EP2900875B1 - Procédé de réalisation d'un ancrage dans un sol - Google Patents
Procédé de réalisation d'un ancrage dans un sol Download PDFInfo
- Publication number
- EP2900875B1 EP2900875B1 EP13779318.8A EP13779318A EP2900875B1 EP 2900875 B1 EP2900875 B1 EP 2900875B1 EP 13779318 A EP13779318 A EP 13779318A EP 2900875 B1 EP2900875 B1 EP 2900875B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drilling
- drill pipe
- drilling tube
- borehole
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title description 8
- 238000005553 drilling Methods 0.000 claims description 76
- 239000011440 grout Substances 0.000 claims description 51
- 238000007789 sealing Methods 0.000 claims description 47
- 230000002787 reinforcement Effects 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 31
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 9
- 238000004873 anchoring Methods 0.000 claims description 5
- 239000004459 forage Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 6
- 230000036346 tooth eruption Effects 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/34—Concrete or concrete-like piles cast in position ; Apparatus for making same
- E02D5/38—Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
- E02D5/385—Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds with removal of the outer mould-pipes
Definitions
- the present invention relates to the field of drilling techniques in the ground which are carried out with the aim of making foundations and retaining structures in the ground.
- the invention relates more specifically to a method for producing an anchor in the ground.
- anchoring we mean in particular bored piles of small diameters, also called micropiles, or anchoring tie rods.
- drilling fluid a liquid, called drilling fluid, is generally injected in order to cool the cutting tool and to evacuate the cuttings.
- a reinforcement is then placed in the borehole before injecting a sealing grout.
- the document DE 3612437 A1 describes a method of making an excavation using a drilling tool having a vibratory drive means. After the drill tool has been driven to a set depth, concrete is injected under a drill bit of the drill tool at a pressure to generate a lifting force to extract the drill tool out of the drill bit. of the excavation.
- An object of the invention is to provide a method for producing an anchor in the ground with better efficiency than the traditional method.
- the invention achieves its object by the method according to claim 1.
- sealing slurry we mean any sealing product based on cement, slag, or any other binder.
- an anchoring is obtained in the ground in which the reinforcement is embedded in the sealing grout.
- the drill pipe can be withdrawn while leaving the armature in the borehole thanks to the fact that the distal end of the drill pipe is open.
- the drill pipe therefore serves both as a means of excavating the ground, but also as a means of injecting the drilling fluid and the sealing grout into the borehole, in addition to guaranteeing the maintenance of the borehole during the insertion of the frame.
- the frequency of vibration is chosen so as to cause the drill pipe to vibrate at its resonant frequency or at the very least at a frequency close to said resonant frequency.
- the frequency of vibration applied to the drill pipe is between 50 Hz and 200 Hz.
- the rapid implementation of the method according to the invention results in particular from the fact that the drilling is carried out by vibrating the drill pipe.
- the vibration which causes the drill pipe and in particular its distal end to enter at the resonant frequency or at the very least at a frequency close to the resonant frequency, facilitates the penetration of the drill pipe into the ground.
- the drill pipe is also rotated to change the position of cutting teeth disposed at the distal end of the drill pipe.
- the drill pipe serves both as a drill member and as a protection pipe for placing the reinforcement.
- a drilling fluid is injected into the drill pipe while the drilling is being carried out.
- the reinforcement is introduced into the drill pipe before the injection of sealing grout.
- said reinforcement is maintained by appropriate means during the injection of grout.
- An interest is to obtain an anchor provided with a reinforcement correctly centered in the anchor.
- the reinforcement is introduced into the drill pipe after the injection of sealing grout.
- the armature is held so that its lower end is slightly distant from the bottom of the borehole, which makes it possible to ensure that the distal part of the armature is completely embedded in the sealing grout.
- the drill pipe is removed after having injected the sealing grout into the borehole.
- the reinforcement is preferably introduced before the withdrawal of the drill pipe.
- the drill pipe is removed while injecting the sealing grout into the borehole.
- the sealing grout is injected while vibrating said drill pipe.
- This setting in vibration can be carried out within the framework of the first or the second mode of implementation of the invention.
- One advantage is to improve the flow and the distribution of the sealing grout in the borehole.
- the drill pipe is withdrawn while vibrating it and while injecting the sealing grout.
- one advantage of vibrating the drill pipe is to allow the drill pipe to be withdrawn without rotation, which has the effect of substantially reducing the risk of sealing grout circulating between the drill pipe and the ground.
- Another advantage of vibrating the drill pipe is to tighten the ground around the drill pipe, which further reduces the risk of circulation of the sealing grout between the drill pipe and the ground.
- the sealing grout is put under pressure, the drill pipe is withdrawn while injecting the pressurized grout through the drill pipe, and while vibrating the drill pipe.
- a pump is preferably used which makes it possible to inject the sealing grout at a pressure of between 0.5 and 5 MPa.
- Injection under pressure makes it possible to create a bulb of sealing grout whose diameter is substantially greater than the diameter of the borehole, which has the effect of further improving the support.
- the setting in vibration advantageously makes it possible to tighten the ground around the drill pipe.
- This tightening has the effect of consolidating the ground and thus makes it possible to carry out injection under pressure of the sealing grout in numerous types of ground without requiring the traditional use of additional accessories of the sleeve tube type.
- the drilling direction is vertical.
- the distal end is constituted by the lower end of the drill pipe.
- the direction of the drilling is inclined with respect to a vertical direction.
- An advantage is to be able to make inclined anchorages.
- An advantageous application lies in the manufacture of inclined anchor rods.
- the direction of the drilling is inclined with respect to the vertical direction by an angle strictly greater than 90°.
- One advantage is, for example, to be able to carry out ascending anchorages in a tunnel.
- the sealing grout is used as the drilling fluid.
- a target vibration frequency is calculated, and the drill pipe is vibrated at said target vibration frequency when drilling.
- This target vibration frequency which is applied to the drill pipe, is chosen optimally in order to facilitate the drilling operation, in particular in particularly hard soils.
