EP2900895B1 - Dispositif et procédé de pose d'une canalisation dans un trou de forage - Google Patents

Dispositif et procédé de pose d'une canalisation dans un trou de forage Download PDF

Info

Publication number
EP2900895B1
EP2900895B1 EP13747378.1A EP13747378A EP2900895B1 EP 2900895 B1 EP2900895 B1 EP 2900895B1 EP 13747378 A EP13747378 A EP 13747378A EP 2900895 B1 EP2900895 B1 EP 2900895B1
Authority
EP
European Patent Office
Prior art keywords
drill
pipeline
head
motor
head tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13747378.1A
Other languages
German (de)
English (en)
Other versions
EP2900895A2 (fr
Inventor
Rüdiger KÖGLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohlen & Doyen Bau GmbH
Original Assignee
Bohlen & Doyen Bauunternehmung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohlen & Doyen Bauunternehmung GmbH filed Critical Bohlen & Doyen Bauunternehmung GmbH
Publication of EP2900895A2 publication Critical patent/EP2900895A2/fr
Application granted granted Critical
Publication of EP2900895B1 publication Critical patent/EP2900895B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
    • E21B7/201Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes with helical conveying means
    • E21B7/203Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes with helical conveying means using down-hole drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
    • E21B7/208Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes using down-hole drives

