abrégées en TR ou RE pour « Rare Earths ») afin d'obtenir une amélioration maximale de la forme du graphite. Pareillement, si la quantité de Terres Rares est insuffisante, la pièce présentera un défaut de graphite de type « spiky ». Réciproquement, si la quantité de Terres Rares est trop fortement dosée, le défaut de graphite sera plutôt de type « chunky », ce qui se produit essentiellement lorsque les matières premières utilisées sont relativement puresIn the case of addition of pure antimony, the founder must also combine Rare Earths (abbreviated as TR or RE for “Rare Earths”) in order to obtain a maximum improvement in the shape of the graphite. Likewise, if the quantity of Rare Earths is insufficient, the part will present a graphite defect of type "spiky". Conversely, if the quantity of Rare Earth is too strongly dosed, the graphite defect will be rather of the “chunky” type, which occurs mainly when the raw materials used are relatively pure

Ces défauts de graphite, de type « spiky » ou « chunky » dégradent les propriétés mécaniques de la fonte, et notamment la résistance à la traction et la résistance au choc de la pièce formée.These graphite defects, of the “spiky” or “chunky” type, degrade the mechanical properties of the cast iron, and in particular the tensile strength and the impact resistance of the formed part.

L'introduction d'antimoine pur dans la fonte liquide provoque en outre sa vaporisation et entraîne ainsi un fort dégagement gazeux. Il a été mesuré qu'avec l'ajout d'antimoine pur, le seuil de dégagement d'antimoine dans l'environnement de travail était supérieur à 0,5 mg/m3, valeur limite d'exposition (VLE fixée par la réglementation). Les opérateurs doivent donc travailler avec un respirateur contre les particules de type N95 ou plus.The introduction of pure antimony into the liquid cast iron furthermore causes it to vaporize and thus gives rise to a large gassing. It was measured that with the addition of pure antimony, the threshold for release of antimony in the working environment was greater than 0.5 mg / m 3 , exposure limit value (ELV set by regulation ). Operators must therefore work with a respirator against particles of type N95 or more.

Le traitement des pièces de faibles épaisseurs a déjà fait l'objet de développements d'inoculants spécifiques. Les documents FR2511044A1 , FR2855186A1 et EP0816522A1 décrivent un tel inoculant pour pièces minces.The treatment of thin parts has already been the subject of specific inoculant development. The documents FR2511044A1 , FR2855186A1 and EP0816522A1 describe such an inoculant for thin parts.

Un tel inoculant selon ces documents pour pièces minces comprend notamment un alliage inoculant à base de ferro-silicium et comprenant entre 0,005 et 3% en masse de Terres Rares, notamment du Lanthane, ainsi qu'entre 0,005 et 3% en masse de bismuth, plomb ou antimoine dans un ratio (Bismuth + Plomb + Antimoine) / Terres Rares compris entre 0,9 et 2,2 ; le bismuth étant particulièrement préféré, les descriptions de ces documents ne portant que sur le bismuth.Such an inoculant according to these documents for thin parts comprises in particular an inoculating alloy based on ferro-silicon and comprising between 0.005 and 3% by mass of Rare Earths, in particular Lanthanum, as well as between 0.005 and 3% by mass of bismuth, lead or antimony in a ratio (Bismuth + Lead + Antimony) / Rare Earth between 0.9 and 2.2; bismuth being particularly preferred, the descriptions of these documents relating only to bismuth.

Il convient de noter que ces documents ne divulgue l'utilisation d'antimoine qu'à titre général mais ne contienne aucun exemple spécifique ni aucune valeur particulière relatif à cet élément.It should be noted that these documents only disclose the use of antimony in a general way but do not contain any specific example or any particular value relating to this element.

Parmi les autres documents mentionnant l'utilisation d'antimoine, on peut citer les documents suivants.Other documents mentioning the use of antimony include the following documents.

Le document WO2006/068487A1 décrit un inoculant comprenant un composant modificateur de phase (fonction inoculante) associé à un agent de modification de la structure du graphite qui peut être de l'antimoine. Il convient de noter que cet agent de modification de structure est utilisé en mélange avec le composé inoculant (ferrosilicium) et non sous forme alliée. L'antimoine est en outre clairement mentionné comme étant un promoteur de perlite, phase qui, comme mentionnée précédemment, n'est généralement pas souhaitée. La quantité d'antimoine utilisée est comprise entre 3 et 15%, ce qui correspond à une quantité importante probablement à l'origine de la proportion de perlite formée.The document WO2006 / 068487A1 describes an inoculant comprising a phase modifier component (inoculating function) associated with an agent for modifying the structure of graphite which may be antimony. It should be noted that this structural modification agent is used in mixture with the inoculating compound (ferrosilicon) and not in alloyed form. Antimony is furthermore clearly mentioned as being a promoter of perlite, a phase which, as mentioned previously, is generally not desired. The amount of antimony used is between 3 and 15%, which corresponds to a significant amount probably responsible for the proportion of perlite formed.

Le document JP2200718A décrit un inoculant consistant en un mélange de ferrosilicium, antimoine, siliciure de calcium et terres rares. L'antimoine n'est pas utilisé sous forme alliée.The document JP2200718A describes an inoculant consisting of a mixture of ferrosilicon, antimony, calcium silicide and rare earths. Antimony is not used in an alloyed form.

Le document JP57067146A décrit un alliage à base de ferrosilicium comprenant entre 5 et 50% en masse d'antimoine et jusqu'à 10% de terres rares. Outre la proportion élevée d'antimoine, cet alliage est utilisé comme inhibiteur de perlite, et non comme inoculant.The document JP57067146A describes an alloy based on ferrosilicon comprising between 5 and 50% by mass of antimony and up to 10% of rare earths. In addition to the high proportion of antimony, this alloy is used as a perlite inhibitor, not as an inoculant.

Il existe également plusieurs articles et documents traitant d'une fonction nodulisante (forme du graphite) de l'antimoine, ce qui n'est pas le but fondamentalement recherché et ne résout pas le problème de l'inoculation (nombre et qualité des nodules). En outre, il s'agit fréquemment d'une utilisation de l'antimoine sous une forme mélangée et non alliée.There are also several articles and documents dealing with a nodulizing function (form of graphite) of antimony, which is not the fundamentally desired goal and does not solve the problem of inoculation. (number and quality of nodules). In addition, it is frequently a use of antimony in a mixed and unalloyed form.

Il existe donc un besoin pour un alliage inoculant permettant d'améliorer le traitement des pièces épaisses.There is therefore a need for an inoculating alloy making it possible to improve the treatment of thick parts.

Pour ce faire, la présente invention propose des alliages inoculants selon la revendication 1 et la revendication 2.To do this, the present invention provides inoculating alloys according to claim 1 and claim 2.