- the calculation is carried out from a modeling of the perforation phenomena.
- the calculation uses the length of the drill pipe.
- the target vibration frequency is a function of the length of the drill pipe, while being limited by a predetermined maximum frequency value, denoted Fmax.
- This predetermined maximum frequency value which preferably corresponds to the maximum frequency that the means for vibrating the drill pipe can develop, is preferably between 100 and 160 Hz.
- the calculation uses a constant value corresponding to the speed of propagation of the compression waves in the drill pipe, this speed depending on the constituent material of the drill pipe.
- This calculation is performed by a computer comprising appropriate calculation means.
- drill pipe is understood to mean both a single drill pipe, that a plurality of tubular elements fixed end to end, for example by screwing.
- the target vibration frequency is recalculated each time the length of the drill pipe increases.
- One advantage is to ensure drilling with optimum efficiency over the entire depth of the drilling.
- the method is a method for producing an anchor tie rod in which the reinforcement is a tie rod reinforcement.
- the method is a method for producing a micropile, in which the reinforcement is a micropile reinforcement.
- a micropile M is produced provided with a reinforcement 30 which is particularly visible on the Figure 1E .
- a drilling tool 10 which comprises a drilling tube 12 consisting of a plurality of tubular elements 12a, 12b, 12c ,.... These tubular elements are fixed to each other end to end so as to form the drill pipe 12.
- the length L of the drill pipe 12 varies during the drilling. More precisely, during the drilling, a new tubular element is added as the drilling tool penetrates into the ground, to those already introduced into the ground, in order to increase the length L of the tube. drilling 12.
- Drill pipe 12 includes a distal end 14 that is open.
- the direction of drilling is vertical downwards, so that the distal end here corresponds to the lower end of the drill pipe.
- the drill pipe 12 further comprises a proximal end 16 which is connected in this example to means 18 for driving the drill pipe 12 in rotation and to means 20 for causing the drill pipe 12 to vibrate.
- means 18 for driving drill pipe 12 in rotation comprise a hydraulic motor.
- the means 20 for vibrating the drill pipe in this case a vibration generator 20, make it possible to generate compression waves which are transmitted along the drill pipe 12 from the proximal end 16 towards the distal end 14 .
- open distal end it is meant that the distal end 14 of the drill pipe 12 has a through opening which is formed in the center of the distal end 14. As will be explained below, this through opening has a section of dimension sufficient to be crossed by the reinforcement 30.
- the distal end 14 is completely open, which means in particular that the distal end is in particular devoid of a diametral cutting member.
- the open distal end 14 has an annular peripheral edge which is provided with cutting teeth 22.
- cutting teeth is meant drill tools in general, such as pins, buttons, tungsten carbide pellets, etc. These cutting teeth 22 are sized to excavate the ground S when drilling.
- the length of the drill pipe 12 has been referenced by L. This length corresponds in fact to the distance between the means 20 for vibrating the drill pipe 12 and the distal end 14 of the drill pipe 12, which essentially corresponds to the distance between the distal and proximal ends of the drill pipe.
- a drilling F is carried out in the ground S using the drilling tool 10 by rotating the drilling tube around the vertical axis A thanks to the rotation drive means 18 and by making it vibrate thanks to the means 20 for vibrating the drill pipe 12.
- a drilling fluid is injected into the drill pipe so as to evacuate the debris excavated by the cutting teeth 22.
- the distal end 14 includes perforations 26 through which the drilling fluid flows out of the drill pipe 12 before rising to the surface while flowing between the drill pipe and the wall of the borehole F.
- the drilling is carried out in such a way as to bring the distal end of the drill pipe to a predetermined depth H.
- the armature 30 is introduced into the drill pipe.
- the reinforcement 30 is a metal bar whose length is slightly greater than the height H of the borehole F.
- the armature 30 is lowered to the bottom of the borehole while being held substantially centered in the drill pipe by holding means 32. As can be seen in the figure 1C , the armature 30 is held so that its distal end 30a is slightly raised relative to the bottom Fa of the borehole F.
- a sealing grout C for example a cement grout
- the reinforcement is tubular so that it can advantageously be used as a pipe and inject the sealing grout from its upper end. The grout then gradually replaces the drilling fluid from the lower end by driving it towards the upper end of the borehole.
- the sealing grout is injected into the drill pipe 12 while vibrating the drill pipe thanks to the vibration generator 20.
- the drill pipe 12 After having injected the sealing grout into the borehole 12, the drill pipe 12 is removed as shown in the figure 1D . Alternatively, we can begin to extract the drill pipe before having completely filled the borehole with the sealing grout.
- connection means could, if necessary, be fixed to the proximal end 30b of the armature 30 which emerges from the ground.
- a second mode of implementation has been shown in which the drill pipe 12 is removed while injecting the sealing grout C.
- the withdrawal of the drill pipe is accompanied by a vibration of the drilling in order to prevent the grout from circulating between the drill pipe 12 and the ground S.
- the reinforcement 30 is introduced after removal of the drill pipe.
- the armature could be introduced before the drill pipe is removed.
- the figures 3A to 3C disclose a third embodiment of the invention.
- This third mode of implementation differs from that of the figures 1A to 1E in that the sealing grout C is pressurized by a pump P in order to be injected under pressure into the drill pipe 12.
- the pressure of the grouting grout injected is of the order of 5 MPa .
- the drill pipe is raised while being vibrated.
- the vibration has the effect of tightening the ground around the drill pipe 12 and makes it possible to carry out injection under pressure, which has the effect of creating a bulb B of sealing grout whose diameter is much greater than that of the drilling.
- the bulb B is made over the entire height of the borehole.
- the bulb could be shorter, for example by being located at the bottom of the borehole.
- armature 30 is inserted into bulb B after drill pipe 12 is removed. Again, armature 30 could be inserted before drill pipe 12 is removed.
- the anchors made are anchor tie rods referenced T1 and T2, which are obtained by implementing the method described above, except that the directions of the boreholes F1 for the tie rod T1 and F2 for the tie rod T2 , are inclined with respect to a vertical direction.