Definitions

  • the present invention relates to a device for laying a pipeline in a borehole and a corresponding method.
  • WO 2012/095472 relates to a system and method for radially expanding a tubular member.
  • the method includes the steps of bending the tubular member radially outward and in an axially reverse direction to form a flared tubular portion that extends around an unexpanded tubular portion, wherein the bending occurs in a bending zone; Increasing the length of the flared tubular portion by advancing the unexpanded tube portion in the axial direction relative to the flared tubular portion; Operating a drill string extending through the unexpanded tubular portion and provided with a drill at a borehole end to drill a borehole; and operating a directional drilling apparatus connected to the drill string to control the borehole along a predetermined path.
  • a tube guide means for guiding a tube to be inserted into a substrate comprising a main frame for holding the components of the tube guide means and at least two guide elements for engaging and guiding a tube, said at least two guide elements define a passage opening, wherein the passage opening has an axial axis has, corresponding to an axial direction of the tube, characterized in that the pipe guiding device further comprises an auxiliary frame, wherein the at least two guide elements are mounted on the auxiliary frame, wherein the auxiliary frame is attached to the main frame and wherein the auxiliary frame in relation to the main frame around a axial axis is rotatable.
  • the borehole is driven by means of a Richtbohrtechnikmaschines and this tracked a jacket tube.
  • the jacket tube is advanced simultaneously and uniformly with the directional drilling tool and aligned the front end of the jacket tube through the front part of the directional drilling tool.
  • HDD Horizontal Directional Drilling
  • MT controlled pipe jacking
  • the HDD process is done in three steps. First, a controlled pilot hole is driven from the starting point to the target point of a hole. thereupon This pilot hole is widened in quasi “reverse” in one or more steps to such a large diameter that the pipe provided for laying in the last step can then be drawn into the expanded hole.
  • the pull-in is usually also "backwards" from the destination to the starting point. Due to the process, large work surfaces are required both at the start and at the destination.
  • the MT method allows the single-phase installation of a pipeline, since a borehole is created at the same time and the pipeline composed of individual pipes is successively laid therein.
  • a disadvantage of the MT method is the low range with small pipe diameters.
  • the achievable bore length for the MT process is only approx. 50 m to approx. 150 m.
  • this is due to the fact that the supply of primary energy according to the rules of the art is hydraulic.
  • the pressurized hydraulic oil must be supplied from outside via hose lines. The resulting power losses are immense and thus limit the achievable bore lengths.
  • Another disadvantage of the MT method is the fact that the specific type of control of MT drill heads requires at least one seal per control joint is. Due to their design, these are only designed for pressure ranges up to approx. 3.5 bar. Higher compressive strengths can be achieved only with great effort and then represent a potential starting point for accidents. This restriction can be particularly significant for landings, where the exit points can be 50 m and more below the water level.
  • the aim of the present invention is to avoid the disadvantages of the known approaches while maintaining a controlled and controlled installation, and in particular to provide a method and a device for laying a pipeline in a borehole in which large work surfaces are not required both at the start and at the destination are in which the number of operations compared to the HDD method is reduced and its performance over the MT method in the said diameter range is improved.
  • a first aspect of the invention relates to a device for laying a pipeline in a borehole, as defined in claim 1.
  • Another aspect of the invention relates to a method of laying a pipeline in a wellbore as defined in claim 15.
  • the device according to the invention and the method according to the invention can be used advantageously in particular for laying pipelines which have a diameter of approximately 100 mm to 500 mm and have lengths of approximately 100 m to approximately 2,000 m ,
  • Fig. 1 shows a schematic representation of an embodiment of the device according to the invention in an overview.
  • the illustrated embodiment includes the drill bearing 8 (see Fig. 1b ), which is partially disposed inside a pipe to be laid in the bottom 10 3 and coupled to a drill pipe 6 and connected to a control tube 18.
  • the drill pipe 6 is connected to a surveying pipe 16 (see Fig. 1b ) as an example of a position determining unit and an angled drilling motor 7 with a drill head 2 (see Fig. 1a ) is provided by a feed device 5 with a rotary motor 9 (see Fig. 1d ) operated and advanced.
  • Fig. 1a shows a schematic representation of the detail A of the embodiment of Fig.1 ,
  • the working face 19 of the borehole 1 in the ground 10 lies opposite the boring head 2, which is fastened to the angled boring motor 7 and is driven by the boring motor 7.
  • the parallel to the longitudinal axis of the drill string 7 (not angled) part of the drill motor 7 is guided by a centering 20, wherein the drill motor 7 of the head tube 18 is enclosed in such a way that extends at least the foremost part of the drill head 2 from the control tube 18, although it is ensured that the drill motor 7 and the drill head 2 does not strike the control tube 18 during rotation about the longitudinal axis of the drill string 6.
  • the end of the control tube 18 facing the working face 19 preferably directly adjoins the drill head 2.
  • the control tube 18 corresponds in (in particular outer) diameter of the pipeline 3 to be laid (see Fig. 1b ).
  • the control tube may also have a relative to the pipeline in a modification not shown here also have an enlarged in the millimeter or centimeter range outer diameter.
  • a control ring 24 is mounted in this embodiment.
  • the control ring 24 has, as exemplified here, each a wedge-shaped front and back and supports the desired direction changes.
  • the respective wedge-shaped configuration of front and rear side can preferably be designed so that the control ring 24 has a triangular cross section, in which the base side of the triangle rests on the control tube 18 and the top of the triangle opposite the tip in a range of 60 to 90% the length of the base (starting from the top of the triangle 19 facing the working face) is located.
