EP2910672B1 - Sarking board - Google Patents

Sarking board Download PDF

Info

Publication number
EP2910672B1
EP2910672B1 EP15154110.9A EP15154110A EP2910672B1 EP 2910672 B1 EP2910672 B1 EP 2910672B1 EP 15154110 A EP15154110 A EP 15154110A EP 2910672 B1 EP2910672 B1 EP 2910672B1
Authority
EP
European Patent Office
Prior art keywords
baseboard
fibers
previous
fibres
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15154110.9A
Other languages
German (de)
French (fr)
Other versions
EP2910672A1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandler AG
Original Assignee
Sandler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandler AG filed Critical Sandler AG
Publication of EP2910672A1 publication Critical patent/EP2910672A1/en
Application granted granted Critical
Publication of EP2910672B1 publication Critical patent/EP2910672B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D12/00Non-structural supports for roofing materials, e.g. battens, boards
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43912Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres fibres with noncircular cross-sections
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43918Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/485Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with weld-bonding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/88Insulating elements for both heat and sound
    • E04B1/90Insulating elements for both heat and sound slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7687Crumble resistant fibrous blankets or panels using adhesives or meltable fibres

Definitions

  • the invention relates to a lower cover plate for use as a substructure in roof structures.
  • Such panels are generally placed on the rafter construction and fastened there before the actual roofing is applied.
  • such plates are also assigned to noise and heat insulating properties.
  • DE 4322745 describes a roof insulation board with a mountable on the rafters of a roof vapor-permeable insulation board, which is provided with a waterproof, vapor-permeable film to ensure waterproofness, for example, in driving rain and consists of compressed polyester fibers. Due to the waterproof, vapor-permeable film, however, this solution entails dangers such as, for example, the delamination of the layers or even the formation of holes in the film during the laying phase. When processing such panels, special care must be taken to avoid damage to the roof insulation panels.
  • an insulating element is disclosed with a walk-in cover plate, is fixed under a continuous insulating plate, are formed in the longitudinal and transverse ventilation channels.
  • the insulating plate consists for example of PU foam, stone and mineral wool or wood fiber material, while for the cover plate wood-based panels, gypsum and gypsum fiber boards are used.
  • the object of the present invention is to avoid the mentioned disadvantages of the prior art with the features mentioned in claim 1 and in the subclaims.
  • the lower deck according to the invention is able to significantly increase not only the basic requirement for accessibility and permanent waterproofness, but also the noise insulation and the thermal insulation despite the small thickness of the panel in the roof space.
  • this bottom cover plate of a carded, cross-laid nonwoven fabric of synthetic staple fibers which is mechanically consolidated and compacted, as well as thermally consolidated.
  • thermal insulation measures are carried out in the construction of new buildings and refurbishments.
  • old building renovations are by the rafter height
  • limits are set for the height of the insulating layer between the rafters.
  • the rafter height is often limited by the financial framework of the client.
  • the legislation has narrow limits here, which must be complied with in order to achieve a permanent insulation from an economic point of view.
  • An inventively designed lower deck plate makes it possible to move a portion of the thermal insulation in the outer area of the roof structure, so that it is not necessary to work with large thicknesses especially in the renovation of old buildings in the interior.
  • the undersheet according to the invention comprises a mechanically formed nonwoven made from a mixture of thermoplastic and / or duroplastic staple fibers with melt fibers, which is first mechanically consolidated and compacted. An adjoining thermal treatment activates the melt fibers, so that after cooling of the material results in the inventive rigid bottom cover plate.
  • the raw materials used should also be a To provide permanent mold resistance without this being due to a chemical treatment.
  • one or both sides of the lower cover plate is hydrophobic. This is achieved according to the invention by the use of at least one hydrophobic fiber type. Melt fibers are then used in the fiber mixture. In addition, other fibers are used with large fiber diameters.
  • melt fiber is used in the present specification synonymously for fibers which are usable for the thermal consolidation of nonwovens.
  • such fibers contain thermoplastic regions which have a lower melting point than the remaining non-woven fabric forming fibers.
  • These fibers may consist entirely of a low melting point polymer, but may also be so-called bicomponent side / side or core / sheath type fibers.
  • polymers all common variants of polyesters, polyamides or polyolefins are suitable. Also fusible fractions with higher crystalline proportions can be used.
  • the proportion of melt fibers according to the invention is at least 40 weight percent.
  • the fibers have a commercial crimp.
  • the fiber diameter of the melt fibers used is between 10 and 60 ⁇ m.
  • the hydrophobic fibers have a smaller compared to the other fibers in the fiber mixture fiber diameter.
  • the fiber diameters used are included maximum 20 ⁇ m, preferably less than 18 ⁇ m.
  • these fibers are called fine fibers.
  • Such fibers may consist of thermoplastic polymers, but thermoset polymers are also conceivable.
  • the fine fibers have a crimp, which can be either two-dimensional but also three-dimensional nature. By crimping the fibers have a more or less strong restoring force against mechanical loads. The greater the crimping, expressed in terms of number of crimps / cm, the greater the restoring force. Fine fibers which have a number of at least 4 crimps per cm are suitable according to the invention; fibers having greater than 6 sheets / cm are preferred.
  • This restoring force can be further influenced by the polymer forming the fibers.
  • Suitable are polyolefins, polyamides, polyacrylics and polyesters. Due to the good recovery properties, preference is given to fibers of linear macromolecules whose chain consists of at least 85 percent by weight of the ester of a diol with terephthalic acid. They are referred to in the context of the present invention as polyester fine fibers.
  • hydrophobic properties of these fine fibers are based either on the fiber properties themselves, for example when using polyolefins such as polypropylene or by so-called Avivierungen give the fine fibers before processing a hydrophobic character or by lubrication systems, which only during the thermal treatment of their hydrophobic Form properties by crosslinking reactions.
  • the polymers from which the fine fibers are formed must be selected so that they have a melting point which is higher than the melting temperature of the melt fibers or higher than the temperature necessary for the aforementioned crosslinking reaction.
  • the proportion of hydrophobic fine fibers according to the invention is at least 30 weight percent.
  • Fibers with a larger fiber diameter are used. These fibers then have a diameter of at least 30 .mu.m. Fiber diameters of greater than 40 ⁇ m are preferred. Such fibers impart to the lower cover plate according to the invention an increased stability especially under pressure loads, for example when walking on the plate. Such fibers are referred to as coarse fibers. The proportion of these coarse fibers, if they are used, at a maximum of 30 weight percent. The coarse fibers have commercial ripples.
  • polymers for the production of coarse fibers polyolefins, polyamides, polyacrylics and polyesters are suitable.
  • polyester fibers of linear macromolecules whose chain consists of at least 85 percent by weight of the ester of a diol with terephthalic acid. They are referred to in the context of the present invention as polyester coarse fibers.
  • the fiber types used are all based on the same polymer, then at least in the case of thermoplastic polymers, recycling during renovation / reconstruction of a roof is ensured. According to the invention and produced with preferred raw sub-top plates can easily be recycled.
  • a lower cover plate according to the invention does not provide a breeding ground for the growth of mold or bacteria.
  • This property proves to be particularly beneficial in new buildings, which are still in the phase of drying masonry or plaster in the interiors. During this dry phase, most of the moisture in the building diffuses outward through the roof area. Depending on the temperature conditions, it may lead to the formation of condensation on the Unterdeckpatten.
  • An inventively designed lower cover plate behaves inert, since the Moisture does not lead to swelling or other negative effects (mold growth).
  • the density of the material in terms of density per unit area, in short RG, with the unit kg / m 3 , is increased.
  • the inventive use of hydrophobic fine fibers a high number of individual fibers per unit of space is available.
  • the compaction during the mechanical consolidation reduces the distances between the individual fibers in such a way that, especially in the area of the outer surfaces, a pore-poor, almost closed surface of fibers results.
  • This surface is for drop-shaped impinging water, for example, rain virtually dense, but still permeable to water vapor.
  • Conventional mechanical needling techniques are used; needle machines which are preferred are a method sequence according to the EP1644565 enable.
  • the weight per unit area of the fibrous web, which is supplied to the mechanical consolidation, according to the invention is greater than 1000 g / m 2 , preferably greater than 2000 g / m 2 .
  • step of mechanical consolidation of the batt is solidified toward a flexible web and compacted so that after completion of the thermal solidification stage for the finished lower cover plate according to the invention space weights of less than 200kg / m 3 , preferably less than 160 kg / m 3 and more preferably of less than 130kg / m 3 .
  • this mechanical solidification is followed by a thermal hardening stage.
  • This can for example consist of a heat treatment by means of flowing through hot air.
  • hot air melts the fusible portions of the melt fibers, the melt migrates to points of intersection of unmelted fibers and preferably deposits there.
  • the still low-melt mat undergoes a cooling treatment, for example by means of cold air, so that the molten areas cool and the nonwoven fabric is solidified to form the intrinsically rigid undercover panel according to the invention.
  • the thermal solidification stage may also result in a crosslinking reaction of softening components on the fiber surface.
  • the fiber surface is provided, for example, with starting materials for a hydrophobic coating of fluorocarbon, the crosslinking reaction can also be activated within the scope of the thermal solidification stage.
  • the volumetric weight can be further increased during the thermal consolidation.
  • a Kalibrierband or a sizing roll which further compresses the hot melt web and this state is fixed by the subsequent cooling.
  • the fibers are further pressed together in the surface area, a further improvement of the watertightness is the result.
  • So produced, designed according to the invention under cover plates have space weights of less than 200kg / m 3 , preferably less than 160 kg / m 3 and more preferably of less than 130kg / m 3 .
  • the thicknesses are in a range of 10 to 60 mm, with a thickness in the range 15 to 30 mm being preferred.
  • Characteristic of the present invention is a surface which consists of highly compressed, hydrophobic fine fibers and is formed at least on one side of the lower cover plate.
  • the water-repellent properties of this surface remain - in contrast to the prior art - even after punctual loads or overload, such as the impact of a nail for attachment of the lower deck plate to the substructure or when walking, obtained.
  • hole formation can also be done by partial overstretching, for example, a stone stuck in the shoe profile of a roofer. The stone presses into the surface and perforates the film, the roof has defects. This is also the case with chemically bonded wood fiber boards. Once there is a partial overload, such a bottom plate is disturbed in its integrity and vulnerable to impinging water.
  • the aforementioned fiber types are mixed homogeneously and fed to a carding machine.
  • An unstiffened batt with a surface weight of about 2400 g / m 2 is produced by means of a crosslapper.
  • This batt is fed to a needle loom, as in EP1644565 is described.
  • the batt is run at a speed through the needle system, resulting in a number of 140 stitches per cm 2 of nonwoven surface. It is worked with so-called 1-Barb needles.
  • the fibrous web thus produced is fed to a belt dryer, which melts the fusible shell portions of the melt fibers contained in the batt.
  • the dryer temperature is around 175 ° C.
  • the heated batt is cooled, so that the invention, inherently rigid plate with a thickness of 24.5mm at a basis weight of 2309g / m 2 , corresponding to a density of 94kg / m 3 results.
  • the plate thus produced has hydrophobic properties both on both surfaces and over the entire thickness of the plate. As a result, the cut edges of the plate are water repellent.
  • the lower cover plate can be treated on at least one side of a surface treatment by means of pressure and / or heat so that the plate surface is smoothed.
  • Smoothing in the case of the present invention means a change in the fiber surfaces, so that they do not have a round cross-section in the region of the plate surface but a cross-section which is flattened on one side.
  • Such a smoothing treatment results in an improved closure of the thus treated surface of the lower cover plate, so that the driving rain density is increased.
  • Embodiment 2 shows an inventively designed, smoothed on both sides lower cover plate, which was first prepared according to Embodiment 1. Subsequently, the lower cover plate was subjected to a smoothing treatment by means of a flat bed laminating machine at a temperature of 180 ° C. and a belt gap of 21 mm. The press had a smooth Teflon coating on the upper and lower belt. The speed was 2.1 m / min.
  • Basis weight according to EDANA WSP 130.1. with a pattern size of 25 * 25cm.
  • the measurement result is given in g / m 2 .
  • Thickness according to EDANA WSP 120.6., Measuring instrument according to paragraph 4.1 and test method according to paragraph 7.2 option B. The measurement result is given in mm
  • Air permeability according to EDANA WSP 70.1, determined at a differential pressure of 100Pa. The result is given in l / m 2 / s.
  • the dry weight T1 is determined in g of a specimen of size 100 * 100mm. Thereafter, the sample is in a water bath, which is filled with ion-exchange water with a conductivity less than 0.5 ⁇ S / cm, within 5 seconds so far immersed that results in a water level of 150mm above the specimen. After immersion for 60 seconds, the specimen is removed from the water bath within 5 seconds. After another 60 seconds dripping time, the wet weight N1, also determined in g.
  • Penetration resistance The test setup is as in FIG. 1 shown.
  • the test simulates a load such as occurs when a roof is walked on by a roofer.
  • a test piece 3 of size 50 * 300mm is produced.
  • the specimen 3 is placed on two parallel, spaced at a distance of 230mm to each other support bearing 1, so that there is a roof-like construction, in which the two support bearings 1, the rafters and the underlying test specimen 3 represent the lower deck.
  • a 55 mm wide Druckfinne 2 is then set in the middle of the distance between the two support bearings 1, at 115mm, so on the specimen 3, that the line of contact of Druckfinne 2 runs parallel to the support lines of the specimen 3 on the support bearings 1 and the pressure fin.
  • the pressure fin 2 presses after test start on the specimen 3 and deformed this at a speed of 100mm / min until a distance of 30% of the support bearing distance was covered. Finally, the fin 2 is moved out at the same speed in the opposite direction, the DUT 3 relieved. The test is passed if the examinee does not break, ie a person can not break through the resulting defect.
  • the test procedure corresponds to that under the description penetration resistance. He is only possible with materials that do not break.
  • the difference 4 in mm as height difference of the position of the surface of the specimen 3 before testing the position of the surface of the specimen 3a after testing, determined.
  • the aim is to achieve values of less than 8% permanent set, preferably values which are less than 5%.
  • the material designed according to the invention does not crack or break under pressure, for example when a panel is walked on. There is only a deformation that disappears immediately after the loss of stress again.
  • a prior art lower cover plate made of compressed wood fibers listed in Table 1 as a comparative example, breaks even at a deformation by 3% of the support bearing distance, in the present case already at a deformation of only 6.9 mm. Plates made according to the invention can easily be deformed 10 times, up to 30% without breaking.
  • a commercially available wood fiber board has the same thickness 2.1 times the weight of an inventively designed lower deck.
  • the handling on a construction site when covering a roof is correspondingly simpler.
  • a lower cover plate according to the prior art has almost no air permeability according to the above test method. If you consider the air permeability of an inventively designed lower cover plate, so you can see air permeability, this is in the embodiments in the range of 120l / m 2 / s. Depending on the application, the air permeability may vary. This has a very positive effect on the climate of the roof construction. It can not come to moisture accumulation, since moisture can easily diffuse through an inventively designed lower cover plate. Likewise, if due to adverse weather circumstances, water has penetrated into the matrix of the lower cover plate, this moisture can easily be released again, the lower cover plate dries off easily.
  • the inventively designed Unterdeckplatten have beneficialeit summarizeen less than 0.04 W / mK, in preferred embodiments, less than 0.035 W / mK. Hardboard from the embodiment are here by 0.05W / mK significantly higher. Due to these properties, a bottom cover plate designed according to the invention can also be included for the calculation of the U value. Due to the fact that already a part of the external structure of the roof takes over heat-insulating function. The thickness of a insectsparrendämmung can be significantly reduced, which leads, especially in Altbausan isten by the different rafter heights to reduce costs.
  • the water absorption of a plate according to the invention is, in each case in comparison to the prior art, at a lower density, and increased or even existing air permeability at a comparable level.
  • a two-sided heat treatment reduces the water absorption by 2.4% to 4.5%.
  • the side edges of ready-laid under deck panels may be made smooth, but may be configured so that the edges have a tongue and groove or beveled structure.
  • the tongue and groove structure can be achieved by stacking a plurality of cut bottom cover plates offset one above the other and resulting in the tongue and groove structure.
  • a mechanical milling treatment for producing the grooves / springs is feasible.
  • hydrophilic coating or plate on the side of the lower cover plate facing the structure. Due to the hydrophilic properties, the formation of droplets of condensation is prevented, thereby creating intelligent, condensation-tolerant moisture management.
  • undercover panels produced according to the invention in addition to thermal insulation, also contribute to sound insulation.
  • the sound absorption is favored by porous, open-cell structures.
  • the sound energy is converted by friction into heat energy.
  • the existence of open and deep pores is important here.
  • the plate manufactured according to the embodiment was examined for its sound insulation.
  • the air permeability was determined according to the method described above. Values of 770 Pa * s / m for the exemplary embodiment 1 and of 810 Pa * s / m for the exemplary embodiment 2 were obtained for the plates constructed according to the invention. Values between 700 and 3000 Pa * s / m are desired. Values greater than 3000 Pa * s / m are to be avoided, since then a sound reflection takes place.
  • Undercover panels thus produced further have flammability properties that meet the usual market requirements such as DIN 4102, B2. If higher demands are made, these can be achieved by using flame retardant treated fibers such as Trevira CS or chemical equipment.
  • undercover panels are not limited to the roof area. They can also be used in the area of exterior walls as a heat-insulating construction material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Description