Ainsi, il a en effet été constaté de manière inattendue que l'antimoine allié à des terres rares dans un alliage à base de ferrosilicium selon les proportions revendiquées permettait une inoculation efficace, et avec stabilisation des sphéroïdes, de pièces épaisses sans les inconvénients de l'antimoine pur évoqués précédemment.Thus, it has in fact been unexpectedly found that antimony combined with rare earths in a ferrosilicon-based alloy in the claimed proportions allows effective inoculation, and with stabilization of the spheroids, of thick pieces without the drawbacks of l 'pure antimony mentioned above.

Notamment, l'introduction d'antimoine sous forme d'alliage permet d'atteindre un rendement élevé d'utilisation de l'antimoine, de l'ordre de 97 à 99%. La quantité utile introduite est donc beaucoup plus précisément connue.In particular, the introduction of antimony in the form of an alloy makes it possible to achieve a high yield of use of the antimony, of the order of 97 to 99%. The useful quantity introduced is therefore much more precisely known.

L'augmentation du rendement permet ainsi une économie des produits et simplifie la gestion des ajouts de produits, ce y compris pour les terres rares.The increase in yield thus saves products and simplifies the management of product additions, including for rare earths.

Grâce à cette augmentation de rendement et à la réduction simultanée des émissions gazeuses dans l'atmosphère, les conditions de travail sont également améliorées pour les opérateurs responsables des ajouts.Thanks to this increase in efficiency and the simultaneous reduction of gaseous emissions into the atmosphere, the working conditions are also improved for the operators responsible for the additions.

L'utilisation d'un alliage selon l'invention permet de limiter le dégagement gazeux d'antimoine entre 0,1 et 0,2 mg/m3 et l'utilisation d'un masque respirateur n'est plus nécessaire.The use of an alloy according to the invention makes it possible to limit the gaseous evolution of antimony between 0.1 and 0.2 mg / m 3 and the use of a respirator mask is no longer necessary.

On notera également que l'association antimoine / terres rares allonge le temps d'évanouissement de l'antimoine de manière importante. L'effet produit dure donc plus longtemps dans le processus de fonderie complet. On notera que le temps d'évanouissement de l'antimoine est même supérieur au temps d'évanouissement du bismuth dans les alliages inoculants pour pièces minces.It will also be noted that the combination of antimony and rare earths significantly prolongs the time of antimony fading. The effect produced therefore lasts longer in the complete foundry process. It will be noted that the fading time of antimony is even greater than the fading time of bismuth in inoculating alloys for thin parts.

L'alliage selon la présente demande, lorsqu'ajouté en poche ou au four, peut permettre ainsi de remplacer voire de supprimer une inoculation additionnelle au jet ou tardive.The alloy according to the present application, when added in a pouch or in the oven, can thus make it possible to replace or even eliminate an additional inoculation with a jet or late.

L'alliage selon la présente demande permet également particulièrement de limiter grandement voire d'éviter la formation de défauts de graphite de type « chunky » ou « spiky », mais également d'améliorer la forme du graphite en assurant une nodularité supérieure à 95% tout en rapprochant les sphéroïdes de la sphère parfaite.The alloy according to the present application also makes it possible in particular to greatly limit or even avoid the formation of defects in “chunky” or “spiky” type graphite, but also to improve the shape of the graphite by ensuring a nodularity greater than 95% while bringing the spheroids closer to the perfect sphere.

L'alliage selon la présente demande permet d'assurer ainsi une matrice ferrite/perlite homogène suivant les différentes épaisseurs de la pièce fabriquée, ce qui améliore notamment les conditions d'usinage ultérieur de la pièce.The alloy according to the present application thus ensures a ferrite / perlite matrix which is homogeneous according to the different thicknesses of the part produced, which in particular improves the conditions for subsequent machining of the part.

Selon l'invention, le ratio antimoine sur terres rares est compris entre 0,9 et 2,2. De manière préférentielle, le rapport Antimoine sur Terres Rares sera supérieur à 1,4, de préférence à 1,6, et inférieur à 2,5 ; de préférence inférieur à 2.According to the invention, the antimony to rare earths ratio is between 0.9 and 2.2. Preferably, the Antimony to Rare Earths ratio will be greater than 1.4, preferably 1.6, and less than 2.5; preferably less than 2.

De manière préférentielle, la proportion en masse d'antimoine est supérieure à 0,3%, préférentiellement supérieure à 0,5%, de préférence encore supérieure à 0,8%.Preferably, the proportion by mass of antimony is greater than 0.3%, preferably greater than 0.5%, more preferably still greater than 0.8%.

De manière préférentielle, la proportion en masse d'antimoine est inférieure à 1,5%, de préférence inférieure à 1,3%.Preferably, the proportion by mass of antimony is less than 1.5%, preferably less than 1.3%.

Avantageusement, les terres rares comprennent du Lanthane, de préférence uniquement du lanthane.Advantageously, the rare earths comprise lanthanum, preferably only lanthanum.

De manière préférentielle, la proportion en masse de terres rares est supérieure à 0,2%, de préférence supérieure à 0,3%.Preferably, the proportion by mass of rare earths is greater than 0.2%, preferably greater than 0.3%.

De manière préférentielle, la proportion en masse de terres rares est inférieure à 1,2%, de préférence inférieure à 1%.Preferably, the proportion by mass of rare earths is less than 1.2%, preferably less than 1%.

La présente invention se rapporte également à l'utilisation de l'inoculant selon l'invention.The present invention also relates to the use of the inoculant according to the invention.

Selon une première variante d'utilisation, ledit inoculant est introduit sous forme de poudre.According to a first variant of use, said inoculant is introduced in the form of powder.

Il convient de noter à ce titre que les produits décrits documents FR2511044A1 et EP0816522A1 avaient l'inconvénient de présenter une dégradation de leur granulométrie dans le temps lors du stockage de l'inoculant. L'inoculant selon l'invention a montré une grande stabilité dans la granulométrie des grains dans certaines conditions.As such, it should be noted that the products described in documents FR2511044A1 and EP0816522A1 had the disadvantage of having a degradation of their particle size over time during storage of the inoculant. The inoculant according to the invention showed great stability in the particle size of the grains under certain conditions.

Selon une deuxième variante de réalisation, ledit inoculant est introduit sous la forme d'un insert solide placé dans un moule de coulée.According to a second alternative embodiment, said inoculant is introduced in the form of a solid insert placed in a casting mold.

L'utilisation de l'inoculant selon l'invention vise la fabrication de pièces en fonte présentant des parties d'épaisseurs supérieures à 6mm, de préférence des parties d'épaisseurs supérieures à 20mm, et de manière encore plus préférentielle des parties d'épaisseurs supérieures à 50mm.The use of the inoculant according to the invention relates to the manufacture of cast iron parts having parts of thickness greater than 6 mm, preferably parts of thickness greater than 20mm, and even more preferably parts of thickness greater than 50mm.

La présente invention sera mieux comprise à la lumière de la description et des exemples qui suivent.The present invention will be better understood in the light of the description and the examples which follow.