  • control ring has a cross section which is designed wedge-shaped only on the side facing the working face 19 (eg right triangle), although the wedge-shaped configuration on the front and back is advantageous in that both propulsion as well as a retraction of the control tube 18 wedging at an edge can be avoided.
  • the maximum diameter of the control 24 is advantageously no larger than the inner diameter of a borehole resulting in straight propulsion.
  • the arrows 29 represent the outlet direction of the drilling fluid 12 from the drill head, while the arrows 30 indicate the flow direction of the bottom 10 and possibly cuttings loaded drilling fluid 12.
  • a plurality of passages 17 are provided in the wall of the control tube 18, which allows drilling fluid 12 to flow through the interior of the control tube 18 and in this way in the head tube 18 got ground or cuttings so that it does not lead to an accumulation of material inside the control tube 18, which would hinder operation of the drilling motor 7 or a rotation of the drilling motor 7 via the drill string.
  • control tube 18 is designed as a flexible control tube.
  • the head tube comprises or consists of high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • Crucial for the flexible head tube in this embodiment is that it is flexurally flexible and can accept the angling of the angled bore motor 7.
  • rigid, articulated pieces may be used as the head tube 18.
  • Directional drilling is possible with a flexible control tube 18 as described with respect to FIGS. 3a-3c will be described.
  • control tube 18 approximately abuts the drill head 2.
  • the flexible control tube 18 follows in this case the direction and thus the angle of the angled drilling motor 7.
  • the control tube 18 on the drill head 2 and / or on the drill bearing 8 and / or any number of times over the length of Control tube 18 may be mounted on the drill motor 7.
  • the control tube 18 is free and independent of rotation of the drill string 6 and / or the drill motor 7 movable.
  • the control tube 18 may also be fixedly connected to the drill head 2. For a rotation of the control tube 18 together with the drill head 2 is possible.
  • control tube 18 can also be firmly connected to the drill bearing 8, whereby rotation of the control tube 18 is only possible together with the drill bearing 8.
  • control tube 18 can not be firmly connected to both the drill head 2 and the drill bearing 8, as this would prevent the operation of the entire system.
  • the drill head which is adjoined by the control tube, preferably has an outer diameter that is greater in the millimeter or centimeter range than the outer diameter of the control tube.
  • the control tube again has an outer diameter, which is also increased in the millimeter or centimeter range in relation to the outer diameter of the pipeline.
  • All bearings of the flexible control tube 18 may be provided as a sealed bearing. This can be prevented that drilling fluid 12 and / or cuttings in the Head tube 18 penetrate.
  • the control tube 18 is not flooded in this case, that is filled with air, it has a significantly lower weight.
  • the ability to drill upwards is hereby improved because such a control tube 18 offers increased buoyancy over its environment filled with drilling fluid 12. It is therefore possible in this embodiment, an easier drilling in the direction of overground.
  • the control tube 18 on no passages 17.
  • the nozzle for discharging the drilling fluid 12 from the drill head is configured such that drilling fluid 12 does not exit the drill head in the direction of the working face 19 according to the arrows 29, but is additionally guided in the other direction into the interior of the control tube 18 becomes.
  • the removal of material from the interior of the control tube 18 is further optimized, so that the operation of the drilling motor 7 is not hindered.
  • Fig. 1b shows a schematic representation of the detail B of the embodiment of Fig.1 ,
  • the Bohrlagers 8 On the face side is the inner part of the Bohrlagers 8 (see Fig. 3a, 3b ) is connected to the surveying pipe 16.
  • a measuring probe 13 which transmits measured values with respect to a position of the surveying tube 16 (and thus ultimately with respect to the drilling motor 7 and the drill head 2) via cable 14 to the surface, is arranged in the surveying tube 16.
  • the surveying pipe 16 in turn is firmly connected to the angled drilling motor 7 (see Fig. 1a ), so that the coincidence of position of the surveying pipe 16 and the drilling motor 7 results.
  • the surveying tube is also centered in the control tube 18 by means of a centering 20.
  • the control tube 18 is connected to the non-rotating, outer part of the Bohrlagers 8 at its side facing the working face.
  • On the opposite side of the working face of the inner part of the Bohrlagers 8 is connected to the drill pipe 6, while the outer part of the Bohrlagers on the side facing away from the working face is connected to a first single pipe 4 to be laid pipe 3.
  • the drill bearing 8 is characterized in that it forwards the feed forces and torques introduced by the drill pipe 6 to the surveying pipe 16 (and thus to the components connected to the surveying pipe 16) to the control pipe 18 and the pipe 3 but only axial forces (forces acting in the longitudinal direction of the drill pipe) and no torque transfers.
  • the measuring tube 16 arranged in the measuring probe 13 is in this embodiment, based on the principle of the gyroscope probe, which also has accelerometer and an electric solder.
  • All measured values are transmitted via a cable 14 that leads in the interior of the drill pipe 6 to the surface.
  • a wired signal line may also be used, as long as the circumstances of the drilling and laying operation allow such alternatives.
  • the basic technique of determining the position of the drilling motor and the drill head is known to those skilled in the HDD method, for example, so that no further details have to be discussed here.
  • the measuring probe 13 can not be arranged in the surveying pipe 16, ie on the face side of the drilling bearing 8, but on the opposite side of the drilling bearing, ie in the first single pipe 4. In another embodiment, a measuring probe 13 on both sides the Bohrlager 8 be arranged, or at any other position.
  • a nozzle can additionally be provided on the face side of the drilling journal 8, which feeds the drilling fluid 12 in the direction of the working face 19 starting from the surroundings of the drilling bearing 8.
  • a back pressure within the Verresssrohres 16 is generated, which counteracts the drilling pressure of the drilling fluid, which emerges from the drill head 2.