Die Erfindung betrifft eine Unterdeckplatte für den Einsatz als Unterbau bei Dachkonstruktionen. Derartige Platten werden im Allgemeinen auf die Sparrenkonstruktion gelegt und dort befestigt bevor die eigentliche Eindeckung aufgelegt wird. Neben der eigentlichen Aufgabe, eine begehbare und zumindest während der Bauphase wasserdichte Dachhaut darzustellen, werden derartigen Platten auch geräusch- und wärmedämmende Eigenschaften zugeordnet.The invention relates to a lower cover plate for use as a substructure in roof structures. Such panels are generally placed on the rafter construction and fastened there before the actual roofing is applied. In addition to the actual task of representing a walkable and waterproof at least during the construction phase roof, such plates are also assigned to noise and heat insulating properties.

Gattungsgemäße Dämmplatten sind aus dem Stand der Technik hinlänglich bekannt.Generic insulation boards are well known from the prior art.

DE 4322745 beschreibt eine Dachdämmplatte mit einer auf den Sparren eines Daches anbringbaren dampfdurchlässigen Dämmstoffplatte, die mit einer wasserdichten, dampfdurchlässigen Folie zur Gewährleistung der Wasserdichtheit bspw bei Schlagregen versehen ist und aus verpressten Polyesterfasern besteht. Durch die wasserdichte, dampfdurchlässige Folie birgt diese Lösung allerdings Gefahren wie zum Beispiel der Delamination der Lagen oder auch von Lochbildung in der Folie während der Verlegephase. Bei Verarbeitung derartiger Platten muss besonders behutsam vorgegangen werden, um Beschädigungen an den Dachdämmplatten zu vermeiden. DE 4322745 describes a roof insulation board with a mountable on the rafters of a roof vapor-permeable insulation board, which is provided with a waterproof, vapor-permeable film to ensure waterproofness, for example, in driving rain and consists of compressed polyester fibers. Due to the waterproof, vapor-permeable film, however, this solution entails dangers such as, for example, the delamination of the layers or even the formation of holes in the film during the laying phase. When processing such panels, special care must be taken to avoid damage to the roof insulation panels.

In DE 29723930 wird ein Dämmelement mit einer begehbaren Deckplatte offenbart, unter der eine durchgehende Isolierplatte befestigt ist, in die Längs- und Quer-Belüftungskanäle eingeformt sind.In DE 29723930 an insulating element is disclosed with a walk-in cover plate, is fixed under a continuous insulating plate, are formed in the longitudinal and transverse ventilation channels.

Dabei besteht die Isolierplatte beispielsweise aus PU-Schaum, Stein- und Mineralwolle oder Holzfasermaterial, während für die Deckplatte Holzwerkstoffplatten, Gips- und Gipsfaserplatten eingesetzt werden.The insulating plate consists for example of PU foam, stone and mineral wool or wood fiber material, while for the cover plate wood-based panels, gypsum and gypsum fiber boards are used.

Nachteilig ist jedoch, dass hier stets zwei plattenförmige Flächengebilde zusammengefügt werden müssen. Darüber hinaus bedeutet das Einbringen von Belüftungskanälen in die Isolierplatte zusätzlichen Arbeitsaufwand bei der Produktion, wodurch solch geartete Dämmelemente entsprechend hochpreisig sind.The disadvantage, however, is that always two plate-shaped fabric must be joined together here. In addition, the introduction of ventilation ducts in the insulating plate means additional work in production, whereby such kind of insulation elements are correspondingly high priced.

Des Weiteren gibt es Unterdeckplatten aus verpressten, chemisch verfestigten Holzfaserstoffen deren Nachteil neben dem hohen Gewicht einer Platte auch die geringe Resistenz gegen Dauerfeuchte ist. Bei länger einwirkender Feuchte neigen derartige Platten zum Aufquellen bis hin zur Schimmelbildung an den Feuchtstellen.Furthermore, there are lower cover plates made of compressed, chemically bonded wood pulp whose disadvantage in addition to the high weight of a plate and the low resistance to permanent moisture. For longer-lasting moisture, such plates tend to swell up to the formation of mold at the moist sites.