- direction of the drilling F1 is inclined with respect to the vertical direction by an angle strictly greater than 90°
- direction of the drilling F2 is inclined with respect to the vertical direction by an angle less than 90° but strictly greater than 0°.
- a target frequency of vibrations is calculated which is applied thanks to the vibration generator to the drill pipe 12.
- the drill pipe 12 is therefore vibrated at the target vibration frequency when performing the various boreholes F, F1 and F2.
- this vibration target frequency is a vibration frequency which is applied to the drill pipe.
- these vibrations are compression waves which are transmitted along the drill pipe defining antinodes and nodes. These vibration waves bring the drill pipe 12 into resonance, or at least at a frequency close to its resonant frequency, which produces maximum energy at the distal end 14 carrying the cutting teeth 22, with effect of substantially increasing the efficiency of the drilling, and therefore the overall efficiency of the method according to the invention.
- the calculation of the target vibration frequency first of all comprises a step S100 during which the length L of the drill pipe 12 is manually entered or determined automatically. It is therefore assumed here that the drill pipe is placed vibrating along its entire length.
- the target vibration frequency is calculated during a step S102 from the length L of the drill pipe, the speed of propagation of the compression wave in the drill pipe 12
- the drill pipe is made of steel.
- the calculation uses a constant value corresponding to the speed of propagation of the compression waves in the drill pipe, this speed depending on the constituent material of the drill pipe.
- the target frequency of vibrations is recalculated at each increase in the length of the drill pipe. This helps to maintain an optimal vibration frequency throughout the duration of the drilling.
- the calculated vibration target frequency is then displayed as a suggestion to the operator. It can also in another embodiment be sent as an instruction to the vibration generator 20 during a step S104.
- V is equal to 5000 m/s
- Fmax is equal to 130 Hz
- L the length of the borehole, is equal to the sum of the lengths of the tubular elements 12a, 12b, 12c ,....
- the tubular elements have the same unit length, namely a length of 3 meters.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Piles And Underground Anchors (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
- La présente invention concerne le domaine des techniques de forage dans le sol qui sont exécutés dans le but de réaliser des fondations et des ouvrages de soutènement dans le sol.
- L'invention porte plus spécifiquement sur un procédé de réalisation d'un ancrage dans un sol.
- Par ancrage, on entend notamment les pieux forés de petits diamètres, également appelés micropieux, ou bien les tirants d'ancrage.
- Traditionnellement, pour réaliser un tel ancrage, on réalise tout d'abord un forage en entrainant en rotation un outil de coupe qui va excaver le sol.
- Pendant le forage, on injecte en général un liquide, appelé fluide de forage, afin de refroidir l'outil de coupe et d'évacuer les déblais.
- On dispose ensuite une armature dans le forage avant d'y injecter un coulis de scellement.
- Ces différentes étapes sont généralement réalisées successivement à l'aide de différents matériels selon les terrains en présence, en conséquence de quoi ce procédé traditionnel présente l'inconvénient d'être assez lent à mettre en œuvre.
- Le document
DE 3612437 A1 décrit un procédé de réalisation d'une excavation au moyen d'un outil de forage ayant un moyen d'entrainement vibratoire. Une fois que l'outil de forage a été enfoncé à une profondeur de consigne, du béton est injecté sous une tête de forage de l'outil de forage à une pression permettant de générer une force de levage pour extraire l'outil de forage hors de l'excavation. - Un but de l'invention est de proposer un procédé de réalisation d'un ancrage dans un sol présentant une meilleure efficacité que le procédé traditionnel.
- L'invention atteint son but par le procédé selon la revendication 1.
- Selon l'invention, on fournit un outil de forage comprenant un tube de forage qui présente une extrémité distale ouverte et des moyens pour faire vibrer le tube de forage ;
- on réalise un forage dans le sol à l'aide de l'outil de forage en faisant vibrer le tube de forage, le tube de forage étant amené à une profondeur prédéterminée;
- lorsque le tube de forage a atteint la profondeur prédéterminée, on introduit une armature dans le tube de forage, et on injecte un coulis de scellement dans le forage via le tube de forage avant ou après avoir introduit l'armature dans le tube de forage.
- Par coulis de scellement, on entend tout produit de scellement à base de ciment, de laitier, ou de tout autre liant.
- Ainsi, à l'issue de la mise en œuvre du procédé selon l'invention, on obtient un ancrage dans le sol dans lequel l'armature est noyée dans le coulis de scellement.
- Ainsi, grâce à l'invention, le tube de forage peut être retiré tout en laissant l'armature dans le forage grâce au fait que l'extrémité distale du tube de forage est ouverte. Le tube de forage sert donc à la fois de moyen pour excaver le sol, mais aussi de moyen pour injecter le fluide de forage et le coulis de scellement dans le forage, en plus de garantir le maintien du forage pendant l'insertion de l'armature.
- De manière avantageuse, la fréquence de vibration est choisie de manière à faire vibrer le tube de forage à sa fréquence de résonance ou à tout le moins à une fréquence proche de ladite fréquence de résonance.
- Avantageusement, la fréquence de vibration appliquée au tube de forage est comprise entre 50 Hz et 200 Hz.
- Il s'ensuit que la rapidité de la mise en œuvre du procédé selon l'invention résulte notamment du fait que le forage est réalisé en faisant vibrer le tube de forage. La vibration, qui fait entrer le tube de forage et notamment son extrémité distale à la fréquence de résonance ou à tout le moins à une fréquence proche de la fréquence de résonance, facilite la pénétration du tube de forage dans le sol.
- De préférence, mais non nécessairement, pendant le forage, on fait également tourner le tube de forage pour modifier la position de dents de coupe disposées au niveau de l'extrémité distale du tube de forage.
- Aussi, selon l'invention, le tube de forage sert à la fois d'organe de forage et de tube de protection pour la mise en place de l'armature.
- Encore de préférence, on injecte un fluide de forage dans le tube de forage pendant la réalisation du forage.