  • the relative pressure in the surveying tube 16 can be reduced, whereby a malfunction or malfunction of the drilling assembly can be avoided.
  • Fig. 1c shows a schematic representation of the detail C of the embodiment of Fig.1 .
  • the drill string 6 extends through the pipe 3 and is guided by a centering 20 in the interior of the pipe 3.
  • the diameter of the working face 19 is greater than the outer diameter of the pipe 3, so that between the ground 10 around the borehole and the pipe 3 results in an annular space 11 through which in particular bored with bored material drilling fluid 12 can flow.
  • the centering 20 is here provided with inner rollers 22, which allow a relative rotation of the drill pipe 6 and centering 20, without appreciable torques would be involved or would be involved.
  • the axes of the inner rollers 22 extend parallel to the longitudinal axis of the drill string 6.
  • the centering also has outer rollers 21 whose axes in the illustration shown extend perpendicular to the plane, so that a substantially free displacement of the centering 20 relative to the pipe 3 in the direction of the drill string 6 results.
  • retaining rings 31 are provided in front of and behind the centering on the drill pipe 6.
  • At least one element (or part-element) of which the drill string is composed may be configured in the form of a screw tube and / or at least one centering may be in the form of a screw conveyor, these conveying means being designed such that During rotation of the drill pipe during drilling, a conveying action for drilling fluid (which is loaded with soil or cuttings) in the area between the pipeline and drill pipe leads in the direction of overground.
  • Fig. 1d shows a schematic representation of the detail D of the embodiment of Fig.1 .
  • the pipe itself is composed of individual tubes 4, which are successively introduced into the borehole 1.
  • the respective last individual pipe 4 of the pipeline 3 is connected to the feeding device 5 in a pressure-resistant manner (possibly also with a tensile strength and / or torsion-proof) via a connecting device 15 which is adjustable in length.
  • feed forces can be applied directly from the feed device 5 to the pipe 3. This can be useful, for example, if the friction in the borehole is very large and requires additional feed forces.
  • the "normal" feed forces for the drilling and laying operation are transmitted from the feed device 5 via the drill pipe 6 to the drill bearing 8.
  • the drilling bearing 8 forwards the pressure forces introduced by the drill pipe 6 as pressure forces on the surveying pipe 16, the angled drilling motor 7 and the drill head 2 and on the control tube 18 and in the form of tensile forces on the pipeline 3.
  • the drill string 6 is connected to the rotary motor 9 of the feed device 5.
  • rotary motor 9 drill pipe 6, surveying pipe 16, angled drilling motor 7 and drill head 2 are also rotated (continuously).
  • the drill head 2 is additionally rotated in the form of a superimposed rotational movement. With simultaneous advance of the drill set a straight hole 1 is created in this way (see Fig. 2b ).
  • the rotation of the drilling motor 7 with the drill head is illustrated by the dashed representation in another angular direction.
  • drill pipe 6, surveying pipe 16, angled drilling motor 7 and drill head 2 are rotated by the rotary motor 9 of the feed device 5 into a specific position detectable by the measuring probe 13, a curved borehole along the respective orientation of the angle piece in the angled drilling motor will be produced as the drilling process continues 7 created, but then the drill pipe 6 is no longer rotated and only the drill motor 7 drives the drill head 2.
  • Drilling fluid 12 used for the drilling process is pumped to the drill head 2 by the advancing device 5, the drill pipe 6, the drill bearing 8, the surveying pipe 16 and the angled drilling motor 7. There, the drilling fluid 12 enters the wellbore 1 (see arrows 29 in FIG Fig. 1a ) and mixes with the soil 10 or cuttings loosened by the drill head 2. The drilling fluid mixed with soil 10 and / or cuttings then flows through annular space 11 between pipeline 3 and borehole 1 to above ground (see arrows 30).
  • the centering 20 is formed with a seal 25, so that the drilling fluid 12 is prevented from penetrating into the interior between the drill motor 7 and control tube 18 or drill pipe 6 and pipe 3.
  • An advantage of this design is that then, for example, air-filled Interior between the drill motor 7 and control tube 18 or drill pipe 6 and pipe 3 acts as a buoyant body against the filled with drilling fluid 12 annulus 11 and thereby the normal forces in the borehole 1 are significantly reduced. This in turn can result in significantly lower feed forces, so that such an approach is recommended, for example, especially in soft soils.
  • the drilling fluid 12 which is mixed with the bottom 10 and, if appropriate, cuttings, additionally flows through the interior of the pipeline 3 to above ground.
  • the centerings 20 and the drill bearing 8 are to be formed with corresponding passages. It is to be regarded as advantageous in this design that thereby the pressure in the annular space 11 is reduced and thus outbreaks of the drilling fluid 12 to the surface of the day ("blower" gennant) can be better avoided. This variant appears advisable especially for clayey soils.
  • a corresponding borehole is provided in the area of the advancing device, more precisely between the respectively last single pipe and the connecting device, so that also via this borehole a compressive force from the drill pipe can be introduced to the pipeline.
  • Fig. 2a-2c show schematic illustrations of aspects of a drilling and laying operation, in particular the direction control of the drilling and laying operation.
  • FIG. 5 illustrates how a downhole curved section in this example is created following a straight borehole section.
  • the working direction of the boring head 2 is fixed in a specific position as described above.
  • a curved borehole 1 is now created.
  • Fig. 2b It is shown how the drilling and laying process takes place in a planned straight borehole section.
  • the drill head 2 is not only rotated about its own axis, but also by rotation of the (not shown) drill pipe 6 with the associated components in addition to the axis of the drill pipe 6 and the Pipe 3.
  • the working direction of the drill head 2 is permanently changed, whereby in the end a straight borehole section is created.
  • Fig. 2c is basically the same process as in Fig. 2a shown, however, the borehole 1 is executed here with a curvature down.
  • Fig. 3a-3c show schematic illustrations of aspects of a drilling and laying operation, in particular the direction control of the drilling and laying operation according to the embodiment with flexible head tube 18th