Die Aufgabe der vorliegenden Erfindung ist es, die genannten Nachteile des Standes der Technik mit den im Anspruch 1 und in den Unteransprüchen genannten Merkmalen zu vermeiden.The object of the present invention is to avoid the mentioned disadvantages of the prior art with the features mentioned in claim 1 and in the subclaims.

Die erfindungsgemäße Unterdeckplatte ist in der Lage, neben der Grundforderung nach Begehbarkeit und dauerhafter Wasserdichtheit auch die Geräuschdämmung und die Wärmedämmung trotz geringer Dicke der Platte im Dachraum signifikant zu erhöhen.The lower deck according to the invention is able to significantly increase not only the basic requirement for accessibility and permanent waterproofness, but also the noise insulation and the thermal insulation despite the small thickness of the panel in the roof space.

Erreicht wird dies, indem diese Unterdeckplatte aus einem kardierten, kreuzgelegten Vliesstoff aus synthetischen Stapelfasern besteht, der mechanisch verfestigt und verdichtet, sowie thermisch verfestigt ist.This is achieved by making this bottom cover plate of a carded, cross-laid nonwoven fabric of synthetic staple fibers which is mechanically consolidated and compacted, as well as thermally consolidated.

Zur Gewährleistung der Schlagregensicherheit ist zumindest eine Seite der Unterdeckplatte mit hydrophoben Eigenschaften versehen. Des Weiteren können sowohl die Oberseite als auch die Unterseite oder, in bevorzugten Ausführungen, die komplette Unterdeckplatte, d.h. auch über die Dicke, hydrophobe Eigenschaften besitzen.To ensure the driving rain safety at least one side of the lower cover plate is provided with hydrophobic properties. Furthermore, both the top and the bottom, or, in preferred embodiments, the complete bottom deck, i. also possess the thickness, hydrophobic properties.

Zur Verringerung des Kohlendioxidausstoßes, der durch die Heizung von Gebäuden entsteht, werden Wärmedämmmaßnahmen beim Bau neuer Gebäude und bei Altbausanierungen durchgeführt. Bei Altbausanierungen sind durch die Sparrenhöhe oft Grenzen für die Höhe der Dämmschicht zwischen den Sparren gesetzt. Auch bei Neubauten sind häufig der Sparrenhöhe durch den finanziellen Rahmen des Bauherrn Grenzen gesetzt. Für den Bauherrn sind sowohl das äußere Erscheinungsbild, als auch die Kostenfrage ein wesentlicher Gesichtspunkt, der zu beachten ist. Die Gesetzgebung hat hier enge Grenzen gesetzt, die eingehalten werden müssen um eine dauerhafte Dämmung unter ökonomischem Gesichtspunkten zu erzielen.In order to reduce the carbon dioxide emissions caused by the heating of buildings, thermal insulation measures are carried out in the construction of new buildings and refurbishments. In old building renovations are by the rafter height Often limits are set for the height of the insulating layer between the rafters. Even with new buildings, the rafter height is often limited by the financial framework of the client. For the client, both the external appearance and the cost issue are an important aspect to be considered. The legislation has narrow limits here, which must be complied with in order to achieve a permanent insulation from an economic point of view.

Ausgehend von dieser Basis liegt der Erfindung die Idee zugrunde, wesentliche Eigenschaften eines Dachunterbaus wie:

  • Wasserdichtheit
  • Begehbarkeit
  • Wärmedämmung
  • Geräuschisolierung
  • Gewichtseinsparung
  • Resistenz gegen Mikroben
Based on this basis, the invention is based on the idea of essential properties of a roof substructure such as:
  • Water tightness
  • walkability
  • thermal insulation
  • noise isolation
  • weight reduction
  • Resistance to microbes

in einem Bauteil zu vereinigen.in one component.

Eine erfindungsgemäß ausgeführte Unterdeckplatte ermöglicht es, einen Teil der Wärmedämmung in den Außenbereich des Dachaufbaus zu verlegen, sodass gerade bei der Altbausanierung im Innenbereich nicht mit großen Dicken gearbeitet werden muss.An inventively designed lower deck plate makes it possible to move a portion of the thermal insulation in the outer area of the roof structure, so that it is not necessary to work with large thicknesses especially in the renovation of old buildings in the interior.

Die erfindungsgemäße Unterdeckplatte umfasst ein mechanisch gebildetes Vlies aus einer Mischung von thermoplastischen und/oder duroplastischen Stapelfasern mit Schmelzfasern, welches zunächst mechanisch verfestigt und verdichtet wird. Eine daran anschließende thermische Behandlung aktiviert die Schmelzfasern, sodass sich nach Abkühlung des Materials die erfindungsgemäße eigensteife Unterdeckplatte ergibt. Die verwendeten Rohstoffe sollen des Weiteren eine dauerhafte Schimmelresistenz gewähren ohne dass dies auf einer chemischen Behandlung beruht.The undersheet according to the invention comprises a mechanically formed nonwoven made from a mixture of thermoplastic and / or duroplastic staple fibers with melt fibers, which is first mechanically consolidated and compacted. An adjoining thermal treatment activates the melt fibers, so that after cooling of the material results in the inventive rigid bottom cover plate. The raw materials used should also be a To provide permanent mold resistance without this being due to a chemical treatment.

Die dabei zugrunde liegenden Herstellverfahren können dem Buch " Vliesstoffe", Fuchs / Albrecht (Hrsg), erschienen im Viley VCH, 2012 entnommen werden. Erfindungsgemäß ist eine oder beide Seiten der Unterdeckplatte hydrophob. Dies wird erfindungsgemäß durch die Verwendung mindestens einer hydrophobe Fasertype erreicht. In der Fasermischung kommen dann noch Schmelzfasern zum Einsatz. Zudem werden weitere Fasern mit großen Faserdurchmessern verwendet.The underlying manufacturing process can the book " Nonwovens ", Fuchs / Albrecht (eds), published in Viley VCH, 2012 be removed. According to the invention, one or both sides of the lower cover plate is hydrophobic. This is achieved according to the invention by the use of at least one hydrophobic fiber type. Melt fibers are then used in the fiber mixture. In addition, other fibers are used with large fiber diameters.

Der Begriff Schmelzfaser wird in der vorliegenden Schrift synonym für Fasern verwendet, die zur thermischen Verfestigung von Vliesstoffen verwendbar sind. Üblicherweise enthalten derartige Fasern thermoplastische Bereiche, die einen geringeren Schmelzpunkt als die restlichen, den Vliesstoff bildenden Fasern haben. Diese Fasern können vollständig aus einem niedrigschmelzenden Polymer bestehen, es können aber auch sogenannte bikomponente Fasern des Seite / Seite oder des Kern / Mantel Types sein. Als Polymere sind alle gängigen Varianten aus Polyestern, Polyamiden oder Polyolefinen geeignet. Auch schmelzbare Anteile mit höheren kristallinen Anteilen können zum Einsatz kommen. Der Anteil an Schmelzfasern liegt erfindungsgemäß bei mindestens 40 Gewichtprozent. Die Fasern weisen eine handelsübliche Kräuselung auf. Der Faserdurchmesser der zum Einsatz kommenden Schmelzfasern liegt zwischen 10 und 60µm.The term melt fiber is used in the present specification synonymously for fibers which are usable for the thermal consolidation of nonwovens. Typically, such fibers contain thermoplastic regions which have a lower melting point than the remaining non-woven fabric forming fibers. These fibers may consist entirely of a low melting point polymer, but may also be so-called bicomponent side / side or core / sheath type fibers. As polymers all common variants of polyesters, polyamides or polyolefins are suitable. Also fusible fractions with higher crystalline proportions can be used. The proportion of melt fibers according to the invention is at least 40 weight percent. The fibers have a commercial crimp. The fiber diameter of the melt fibers used is between 10 and 60 μm.

Zur Gewährleistung der Wasserdichtheit weist ein Teil der zum Einsatz kommenden Fasern hydrophobe Eigenschaften auf. Die hydrophoben Fasern haben dabei einen, im Vergleich zu den anderen Fasern in der Fasermischung geringeren Faserdurchmesser. Die zum Einsatz kommenden Faserdurchmesser liegen dabei bei maximal 20µm, bevorzugt kleiner 18µm. Im Folgenden werden diese Fasern als Feinfasern bezeichnet. Derartige Fasern können aus thermoplastischen Polymeren bestehen, es sind aber auch duroplastische Polymere vorstellbar. Die Feinfasern weisen eine Kräuselung auf, die entweder zweidimensionaler aber auch dreidimensionaler Natur sein kann. Durch die Kräuselung haben die Fasern eine mehr oder weniger stark ausgebildete Rückstellkraft gegenüber mechanischen Belastungen. Je stärker die Kräuselung, ausgedrückt über Anzahl Kräuselbögen / cm ausgeführt ist, umso größer ist die Rückstellkraft. Erfindungsgemäß geeignet sind Feinfasern, die eine Anzahl von mindestens 4 Kräuselbögen pro cm haben, bevorzugt werden Fasern die größer 6 Bögen/cm aufweisen.To ensure watertightness, some of the fibers used have hydrophobic properties. The hydrophobic fibers have a smaller compared to the other fibers in the fiber mixture fiber diameter. The fiber diameters used are included maximum 20μm, preferably less than 18μm. In the following, these fibers are called fine fibers. Such fibers may consist of thermoplastic polymers, but thermoset polymers are also conceivable. The fine fibers have a crimp, which can be either two-dimensional but also three-dimensional nature. By crimping the fibers have a more or less strong restoring force against mechanical loads. The greater the crimping, expressed in terms of number of crimps / cm, the greater the restoring force. Fine fibers which have a number of at least 4 crimps per cm are suitable according to the invention; fibers having greater than 6 sheets / cm are preferred.

Diese Rückstellkraft kann weiterhin durch das die Fasern bildende Polymer beeinflusst werden. Geeignet sind Polyolefine, Polyamide, Polyacryle und Polyester. Bevorzugt werden aufgrund der guten Rückstelleigenschaften Fasern aus linearen Makromolekülen, deren Kette zu mindestens 85 Gewichtsprozent aus dem Ester eines Diols mit Terephthalsäure besteht. Sie werden im Rahmen der vorliegenden Erfindung als Polyester-Feinfasern bezeichnet.This restoring force can be further influenced by the polymer forming the fibers. Suitable are polyolefins, polyamides, polyacrylics and polyesters. Due to the good recovery properties, preference is given to fibers of linear macromolecules whose chain consists of at least 85 percent by weight of the ester of a diol with terephthalic acid. They are referred to in the context of the present invention as polyester fine fibers.