- Selon une première variante, on introduit l'armature dans le tube de forage avant l'injection de coulis de scellement.
- Avantageusement, après avoir introduit l'armature dans le tube de forage, on maintient ladite armature par des moyens appropriés pendant l'injection de coulis de scellement. Un intérêt est d'obtenir un ancrage muni d'une armature correctement centrée dans l'ancrage. Selon une autre variante, on introduit l'armature dans le tube de forage après l'injection de coulis de scellement.
- De préférence, l'armature est maintenue de sorte que son extrémité inférieure soit légèrement distante du fond du forage, ce qui permet de s'assurer que la partie distale de l'armature soit totalement noyée dans le coulis de scellement.
- Selon un premier mode de mise en œuvre, on retire le tube de forage après avoir injecté le coulis de scellement dans le forage. Dans ce cas, l'armature est préférentiellement introduite avant le retrait du tube de forage.
- Selon un deuxième mode de mise en œuvre, on retire le tube de forage tout en injectant le coulis de scellement dans le forage.
- De manière avantageuse, on injecte le coulis de scellement tout en faisant vibrer ledit tube de forage. Cette mise en vibration peut être effectuée dans le cadre du premier ou du deuxième mode de mise en œuvre de l'invention.
- Un intérêt est d'améliorer l'écoulement et la répartition du coulis de scellement dans le forage.
- Ainsi, grâce à la vibration du tube de forage pendant le forage, et pendant l'injection de coulis de scellement, on améliore la vitesse d'exécution du procédé.
- Selon une variante de mise en œuvre, on retire le tube de forage tout en le faisant vibrer et tout en injectant le coulis de scellement. Dans ce cas, un intérêt de la mise en vibration du tube de forage est de permettre le retrait du tube de forage sans rotation, ce qui a pour effet de réduire sensiblement le risque de circulation de coulis de scellement entre le tube de forage et le sol. Un autre intérêt de la mise en vibration du tube de forage est de resserrer le terrain autour du tube de forage, ce qui diminue encore le risque de circulation du coulis de scellement entre le tube de forage et le sol.
- Selon un troisième mode de mise en œuvre, on met le coulis de scellement sous pression, on retire le tube de forage tout en injectant le coulis mis sous pression à travers le tube de forage, et tout en faisant vibrer le tube de forage.
- Pour effectuer cette mise sous pression, on utilise préférentiellement une pompe permettant d'injecter le coulis de scellement à une pression comprise entre 0,5 et 5 MPa.
- L'injection sous pression permet de créer un bulbe de coulis de scellement dont le diamètre est sensiblement supérieur au diamètre du forage, ce qui a pour effet d'améliorer encore le soutènement.
- Comme on l'a mentionné plus haut, la mise en vibration permet avantageusement de resserrer le terrain autour du tube de forage. Ce resserrement a pour effet de consolider le sol et permet ainsi de réaliser une injection sous pression du coulis de scellement dans de nombreux types de sols sans requérir l'utilisation traditionnelle d'accessoires complémentaires de type tubes à manchettes.
- Le plus souvent, la direction de forage est verticale. Dans ce cas, l'extrémité distale est constituée par l'extrémité inférieure du tube de forage.
- Selon une variante, la direction du forage est inclinée par rapport à une direction verticale.
- Un intérêt est de pouvoir réaliser des ancrages inclinés. Une application avantageuse réside dans la fabrication de tirants d'ancrage inclinés.
- De préférence, la direction du forage est inclinée par rapport à la direction verticale d'un angle strictement supérieur à 90°. Un intérêt est par exemple de pouvoir réaliser des ancrages remontants dans un tunnel.
- Dans une variante, on utilise le coulis de scellement comme fluide de forage.
- Selon l'invention, on calcule une fréquence cible de vibration, et on fait vibrer le tube de forage à ladite fréquence cible de vibration lors de la réalisation du forage.
- Cette fréquence cible de vibration, qui est appliquée au tube de forage, est choisie de manière optimale afin de faciliter l'opération de forage, notamment dans des sols particulièrement durs. D'une façon générale, le calcul est effectué à partir d'une modélisation des phénomènes de perforation.
- De manière avantageuse, le calcul utilise la longueur du tube de forage. De préférence, la fréquence cible de vibration est fonction de la longueur du tube de forage, tout en étant bornée par une valeur de fréquence maximale prédéterminée, notée Fmax. Cette valeur de fréquence maximale prédéterminée, qui correspond de préférence à la fréquence maximale que peuvent développer les moyens pour faire vibrer le tube de forage est comprise de préférence entre 100 et 160 Hz.
- Encore de préférence, le calcul utilise une valeur constante correspondant à la vitesse de propagation des ondes de compression dans le tube de forage, cette vitesse dépendant du matériau constitutif du tube de forage.
- De manière préférentielle mais non nécessairement, la fréquence cible de référence est égale à :
- Fmax (la valeur de fréquence maximale prédéterminée) si Fmax<(V)/(2∗L), où V est la vitesse de propagation des ondes de compression dans le tube de forage, et L la longueur du tube de forage, OU :
- (n∗V)/(2∗L) si Fmax>(V)/(2∗L), où n est un nombre entier supérieur ou égal à 1 choisi de sorte que (n∗V)/(2∗L)<=Fmax et ((n+1)∗V)/(2∗L)>Fmax,
- Les inventeurs ont constaté que cette formule permet d'obtenir une fréquence cible de vibration optimale qui accroit sensiblement l'efficacité de l'opération de forage.
- Ce calcul est effectué par un ordinateur comportant des moyens de calculs appropriés.
- Selon l'invention, pour réaliser des forages profonds, on augmente la longueur du tube de forage pendant la réalisation du forage. Pour ce faire, on utilise des portions de tube qui sont fixées bout à bout au cours du forage afin d'augmenter la longueur du forage. Par conséquent, au sens de l'invention, on entend par tube de forage aussi bien un unique tube de forage, qu'une pluralité d'éléments tubulaires fixés bout à bout, par exemple par vissage.