L'inoculant selon l'invention sera utilisé dans le cadre d'une inoculation d'un bain de fonte. Il pourra également être utilisé en pré-conditionnement de ladite fonte ainsi qu'en tant que nodulisant le cas échéant.The inoculant according to the invention will be used in the context of an inoculation of a cast iron bath. It can also be used as a precondition for said cast iron as well as as a nodulizer if necessary.

Dans le cadre d'une utilisation typique d'un inoculant, la composition d'un alliage inoculant selon l'invention comprend : Alliage inoculant - composition 1 Elément Quantité (% masse) Si 45 - 80 Ca 0,5 - 4 Al 0,5 - 3 Sb 0,2 - 2 Terres Rares (notamment Lanthane) 0,2 - 3 Fer Solde In the context of a typical use of an inoculant, the composition of an inoculating alloy according to the invention comprises: Inoculating alloy - composition 1 Element Quantity (% mass) Yes 45 - 80 It 0.5 - 4 al 0.5 - 3 Sb 0.2 - 2 Rare Earths (especially Lanthanum) 0.2 - 3 Iron Balance

Bien évidemment, l'inoculant pourra également comprendre des éléments additionnels apportant des effets particuliers en fonction des propriétés recherchées. Cela pourra être plus particulièrement le cas dans le cadre d'un traitement de pré-conditionnement de la fonte.Obviously, the inoculant may also include additional elements providing specific effects depending on the desired properties. This could be more particularly the case in the context of a pre-conditioning treatment of cast iron.

Un autre alliage inoculant selon l'invention présente la composition suivante : Alliage inoculant - composition 2 Elément Quantité (% masse) Si 45 - 80 Ca 0.5 - 8 Al 0.5 - 3 Sb 0.2 - 2 Terres Rares (notamment Lanthane) 0.2 - 3 Ba 2 - 15 Mn 2 - 6 Zr 2 - 6 Fer Solde Another inoculating alloy according to the invention has the following composition: Inoculating alloy - composition 2 Element Quantity (% mass) Yes 45 - 80 It 0.5 - 8 al 0.5 - 3 Sb 0.2 - 2 Rare Earths (especially Lanthanum) 0.2 - 3 Ba 2 - 15 mn 2 - 6 Zr 2 - 6 Iron Balance

Un traitement d'inoculation consistera typiquement en l'ajout de 0,05 (préférentiellement au moins 0,1%) à 0,8% en masse de l'inoculant au bain de fonte, notamment dans les conditions suivantes données à titre d'exmples :

  • en fin de fusion au four à induction
  • avant un traitement nodulisant au magnésium, et plus particulièrement entre 1 et 5 minutes avant ce traitement
  • en couverture d'un traitement ultérieur de type « Sandwich » ou « Tundish-cover ».
  • dans un four de coulée
  • lors d'un transvasement entre deux poches (tranfert et coulée, notamment).
  • l'inoculant de préconditionnement pourra notamment être ajouté sous la forme d'un fil fourré.
An inoculation treatment will typically consist of adding 0.05 (preferably at least 0.1%) to 0.8% by mass of the inoculant in the iron bath, in particular under the following conditions given as examples:
  • at the end of melting in the induction furnace
  • before a magnesium nodulating treatment, and more particularly between 1 and 5 minutes before this treatment
  • on the cover of a subsequent “Sandwich” or “Tundish-cover” treatment.
  • in a casting furnace
  • during a transfer between two pockets (transfer and pouring, in particular).
  • the preconditioning inoculant could in particular be added in the form of a cored wire.

La granulométrie de l'inoculant selon l'invention pourra être adaptée en fonction de ses modalités d'ajout.The particle size of the inoculant according to the invention may be adapted according to its methods of addition.

A titre d'exemples, on peut citer :

  • Ajout en four à induction : granulométrie jusqu'à environ 40 mm,
  • Ajout entre le four à induction et la poche de coulée : granulométrie comprise entre environ 10 et environ 30 mm.
  • Ajout en bassin de coulée : granulométrie comprise entre environ 0,4 et environ 2 mm.
  • Ajout avant coulée dans le moule : granulométrie comprise entre environ 0,2 et environ 0,5 à 2 mm.
  • Ajout sous forme d'insert inoculant placé dans le moule de coulée : inserts de 20g, 40g, 60g, 80g, 300g, 800g, 2kg, 5kg, 10kg, 20kg et 50kg, par exemple.
As examples, we can cite:
  • Addition in induction furnace: particle size up to approximately 40 mm,
  • Addition between the induction furnace and the ladle: particle size between approximately 10 and approximately 30 mm.
  • Addition in pouring basin: particle size between approximately 0.4 and approximately 2 mm.
  • Addition before pouring into the mold: particle size between approximately 0.2 and approximately 0.5 to 2 mm.
  • Addition in the form of an inoculating insert placed in the casting mold: inserts of 20g, 40g, 60g, 80g, 300g, 800g, 2kg, 5kg, 10kg, 20kg and 50kg, for example.

L'alliage inoculant pourra également être ajouté avec succès en tant qu'inoculant avant remplissage du moule de coulée ou en inoculation en poche ou tardive, après ajustement de la chimie de l'alliage (notamment Ba entre 1,5 et 5% masse et Ca entre 0,5 et 2% masse).The inoculating alloy can also be successfully added as an inoculant before filling the casting mold or in bag or late inoculation, after adjusting the chemistry of the alloy (in particular Ba between 1.5 and 5% mass and Ca between 0.5 and 2% mass).

En fonction de l'état métallurgique de la fonte après traitement avec l'alliage inoculant selon la présente demande, il est possible de supprimer l'étape post-inoculation. En effet, le maintien prolongé de l'effet d'inoculation dans le temps avec l'action de l'antimoine permet de réduire de manière importante les traitements d'inoculations tardives voire permettre de les supprimer. Avec par exemple l'addition d'un inoculant contenant le couple Bi / TR, l'effet d'inoculation perd 30 % sur les 4 premières minutes. Ainsi l'ajout d'un inoculant en phase tardive devient une obligation pour récupérer 100 % de l'effet d'inoculation à atteindre. Ce n'est pas le cas avec un inoculant selon la présente demande.Depending on the metallurgical state of the cast iron after treatment with the inoculating alloy according to the present application, it is possible to omit the post-inoculation step. Indeed, the prolonged maintenance of the inoculation effect over time with the action of antimony makes it possible to significantly reduce the treatments for late inoculations or even allow them to be eliminated. With, for example, the addition of an inoculant containing the Bi / TR pair, the inoculation effect loses 30% over the first 4 minutes. Thus the addition of a late phase inoculant becomes an obligation to recover 100% of the inoculation effect to be achieved. This is not the case with an inoculant according to the present application.