  • Fig. 3a is different from Fig. 2a to see that the control tube 18 rests against the drill head 2 and is connected thereto.
  • This connection can be fixed, such that the control tube 18 rotates together with the drill head 2, or be stored, such that the drill head 2 can rotate independently of the control tube 18.
  • the direction of the drill head 2 is fixed in one direction, in this case upwards, whereby directional drilling, in this case consequently in the direction of overground, is made possible.
  • the borehole 1 in this case has a curvature upwards.
  • Fig. 3c is basically the same process as in Fig. 2a shown, but the hole 1 is here, analogous to Fig. 2c , executed with a curvature down.
  • the device has a centering 20.
  • the centering 20 may only connect the drill motor 7 firmly to the control tube 18 when the control tube 18 is mounted on the drill head 2, since otherwise independent of the drilling gear rotation of the drill head 2 is prevented.
  • the centering 20 must be used as a bearing be educated.
  • the device has no centering 20, in yet another embodiment, two or more centerings 20 are provided.
  • Fig. 4a shows a schematic detail of the drilling of an embodiment
  • Fig. 4b a schematic detail of the drilling of a modified embodiment shows.
  • the outer part of the drilling journal 8 is here connected by means of screw connections 27 (for example grub screws) to the control tube 18 and to the first individual tube 4 of the pipeline 3.
  • Screw connections 27 for example grub screws
  • Alternative connection types e.g. by means of welded joints - are possible, but may have as in the case of welding disadvantages of heat on the drill bearing 8 during assembly and / or a more difficult disassembly compared to screw 27.
  • non-positive and positive threaded connection can also be a purely positive Connection can be achieved, for example by undercuts.
  • Fig. 4b the use of doublings 26 is shown. These doublings 26 make it possible to use a drilling journal 8 for different diameters of control tubes 18 and pipelines 3. This has significant economic benefits since such doublings 26 (unlike the rest of the drilling journal 8) are very inexpensive to manufacture.
  • connection of drilling bearing 8 with the Verresssrohr 16 and the drill pipe 6 via typical threads that are otherwise known and common in the drilling area, for example, for connecting individual elements of a drill pipe or a connection of a drilling motor.
  • typical threads that are otherwise known and common in the drilling area, for example, for connecting individual elements of a drill pipe or a connection of a drilling motor.
  • alternative connections are readily possible provided the relevant technical requirements are met.
  • Fig. 5 shows a schematic flow diagram of an embodiment of a method according to the invention in the case that a drill bearing between the drill motor and drill pipe is provided.
  • a drill string is coupled to a drill bit angled or angled with respect to the longitudinal axis of the drill string, which coupling is an indirect coupling, by coupling the drill motor to a drill bearing and coupling the drill bearing to the drill string for transmission of a drill bit Torque and a compressive force and possibly a tensile force is created.
  • the drill pipe can be coupled to the drill motor without any intermediate connection, in which case the drill bearing is provided on the side of the drill pipe in the direction of a feed device. It is also possible to combine both alternatives.
  • a control tube which encloses the drill motor with the drill head, wherein the drill head extends in operation in the direction of the working face of the head tube.
  • the drill bearing is connected to the pipeline to be laid and the head tube.
  • the control tube is connected to the local side of the Bohrlagers this, wherein the pipeline (more precisely, the first single pipe to be assembled and laid pipeline) with is connected to the drill bearing on the opposite side.
  • the pipeline more precisely, the first single pipe to be assembled and laid pipeline
  • Other versions are also possible.
  • connection of the control tube and drill bearing results indirectly through the connection of drilling and pipe and a connection of pipe and head tube.
  • a “direct coupling" of the drill motor and drill pipe does not preclude the provision of a surveying pipe (as discussed above) between the drill motor and drill pipe, similarly, in the case of "indirect coupling", the drill motor may be provided with a surveying pipe.
  • a surveying pipe as discussed or another position determining unit is provided on the drilling motor.
  • the method includes rotating the drill string to rotate the drill motor with the drill head and rotate the drill bit about its longitudinal axis with the drill motor independent of rotation of the drill string.
  • the method includes rotating the drill string until a position determining unit of the drilling motor indicates a position at which the drilling motor is angled or angled in the direction of the curvature, and at step 106 rotating the drill head about its longitudinal axis with the angled drill motor.
  • a pressure force acting in the direction of the longitudinal axis of the drill pipe is exerted on the drill bearing by the drill pipe as a tensile and / or tensile force acting through the drill bearing as a tensile force acting in a longitudinal direction of the pipeline. or compressive force on the pipeline and as a force acting in the longitudinal direction of the control tube pressure force is passed.
  • steps 101, 102 and 103 may also be varied.
  • An implementation of the invention provides a method for laying a pipeline in a borehole, wherein the borehole 1 is created by a controllable boring head 2 and the boring head 2 has a larger diameter than the pipeline 3 and the respective position of the boring head 2 in the ground 10 a arranged in a surveying pipe 16 measuring probe 13 is determined and transmitted via at least one cable 14 to overground, the drilling process to create the borehole 1 and the laying process for laying the pipe 3 in the borehole 1 take place simultaneously, the pipe 3 during the drilling and Laying process is successively composed of individual tubes 4, which required for the drilling and laying process Feed force is generated by a feed device 5 and transmitted via a drill pipe 6 to a drill bearing 8 and the drill bearing 8 both via the Verniersrohr 16 and the angled drill motor 7 on the drill head 2 and on the control tube 18 and the pipe 3, for the drilling process required torque is generated by the angled drill motor 7 and transmitted to the drill head 2, the control of the drill head 2 is made via a rotary motor 9 located on the feed device 5 and