- Selon l'invention, on recalcule la fréquence cible de vibration à chaque augmentation de la longueur du tube de forage.
- Un intérêt est d'assurer un forage ayant une efficacité optimale sur toute la profondeur du forage.
- Selon un premier mode de mise en œuvre avantageux, le procédé est un procédé de réalisation d'un tirant d'ancrage dans lequel l'armature est une armature de tirant.
- Selon un deuxième mode de mise en œuvre avantageux, le procédé est un procédé de réalisation d'un micropieu, dans lequel l'armature est une armature de micropieu.
- L'invention sera mieux comprise à la lecture de la description qui suit de modes de réalisation de l'invention donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- la
figure 1A illustre l'étape de forage du procédé selon l'invention ; - la
figure 1B illustre l'étape d'introduction d'une armature à l'intérieur du tube de forage ; - la
figure 1C illustre l'étape d'injection du coulis de scellement dans le tube de forage afin de noyer l'armature ; - la
figure 1D illustre l'étape de retrait du tube de forage ; - la
figure 1E illustre de manière schématique un micropieu obtenu à l'issue des étapes 1A à 1D ; - la
figure 2A illustre une variante dans laquelle on injecte du coulis de scellement dans le forage tout en retirant le tube de forage ; - la
figure 2B illustre l'étape d'introduction de l'armature dans le forage rempli de coulis de scellement ; - la
figure 3A illustre une autre variante de l'invention dans laquelle on injecte du coulis de scellement sous pression tout en remontant et en faisant vibrer le tube de forage afin de former un bulbe de coulis de scellement ; - la
figure 3B illustre l'introduction de l'armature dans le bulbe de coulis de scellement ; - la
figure 3C illustre l'ancrage obtenu à l'issue de l'étape de lafigure 3B ; - la
figure 4 illustre des variantes de l'ancrage obtenu par la mise en œuvre du procédé selon l'invention ; et - la
figure 5 schématise le procédé d'optimisation de la fréquence de vibration appliquée au tube de forage. - A l'aide des
figures 1A à 1E , on va décrire un premier mode de réalisation du procédé de réalisation d'un ancrage dans un sol conforme à la présente invention. Dans ce premier mode de réalisation, on réalise un micropieu M muni d'une armature 30 qui est particulièrement visible sur lafigure 1E . - Conformément au procédé selon l'invention, on fournit un outil de forage 10 qui comprend un tube de forage 12 constitué d'une pluralité d'éléments tubulaires 12a, 12b, 12c,.... Ces éléments tubulaires sont fixés les uns aux autres bout à bout de manière à constituer le tube de forage 12.
- On comprend donc que la longueur L du tube de forage 12 varie lors de la réalisation du forage. Plus exactement, lors de la réalisation du forage, on ajoute au fur et à mesure de la pénétration de l'outil de forage dans le sol un nouvel élément tubulaire à ceux déjà introduits dans le sol, afin d'augmenter la longueur L du tube de forage 12.
- Le tube de forage 12 comprend une extrémité distale 14 qui est ouverte. Dans l'exemple de la
figure 1A , la direction du forage est verticale vers le bas, de sorte que l'extrémité distale correspond ici à l'extrémité inférieure du tube de forage. - Le tube de forage 12 comporte par ailleurs une extrémité proximale 16 qui est reliée dans cet exemple à des moyens 18 pour entraîner en rotation le tube de forage 12 et à des moyens 20 pour faire vibrer le tube de forage 12. Dans cet exemple, les moyens 18 pour entraîner en rotation le tube de forage 12 comprennent un moteur hydraulique.
- Les moyens 20 pour faire vibrer le tube de forage, en l'espèce un générateur de vibrations 20, permettent de générer des ondes de compression qui se transmettent le long du tube de forage 12 depuis l'extrémité proximale 16 vers l'extrémité distale 14.
- Par extrémité distale ouverte, on entend que l'extrémité distale 14 du tube de forage 12 présente une ouverture débouchante qui est ménagée au centre de l'extrémité distale 14. Comme il sera expliqué ci-dessous, cette ouverture débouchante présente une section de dimension suffisante pour être traversée par l'armature 30.
- Dans ce mode de réalisation, l'extrémité distale 14 est totalement ouverte, ce qui signifie en particulier que l'extrémité distale est notamment dépourvue d'organe de découpe diamétral.
- L'extrémité distale ouverte 14 présente un bord périphérique annulaire qui est pourvu de dents de coupe 22. Par dents de coupe, on entend les outils de forage en général, comme les picots, les boutons, les pastilles de carbure de tungstène, etc. Ces dents de coupe 22 sont dimensionnées pour excaver le sol S lors de la réalisation du forage.
- Sur la
figure 1A , on a référencé par L la longueur du tube de forage 12. Cette longueur correspond en fait à la distance entre les moyens 20 pour faire vibrer le tube de forage 12 et l'extrémité distale 14 du tube de forage 12, qui correspond essentiellement à la distance entre les extrémités distale et proximale du tube de forage. - Conformément à l'invention, on réalise un forage F dans le sol S à l'aide de l'outil de forage 10 en faisant tourner le tube de forage autour de l'axe vertical A grâce aux moyens d'entraînement en rotation 18 et en le faisant vibrer grâce aux moyens 20 pour faire vibrer le tube de forage 12.
- Pendant la réalisation du forage, on injecte un fluide de forage dans le tube de forage de manière à évacuer les débris excavés par les dents de coupe 22. Comme on le constate sur la
figure 1A , l'extrémité distale 14 comprend des perforations 26 au travers desquelles s'écoule le fluide de forage hors du tube de forage 12 avant de remonter en surface tout en s'écoulant entre le tube de forage et la paroi du forage F. - Le forage est réalisé de manière à amener l'extrémité distale du tube de forage jusqu'à une profondeur prédéterminée H.