Dans le cadre d'une utilisation en tant que nodulisant avec fonction inoculante additionnelle en dehors du cadre de l'invention, la composition de l'alliage pourrait être la suivante : Alliage nodulisant avec effet inoculant - composition 3 Elément Quantité (% masse) Si 30 - 60 Ca 0,2 - 5 Al 0,2 - 3 Sb 0,1 - 2 Terres Rares (notamment Lanthane) 0,1 - 3 Mg 3 - 12 Fer Solde In the context of use as a nodulant with additional inoculating function outside the scope of the invention, the composition of the alloy could be as follows: Nodulating alloy with inoculating effect - composition 3 Element Quantity (% mass) Yes 30 - 60 It 0.2 - 5 al 0.2 - 3 Sb 0.1 - 2 Rare Earths (especially Lanthanum) 0.1 - 3 mg 3 - 12 Iron Balance

La granulométrie du nodulisant (notamment avec fonction inoculante) sera adaptée en fonction de la taille des poches de traitement. Par exemple, pour des poches de 100 à 500kg de fonte, on privilégiera une granulométrie comprise entre environ 0,4 et environ 2mm, voire jusqu'à 7mm. Pour des poches de 500 à 1000kg de fonte, on privilégiera une granulométrie comprise entre environ 2 et environ 7mm, ou entre environ 10 et environ 30mm. Pour des poches de plus de 1000kg de fonte, on privilégiera une granulométrie comprise entre environ 10 et environ 30mm.The granulometry of the nodulizer (in particular with inoculating function) will be adapted according to the size of the treatment bags. For example, for pockets of 100 to 500 kg of cast iron, we will prefer a particle size between approximately 0.4 and approximately 2 mm, or even up to 7 mm. For pockets of 500 to 1000kg of cast iron, we will prefer a particle size between approximately 2 and approximately 7mm, or between approximately 10 and approximately 30mm. For pockets of more than 1000kg of cast iron, we will prefer a particle size between about 10 and about 30mm.

Des exemples d'utilisation vont maintenant être donnés.Examples of use will now be given.

Exemple 1 (hors invention) : fonderie A - pièce d'épaisseur 8 mm.Example 1 (outside the invention): Foundry A - 8 mm thick part. Référence de fonderie (A1) Foundry reference (A1 )

Conformément à l'art antérieur, la fonte liquide a été traitée par ajout dans le four à induction d'antimoine pur dans une proportion de 30g d'antimoine pour une tonne de fonte liquide.In accordance with the prior art, the liquid pig iron was treated by adding 30 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.

La fonte a ensuite subi un traitement de nodulisation à l'aide d'un alliage nodulisant de type FeSiMg comprenant un tiers d'un alliage FeSiMg comprenant 2% de terres rares et deux tiers d'un alliage FeSiMg ne comprenant pas de terres rares.The cast iron was then subjected to a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising a third of an FeSiMg alloy comprising 2% of rare earths and two thirds of a FeSiMg alloy comprising no rare earths.

La fonte a enfin subi un traitement d'inoculation par ajout dans le bassin de coulée de 0,1% en masse d'un alliage FeSiMnZr et 0,1% d'un alliage FeSiAl, les alliages inoculants étant ajoutés sous la forme d'insert inoculant dans le moule.Finally, the cast iron underwent an inoculation treatment by adding 0.1% by mass of a FeSiMnZr alloy and 0.1% of a FeSiAl alloy to the casting basin, the inoculating alloys being added in the form of insert inoculating in the mold.

Utilisation d'un alliage inoculant (A2)Use of an inoculating alloy (A2)

Un alliage inoculant contenant (en proportion massique) : Si = 65% Si, Ca = 1,76% Ca, Al = 1,23%, Sb = 0,15%, TR = 0,16%, Ba = 7,9% ; a été utilisé dans une proportion de 0,15% en masse de fonte.An inoculating alloy containing (in mass proportion): Si = 65% Si, Ca = 1.76% Ca, Al = 1.23%, Sb = 0.15%, TR = 0.16%, Ba = 7.9 %; was used in a proportion of 0.15% by mass of cast iron.

L'étape d'ajout d'antimoine pur a été supprimée et le traitement nodulisant a été simplifié en utilisant uniquement l'alliage nodulisant FeSiMg ne contenant pas de terres rares.The step of adding pure antimony was eliminated and the nodulating treatment was simplified by using only the nodulating alloy FeSiMg not containing rare earths.

Résultats comparatifsComparative results

A1 (Référence)A1 (Reference) A2A2 Nodularité du graphiteGraphite nodularity 95%95% 98%98% Matrice de la fonte (% perlite)Melting matrix (% perlite) 8%8% 3%3% AllongementElongation 15%15% 18%18%

La fonderie A traitée avec un inoculant selon la présente demande a montré une augmentation de l'allongement en traction sur des éprouvettes de contrôle pour une nuance EN-GJS-400-15.Foundry A treated with an inoculant according to the present application has shown an increase in elongation in tension on test specimens for a grade EN-GJS-400-15.

Exemple 2 (hors invention) : fonderie B - pièce d'épaisseur 200 mm.Example 2 (outside the invention): Foundry B - 200 mm thick part. Référence de fonderie (B1) Foundry reference (B1 )

Conformément à l'art antérieur, la fonte liquide a été traitée par ajout dans le four à induction d'antimoine pur dans une proportion de 20g d'antimoine pour une tonne de fonte liquide.In accordance with the prior art, the liquid pig iron was treated by adding 20 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.

La fonte a ensuite subi un traitement de nodulisation à l'aide d'un alliage nodulisant de type FeSiMg comprenant 1% en masse de terres rares et introduit dans la fonte sous la forme d'un fil fourré.The cast iron was then subjected to a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising 1% by mass of rare earths and introduced into the cast iron in the form of a cored wire.

La fonte a enfin subi un traitement d'inoculation par ajout dans le bassin de coulée de 0,15% en masse d'un alliage FeSiBiTR.Finally, the cast iron underwent an inoculation treatment by adding 0.15% by mass of a FeSiBiTR alloy to the casting basin.

Utilisation d'un alliage inoculant (B2)Use of an inoculating alloy (B2)

Un alliage inoculant contenant comme précédemment : Si = 65% Si, Ca = 1,76% Ca, Al = 1,23%, Sb = 0,15%, TR = 0,16%, Ba = 7,9% ; a été utilisé dans une proportion de 0,15% en masse de fonte.An inoculating alloy containing as before: Si = 65% Si, Ca = 1.76% Ca, Al = 1.23%, Sb = 0.15%, TR = 0.16%, Ba = 7.9%; was used in a proportion of 0.15% by mass of cast iron.

L'étape d'ajout d'antimoine pur a été supprimée et le traitement nodulisant a été simplifié en utilisant uniquement un alliage nodulisant FeSiMg ne contenant pas de terres rares (également introduit sous forme de fil fourré).The step of adding pure antimony was eliminated and the nodulating treatment was simplified by using only a nodulating alloy FeSiMg not containing rare earths (also introduced in the form of cored wire).