Die hydrophoben Eigenschaften dieser Feinfasern basieren dabei entweder auf den Fasereigenschaften selbst, beispielsweise bei Verwendung von Polyolefinen wie Polypropylen oder aber durch sogenannte Avivierungen die den Feinfasern bereits vor der Verarbeitung einen hydrophoben Charakter verleihen oder durch Avivage-Systeme, welche erst während der thermischen Behandlung ihre hydrophoben Eigenschaften durch Vernetzungsreaktionen ausbilden.The hydrophobic properties of these fine fibers are based either on the fiber properties themselves, for example when using polyolefins such as polypropylene or by so-called Avivierungen give the fine fibers before processing a hydrophobic character or by lubrication systems, which only during the thermal treatment of their hydrophobic Form properties by crosslinking reactions.

Die Polymere, aus welchen die Feinfasern gebildet werden, müssen so gewählt werden, dass diese einen Schmelzpunkt haben, der höher liegt als die Schmelztemperatur der Schmelzfasern bzw höher als die für die vorstehend erwähnte Vernetzungsreaktion notwendige Temperatur.The polymers from which the fine fibers are formed must be selected so that they have a melting point which is higher than the melting temperature of the melt fibers or higher than the temperature necessary for the aforementioned crosslinking reaction.

Der Anteil von hydrophoben Feinfasern liegt erfindungsgemäß bei mindestens 30 Gewichtprozent.The proportion of hydrophobic fine fibers according to the invention is at least 30 weight percent.

Es werden auch Fasern mit größerem Faserdurchmesser eingesetzt. Diese Fasern weisen dann einen Durchmesser von mindestens 30µm auf. Bevorzugt werden Faserdurchmesser von größer 40µm. Derartige Fasern verleihen der erfindungsgemäßen Unterdeckplatte eine erhöhte Stabilität speziell bei Druckbelastungen bspw beim Begehen der Platte. Derartige Fasern werden als Grobfasern bezeichnet. Der Anteil dieser Grobfasern liegt, sollten sie verwendet werden, bei maximal 30 Gewichtprozent. Die Grobfasern weisen handelsübliche Kräuselungen auf. Als Polymere zur Herstellung der Grobfasern sind Polyolefine, Polyamide, Polyacryle und Polyester geeignet.It also fibers with a larger fiber diameter are used. These fibers then have a diameter of at least 30 .mu.m. Fiber diameters of greater than 40 μm are preferred. Such fibers impart to the lower cover plate according to the invention an increased stability especially under pressure loads, for example when walking on the plate. Such fibers are referred to as coarse fibers. The proportion of these coarse fibers, if they are used, at a maximum of 30 weight percent. The coarse fibers have commercial ripples. As polymers for the production of coarse fibers, polyolefins, polyamides, polyacrylics and polyesters are suitable.

Besonders bevorzugt werden Polyester-Fasern aus linearen Makromolekülen, deren Kette zu mindestens 85 Gewichtsprozent aus dem Ester eines Diols mit Terephthalsäure besteht. Sie werden im Rahmen der vorliegenden Erfindung als Polyester-Grobfasern bezeichnet.Particularly preferred are polyester fibers of linear macromolecules whose chain consists of at least 85 percent by weight of the ester of a diol with terephthalic acid. They are referred to in the context of the present invention as polyester coarse fibers.

Sind die zum Einsatz kommenden Fasertypen alle auf Basis des gleichen Polymers, so ist, zumindest bei thermoplastischen Polymeren, die Wiederverwertung bei Renovierung / Neuaufbau eines Daches gewährleistet. Erfindungsgemäße und mit bevorzugten Rohstoffen hergestellte Unterdeckplatten können problemlos dem Recycling zu geführt werden.If the fiber types used are all based on the same polymer, then at least in the case of thermoplastic polymers, recycling during renovation / reconstruction of a roof is ensured. According to the invention and produced with preferred raw sub-top plates can easily be recycled.

Im Unterschied zum Stand der Technik wird mit Polymeren gearbeitet, die sich nicht mikrobiell verstoffwechseln lassen. Somit ist sichergestellt, dass auch bei dauerhafter Feuchte in der Umgebung eine erfindungsgemäße Unterdeckplatte keinen Nährboden für das Wachstum von Schimmel oder Bakterien bietet. Diese Eigenschaft erweist sich speziell bei Neubauten als vorteilhaft, die noch in der Phase des Abtrocknens von Mauerwerk oder Putz in den Innenräumen sind. Innerhalb dieser Trockenphase diffundiert ein Großteil der im Gebäude vorhandenen Feuchte über den Dachbereich nach außen. Je nach Temperaturverhältnissen kann es dabei zur Bildung von Kondenswasser an den Unterdeckpatten kommen. Eine erfindungsgemäß ausgeführte Unterdeckplatte verhält sich dabei inert, da die Feuchtigkeit weder zum Quellen noch zu anderen negativen Effekten (Schimmelbildung) führt.In contrast to the prior art is used with polymers that can not be microbially metabolized. This ensures that even with permanent moisture in the environment, a lower cover plate according to the invention does not provide a breeding ground for the growth of mold or bacteria. This property proves to be particularly beneficial in new buildings, which are still in the phase of drying masonry or plaster in the interiors. During this dry phase, most of the moisture in the building diffuses outward through the roof area. Depending on the temperature conditions, it may lead to the formation of condensation on the Unterdeckpatten. An inventively designed lower cover plate behaves inert, since the Moisture does not lead to swelling or other negative effects (mold growth).

Von entscheidender Bedeutung für die vorliegende Erfindung ist der Schritt des mechanischen Verfestigens und Verdichtens in Verbindung mit dem Einsatz von hydrophoben Feinfasern mit den oben genannten Faserdurchmessern.Of crucial importance to the present invention is the step of mechanical consolidation and densification in conjunction with the use of hydrophobic fine fibers having the above fiber diameters.

Bei der mechanischen Verfestigung wird neben der teilweisen Umorientierung der Stapelfasern von der horizontalen in die vertikale Dimension auch die Dichte des Materials, ausgedrückt als Raumgewicht, kurz RG mit der Einheit kg/m3, erhöht.In the case of mechanical consolidation, in addition to the partial reorientation of the staple fibers from the horizontal to the vertical dimension, the density of the material, in terms of density per unit area, in short RG, with the unit kg / m 3 , is increased.

Durch die erfindungsgemäße Verwendung von hydrophoben Feinfasern ist eine hohe Anzahl von Einzelfasern pro Raumeinheit vorhanden. Durch die Verdichtung während der mechanischen Verfestigung werden die Abstände zwischen den einzelnen Fasern derart verringert, dass sich speziell im Bereich der Außenflächen eine porenarme, fast geschlossene Oberfläche aus Fasern ergibt. Diese Oberfläche ist für tropfenförmig auftreffendes Wasser, bspw Regen praktisch dicht, aber für Wasserdampf trotzdem durchlässig. Zur Anwendung kommen konventionelle mechanische Vernadelungstechniken, bevorzugt werden Nadelmaschinen die einen Verfahrensablauf gemäß der EP1644565 ermöglichen. Durch diese bevorzugte Vernadelungstechnik erhält das so entstandene Vlies eine hohe Innenverfestigung, welche dadurch in der erfindungsgemäßen Unterdeckplatte die Durchtrittsicherheit durch hohe Scherfestigkeit gewährleistet..The inventive use of hydrophobic fine fibers, a high number of individual fibers per unit of space is available. The compaction during the mechanical consolidation reduces the distances between the individual fibers in such a way that, especially in the area of the outer surfaces, a pore-poor, almost closed surface of fibers results. This surface is for drop-shaped impinging water, for example, rain virtually dense, but still permeable to water vapor. Conventional mechanical needling techniques are used; needle machines which are preferred are a method sequence according to the EP1644565 enable. By means of this preferred needling technique, the nonwoven fabric thus obtained obtains a high inner consolidation, which thereby ensures the penetration resistance through high shear strength in the lower cover plate according to the invention.

Die Flächengewicht des Faserflors, welcher der mechanischen Verfestigung zugeführt wird, liegt erfindungsgemäß bei größer 1000g/m2, bevorzugt bei größer 2000 g/m2. Durch den Schritt der mechanischen Verfestigung wird der Faserflor hin zu einem flexiblen Vlies verfestigt und so verdichtet, dass sich nach Abschluss der thermischen Verfestigungsstufe für die fertige Unterdeckplatte erfindungsgemäß Raumgewichte von kleiner 200kg/m3, bevorzugt kleiner 160 kg/m3 und besonders bevorzugt von kleiner 130kg/m3 ergeben.The weight per unit area of the fibrous web, which is supplied to the mechanical consolidation, according to the invention is greater than 1000 g / m 2 , preferably greater than 2000 g / m 2 . By the step of mechanical consolidation of the batt is solidified toward a flexible web and compacted so that after completion of the thermal solidification stage for the finished lower cover plate according to the invention space weights of less than 200kg / m 3 , preferably less than 160 kg / m 3 and more preferably of less than 130kg / m 3 .

Erfindungsgemäß schließt an diese mechanische Verfestigung eine thermische Verfestigungsstufe an. Diese kann beispielsweise aus einer Wärmebehandlung mittels Durchströmen mit Heißluft bestehen. Dafür kommen beispielsweise übliche Bandtrockner zum Einsatz. Die Heißluft bringt die schmelzbaren Anteile der Schmelzfasern zum Schmelzen, die Schmelze wandert an Kreuzungspunkte von nicht geschmolzenen Fasern und lagert sich dort bevorzugt ab. Am Ende der thermischen Verfestigungsstufe wird die noch schmelzwarme Matte einer Kühlbehandlung, bspw mittels Durchströmen mit kalter Luft, unterzogen, sodass die geschmolzenen Bereiche abkühlen und der Vliesstoff zur erfindungsgemäßen eigensteifen Unterdeckplatte verfestigt wird.According to the invention, this mechanical solidification is followed by a thermal hardening stage. This can for example consist of a heat treatment by means of flowing through hot air. For example, conventional belt dryers are used. The hot air melts the fusible portions of the melt fibers, the melt migrates to points of intersection of unmelted fibers and preferably deposits there. At the end of the thermal consolidation stage, the still low-melt mat undergoes a cooling treatment, for example by means of cold air, so that the molten areas cool and the nonwoven fabric is solidified to form the intrinsically rigid undercover panel according to the invention.