- Dans cet exemple non limitatif, après que le tube de forage a atteint la profondeur prédéterminée H, on introduit l'armature 30 dans le tube de forage. On pourrait également introduire l'armature dans le tube de forage avant la substitution du fluide de forage par le coulis de scellement. Dans cet exemple, l'armature 30 est un barreau métallique dont la longueur est légèrement supérieure à la hauteur H du forage F.
- L'armature 30 est descendue au fond du forage tout en étant maintenue sensiblement centrée dans le tube de forage par des moyens de maintien 32. Comme on le constate sur la
figure 1C , l'armature 30 est maintenue de sorte que son extrémité distale 30a soit légèrement surélevée par rapport au fond Fa du forage F. - Tout en maintenant l'armature 30, on injecte un coulis de scellement C, par exemple un coulis de ciment, dans le tube de forage par son extrémité supérieure 15 afin de noyer l'armature 30 dans le coulis de scellement. Dans une autre variante, l'armature est tubulaire de sorte qu'on peut l'utiliser avantageusement comme conduite et injecter le coulis de scellement à partir de son extrémité supérieure. Le coulis se substitue alors progressivement au fluide de forage à partir de l'extrémité inférieure en le chassant vers l'extrémité supérieure du forage.
- Dans cet exemple, on injecte le coulis de scellement dans le tube de forage 12 tout en faisant vibrer le tube de forage grâce au générateur de vibrations 20.
- Après avoir injecté le coulis de scellement dans le forage 12, on retire le tube de forage 12 comme cela est représenté sur la
figure 1D . Dans une variante, on pourra commencer à extraire le tube de forage avant d'avoir complètement rempli le forage avec le coulis de scellement. - On obtient alors le micropieu M représenté sur la
figure 1E . - Bien entendu, des moyens de connexion (non représentés ici) pourront le cas échéant être fixés à l'extrémité proximale 30b de l'armature 30 qui émerge hors du sol.
- Sur les
figures 2A et 2B , on a représenté un deuxième mode de mise en œuvre dans lequel on retire le tube de forage 12 tout en injectant le coulis de scellement C. Selon une variante, le retrait du tube de forage est accompagné d'une mise en vibration du tube de forage afin d'éviter que le coulis de scellement circule entre le tube de forage 12 et le sol S. Dans cet exemple, l'armature 30 est introduite après retrait du tube de forage. Toutefois, sans sortir du cadre de l'invention, l'armature pourrait être introduite avant le retrait du tube de forage. - Les
figures 3A à 3C divulguent un troisième mode de mise en œuvre de l'invention. - Ce troisième mode de mise en œuvre se distingue de celui des
figures 1A à 1E par le fait que le coulis de scellement C est mis sous pression par une pompe P afin d'être injecté sous pression dans le tube de forage 12. Dans cet exemple, la pression du coulis de scellement injecté est de l'ordre de 5 MPa. - Pendant l'injection du coulis de scellement sous pression, le tube de forage est remonté tout en étant mis en vibration. La mise en vibration a pour effet de resserrer le terrain autour du tube de forage 12 et permet de réaliser une injection sous pression, laquelle a pour effet de créer un bulbe B de coulis de scellement dont le diamètre est très supérieur à celui du forage.
- Dans cet exemple, le bulbe B est réalisé sur toute la hauteur du forage. Cependant, sans sortir du cadre de l'invention, le bulbe pourrait être plus court, en étant par exemple localisé en pied de forage.
- Dans cet exemple, l'armature 30 est introduite dans le bulbe B après le retrait du tube de forage 12. Là encore, l'armature 30 pourrait être introduite avant le retrait du tube de forage 12.
- Sur la
figure 4 , on a représenté un autre exemple de réalisation d'ancrages obtenus par la mise en œuvre du procédé selon l'invention. - Dans cet exemple, les ancrages réalisés sont des tirants d'ancrage référencés T1 et T2, qui sont obtenus par la mise en œuvre du procédé décrit précédemment, à ceci près que les directions des forages F1 pour le tirant T1 et F2 pour le tirant T2, sont inclinées par rapport à une direction verticale.
- On constate notamment que la direction du forage F1 est inclinée par rapport à la direction verticale d'un angle strictement supérieur à 90°, tandis que la direction du forage F2 est inclinée par rapport à la direction verticale d'un angle inférieur à 90° mais strictement supérieur à 0°.
- Selon un aspect particulièrement avantageux de l'invention, lors de la réalisation des forages F, F1, et F2 décrits précédemment, on cherche à optimiser la fréquence de vibration afin de maximiser l'énergie de forage transmise par le tube de forage 12. Pour ce faire, on calcule une fréquence cible de vibrations que l'on applique grâce au générateur de vibrations au tube de forage 12.
- On fait donc vibrer le tube de forage 12 à la fréquence cible de vibration lors de la réalisation des différents forages F, F1 et F2. On comprend donc que cette fréquence cible de vibration est une fréquence de vibration qui est appliquée au tube de forage. En l'espèce, ces vibrations sont des ondes de compression qui se transmettent le long du tube de forage définissant des ventres et des nœuds. Ces ondes de vibration font entrer le tube de forage 12 en résonance, ou à tout le moins à une fréquence proche de sa fréquence de résonance, ce qui produit une énergie maximale à l'extrémité distale 14 portant les dents de coupe 22, avec pour effet d'augmenter sensiblement l'efficacité du forage, et donc l'efficacité globale du procédé selon l'invention.
- Comme on l'a représenté sur la
figure 5 , le calcul de la fréquence cible de vibration comporte tout d'abord une étape S100 au cours de laquelle on saisit manuellement ou on détermine de manière automatisée la longueur L du tube de forage 12. On suppose donc ici que le tube de forage est mis en vibration sur toute sa longueur. - Puis, à partir de cette longueur, on calcule la fréquence cible de vibration au cours d'une étape S102 à partir de la longueur L du tube de forage, de la vitesse de propagation de l'onde de compression dans le tube de forage 12. Dans cet exemple, le tube de forage est réalisé en acier.
- Encore de préférence, le calcul utilise une valeur constante correspondant à la vitesse de propagation des ondes de compression dans le tube de forage, cette vitesse dépendant du matériau constitutif du tube de forage.