Résultats comparatifsComparative results

B1 (Référence)B1 (Reference) B2B2 Nodularité du graphiteGraphite nodularity 91%91% 97%97% Matrice de la fonte (% perlite)Melting matrix (% perlite) 4%4% 3%3% Défaut Graphite « Chunky »"Chunky" Graphite Defect 15%15% 0%0% Résilience à -20°CResilience at -20 ° C 7 J7 D 12 J12 J

Sur les résultats de résistances aux chocs, la fonte B2 a obtenu des résultats conformes aux exigences.On the impact resistance results, the B2 cast iron obtained results in accordance with the requirements.

Exemple 3 (hors invention) : fonderie C - pièces minces (épaisseur inférieure à 6mm).Example 3 (outside the invention): foundry C - thin parts (thickness less than 6mm). Référence de fonderie (C1) Foundry reference (C1 )

Conformément à l'art antérieur, la fonte liquide a été traitée par ajout dans le four à induction d'antimoine pur dans une proportion de 25g d'antimoine pour une tonne de fonte liquide.In accordance with the prior art, the liquid pig iron was treated by adding 25 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.

La fonte a ensuite subi un traitement de nodulisation à l'aide d'un alliage nodulisant de type FeSiMg comprenant 6,7% en masse de magnésium ainsi que 1,2% de calcium et 0,98% de terres rares.The cast iron was then subjected to a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising 6.7% by mass of magnesium as well as 1.2% of calcium and 0.98% of rare earths.

La fonte a enfin subi un traitement d'inoculation tardive par ajout 0,12% en masse d'un alliage FeSiMnZrBa présentant une granulométrie comprise entre 0,2 et 5mm.Finally, the cast iron underwent a late inoculation treatment by adding 0.12% by mass of an FeSiMnZrBa alloy having a particle size between 0.2 and 5 mm.

Utilisation d'un alliage inoculant avec fonction nodulisante (C2)Use of an inoculating alloy with nodulizing function (C2)

Un alliage nodulisant avec fonction inoculante selon la composition 3 mentionnée ci-dessus a été utilisé.A nodulating alloy with inoculating function according to composition 3 mentioned above was used.

Comme pour les exemples précédents, l'étape d'ajout d'antimoine pur a été supprimée.As in the previous examples, the step of adding pure antimony has been omitted.

Le traitement nodulisant a été effectué à l'aide d'un alliage de type FeSiMg selon la composition 3 de la présente demande et comprenant 6,4% en masse de magnésium ainsi que 1,3% de calcium, 0,6% d'antimoine et 1,2% de terres rares.The nodulating treatment was carried out using an alloy of the FeSiMg type according to composition 3 of the present application and comprising 6.4% by mass of magnesium as well as 1.3% of calcium, 0.6% of antimony and 1.2% rare earths.

Une inoculation complémentaire a été effectuée selon une méthode d'inoculation tardive avec 0,09% d'un alliage FeSiAlCa et 0,009% d'un alliage FeSiMnZrBa.A complementary inoculation was carried out according to a late inoculation method with 0.09% of an FeSiAlCa alloy and 0.009% of an FeSiMnZrBa alloy.

Résultats comparatifsComparative results

C1 (Référence)C1 (Reference) C2C2 Nodularité du graphiteGraphite nodularity 93%93% 98%98% Matrice de la fonte (% perlite)Melting matrix (% perlite) 15%15% 4/5%4/5% Défaut Graphite « Chunky »"Chunky" Graphite Defect 4%4% 0%0%

En utilisant un nodulisant C2 on note une disparition des défauts de graphite « chunky » sur toutes les pièces contrôlées.By using a C2 nodulant, there is a disappearance of “chunky” graphite defects on all the parts tested.

Ainsi, l'inoculation additionnelle (inoculation tardive) a pu être faite en utilisant une inoculant plus économique de type FeSiAlCa.Thus, the additional inoculation (late inoculation) could be done using a more economical inoculant of the FeSiAlCa type.

Exemple 4 (hors invention) : fonderie D - pièces massives.Example 4 (outside the invention): foundry D - massive parts. Référence de fonderie (D1)Foundry reference (D1)

Conformément à l'art antérieur, la fonte liquide a été traitée par ajout dans le four à induction d'antimoine pur dans une proportion de 30g d'antimoine pour une tonne de fonte liquide.In accordance with the prior art, the liquid pig iron was treated by adding 30 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.

La fonte a ensuite subi un traitement de nodulisation à l'aide d'un alliage nodulisant de type FeSiMg comprenant 9,1% en masse de magnésium ainsi que 1,4% de calcium et 1,1% de terres rares.The cast iron was then subjected to a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising 9.1% by mass of magnesium as well as 1.4% of calcium and 1.1% of rare earths.

La fonte a enfin subi un traitement d'inoculation par ajout d'un insert de 10kg par tonne de fonte d'un alliage inoculant FeSiMnZr.Finally, the cast iron underwent an inoculation treatment by adding an insert of 10 kg per tonne of cast iron of an inoculating alloy FeSiMnZr.

Utilisation d'un alliage inoculant (D2)Use of an inoculating alloy (D2)

Un alliage inoculant contenant : Si = 65% Si, Ca = 1,76% Ca, Al = 1,23%, Sb = 0,15%, TR = 0.16%, Ba = 7,9% ; a été utilisé sous forme d'insert de 10kg comme pour la référence.An inoculating alloy containing: Si = 65% Si, Ca = 1.76% Ca, Al = 1.23%, Sb = 0.15%, TR = 0.16%, Ba = 7.9%; was used as a 10kg insert as for reference.

Comme pour les exemples précédents, l'étape d'ajout d'antimoine pur a été supprimée.As in the previous examples, the step of adding pure antimony has been omitted.

Le traitement nodulisant a été effectué à l'aide du même alliage que pour la référence, à savoir en utilisant un alliage nodulisant de type FeSiMg comprenant 9,1% en masse de magnésium ainsi que 1,4% de calcium et 1,1% de terres rares.The nodulating treatment was carried out using the same alloy as for the reference, namely using a nodulating alloy of the FeSiMg type comprising 9.1% by mass of magnesium as well as 1.4% of calcium and 1.1%. of rare earths.

Résultats comparatifsComparative results

D1 (Référence)D1 (Reference) D2D2 Nodularité du graphiteGraphite nodularity 92%92% 97%97% Matrice de la fonte (% perlite)Melting matrix (% perlite) 5/10%5/10% 0/5%0/5% Défaut Graphite « Chunky »"Chunky" Graphite Defect 2%2% 0%0% Résistance à la tractionTensile strength 370 MPa370 MPa 420 MPa420 MPa AllongementElongation 18%18% 22%22% Résistance au choc à - 20°CImpact resistance at - 20 ° C 10 J10 J 14 J14 J

La fonte D permet d'élaborer une nuance de fonce EN-GJS-400-18-LT utilisée notamment dans le secteur éolien. L'utilisation de l'inoculant D2 a permis d'augmenter la résistance aux chocs de manière importante.Cast iron D makes it possible to develop a shade of dark EN-GJS-400-18-LT used in particular in the wind power sector. The use of the inoculant D2 made it possible to significantly increase the impact resistance.