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Claims (15)

  1. Dispositif de pose d'une canalisation (3) dans un trou de forage (1), avec
    un moteur de forage (7) coudé ou pouvant être coudé par rapport à l'axe longitudinal d'un train de tiges (6) pour une tête de forage (2), qui est prévu pour un entraînement de la tête de forage (2) indépendamment d'une rotation du train de tiges (6),
    une unité de détermination de position (16) pour la détermination et le transfert d'une position de rotation du moteur de forage coudé (7), et
    un tube de commande (18), qui entoure au moins en partie le moteur de forage (7), dans lequel la tête de forage (2) s'étend en fonctionnement en direction d'un front de taille (19) depuis le tube de commande (18),
    caractérisé par
    un palier de forage (8), qui peut être couplé avec le train de tiges (6) pour l'absorption d'une force de pression agissant en direction d'un axe longitudinal du train de tiges (6) et peut être relié à la canalisation (3) pour la transmission de la force de pression en tant que force de traction et/ou de pression agissant dans la direction longitudinale de la canalisation (3).
  2. Dispositif selon la revendication 1,
    dans lequel le tube de commande (18) est déformable de manière réversible, dans lequel le tube de commande (18) présente en particulier un matériau souple, en particulier du polyéthylène haute densité (HDPE), ou en est constitué et/ou le tube de commande (18) comprend plusieurs éléments reliés les uns aux autres de manière articulée.
  3. Dispositif selon la revendication 2,
    avec un centrage à une ou plusieurs parties pour le couplage direct ou indirect du tube de commande (18) avec le moteur de forage (7), qui est agencé de sorte que le tube de commande (18) est déformé en fonction de la position de rotation du moteur de forage (7), dans lequel le centrage est configuré en particulier pour une obturation étanche avec la tête de forage (2) ou le moteur de forage (7), de préférence pour une obturation étanche par rapport au passage d'air et/ou de fluide de forage.
  4. Dispositif selon la revendication 1,
    dans lequel le tube de commande (18) est doté, dans une zone de son côté extérieur tournée vers le front de taille (19), d'un anneau de commande (24) pour soutenir un suivi d'une courbure du trou de forage (1) à travers le tube de commande (18), en particulier d'un anneau de commande (24) avec une section transversale en forme de triangle, dont la base s'appuie sur le côté extérieur du tube de commande (18), dans lequel de préférence la pointe du triangle est agencée sur une moitié de la base du triangle opposée au front de taille (19).
  5. Dispositif selon la revendication 1,
    dans lequel le tube de commande (18) est doté d'un joint par rapport au front de taille (19), à travers lequel la tête de forage (2) ou le moteur de forage (7) s'étend, dans lequel le joint est doté d'une ouverture excentrique pour tête de forage (2) ou moteur de forage (7) et est configuré pour une rotation par rapport au tube de commande (18) et/ou dans lequel le joint est configuré de manière déformable pour l'absorption du mouvement de la tête de forage (2) ou du moteur de forage (7) en fonctionnement.
  6. Dispositif selon la revendication 5,
    dans lequel le dispositif est configuré pour une mise sous pression de l'intérieur du tube de commande (18), en particulier par un fluide.
  7. Dispositif selon l'une quelconque des revendications précédentes,
    en outre avec un élément de rinçage pour l'évacuation de matériau foré parvenu dans le tube de commande (18), dans lequel l'élément de rinçage est configuré en particulier pour l'utilisation de fluide de forage (12), dans lequel de préférence l'élément de rinçage est agencé dans la zone d'une obturation du tube de commande (24) opposée au front de taille (19) et agit en direction du front de taille (19) et/ou l'élément de rinçage est agencé dans la zone de la tête de forage (2) et agit à l'opposé du front de taille (19), dans lequel le tube de commande (18) présente des ouvertures d'évacuation (17) pour un élément de rinçage agissant à l'opposé du front de taille (19) de manière particulièrement préférée dans une zone opposée au front de taille (19).
  8. Dispositif selon l'une quelconque des revendications précédentes,
    dans lequel le palier de forage (6) présente un ou plusieurs doublages (26) pour l'adaptation du diamètre extérieur du palier de forage (6) à un diamètre de la canalisation (3).
  9. Dispositif selon l'une quelconque des revendications précédentes,
    dans lequel le dispositif est configuré pour une évacuation de fluide de forage (12) chargé de matériau foré à travers un espace intermédiaire (11) entre le trou de forage (1) et un côté extérieur de la canalisation (3) et/ou à travers un espace intermédiaire entre le train de tiges (6) et un côté intérieur de la canalisation (3).
  10. Dispositif selon l'une quelconque des revendications précédentes,