- Conformément à l'invention, dans la mesure où la longueur du tube de forage 12 augmente pendant la réalisation du forage en raison de l'ajout successif des éléments tubulaires 12a, 12b, ..., on recalcule la fréquence cible de vibrations à chaque augmentation de la longueur du tube de forage. Cela permet de conserver une fréquence de vibration optimale pendant toute la durée du forage.
- La fréquence cible de vibration ainsi calculée est ensuite affichée en tant que suggestion à l'opérateur. Elle peut aussi dans un autre mode de réalisation être envoyée en tant que consigne au générateur de vibrations 20 au cours d'une étape S104.
- De manière préférentielle, mais non nécessairement, la fréquence cible de référence est égale à :
- Fmax (la valeur de fréquence maximale prédéterminée) si Fmax<(V)/(2∗L), où V est la vitesse de propagation des ondes de compression dans le tube de forage, et L la longueur du tube de forage, OU :
- (n∗V)/(2∗L) si Fmax>(V)/(2∗L), où n est un nombre entier supérieur ou égal à 1 choisi de sorte que (n∗V)/(2∗L)<=Fmax et ((n+1)∗V)/(2∗L)>Fmax,
- Dans l'exemple qui suit, V est égal 5000 m/s, Fmax est égal à 130 Hz. L, la longueur du forage, est égale à la somme des longueur des éléments tubulaires 12a, 12b, 12c,.... Dans cet exemple, les éléments tubulaires ont la même longueur unitaire, à savoir une longueur de 3 mètres.
- On obtient le tableau de résultats suivant :
Nbre de tubes L(m) 2L V/(2∗L) n F cible (Hz) 5 15 30 167 130 (Fmax) 6 18 36 139 130 (Fmax) 7 21 42 119 1 119 8 24 48 104 1 104 9 27 54 93 1 93 10 30 60 83 1 83 11 33 66 76 1 76 12 36 72 69 1 69 13 39 78 64 2 128 14 42 84 60 2 120 15 45 90 56 2 112 16 48 96 52 2 104 17 51 102 49 2 98 18 54 108 46 2 93 19 57 114 44 2 88 20 60 120 42 3 126 21 63 126 40 3 120 22 66 132 38 3 114 23 69 138 36 3 108 24 72 144 35 3 105 25 75 150 33 3 99 26 78 156 32 4 128 27 81 162 31 4 124
Claims (12)
- Procédé de réalisation d'un ancrage dans un sol, ledit procédé comprenant les étapes suivantes :on fournit un outil de forage (10) comprenant un tube de forage (12) qui présente une extrémité distale ouverte (14), et des moyens (20) pour faire vibrer le tube de forage, caractérisé en ce qu'on calcule une fréquence cible de vibration ;on réalise un forage (F, F1, F2) dans le sol (S) à l'aide de l'outil de forage (10) en faisant vibrer le tube de forage (12) à ladite fréquence cible de vibration, le tube de forage étant amené à une profondeur prédéterminée ;on augmente la longueur du tube de forage (12) pendant la réalisation du forage, et on recalcule la fréquence cible de vibration à chaque augmentation de la longueur du tube de forage;lorsque le tube de forage (12) a atteint la profondeur prédéterminée (H), on introduit une armature dans le tube de forage (12) et on injecte un coulis de scellement dans le forage (F) via le tube de forage avant ou après avoir introduit l'armature dans le tube de forage.
- Procédé selon la revendication 1, dans lequel on retire le tube de forage après avoir injecté le coulis de scellement dans le forage (12).
- Procédé selon la revendication 1, dans lequel on retire le tube de forage (12) tout en injectant le coulis de scellement dans le forage.
- Procédé selon l'une quelconque des revendications 2 ou 3, dans lequel on injecte le coulis de scellement tout en faisant vibrer ledit tube de forage (12).
- Procédé selon les revendications 3 et 4, dans lequel on met le coulis de scellement sous pression, on retire le tube de forage tout en injectant le coulis de scellement sous pression dans le forage, et tout en faisant vibrer le tube de forage (12).
- Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la direction du forage (F1, F2) est inclinée par rapport à une direction verticale.
- Procédé selon la revendication 6, dans lequel la direction du forage (F1) est inclinée par rapport à la direction verticale d'un angle strictement supérieur à 90°.
- Procédé d'injection selon l'une quelconque des revendications 1 à 7, dans lequel on injecte le coulis de scellement dans le tube de forage pendant le forage de sorte que le coulis de scellement est également utilisé comme fluide de forage.
- Procédé selon l'une quelconque des revendications 1 à 8, dans lequel, pour calculer la fréquence cible, on utilise au moins la longueur (L) du tube de forage (12), la vitesse de propagation (V) des ondes de compression dans le tube de forage (12), et une valeur de fréquence maximale prédéterminée (Fmax).
- Procédé selon l'une quelconque des revendications 1 à 9, dans lequel, la fréquence cible de vibration est égale à :• une valeur de fréquence maximale prédéterminée, notée Fmax, si Fmax<(V)/(2∗L), où V est la vitesse de propagation des ondes de compression dans le tube de forage, et où L est la longueur du tube de forage, OU :• (n∗V)/(2∗L) si Fmax>(V)/(2∗L), où n est un nombre entier supérieur ou égal à 1 choisi de sorte que (n∗V)/(2∗L)<=Fmax et ((n+1)∗V)/(2∗L)>Fmax.
- Procédé de réalisation d'un tirant d'ancrage (T1, T2) mettant en œuvre le procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'armature est une armature de tirant.