Je nach Ausführung der Feinfasern kann die thermische Verfestigungsstufe auch eine Vernetzungsreaktion von Avivagebestandteilen auf der Faseroberfläche zur Folge haben. Wird die Faseroberfläche während der Herstellung der Feinfasern beispielsweise mit Ausgangstoffen für eine hydrophobe Beschichtung aus Fluorcarbon versehen, so kann im Rahmen der thermischen Verfestigungsstufe auch die Vernetzungsreaktion aktiviert werden. In der Folge weist eine so hergestellte, erfindungsgemäß ausgeführte Unterdeckplatte eine dem Stand der Technik überlegene Wasserdichtheit bei mechanischer Beständigkeit gegenüber Beanspruchung der Sicht-Oberfläche auf.Depending on the design of the fine fibers, the thermal solidification stage may also result in a crosslinking reaction of softening components on the fiber surface. If, during the production of the fine fibers, the fiber surface is provided, for example, with starting materials for a hydrophobic coating of fluorocarbon, the crosslinking reaction can also be activated within the scope of the thermal solidification stage. As a result, a bottom cover plate produced in accordance with the invention thus produced has a water-tightness which is superior to the state of the art and has mechanical resistance to stress on the viewing surface.

Das Raumgewicht kann während der thermischen Verfestigung noch weiter erhöht werden. Beispielsweise kann sich an die Heizstufe im Trockner ein Kalibrierband oder eine Kalibrierwalze anschließen, welche das schmelzwarme Vlies weiter komprimiert und dieser Zustand durch die anschließende Abkühlung fixiert wird. So werden die Fasern im Bereich der Oberflächen weiter aneinander gedrückt, eine weitere Verbesserung der Schlagregendichtheit ist die Folge.The volumetric weight can be further increased during the thermal consolidation. For example, can connect to the heating stage in the dryer a Kalibrierband or a sizing roll, which further compresses the hot melt web and this state is fixed by the subsequent cooling. Thus, the fibers are further pressed together in the surface area, a further improvement of the watertightness is the result.

So hergestellte, erfindungsgemäß ausgeführte Unterdeckplatten weisen Raumgewichte von kleiner 200kg/m3, bevorzugt kleiner 160 kg/m3 und besonders bevorzugt von kleiner 130kg/m3 auf. Die Dicken liegen in einem Bereich von 10 bis 60mm, wobei eine Dicke im Bereich 15 bis 30mm bevorzugt wird.So produced, designed according to the invention under cover plates have space weights of less than 200kg / m 3 , preferably less than 160 kg / m 3 and more preferably of less than 130kg / m 3 . The thicknesses are in a range of 10 to 60 mm, with a thickness in the range 15 to 30 mm being preferred.

Kennzeichnend für die vorliegende Erfindung ist eine Oberfläche welche aus stark verdichteten, hydrophoben Feinfasern besteht und zumindest auf einer Seite der Unterdeckplatte ausgebildet ist. Die wasserabweisenden Eigenschaften dieser Oberfläche bleiben - im Unterschied zum Stand der Technik - auch nach punktuellen Belastungen oder Überlastung wie beispielsweise dem Einschlagen eines Nagels zur Befestigung der Unterdeckplatte an der Unterkonstruktion oder beim Begehen entstehen, erhalten.Characteristic of the present invention is a surface which consists of highly compressed, hydrophobic fine fibers and is formed at least on one side of the lower cover plate. The water-repellent properties of this surface remain - in contrast to the prior art - even after punctual loads or overload, such as the impact of a nail for attachment of the lower deck plate to the substructure or when walking, obtained.

Herkömmliche Materialien wie im Stand der Technik beschrieben, benötigen zur Erzielung einer Wasserdichtheit eine abdichtente Lage. Diese wird, da auch die Forderung nach Wasserdampfdurchlässigkeit besteht, im Allgemeinen aus einer, wasserdichten, aber wasserdampfdurchlässigen Folie gebildet. Nachteilig ist, dass diese Folie aufgrund ihrer Porosität nur sehr geringe mechanische Festigkeiten aufweisen. Partielle Überdehnung oder Lochbildung wird nicht ausgeglichen.Conventional materials as described in the prior art require a sealed layer to achieve watertightness. This is, since the demand for water vapor permeability exists, generally formed from a waterproof, but water vapor permeable film. The disadvantage is that these films have only very low mechanical strengths due to their porosity. Partial overstretching or hole formation is not compensated.

Wird nun eine derartige, dem Stand der Technik entsprechende Folienlage an der Unterkonstruktion mittels Nageln oder Klammern befestigt, entsteht um die Eindringstelle herum ein Loch, welches sich bei Dehnung bspw beim Begehen weiter vergrößern kann. Lochbildung kann aber auch durch partielles Überdehnen geschehen, z.B.ein Stein der im Schuhprofil eines Dachdeckers steckt. Dabei drückt sich der Stein in die Oberfläche und perforiert die Folie, das Dach weist Fehlstellen auf. Ebenso ist dies bei chemisch verfestigten Holzfaserplatten. Sobald hier eine partielle Überlastung stattfindet, ist eine derartige Unterdeckplatte in ihrer Integrität gestört und anfällig gegenüber auftreffendem Wasser.If such a film layer corresponding to the prior art is fastened to the substructure by means of nails or staples, a hole is created around the penetrating point, which can further increase during elongation, for example during walking. But hole formation can also be done by partial overstretching, for example, a stone stuck in the shoe profile of a roofer. The stone presses into the surface and perforates the film, the roof has defects. This is also the case with chemically bonded wood fiber boards. Once there is a partial overload, such a bottom plate is disturbed in its integrity and vulnerable to impinging water.

Anders ist dies bei einer erfindungsgemäß ausgeführten Unterdeckplatte. Die hydrophoben Feinfasern sind durch die Verdichtung stark aneinander gepresst. Dringt nun ein Nagel in die Unterdeckplatte ein, so werden die Feinfasern vom Nagel zur Seite gedrängt, d.h weiter verdichtet. Durch die den Feinfasern innewohnende Rückstellkraft wird nun sowohl die Eindringstelle als auch die Kontaktfläche des Nagels zu den Feinfasern über die Dicke der Unterdeckplatte durch die hydrophoben Feinfasern abgedichtet. Dies beugt speziell auch einem Wasserdurchtritt im Sparrenbereich vor. Tropfenförmiges Wasser kann weder auf der Lauffläche noch im Bereich der Nagelstellen eindringen. Dem Stand der Technik entsprechende Materialien benötigen gerade um die Nagelstellen herum auf den Sparren noch Abdichthilfen.This is different with a lower cover plate designed according to the invention. The hydrophobic fine fibers are strongly pressed together by the compression. If a nail penetrates into the lower cover plate, the fine fibers are pushed aside from the nail, ie further compressed. By virtue of the restoring force inherent in the fine fibers, both the penetration point and the contact surface of the nail to the fine fibers are now through the thickness of the lower cover plate by the hydrophobic Fine fibers sealed. This especially prevents water penetration in the rafter area. Drop-shaped water can not penetrate either on the tread or in the area of the nail points. Prior art materials require just around the nail points around on the rafters still Abdichthilfen.

Ebenso ist es beim vorbeschriebenen Beispiel mit einem Stein im Schuhprofil. Die Unterdeckplatte wird durch die Belastung kurzzeitig komprimiert jedoch nicht perforiert. Nach Wegfall der Belastung nehmen die Feinfasern wieder ihre ursprüngliche Position ein sodass auch hier kein Eindringen von Wasser an der Belastungsstelle möglich ist.Likewise, it is in the above example with a stone in the shoe profile. The lower cover plate is briefly compressed by the load but not perforated. Once the load has been removed, the fine fibers return to their original position so that water can not penetrate the point of loading.

Die erfindungsgemäße Unterdeckplatte gemäß dem Ausführungsbeispiel 1 besteht aus folgender Fasermischung:

  • Schmelzfaser:
    Anteil 50% Gewichtsprozent, bikomponente Schmelzfaser mit Kern / Mantel-Struktur aus Co-Polyester/ Polyester, wobei der Mantel einen Schmelzpunkt von ca 110°C und der Kern einen Schmelzpunkt von ca 250°C aufweist. Der Faserdurchmesser beträgt ca 20,1µm, die Faserlänge 51 mm
  • Grobfaser:
    Anteil 20% Gewichtsprozent einer Polyester-Grobfaser mit einem Schmelzpunkt von ca 250°C Der Faserdurchmesser beträgt ca 50,8µm, die Faserlänge 76mm.
  • Feinfaser:
    Anteil 30% Gewichtsprozent einer Polyester-Feinfaser mit einem einen Schmelzpunkt von ca 250°C Der Faserdurchmesser beträgt ca 12,5µm, die Faserlänge 38mm. Die Fasern weisen eine Kräuselung von im Mittel 7 Bögen/cm auf. Das Avivage-System besteht aus einer nicht vernetzten Auflage auf FluorCarbon Basis, die erst nach thermischer Behandlung die hydrophoben Eigenschaften ausbildet.
The lower cover plate according to the invention according to the embodiment 1 consists of the following fiber mixture:
  • Melting fiber:
    Share 50% by weight, bicomponent melt fiber with core / shell structure of co-polyester / polyester, wherein the shell has a melting point of about 110 ° C and the core has a melting point of about 250 ° C. The fiber diameter is about 20.1μm, the fiber length 51 mm
  • Coarse Fiber:
    Share 20% by weight of a polyester coarse fiber with a melting point of about 250 ° C The fiber diameter is about 50.8μm, the fiber length 76mm.
  • Fine fiber:
    Share 30% by weight of a polyester fine fiber with a melting point of about 250 ° C The fiber diameter is about 12.5μm, the fiber length 38mm. The fibers have a crimp of on average 7 sheets / cm. The Avivage system consists of a non-crosslinked fluorocarbon-based overlay, which only forms the hydrophobic properties after thermal treatment.

Die vorgenannten Fasertypen werden homogen gemischt und einer Krempelanlage zugeführt. Über einen Kreuzleger wird ein unverfestigter Faserflor mit einem Flächengewicht von ca 2400g/m2 erzeugt.The aforementioned fiber types are mixed homogeneously and fed to a carding machine. An unstiffened batt with a surface weight of about 2400 g / m 2 is produced by means of a crosslapper.

Dieser Faserflor wird einer Nadelmaschine zugeführt, wie sie in EP1644565 beschrieben ist. Der Faserflor wird mit einer Geschwindigkeit durch die Nadelanlage gefahren, sodass sich eine Anzahl von 140 Einstichen pro cm2 Vliesoberfläche ergibt. Es wird mit sogenannten 1-Barb-Nadeln gearbeitet.This batt is fed to a needle loom, as in EP1644565 is described. The batt is run at a speed through the needle system, resulting in a number of 140 stitches per cm 2 of nonwoven surface. It is worked with so-called 1-Barb needles.