Exemple 5 (hors invention) : fonderie E - pièces minces et traitement nodulisant.Example 5 (outside the invention): foundry E - thin parts and nodulating treatment. Référence de fonderie (E1)Foundry reference (E1)

La fonte liquide a subi un traitement de nodulisation à l'aide d'un alliage nodulisant de type FeSiMg comprenant 9,1% en masse de magnésium ainsi que 0,8% de bismuth et 0,7% de terres rares.The liquid pig iron underwent a nodulization treatment using a nodulizing alloy of the FeSiMg type comprising 9.1% by mass of magnesium as well as 0.8% of bismuth and 0.7% of rare earths.

La fonte a ensuite subi un traitement d'inoculation selon une méthode d'inoculation tardive par ajout de 0,18% d'un alliage FeSiMnZr présentant une granulométrie comprise entre 0,2 et 5mm.The cast iron was then subjected to an inoculation treatment according to a late inoculation method by adding 0.18% of an FeSiMnZr alloy having a particle size between 0.2 and 5 mm.

Utilisation d'un alliage inoculant avec fonction nodulisante (E2)Use of an inoculating alloy with nodulizing function (E2)

Un alliage nodulisant selon la composition 3 mentionnée ci-dessus a été utilisé. L'alliage utilisé est un alliage de type FeSiMg comprenant 9,1% de magnésium ainsi que 0,75% d'antimoine et 0,5% de terres rares.A nodulating alloy according to composition 3 mentioned above was used. The alloy used is an FeSiMg type alloy comprising 9.1% magnesium as well as 0.75% antimony and 0.5% rare earths.

La fonte a ensuite subi un traitement d'inoculation additionnel selon une méthode d'inoculation tardive par ajout de 0,17% d'un alliage FeSiMnZr présentant une granulométrie comprise entre 0,2 et 5mm.The cast iron was then subjected to an additional inoculation treatment according to a late inoculation method by adding 0.17% of an FeSiMnZr alloy having a particle size between 0.2 and 5 mm.

Résultats comparatifsComparative results

E1 (Référence)E1 (Reference) E2E2 Nodularité du graphiteGraphite nodularity 91%91% 95%95% Défaut Graphite « Chunky »"Chunky" Graphite Defect 2%2% 0%0% Rendement MgYield Mg 54%54% 69%69%

Comme évoqué précédemment, on constate que le fait de remplacer le bismuth par de l'antimoine a augmenté le rendement du magnésium dans la fonte E.As mentioned above, we find that replacing bismuth with antimony increased the yield of magnesium in cast iron E.

Exemple 6 (hors invention) : Fonderie D sur pièces massives.Example 6 (outside the invention): Foundry D on massive parts.

La référence de fonderie (F1) et l'essai (F2) utilisant un alliage inoculant ont été réalisés conformément à l'exemple 4 et la fonderie D en inoculant des pièces massives.The foundry reference (F1) and the test (F2) using an inoculating alloy were carried out in accordance with Example 4 and the foundry D by inoculating massive parts.

Résultats comparatifsComparative results

F1 (Référence)F1 (Reference) F2F2 Rendement SbSb yield 67%67% 98%98%

On constate que grâce au rendement élevé obtenu, il est possible de mieux maîtriser la quantité d'antimoine ajoutée. La fonderie F2 a permis une économie importante en diminuant de 31,5% les doses d'antimoine à ajouter.It is noted that thanks to the high yield obtained, it is possible to better control the amount of antimony added. The F2 foundry allowed significant savings by reducing the doses of antimony to be added by 31.5%.

Exemple 7 (hors invention) : Fonderie D sur pièces massives.Example 7 (outside the invention): Foundry D on massive parts.

La référence de fonderie (G1) et l'essai (G2) utilisant un alliage inoculant ont été réalisés conformément à l'exemple 4 et la fonderie D en inoculant des pièces massives.The foundry reference (G1) and the test (G2) using an inoculating alloy were carried out in accordance with Example 4 and the foundry D by inoculating massive parts.

Résultats comparatifsComparative results

G1 (Référence)G1 (Reference) G2G2 Dégagement de Sb en 8 heuresSb release in 8 hours 0,7 mg/m3 0.7 mg / m 3 0,1 mg/m3 0.1 mg / m 3

On constate que grâce à l'inoculantG2, le dégagement d'antimoine est fortement limité et très inférieur au seuil réglementaire de 0,5 mg/m3. Les conditions de travail en sont améliorées.It is noted that thanks to the inoculantG2, the release of antimony is greatly limited and much lower than the regulatory threshold of 0.5 mg / m 3 . Working conditions are improved.

Exemple 8 (selon l'invention) : fonderie H - pièce d'épaisseur 150 mm.Example 8 (according to the invention): foundry H - part 150 mm thick. Référence de fonderie (H1)Foundry reference (H1)

Conformément à l'art antérieur, la fonte liquide a été traitée par ajout dans le four à induction d'antimoine pur dans une proportion de 15g d'antimoine pour une tonne de fonte liquide.In accordance with the prior art, the liquid pig iron was treated by adding 15 g of antimony to one tonne of liquid pig iron in the induction furnace of pure antimony.

La fonte a ensuite subi un traitement de nodulisation à l'aide d'un fil fourré nodulisant (diamètre 13 mm, 32 % de Mg, 1,2 % de TR, 230 g /m de poudre)The cast iron was then subjected to a nodulization treatment using a nodulating cored wire (diameter 13 mm, 32% of Mg, 1.2% of TR, 230 g / m of powder)

La fonte a enfin subi un traitement d'inoculation tardive par ajout au jet de coulée 0,15% en masse d'un alliage FeSiMnZr.Finally, the cast iron underwent a late inoculation treatment by adding 0.15% by mass of a FeSiMnZr alloy to the casting jet.

Utilisation d'un alliage inoculant selon la demande (H2)Use of an inoculating alloy according to demand (H2)

Un alliage inoculant selon la composition 1 [contenant Si = 64% Si, Ca = 1,64% Ca, Al = 1,15%, Sb = 0,5%, TR = 0,3%] mentionnée ci-dessus a été utilisé dans une proportion de 0,2% en masse de fonte.An alloy inoculating according to composition 1 [containing Si = 64% Si, Ca = 1.64% Ca, Al = 1.15%, Sb = 0.5%, TR = 0.3%] mentioned above was used in a proportion of 0.2% by mass of cast iron.

L'étape d'ajout d'antimoine pur a été supprimée et le traitement nodulisant a été simplifié en utilisant uniquement un alliage nodulisant FeSiMg ne contenant pas de terres rares (également introduit sous forme de fil fourré).The step of adding pure antimony was eliminated and the nodulating treatment was simplified by using only a nodulating alloy FeSiMg not containing rare earths (also introduced in the form of cored wire).