- Procédé de réalisation d'un micropieu (M) mettant en œuvre le procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'armature est une armature de micropieu.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1259134A FR2995917B1 (fr) | 2012-09-27 | 2012-09-27 | Procede de realisation d'un ancrage dans un sol |
PCT/FR2013/052274 WO2014049277A1 (fr) | 2012-09-27 | 2013-09-26 | Procédé de réalisation d'un ancrage dans un sol |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2900875A1 EP2900875A1 (fr) | 2015-08-05 |
EP2900875B1 true EP2900875B1 (fr) | 2022-08-17 |
EP2900875B8 EP2900875B8 (fr) | 2022-12-14 |
Family
ID=47902057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13779318.8A Active EP2900875B8 (fr) | 2012-09-27 | 2013-09-26 | Procédé de réalisation d'un ancrage dans un sol |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2900875B8 (fr) |
ES (1) | ES2929861T3 (fr) |
FR (1) | FR2995917B1 (fr) |
WO (1) | WO2014049277A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995918B1 (fr) * | 2012-09-27 | 2014-10-17 | Soletanche Freyssinet | Procede de realisation d'une structure armee dans un sol |
NL2014075B1 (en) | 2014-12-30 | 2016-10-12 | High Five Solutions B V | Method for anchoring and/or founding an object to the ground. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3612437A1 (de) * | 1986-04-12 | 1987-10-15 | Preussag Ag Bauwesen | Verfahren zur herstellung von betonsaeulen im boden und vorrichtung zur durchfuehrung des verfahrens |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3270511A (en) | 1963-10-10 | 1966-09-06 | Intrusion Prepakt Inc | Method of forming piles |
US3864923A (en) | 1973-09-18 | 1975-02-11 | Lee A Turzillo | Impacted casing method for installing anchor piles or tiebacks in situ |
US4618289A (en) | 1984-05-22 | 1986-10-21 | Federer David L | Method of forming a cast-in-place support column |
GB2189829B (en) | 1986-04-25 | 1989-11-29 | Shell Int Research | Method for installing a hollow, closed bottom pile |
EP2246482B1 (fr) * | 2010-04-22 | 2012-06-20 | Bauer Spezialtiefbau GmbH | Procédé et dispositif d'établissement d'un élément de fondation à friction partiellement réduite |
-
2012
- 2012-09-27 FR FR1259134A patent/FR2995917B1/fr active Active
-
2013
- 2013-09-26 EP EP13779318.8A patent/EP2900875B8/fr active Active
- 2013-09-26 WO PCT/FR2013/052274 patent/WO2014049277A1/fr active Application Filing
- 2013-09-26 ES ES13779318T patent/ES2929861T3/es active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3612437A1 (de) * | 1986-04-12 | 1987-10-15 | Preussag Ag Bauwesen | Verfahren zur herstellung von betonsaeulen im boden und vorrichtung zur durchfuehrung des verfahrens |
Also Published As
Publication number | Publication date |
---|---|
EP2900875B8 (fr) | 2022-12-14 |
EP2900875A1 (fr) | 2015-08-05 |
FR2995917A1 (fr) | 2014-03-28 |
FR2995917B1 (fr) | 2014-10-17 |
WO2014049277A1 (fr) | 2014-04-03 |
ES2929861T3 (es) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0265344B1 (fr) | Procédé pour la réalisation d'un pieu dans le sol, machine de forage et dispositif pour la mise en oeuvre de ce procédé | |
EP3002371B1 (fr) | Machine et procédé pour la réalisation de colonnes dans un sol | |
EP0240493B1 (fr) | Procede de compactage-armature-injection ou de decompactage-drainage et de construction d'ouvrages lineaires et d'ouvrages plans dans les sols | |
EP2900876B1 (fr) | Procédé de réalisation d'une structure armée dans un sol | |
EP2156907B1 (fr) | Equipement et procédé de traitement de polluants dans le sol | |
EP0747537A1 (fr) | Mèche de refoulement et procédé pour la réalisation d'un pieu à vis dans le sol | |
FR2566813A1 (fr) | Dispositif et procede pour la realisation de pieux en beton dans le sol et pieux obtenus par ce procede | |
EP2900875B1 (fr) | Procédé de réalisation d'un ancrage dans un sol | |
JP5078511B2 (ja) | アースドリル機を使用した埋込み杭工法 | |
EP0404703A1 (fr) | Pieux de fondation, procédés, outils et machines pour la construction desdits pieux | |
EP2976465B1 (fr) | Procede de consolidation d'un sol encaissant un tunnel | |
EP2157277B1 (fr) | Dispositif pour la réalisation d'un puits dans un sol | |
EP2908316B1 (fr) | Procédé et installation de découpage d'un massif en béton renforcé | |
EP2925935B1 (fr) | Procede de mise en place et de scellement d'un element tubulaire dans un sol sous charge d'eau | |
EP0413676A1 (fr) | Procédé de fixation d'ancrages | |
FR2995931A1 (fr) | Procede d'injection dans un sol | |
JP6319942B2 (ja) | 鋼管矢板の圧入方法およびパイプ類 | |
JP2003336253A (ja) | 鋼管杭基礎および鋼管杭基礎の構築工法 | |
FR2574442A1 (fr) | Procede pour le compactage des terrains et la construction d'ouvrages dans le sol enrobes de terrain compacte ou decompacte | |
EP1929094A1 (fr) | Machine de realisation d'une paroi continue dans le sol | |
BE522814A (fr) | ||
JP2005188253A (ja) | トンネルの先受け工法 | |
FR2869066A1 (fr) | Methode et ensemble de forage pour forer des trous de large diametre | |
FR3047510A1 (fr) | Dispositif de forage de roche en tranchee "forage revolver" | |
FR2970486A1 (fr) | Procede de renforcement des fondations d'un pylone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150422 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
17Q | First examination report despatched |
Effective date: 20160701 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220316 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013082338 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1512252 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SOLETANCHE FREYSSINET SA |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: RECTIFICATION B8 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2929861 Country of ref document: ES Kind code of ref document: T3 Effective date: 20221202 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SOLETANCHE FREYSSINET |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221219 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221117 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1512252 Country of ref document: AT Kind code of ref document: T Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221118 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602013082338 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220926 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
26N | No opposition filed |
Effective date: 20230519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220926 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230401 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231002 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240822 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240820 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240820 Year of fee payment: 12 |