Der so hergestellte Faserflor wird einem Bandtrockner zugeführt, der die im Faserflor enthaltenen schmelzbaren Mantelanteile der Schmelzfasern schmilzt. Die Trocknertemperatur liegt dabei bei ca 175°C.The fibrous web thus produced is fed to a belt dryer, which melts the fusible shell portions of the melt fibers contained in the batt. The dryer temperature is around 175 ° C.

Abschließend wird der erhitzte Faserflor abgekühlt, sodass sich die erfindungsgemäße, eigensteife Platte mit einer Dicke von 24,5mm bei einem Flächengewicht von 2309g/m2, entsprechend einem Raumgewicht von 94kg/m3 ergibt.Finally, the heated batt is cooled, so that the invention, inherently rigid plate with a thickness of 24.5mm at a basis weight of 2309g / m 2 , corresponding to a density of 94kg / m 3 results.

Die so erzeugte Platte weist sowohl an beiden Oberflächen als auch über die gesamte Dicke der Platte hydrophobe Eigenschaften auf. Dadurch sind auch die Schnittkanten der Platte wasserabweisend.The plate thus produced has hydrophobic properties both on both surfaces and over the entire thickness of the plate. As a result, the cut edges of the plate are water repellent.

In weiteren Ausgestaltungen der Erfindung kann die Unterdeckplatte zumindest auf einer Seite eine Oberflächenbehandlung mittels Druck und/oder Hitze derart behandelt werden, dass die Plattenoberfläche geglättet wird. Glätten bedeutet im Falle der vorliegenden Erfindung eine Veränderung der Faseroberflächen, sodass diese im Bereich der Plattenoberfläche keinen runden Querschnitt sondern einen einseitig abgeplatteten Querschnitt aufweisen.In further embodiments of the invention, the lower cover plate can be treated on at least one side of a surface treatment by means of pressure and / or heat so that the plate surface is smoothed. Smoothing in the case of the present invention means a change in the fiber surfaces, so that they do not have a round cross-section in the region of the plate surface but a cross-section which is flattened on one side.

Erreicht wird dies durch die Beaufschlagung der zu glättenden Oberfläche mit Druck und ggf Wärmeunterstützung. Geeignet dazu sind beispielsweise Bandpressen, bei welchen die Oberflächen der Unterdeckplatten unter Druck- und Hitzeeinwirkung aufgrund der glatten Bandstruktur geglättet werden. Auch eine Behandlung mit Kalander bringt ähnlich Effekte.This is achieved by the application of pressure to the surface to be smoothed and, if necessary, heat support. Suitable for this purpose are, for example, belt presses which the surfaces of the underlab plates are smoothed under pressure and heat due to the smooth band structure. A treatment with calender brings similar effects.

Eine derartige Glättbehandlung hat eine verbesserte Geschlossenheit der so behandelten Oberfläche der Unterdeckplatte zur Folge, sodass die Schlagregendichte gesteigert wird.Such a smoothing treatment results in an improved closure of the thus treated surface of the lower cover plate, so that the driving rain density is increased.

Das Ausführungsbeispiel 2 zeigt eine erfindungsgemäß ausgeführte, beidseitig geglättete Unterdeckplatte, welche zunächst gemäß Ausführungsbeispiel 1 hergestellt wurde. Anschließend wurde die Unterdeckplatte einer Glättbehandlung mittels einer Flachbett-Kaschieranlage bei einer Temperatur von 180°C und einem Bandabstand von 21 mm unterzogen. Die Presse hatte auf Ober- und Unterband einen glatten Teflonbelag. Die Geschwindigkeit lag bei 2,1 m/min.Embodiment 2 shows an inventively designed, smoothed on both sides lower cover plate, which was first prepared according to Embodiment 1. Subsequently, the lower cover plate was subjected to a smoothing treatment by means of a flat bed laminating machine at a temperature of 180 ° C. and a belt gap of 21 mm. The press had a smooth Teflon coating on the upper and lower belt. The speed was 2.1 m / min.

Das Verhalten von erfindungsgemäß ausgeführten Materialien im Vergleich zum Stand der Technik kann der Tabelle 1 entnommen werden.The behavior of materials according to the invention in comparison with the prior art can be seen from Table 1.

Als Testmethoden kamen folgende Verfahrensweisen zum Einsatz:
Flächengewicht: gemäß EDANA WSP 130.1. mit einer Mustergröße von 25*25cm. Das Messergebnis wird in g/m2 angegeben.
The following methods were used as test methods:
Basis weight : according to EDANA WSP 130.1. with a pattern size of 25 * 25cm. The measurement result is given in g / m 2 .

Dicke: gemäß EDANA WSP 120.6., Messgerät gemäß Absatz 4.1 und Prüfverfahren gemäß Absatz 7.2 Option B. Das Messergebnis wird in mm angegeben Thickness: according to EDANA WSP 120.6., Measuring instrument according to paragraph 4.1 and test method according to paragraph 7.2 option B. The measurement result is given in mm

Luftdurchlässigkeit: gemäß EDANA WSP 70.1, ermittelt bei einem Differenzdruck von 100Pa. Das Ergebnis wird in l/m2/s angegeben.Air permeability: according to EDANA WSP 70.1, determined at a differential pressure of 100Pa. The result is given in l / m 2 / s.

Wasseraufnahme: zunächst wird das Trockengewicht T1 in g eines Prüflings der Größe 100*100mm ermittelt. Danach wird der Prüfling in ein Wasserbad, welches mit lonentauscher- Wasser mit einer Leitfähigkeit kleiner 0,5 µS/cm gefüllt ist, innerhalb von 5 Sekunden soweit eingetaucht, dass sich über dem Prüfling eine Wasserhöhe von 150mm ergibt. Nach 60 Sekunden Tauchbehandlung wird der Prüfling innerhalb von 5 Sekunden aus dem Wasserbad entnommen. Nach weiteren 60 Sekunden Abtropfzeit wird das Nassgewicht N1, ebenfalls in g ermittelt. Water absorption : first, the dry weight T1 is determined in g of a specimen of size 100 * 100mm. Thereafter, the sample is in a water bath, which is filled with ion-exchange water with a conductivity less than 0.5 μS / cm, within 5 seconds so far immersed that results in a water level of 150mm above the specimen. After immersion for 60 seconds, the specimen is removed from the water bath within 5 seconds. After another 60 seconds dripping time, the wet weight N1, also determined in g.

Die Wasseraufnahme wird nach der Gleichung Wasseraufnahme % = N 1 T 1 T 1 × 100 %

Figure imgb0001
ermittelt und in % angegeben.The water absorption is according to the equation water absorption % = N 1 - T 1 T 1 × 100 %
Figure imgb0001
determined and expressed in%.

Durchtrittfestigkeit: Der Testaufbau ist wie in Figur 1 gezeigt. Der Test simuliert eine Belastung wie sie beispielsweise beim Begehen eines Daches durch den Dachdecker entsteht. Zur Ermittlung der Durchtrittfestigkeit wird ein Prüfling 3 der Größe 50*300mm hergestellt. Der Prüfling 3 wird auf zwei parallel verlaufende, im Abstand von 230mm zu einander angebrachte Stützlager 1 gelegt, sodass sich eine dachähnliche Konstruktion ergibt, in welcher die beiden Stützlager 1 die Dachsparren und der darauf liegende Prüfling 3 die Unterdeckplatte darstellen. Eine 55 mm breite Druckfinne 2 wird dann in der Mitte des Abstands der beiden Stützlager 1, bei 115mm, so auf den Prüfling 3 gesetzt, dass die Kontaktlinie der Druckfinne 2 parallel zu den Auflagelinien des Prüflings 3 auf den Stützlagern 1 verläuft und die Druckfinne 2 auf jeder Seite des Prüflings 3 2,5mm heraussteht. Die Druckfinne 2 drückt nach Prüfungsstart auf den Prüfling 3 und verformt diesen mit einer Geschwindigkeit von 100mm/min bis ein Weg von 30% des Stützlager-Abstandes zurückgelegt wurde. Abschließend wird die Finne 2 mit gleicher Geschwindigkeit in entgegengesetzter Richtung herausgefahren, der Prüfling 3 entlastet. Der Test ist bestanden, wenn der Prüfling nicht bricht, d.h. eine Person nicht durch die entstandene Fehlstelle brechen kann.Penetration resistance : The test setup is as in FIG. 1 shown. The test simulates a load such as occurs when a roof is walked on by a roofer. To determine the penetration resistance, a test piece 3 of size 50 * 300mm is produced. The specimen 3 is placed on two parallel, spaced at a distance of 230mm to each other support bearing 1, so that there is a roof-like construction, in which the two support bearings 1, the rafters and the underlying test specimen 3 represent the lower deck. A 55 mm wide Druckfinne 2 is then set in the middle of the distance between the two support bearings 1, at 115mm, so on the specimen 3, that the line of contact of Druckfinne 2 runs parallel to the support lines of the specimen 3 on the support bearings 1 and the pressure fin. 2 on each side of the specimen 3 protrudes 2.5mm. The pressure fin 2 presses after test start on the specimen 3 and deformed this at a speed of 100mm / min until a distance of 30% of the support bearing distance was covered. Finally, the fin 2 is moved out at the same speed in the opposite direction, the DUT 3 relieved. The test is passed if the examinee does not break, ie a person can not break through the resulting defect.

Bleibende Verformung: Der Testablauf entspricht dem unter der Beschreibung Durchtrittfestigkeit. Er ist nur möglich mit Materialien die nicht brechen. Sobald der Durchtritttest beendet wurde, wird nach 60 Sekunden, in welcher der Prüfling vollkommen entlastet ist, die Differenz 4 in mm als Höhenunterschied der Position der Oberfläche des Prüflings 3 vor Prüfung zur Position der Oberfläche des Prüflings 3a nach Prüfung, ermittelt. Permanent deformation: The test procedure corresponds to that under the description penetration resistance. He is only possible with materials that do not break. As soon as the Passing test has been completed, after 60 seconds in which the specimen is completely relieved, the difference 4 in mm as height difference of the position of the surface of the specimen 3 before testing the position of the surface of the specimen 3a after testing, determined.

Die "bleibende Verformung" wird als Prozentwert der Differenz 4 bezogen auf den Stützlagerabstand nach der folgenden Formel berechnet: Bleibende Verformung % = Stützlagerabstand mm Differenz 4 mm × 100 %

Figure imgb0002
The "permanent deformation" is calculated as a percentage of the difference 4 in relation to the support bearing distance according to the following formula: Permanent deformation % = - - - - - - - - - - - - - Support bearing distance mm difference 4 mm × 100 %
Figure imgb0002

Angestrebt werden Werte von weniger als 8 % bleibender Verformung, bevorzugt werden Werte angestrebt, die kleiner 5% liegen.The aim is to achieve values of less than 8% permanent set, preferably values which are less than 5%.