Résultats comparatifsComparative results

H1 (Référence)H1 (Reference) H2 (invention)H2 (invention) Nodularité du graphiteGraphite nodularity 87%87% 98%98% Matrice de la fonte (% perlite)Melting matrix (% perlite) 3%3% 3%3% Défaut Graphite « Chunky »"Chunky" Graphite Defect 19%19% 0%0% Résilience à -20°CResilience at -20 ° C 4 J4 D 14 J14 J

Sur les résultats de résistances aux chocs, la fonte H2 a obtenu des résultats conformes aux exigences.On the impact resistance results, the H2 cast iron obtained results in accordance with the requirements.

Claims (11)

  1. A ferro-silicon based inoculant alloy for the treatment of a cast iron for the manufacture of parts having portions with thicknesses larger than 6 mm, said inoculant alloy containing
    45-80 weight% of silicon,
    0.5-4 weight% of calcium,
    0.5-3 weight% of aluminum,
    0.2-3 weight% of rare earths,
    0.2-2 weight% of antimony,
    and the balance of iron,
    characterized in that the ratio of antimony to rare earths is comprised between 0.9 and 2.2.
  2. The ferro-silicon based inoculant alloy for the treatment of a cast iron for the manufacture of parts having portions with thicknesses larger than 6 mm, said inoculant alloy containing, characterized in that said alloy contains
    45-80 weight% of silicon,
    0.5-8 weight% of calcium,
    0.5-3 weight% of aluminum,
    0.2-3 weight% of rare earths,
    0.2-2 weight% of antimony,
    2-15 weight% of barium,
    2-6% of manganese,
    2-6% of zirconium,
    and the balance of iron,
    characterized in that the ratio of antimony to rare earths is between 0.9 and 2.2.
  3. The inoculant alloy according to claim 1 or 2, characterized in that the mass proportion of antimony is greater than 0.3%, preferably greater than 0.5%, still more preferably greater than 0.8%.
  4. The inoculant alloy according to claim 1 or 2, characterized in that the mass proportion of antimony is less than 1.5%, preferably less than 1.3%.
  5. The inoculant alloy according to any one of claims 1 to 4, characterized in that the rare earths comprise lanthanum, preferably only but lanthanum.
  6. The inoculant alloy according to any one of claims 1 to 5, characterized in that the mass proportion of rare earths is greater than 0.3%.
  7. The inoculant alloy according to any one of claims 1 to 5, characterized in that the mass proportion of rare earths is less than 1.2%, preferably less than 1%.
  8. A use of an inoculant according to any one of claims 1 to 7, for the manufacture of cast iron parts having portions with thicknesses larger than 6 mm, characterized in that said inoculant is introduced in the form of powder.
  9. The use of an inoculant according to any one of claims 1 to 7, for the manufacture of cast iron parts having portions with thicknesses larger than 6 mm, characterized in that said inoculant is introduced in the form of a solid insert placed in a casting mold.
  10. The use according to claim 8 or 9, for the manufacture of cast iron parts having portions with thicknesses larger than 20 mm.
  11. The use of an inoculant according to any one of claims 8 to 10, for the manufacture of cast iron parts having portions with thicknesses larger than 50 mm.
EP13801650.6A 2012-11-14 2013-11-12 Inoculant alloy for thick cast-iron parts Active EP2920335B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL13801650T PL2920335T3 (en) 2012-11-14 2013-11-12 Inoculant alloy for thick cast-iron parts
SI201331674T SI2920335T1 (en) 2012-11-14 2013-11-12 Inoculant alloy for thick cast-iron parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260817A FR2997962B1 (en) 2012-11-14 2012-11-14 INOCULATING ALLOY FOR THICK PIECES IN CAST IRON
PCT/FR2013/052710 WO2014076404A1 (en) 2012-11-14 2013-11-12 Inoculant alloy for thick cast-iron parts

Publications (2)

Publication Number Publication Date
EP2920335A1 EP2920335A1 (en) 2015-09-23
EP2920335B1 true EP2920335B1 (en) 2019-12-18

Family

ID=47666320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13801650.6A Active EP2920335B1 (en) 2012-11-14 2013-11-12 Inoculant alloy for thick cast-iron parts

Country Status (17)

Country Link
US (1) US20150284830A1 (en)
EP (1) EP2920335B1 (en)
JP (1) JP2016503460A (en)
KR (1) KR20150083998A (en)
CN (1) CN104812922A (en)
BR (1) BR112015010975A2 (en)
CA (1) CA2889124C (en)
DK (1) DK2920335T3 (en)
ES (1) ES2777934T3 (en)
FR (1) FR2997962B1 (en)
MX (1) MX2015006053A (en)
PL (1) PL2920335T3 (en)
PT (1) PT2920335T (en)
SI (1) SI2920335T1 (en)
UA (1) UA116218C2 (en)
WO (1) WO2014076404A1 (en)
ZA (1) ZA201503205B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104903470B (en) * 2013-09-06 2017-12-12 东芝机械株式会社 The spheroidizing processing method of nodular cast iron molten metal
US20180148805A1 (en) * 2015-05-18 2018-05-31 Toshiba Kikai Kabushiki Kaisha Method for treating molten cast iron
CN105039631A (en) * 2015-08-20 2015-11-11 合肥市田源精铸有限公司 Nucleating agent containing rare earth and application of nucleating agent to spheroidal graphite cast iron smelting
US10662510B2 (en) 2016-04-29 2020-05-26 General Electric Company Ductile iron composition and process of forming a ductile iron component
US10787726B2 (en) * 2016-04-29 2020-09-29 General Electric Company Ductile iron composition and process of forming a ductile iron component
NO20161094A1 (en) 2016-06-30 2018-01-01 Elkem As Cast Iron Inoculant and Method for Production of Cast Iron Inoculant
NO347571B1 (en) 2016-06-30 2024-01-15 Elkem Materials Cast Iron Inoculant and Method for Production of Cast Iron Inoculant
NO20172063A1 (en) 2017-12-29 2019-07-01 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
NO346252B1 (en) 2017-12-29 2022-05-09 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
NO20172065A1 (en) 2017-12-29 2019-07-01 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
NO20172064A1 (en) 2017-12-29 2019-07-01 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
NO20172061A1 (en) 2017-12-29 2019-07-01 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
CN111809103A (en) * 2020-07-21 2020-10-23 常州钜苓铸造有限公司 Preparation method of high-power wind power ultrahigh-strength high-toughness low-temperature nodular cast iron
WO2022202914A1 (en) * 2021-03-24 2022-09-29 日立金属株式会社 Spheroidal graphite cast iron, spheroidal graphite cast iron manufacturing method, and spheroidizing treatment agent
CN115029495A (en) * 2022-06-15 2022-09-09 宜昌佳晟鑫铁合金有限公司 Pearlite inoculant formula
CN115896604A (en) * 2022-11-15 2023-04-04 宜昌佳晟鑫铁合金有限公司 Silicon-based inoculant material proportioning method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943843A (en) * 1982-09-06 1984-03-12 Kusaka Reametaru Kenkyusho:Kk Additive alloy
CN102002548A (en) * 2010-12-07 2011-04-06 哈尔滨工业大学 Nodularizer for nodular iron with thick section