    avec un ou plusieurs centrages (20) pour le moteur de forage (7), l'unité de détermination de position (16) et/ou un ou plusieurs éléments du train de tiges (6) dans le tube de commande (18) et/ou dans la canalisation (3), dans lequel le diamètre extérieur maximal des un ou plusieurs centrages (20) est de préférence de 1 à 10 mm inférieur au diamètre intérieur minimal respectif du tube de commande (18) ou de la canalisation (3).
  11. Dispositif selon la revendication 10,
    en outre avec le train de tiges (6), dans lequel le train de tiges (6) est doté d'au moins deux anneaux de retenue (31) pour le positionnement d'un centrage (20) au niveau du train de tiges (6).
  12. Dispositif selon l'une quelconque des revendications 10 ou 11,
    dans lequel au moins un centrage (20) est configuré pour une rotation du centrage (20) autour d'un axe longitudinal du train de tiges (6) par rapport au moteur de forage (7), à l'unité de détermination de position (16) ou au train de tiges (6) ou pour un coulissement du centrage (20) le long de l'axe longitudinal du train de tiges (6) par rapport à la canalisation (3), dans lequel le centrage (20) présente de préférence des rouleaux (22) sur son côté intérieur, dont les axes sont orientés parallèlement à l'axe longitudinal du train de tiges (6), et des rouleaux (21) sur son côté extérieur, dont les axes sont orientés dans un plan perpendiculaire à l'axe longitudinal du train de tiges (6).
  13. Dispositif selon l'une quelconque des revendications précédentes,
    en outre avec le train de tiges (6), dans lequel le dispositif est configuré pour une évacuation de fluide de forage (12) chargé de matériau foré à travers un espace intermédiaire entre le train de tiges (6) et un côté intérieur de la canalisation (3), dans lequel le train de tiges (6) est configuré au moins en partie en tant que tube à vis sans fin et/ou le dispositif est doté d'un centrage (20), qui est réalisé en tant que vis transporteuse.
  14. Dispositif selon l'une quelconque des revendications précédentes,
    dans lequel le palier de forage (6) est prévu en fonctionnement en tant qu'élément de liaison pour le tube de commande (18) et la canalisation (3) dans la zone d'un début d'un train de forage et/ou en tant qu'élément de poussée pour des éléments de canalisation (4) déjà posés entre une extrémité de l'élément de canalisation (4) posé en dernier et un dispositif de poussée (5).
  15. Procédé de pose d'une canalisation (3) dans un trou de forage (1), avec les étapes consistant à :
    coupler (101) un train de tiges (6) avec un moteur de forage (7) coudé ou pouvant être coudé par rapport à l'axe longitudinal du train de tiges (6) avec une tête de forage (2), dans lequel le couplage (101) est un couplage indirect par le biais d'un palier de forage (8) et/ou un couplage sans l'intermédiaire d'un palier de forage (8),
    prévoir (102) un tube de commande (18), qui entoure au moins en partie le moteur de forage (7), dans lequel la tête de forage (2) s'étend en fonctionnement en direction du front de taille (19) depuis le tube de commande (18),
    relier (103) le palier de forage (8) à la canalisation (3) à poser et au tube de commande (18), dans lequel, dans le cas d'un couplage seulement indirect (101) du train de tiges (6) et du moteur de forage (7), le tube de commande (18) et la canalisation (3) sont reliés sur des côtés opposés du palier de forage (8) avec celui-ci et, dans le cas contraire, le tube de commande (18) est relié indirectement au palier de forage (8) par le biais de la canalisation (3),
    dans lequel le procédé comprend pour une pose droite comme prévue de la canalisation (3) :
    la rotation (104) du train de tiges (6) pour la rotation du moteur de forage (7) avec la tête de forage (2) et la rotation (104) de la tête de forage (2) autour de son axe longitudinal avec le moteur de forage (7) indépendamment d'une rotation du train de tiges (6), et
    dans lequel le procédé comprend pour une pose courbée de la canalisation (3) ;
    la rotation (105) du train de tiges (6), jusqu'à ce qu'une unité de détermination de position (16) du moteur de forage (7) indique une position pour laquelle le moteur de forage (7) est coudé ou peut être coudé en direction de la courbure,
    la rotation (106) de la tête de forage (2) autour de son axe longitudinal avec le moteur de forage coudé (7),
    dans lequel, lors de la pose de la canalisation (3) par le train de tiges (6), une force de pression agissant en direction de l'axe longitudinal du train de tiges (6) est exercée sur le palier de forage (8), qui est transmise par le palier de forage (8) en tant que force de traction et/ou de pression agissant dans une direction longitudinale de la canalisation (3) sur la canalisation (3) et en tant que force de pression agissant en direction longitudinale du tube de commande (18).
EP13747378.1A 2012-09-28 2013-08-06 Dispositif et procédé de pose d'une canalisation dans un trou de forage Active EP2900895B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012217822.8A DE102012217822A1 (de) 2012-09-28 2012-09-28 Vorrichtung und Verfahren zur Verlegung einer Rohrleitung in einem Bohrloch
PCT/EP2013/066508 WO2014048627A2 (fr) 2012-09-28 2013-08-06 Dispositif et procédé de pose d'une canalisation dans un trou de forage