Betrachtet man die Tabelle 1 so zeigt sich, dass bei der Ermittlung der Durchtrittfestigkeit das erfindungsgemäß ausgeführte Material bei Druckbelastung, bspw beim Begehen einer Platte nicht reißt oder bricht. Es findet lediglich eine Verformung statt, die nach Wegfall der Belastung sofort wieder verschwindet. Eine dem Stand der Technik entsprechende Unterdeckplatte aus verpressten Holzfasern, in Tabelle 1 als Vergleichsbeispiel aufgeführt, bricht bereits bei einer Verformung um 3% des Stützlagerabstands, im vorliegenden Fall also bereits bei einer Verformung von nur 6,9mm. Erfindungsgemäß ausgeführte Platten können problemlos um das 10-fache, bis zu 30% verformt werden, ohne zu brechen.Looking at Table 1, it can be seen that, when determining the penetration resistance, the material designed according to the invention does not crack or break under pressure, for example when a panel is walked on. There is only a deformation that disappears immediately after the loss of stress again. A prior art lower cover plate made of compressed wood fibers, listed in Table 1 as a comparative example, breaks even at a deformation by 3% of the support bearing distance, in the present case already at a deformation of only 6.9 mm. Plates made according to the invention can easily be deformed 10 times, up to 30% without breaking.

Genauso ist es beim Parameter der bleibenden Verformung. Wie erwähnt, bricht eine Platte nach dem Stand der Technik bereits bei geringer Verformung. Das erfindungsgemäß ausgeführte Material geht nach einer Belastung von 30% nahezu sofort wieder zurück auf die ursprüngliche Position zurück. Sie weist daher keine bleibende Verformung auf, der Messwert liegt bei 0mm. Diese Eigenschaft ist gerade bei Platten notwendig, die nicht überdeckend sondern mittels Nut und Feder verlegt sind. Eine bleibende Verformung würde dazu führen, dass Nut und Feder nicht mehr ineinander greifen, es zu einer Fehlstelle in der Deckung käme.It is the same with the parameter of permanent deformation. As mentioned, a plate of the prior art already breaks at low deformation. The inventively designed material goes back almost immediately after a load of 30% back to the original position. It therefore shows no permanent deformation, the measured value is 0mm. This property is especially needed for plates that are not overlapping but laid by tongue and groove. A permanent deformation would cause the tongue and groove no longer interlock, it would lead to a defect in the cover.

Des Weiteren minimiert diese Eigenschaft das Risiko der Kantenbeschädigung beim Transport / Handling von Platten auf einer Baustelle. Sollte die Kante einer erfindungsgemäß ausgeführten Unterdeckplatte einer mechanischen Belastung ausgesetzt werden, so weicht diese der Belastung aus, stellt sich aber nach Wegfall der Belastung wieder in die Ausgangsposition zurück. Bei einer dem Stand der Technik entsprechenden Platte wäre die Kante irreparabel beschädigt.Furthermore, this property minimizes the risk of edge damage during transport / handling of panels on a construction site. If the edge of a lower cover plate designed according to the invention is subjected to a mechanical load, it deviates from the load, but returns to the starting position after the load has been eliminated. In a prior art plate, the edge would be irreparably damaged.

Des Weiteren erkennt man den enormen Gewichtsvorteil gegenüber dem Stand der Technik. Eine handelsübliche Holzfaserplatte hat bei gleicher Dicke das 2,1 -fache des Gewichts einer erfindungsgemäß ausgeführten Unterdeckplatte. Entsprechend einfacher ist das Handling auf einer Baustelle bei der Eindeckung eines Daches.Furthermore, one recognizes the enormous weight advantage over the prior art. A commercially available wood fiber board has the same thickness 2.1 times the weight of an inventively designed lower deck. The handling on a construction site when covering a roof is correspondingly simpler.

Eine dem Stand der Technik entsprechende Unterdeckplatte hat nach der vorstehenden Prüfmethode nahezu keine Luftdurchlässigkeit. Betrachtet man die Luftdurchlässigkeit einer erfindungsgemäß ausgeführten Unterdeckplatte, so kann man Luftdurchlässigkeit erkennen, diese liegt bei den Ausführungsbeispielen im Bereich von 120l/m2/s. Je nach Einsatzzweck kann die Luftdurchlässigkeit variieren. Dies wirkt sich auf das Klima der Dachkonstruktion äußerst positiv aus. Es kann nicht zu Feuchtestau kommen, da Feuchtigkeit leicht durch eine erfindungsgemäß ausgeführte Unterdeckplatte diffundieren kann. Ebenso kann sich, sollte aufgrund widriger Wetterumstände Wasser in die Matrix der Unterdeckplatte eingedrungen sein, diese Feuchtigkeit leicht wieder abgegeben werden, die Unterdeckplatte trocknet leicht ab.A lower cover plate according to the prior art has almost no air permeability according to the above test method. If you consider the air permeability of an inventively designed lower cover plate, so you can see air permeability, this is in the embodiments in the range of 120l / m 2 / s. Depending on the application, the air permeability may vary. This has a very positive effect on the climate of the roof construction. It can not come to moisture accumulation, since moisture can easily diffuse through an inventively designed lower cover plate. Likewise, if due to adverse weather circumstances, water has penetrated into the matrix of the lower cover plate, this moisture can easily be released again, the lower cover plate dries off easily.

Die erfindungsgemäß ausgeführten Unterdeckplatten weisen Wärmeleitfähigkeiten kleiner 0,04 W/mK, in bevorzugten Ausführungen kleiner 0,035 W/mK auf. Hartfaserplatten aus dem Ausführungsbeispiel liegen hier um 0,05W/mK deutlich höher. Aufgrund dieser Eigenschaften kann eine erfindungsgemäß ausgeführte Unterdeckplatte auch für die Berechnung des U-Wertes mit einbezogen werden. Aufgrund der Tatsache, dass bereits ein Teil des Außenaufbaus des Daches wärmedämmende Funktion übernimmt. kann die Dicke einer Zwischensparrendämmung erheblich reduziert werden, was vor allem bei Altbausanierungen durch die unterschiedlichen Sparrenhöhen zur Kostenreduzierung führt.The inventively designed Unterdeckplatten have Wärmeleitfähigkeiten less than 0.04 W / mK, in preferred embodiments, less than 0.035 W / mK. Hardboard from the embodiment are here by 0.05W / mK significantly higher. Due to these properties, a bottom cover plate designed according to the invention can also be included for the calculation of the U value. Due to the fact that already a part of the external structure of the roof takes over heat-insulating function. The thickness of a Zwischensparrendämmung can be significantly reduced, which leads, especially in Altbausanierungen by the different rafter heights to reduce costs.

Die Wasseraufnahme einer erfindungsgemäß ausgeführten Platte ist, jeweils im Vergleich zum Stand der Technik, bei einem geringeren Raumgewicht, sowie erhöhter bzw überhaupt vorhandener Luftdurchlässigkeit auf vergleichbarem Niveau. Insbesondere erkennt man den Einfluss der Oberflächenglättung auf diesen Parameter. Eine beidseitige Wärmebehandlung reduziert die Wasseraufnahme um 2,4% auf 4.5%.The water absorption of a plate according to the invention is, in each case in comparison to the prior art, at a lower density, and increased or even existing air permeability at a comparable level. In particular, one recognizes the influence of surface smoothing on this parameter. A two-sided heat treatment reduces the water absorption by 2.4% to 4.5%.

In weiteren Ausführungsformen können die seitlichen Kanten von verlegebereit zugeschnittenen Unterdeckplatten entweder glatt ausgeführt werden, sie können aber auch so ausgeführt sein, dass die Ränder eine Nut und Feder-Struktur besitzen oder mit einer Fase versehen sind.In further embodiments, the side edges of ready-laid under deck panels may be made smooth, but may be configured so that the edges have a tongue and groove or beveled structure.

Erfindungsgemäß kann die Nut - und Feder-Struktur dadurch erreicht werden, dass mehrere zugeschnittene Unterdeckplatten versetzt übereinander gestapelt werden und sich die Nut- und Federstruktur ergibt. Auch eine mechanische Fräsbehandlung zum Erzeugen der Nuten / Federn ist machbar.
Durch diese Ausführung ist bei der Verlegung auf Stoß die Schlagregendichtheit auch an den Übergangsstellen zwischen zwei Platten gewährleistet. Auch wird dadurch die Beigesteifheit weiter erhöht.
According to the invention, the tongue and groove structure can be achieved by stacking a plurality of cut bottom cover plates offset one above the other and resulting in the tongue and groove structure. A mechanical milling treatment for producing the grooves / springs is feasible.
By this design, the watertightness is also guaranteed at the transition points between two plates when laying on impact. Also, the stiffness is further increased.

Vorstellbar ist auch die Verwendung einer hydrophilen Beschichtung oder Platte auf der dem Bauwerk zugewandten Seite der Unterdeckplatte. Durch die hydrophilen Eigenschaften wird so einer Tropfenbildung von Schwitzwasser vorgebeugt und dadurch ein intelligentes, kondensattolerantes Feuchtemanagement aufgebaut.It is also conceivable to use a hydrophilic coating or plate on the side of the lower cover plate facing the structure. Due to the hydrophilic properties, the formation of droplets of condensation is prevented, thereby creating intelligent, condensation-tolerant moisture management.