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767146A (en) 1980-10-11 1982-04-23 Osaka Tokushu Gokin Kk Introduction method for antimony into cast iron
FR2511044A1 (en) * 1981-08-04 1983-02-11 Nobel Bozel FERRO-ALLOY FOR THE TREATMENT OF INOCULATION OF SPHEROIDAL GRAPHITE FONT
US4666516A (en) * 1986-01-21 1987-05-19 Elkem Metals Company Gray cast iron inoculant
JPH02200718A (en) 1989-01-31 1990-08-09 Kiriyuu Kikai Kk Manufacture of spheroidal graphite niresist cast iron
NO179079C (en) * 1994-03-09 1996-07-31 Elkem As Cast iron grafting agent and method of producing grafting agent
JPH08188812A (en) * 1995-01-10 1996-07-23 Japan Trading Service:Kk Manufacture of high strength ductile cast iron
FR2750143B1 (en) * 1996-06-25 1998-08-14 Pechiney Electrometallurgie FERROALLIAGE FOR INOCULATION OF SPHEROIDAL GRAPHITE FOUNDS
FR2839082B1 (en) * 2002-04-29 2004-06-04 Pechiney Electrometallurgie ANTI MICRORETASSURE INOCULATING ALLOY FOR TREATMENT OF MOLD SHAPES
FR2855186B1 (en) * 2003-05-20 2005-06-24 Pechiney Electrometallurgie INOCULATING PRODUCTS CONTAINING BISMUTH AND RARE EARTHS
KR20050011067A (en) * 2003-07-21 2005-01-29 삼성전자주식회사 Apparatus and a method for detecting 2:2 pull-down sequence
US20060011305A1 (en) * 2003-09-19 2006-01-19 Donald Sandell Automated seal applicator
NO20045611D0 (en) 2004-12-23 2004-12-23 Elkem Materials Modifying agents for cast iron
JP4974591B2 (en) * 2005-12-07 2012-07-11 旭テック株式会社 Graphite spheroidizing agent and method for producing spheroidal graphite cast iron using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943843A (en) * 1982-09-06 1984-03-12 Kusaka Reametaru Kenkyusho:Kk Additive alloy
CN102002548A (en) * 2010-12-07 2011-04-06 哈尔滨工业大学 Nodularizer for nodular iron with thick section

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISSUE DIS: "Effect of Bismuth in Ductile iron", DUCTILE IRON SOCIETY, 1 January 2006 (2006-01-01), XP055480379, Retrieved from the Internet <URL:http://www.ductile.org/wp-content/hottopics/2006ht07.pdf> [retrieved on 20180531] *

Also Published As

Publication number Publication date
KR20150083998A (en) 2015-07-21
US20150284830A1 (en) 2015-10-08
CA2889124A1 (en) 2014-05-22
SI2920335T1 (en) 2020-03-31
EP2920335A1 (en) 2015-09-23
WO2014076404A1 (en) 2014-05-22
CN104812922A (en) 2015-07-29
UA116218C2 (en) 2018-02-26
ZA201503205B (en) 2016-10-26
PT2920335T (en) 2020-03-17
MX2015006053A (en) 2015-11-23
BR112015010975A2 (en) 2017-07-11
FR2997962B1 (en) 2015-04-10
JP2016503460A (en) 2016-02-04
CA2889124C (en) 2020-12-29
PL2920335T3 (en) 2020-05-18
ES2777934T3 (en) 2020-08-06
DK2920335T3 (en) 2020-03-16
FR2997962A1 (en) 2014-05-16

Similar Documents

Publication Publication Date Title
EP2920335B1 (en) Inoculant alloy for thick cast-iron parts
EP2976172B1 (en) Inoculant with surface particles
EP0004819B1 (en) Process for the production of ferrous alloys with improved mechanical properties by the use of lanthanum, and ferrous alloys obtained by this process
WO2022038484A1 (en) Steel with high-grade mechanical characteristics and method for manufacturing same
CA1052133A (en) Screw stock
WO2019186016A1 (en) Steel composition
CA2192509A1 (en) Steel for fabricating of divisible mechanical parts and part obtained therefrom
CA2559562C (en) Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts
FR2521593A1 (en) FUSION METAL REFINING AGENT AND PROCESS FOR PRODUCING THE SAME
FR2665461A1 (en) High tenacity non-refined steels and method for manufacturing them
WO2004104252A1 (en) Inoculant products comprising bismuth and rare earths
WO2009115722A1 (en) Novel additive for treating resulphurized steel
BE514115A (en)
FR2458597A1 (en) Cast iron contg. aluminium and opt. nodular graphite - for mfg. electrical resistors withstanding high temps. and with low temp. coefft. of resistance
FR2634221A1 (en) Cast articles made of alloys based on Fe-Mn-Al-Cr-Si-C
FR3089138A1 (en) Mold powder and mold coating
BE481349A (en)
CH212681A (en) Alloy steel.
BE505228A (en)
BE534561A (en)
EP0170546A1 (en) High-strength nitriding steel with good machinability, useful as construction steel, and process for its manufacture
FR2834721A1 (en) Powder inoculant for the fabrication of lamellar graphitic iron, is made of a mixture of a conventional alloy inoculant and at least one sulfide
BE516453A (en)
CH278655A (en) Process for obtaining a graphitic cast iron part and part obtained by this process.
CH292144A (en) Manufacturing process of malleable iron.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170529

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190705

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013064158

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET GERMAIN AND MAUREAU, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1214668

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200312

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2920335

Country of ref document: PT

Date of ref document: 20200317

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20200305

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200319

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2777934

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200418

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013064158

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1214668

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231107

Year of fee payment: 11

Ref country code: LU

Payment date: 20231123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231127

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231031

Year of fee payment: 11

Ref country code: SI

Payment date: 20231103

Year of fee payment: 11

Ref country code: SE

Payment date: 20231102

Year of fee payment: 11

Ref country code: PT

Payment date: 20231109

Year of fee payment: 11

Ref country code: NO

Payment date: 20231102

Year of fee payment: 11

Ref country code: IT

Payment date: 20231031

Year of fee payment: 11

Ref country code: FR

Payment date: 20231103

Year of fee payment: 11

Ref country code: DK

Payment date: 20231116

Year of fee payment: 11

Ref country code: DE

Payment date: 20231116

Year of fee payment: 11

Ref country code: CZ

Payment date: 20231102

Year of fee payment: 11

Ref country code: CH

Payment date: 20231202

Year of fee payment: 11

Ref country code: BG

Payment date: 20231101

Year of fee payment: 11

Ref country code: AT

Payment date: 20231102

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231108

Year of fee payment: 11

Ref country code: BE

Payment date: 20231123

Year of fee payment: 11