Publications (2)

Publication Number Publication Date
EP2900895A2 EP2900895A2 (fr) 2015-08-05
EP2900895B1 true EP2900895B1 (fr) 2019-06-05

Family

ID=48949137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13747378.1A Active EP2900895B1 (fr) 2012-09-28 2013-08-06 Dispositif et procédé de pose d'une canalisation dans un trou de forage

Country Status (4)

Country Link
EP (1) EP2900895B1 (fr)
DE (1) DE102012217822A1 (fr)
DK (1) DK2900895T3 (fr)
WO (1) WO2014048627A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009630A1 (de) * 2014-06-27 2015-12-31 Rüdiger Kögler Verfahren und Vorrichtung zur Erstellung eines Bohrlochs
WO2016192844A1 (fr) * 2015-05-29 2016-12-08 Herrenknecht Ag Système et procédé de pose près de la surface de câbles souterrains ou de conduites souterraines dans le sol
CN112796655B (zh) * 2020-12-31 2023-03-31 成都环境工程建设有限公司 一种市政公路下管道铺设用钻洞装置
CN114659436B (zh) * 2022-03-30 2024-03-29 西安建筑科技大学 一种回拖管道轴向变形测量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3839760C1 (en) * 1988-11-25 1990-01-18 Gewerkschaft Walter Ag Double rotary drilling apparatus for making directionally accurate bores, in particular horizontal bores
DE3902868C1 (fr) * 1989-02-01 1990-06-07 Eastman Christensen Co., Salt Lake City, Utah, Us
DE19612902C2 (de) * 1996-03-30 2000-05-11 Tracto Technik Verfahren zum Richtungsbohren und eine Vorrichtung zur Durchführung des Verfahrens
CN103415673B (zh) * 2011-01-14 2016-05-18 国际壳牌研究有限公司 用于径向扩张管件并进行定向钻井的方法和系统
WO2012158026A2 (fr) * 2011-05-16 2012-11-22 Gebr. Van Leeuwen Harmelen B.V. Dispositif de guidage de conduite, pousseur de conduite, support à rouleaux et procédé de pose d'une conduite dans un sous-sol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2900895A2 (fr) 2015-08-05
WO2014048627A3 (fr) 2014-10-16
DE102012217822A1 (de) 2014-04-03
DK2900895T3 (da) 2019-08-19
WO2014048627A2 (fr) 2014-04-03

Similar Documents

Publication Publication Date Title
EP2085566B1 (fr) Installation de forage
DE3035876C2 (fr)
EP1802844B1 (fr) Procede de pose de conduites sans tranchee
EP2553201B1 (fr) Procédé de réalisation d'un forage horizontal dans le sol et dispositif de forage horizontal
EP2505762B1 (fr) Dispositif de forage et procédé de forage horizontal
DE202016008021U1 (de) System zum oberflächennahen Verlegen von Erdkabeln oder Erdleitungen im Boden
EP2553202B1 (fr) Procédé pour faire fonctionner un dispositif de forage horizontal et dispositif de forage horizontal
EP2863003A2 (fr) Outil et dispositif d'agrandissement d'un passage existant dans le sol
EP2900895B1 (fr) Dispositif et procédé de pose d'une canalisation dans un trou de forage
EP0860638B1 (fr) Dispositif et procédé de pose de tubes céramiques sans excavation
DE102016003749B4 (de) Bohranlage zum Einbringen von Bohrungen in Gestein und/oder Felsen
EP2447462A1 (fr) Procédé d'introduction souterraine d'une conduite
EP2553203B1 (fr) Dispositif de forage horizontal
WO2009095046A1 (fr) Procédé de pose, sans tranchée, de conduites
DE102012112411B3 (de) Pressbohrlenkvorrichtung
WO2015197828A1 (fr) Procédé et dispositif pour réaliser un trou de forage
WO2011015341A1 (fr) Dispositif de pose d'une sonde géothermique
WO2011015342A1 (fr) Dispositif de pose de sonde géothermique
EP3387208B1 (fr) Procédé et dispositif de pose sans tranchée d'un câble ou d'un tuyau dans un sol
DE102019127115A1 (de) System und Verfahren zur Herstellung von Hausanschlüssen
DE9002368U1 (de) Vortriebseinheit
DE102013018585A1 (de) Verfahren und Vorrichtungen zur Vergrößerung eines Bohrlochs und zur gleichzeitigen Verlegung einer Rohrleitung in das vergrößerte Bohrloch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150428

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170920

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181115

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1140142

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012948

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190816

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190906

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191005

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012948

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BOHLEN & DOYEN GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013012948

Country of ref document: DE

Representative=s name: EISENFUEHR SPEISER PATENTANWAELTE RECHTSANWAEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013012948

Country of ref document: DE

Owner name: BOHLEN & DOYEN BAU GMBH, DE

Free format text: FORMER OWNER: BOHLEN & DOYEN BAUUNTERNEHMUNG GMBH, 26639 WIESMOOR, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BOHLEN & DOYEN BAU GMBH

26N No opposition filed

Effective date: 20200306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190806

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200528 AND 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1140142

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 11

Ref country code: DK

Payment date: 20230823

Year of fee payment: 11

Ref country code: DE

Payment date: 20230907

Year of fee payment: 11