Überraschend wurde festgestellt, dass erfindungsgemäß hergestellte Unterdeckplatten neben Wärmeisolation auch einen Beitrag zur Schallisolation leisten. Die Schallabsorption wird durch poröse, offenzellige Strukturen begünstigt. Die Schallenergie wird durch Reibung in Wärmeenergie umgewandelt. Dabei ist die Existenz von offenen und tiefen Poren wichtig. Ein erfindungsgemäß ausgeführtes Material weist ebensolche Porenstrukturen auf. Diese Strukturen wirken sich auf den sogenannten spezifischen Strömungswiderstand aus, welcher sich nach der Formel berechnet: Spez . Strömungswiderstand Pa s / m = Durchströmungsgeschwindigkeit Luft m / s Druckdifferenz Pa

Figure imgb0003
Surprisingly, it was found that undercover panels produced according to the invention, in addition to thermal insulation, also contribute to sound insulation. The sound absorption is favored by porous, open-cell structures. The sound energy is converted by friction into heat energy. The existence of open and deep pores is important here. An inventively executed material has just such pore structures. These structures affect the so-called specific flow resistance, which is calculated according to the formula: Spec , flow resistance Pa s / m = - - - - - - - - - - - - - - - Flow rate air m / s pressure difference Pa
Figure imgb0003

So wurde die gemäß dem Ausführungsbeispiel hergestellte Platte auf ihre Schallisolation hin untersucht. Die Luftdurchlässigkeit wurde dabei gemäß der vorstehend beschriebenen Methode ermittelt. Für die erfindungsgemäß ausgeführten Platten ergaben sich Werte von 770 Pa* s/m für das Ausführungsbeispiel 1 und von 810Pa*s/m für das Ausführungsbeispiel 2. Angestrebt werden Werte zwischen 700 und 3000 Pa*s/m. Werte größer 3000Pa*s/m sind zu vermeiden, da dann eine Schallreflektion stattfindet.Thus, the plate manufactured according to the embodiment was examined for its sound insulation. The air permeability was determined according to the method described above. Values of 770 Pa * s / m for the exemplary embodiment 1 and of 810 Pa * s / m for the exemplary embodiment 2 were obtained for the plates constructed according to the invention. Values between 700 and 3000 Pa * s / m are desired. Values greater than 3000 Pa * s / m are to be avoided, since then a sound reflection takes place.

So hergestellte Unterdeckplatten weisen weiterhin Entflammbarkeits-Eigenschaften auf, die den üblichen Marktanforderungen wie beispielsweise DIN 4102, B2 entsprechen. Sollten höhere Anforderungen gestellt werden, so können diese durch Einsatz von schwerentflammbar ausgerüsteten Fasern wie beispielsweise Trevira CS oder durch chemische Ausrüstungen erreicht werden.Undercover panels thus produced further have flammability properties that meet the usual market requirements such as DIN 4102, B2. If higher demands are made, these can be achieved by using flame retardant treated fibers such as Trevira CS or chemical equipment.

Die Einsatzbereiche derartiger Unterdeckplatten sind nicht nur auf den Dachbereich beschränkt. Sie können auch im Bereich von Außenwänden als wärmedämmendes Konstruktionsmaterial eingesetzt werden. Tabelle 1 Prüfungen Einheit Ausführungsbeispiel 1 No 31BA010501 Ausführungsbeispiel 2 No 88BD010502 Vergleichsbeispiel Holzfaserplatte Gutex Multiplex Top 22 Flächengewicht g/m2 2309 2295 4957 Dicke mit Schublehre mm 24,5 21,6 22,3 Raumgewicht kg/m3 94 106 222 Durchtrittfestigkeit bei 30% Verformung N 15 17 gebrochen Bleibende Verformung mm 0 0 gebrochen Luftdurchlässigkeit bei 100 Pa l/m/s 130 124 2 Wasseraufnahme % 6,9 4,5 5,6 Wärmeleitfähigkeitskoeffizient WLG-Klasse WLG040 WLG040 WLG050 The areas of use of such undercover panels are not limited to the roof area. They can also be used in the area of exterior walls as a heat-insulating construction material. <u> Table 1 </ u> exams unit Embodiment 1 No 31BA010501 Embodiment 2 No 88BD010502 Comparative example fibreboard Gutex Multiplex Top 22 grammage g / m 2 2309 2295 4957 Thickness with vernier caliper mm 24.5 21.6 22.3 density kg / m 3 94 106 222 Penetration resistance at 30% deformation N 15 17 Broken Permanent deformation mm 0 0 Broken Air permeability at 100 Pa l / m / s 130 124 2 water absorption % 6.9 4.5 5.6 coefficient of Thermal conductivity WLG class WLG040 WLG040 WLG050

Claims (8)

  1. A walkable baseboard for placement onto a rafter structure of a roof characterized in that
    • the baseboard is made of a non-woven fabric produced in a drying process,
    • the non-woven fabric is made rigid mechanically and compacted, as well as thermally solidified,
    • the non-woven fabric is made of stacked synthetic fibres comprising a crimping,
    • at least 30% by weight of the fibres that make up the non-woven fabric are stacked fibres which have hydrophobic characteristics before and/or after thermal treatment and which have a fibre diameter of less than 21µm,
    • at least 40% by weight of the fibres that make up the non-woven fabric consist of melted fibres,
    • a maximum of 30% by weight of the fibres that make up the non-woven fabric are coarse fibres which have a fibre diameter of greater than 30 µm.
  2. A baseboard according to the previous claim,
    characterized in that
    • the surface of the top side and/or the surface of the bottom side is smoothed.
  3. A baseboard according to one of the previous claims,
    characterized in that
    • the baseboard has a thickness of between 10 mm and 60 mm.
  4. A baseboard according to one of the previous claims,
    characterized in that
    • the baseboard has a bulk weight of less than 200kg/m3.
  5. A baseboard according to one of the previous claims,
    characterized in that
    • the baseboard has a heat conductivity coefficient of less than 0.04 W/mK.
  6. A baseboard according to one of the previous claims,
    characterized in that
    • the baseboard has an air permeability.
  7. A baseboard according to one of the previous claims,
    characterized in that
    • the baseboard has a residual deformation of less than 10% following the test method cited in the description.
  8. A baseboard according to one of the previous claims,
    characterized in that
    • the baseboard has a specific flow resistance of greater than 700 Pa*s/m.
EP15154110.9A 2014-02-12 2015-02-06 Sarking board Active EP2910672B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014001792.3A DE102014001792A1 (en) 2014-02-12 2014-02-12 Lower Deck Plate

Publications (2)

Publication Number Publication Date
EP2910672A1 EP2910672A1 (en) 2015-08-26
EP2910672B1 true EP2910672B1 (en) 2018-09-12

Family

ID=53676588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15154110.9A Active EP2910672B1 (en) 2014-02-12 2015-02-06 Sarking board

Country Status (2)

Country Link
EP (1) EP2910672B1 (en)
DE (1) DE102014001792A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3084635A1 (en) * 2019-06-24 2020-12-24 Owens Corning Intellectual Capital, Llc Roofing underlayment with hydrophobic nonwoven core

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4322745A1 (en) 1993-07-08 1995-01-12 Ploucquet C F Gmbh Roof-insulating panel
DE4443157A1 (en) * 1994-12-05 1996-06-13 Gessner & Co Gmbh Vapor-permeable roofing membrane
DE19512767C2 (en) * 1995-04-05 1997-12-04 Hoechst Trevira Gmbh & Co Kg Rollable thermal insulation based on fully synthetic fibers
DE29606763U1 (en) * 1996-04-13 1996-06-27 Christian Heinrich Sandler GmbH & Co KG, 95126 Schwarzenbach a d Saale Formwork sheet, especially for the pitched roof area
DE29723930U1 (en) 1997-05-24 1999-07-01 GABA-BAUSTOFF GMBH, 45527 Hattingen Insulation element
US20010008674A1 (en) * 1998-05-23 2001-07-19 Ralph Smith Underlayment mat employed with a single ply roofing system
DE19904423A1 (en) * 1999-02-04 2000-08-10 Kloeber Johannes Hydrophobically equipped, breathable underlayment
DE10163576B4 (en) * 2001-12-21 2006-07-20 Sandler Ag Insulation material
DE10346472A1 (en) 2003-10-02 2005-05-12 Dilo Kg Maschf Oskar Process and apparatus for consolidating a nonwoven web by needling
RU2008146499A (en) * 2006-04-27 2010-06-10 Дау Глобал Текнолоджиз, Инк. (Us) POLYMER FIBER INSULATING FELTS FOR APPLICATION IN RESIDENTIAL AND COMMERCIAL BUILDINGS
DE102008024944B4 (en) * 2007-08-22 2018-05-09 Eswegee Vliesstoff Gmbh Basic fleece for trilaminates
US20090208714A1 (en) * 2008-02-18 2009-08-20 Georgia-Pacific Gypsum Llc Pre-coated non-woven mat-faced gypsum panel
DE202010017608U1 (en) * 2010-03-12 2012-04-05 Sandler Ag insulation material
JP2015514602A (en) * 2012-02-17 2015-05-21 ユナイテッド・ステイツ・ジプサム・カンパニー Gypsum product with highly efficient endothermic additive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2910672A1 (en) 2015-08-26
DE102014001792A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
EP0435001B1 (en) Laminat
DE19642252C2 (en) Diffusion-open roofing membrane and method for producing the same
DE4108110C3 (en) Thermal insulation material for buildings
EP0071209A2 (en) Method of producing fibre-reinforced flat bodies containing a hardenable binder
EP3095602A1 (en) Variable humidity directed vapour retarder
EP3045306B1 (en) Topsheet, insulating panel and heat insulation composite system
WO1997030244A2 (en) Roof-lining material allowing diffusion and production method therefor
EP2910672B1 (en) Sarking board
EP3173533B1 (en) Surface sealing element for building objects
EP0805752B1 (en) Flat composite insulating system and method of producing said system
DE4443157A1 (en) Vapor-permeable roofing membrane
EP0700779A2 (en) Permeable sheets for construction and process for their manufacture
DE4428304A1 (en) Lining for roofs with heat-insulating material between rafters
EP2183419B1 (en) Base non-woven fibre for trilaminates
EP0591658B1 (en) Thermal insulation element and process for its manufacture
DE3636207A1 (en) Drainage laminate
EP2369078B1 (en) Insulation material
DE102006028841B4 (en) Insulating arrangement and method for producing an insulating strip
EP3538359B1 (en) Process for the production of laminate composite materials
EP1335080B1 (en) Insulation board for heat and/or sound insulation, and insulation layer
WO2003000488A2 (en) Surface covering made of foamed material having an acoustic effect
DE9319699U1 (en) Thermal insulation element
DE60031170T2 (en) WATERPROOF MEMBRANE AND METHOD FOR THE PRODUCTION THEREOF
CH710666B1 (en) Glass wool insulation panel for a rafter insulation system.
DE202009000393U1 (en) concrete formwork

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015005780

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D04H0001429100

Ipc: E04B0001900000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/90 20060101AFI20180328BHEP

Ipc: D04H 1/435 20120101ALI20180328BHEP

Ipc: D04H 1/4334 20120101ALI20180328BHEP

Ipc: D04H 1/541 20120101ALI20180328BHEP

Ipc: E04B 1/76 20060101ALI20180328BHEP

Ipc: D04H 1/4291 20120101ALI20180328BHEP

Ipc: D04H 1/485 20120101ALI20180328BHEP

Ipc: E04D 12/00 20060101ALI20180328BHEP

Ipc: D04H 1/558 20120101ALI20180328BHEP

INTG Intention to grant announced

Effective date: 20180417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005780

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005780

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230929

Year of fee payment: 10