WO2014049277A1 - Procédé de réalisation d'un ancrage dans un sol - Google Patents

Procédé de réalisation d'un ancrage dans un sol Download PDF

Info

Publication number
WO2014049277A1
WO2014049277A1 PCT/FR2013/052274 FR2013052274W WO2014049277A1 WO 2014049277 A1 WO2014049277 A1 WO 2014049277A1 FR 2013052274 W FR2013052274 W FR 2013052274W WO 2014049277 A1 WO2014049277 A1 WO 2014049277A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill pipe
drilling
grout
fmax
drill
Prior art date
Application number
PCT/FR2013/052274
Other languages
English (en)
Inventor
Daniel VIARGUES
Christophe Guillon
Original Assignee
Soletanche Freyssinet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soletanche Freyssinet filed Critical Soletanche Freyssinet
Priority to EP13779318.8A priority Critical patent/EP2900875B8/fr
Priority to ES13779318T priority patent/ES2929861T3/es
Publication of WO2014049277A1 publication Critical patent/WO2014049277A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • E02D5/385Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds with removal of the outer mould-pipes

Definitions

  • the present invention relates to the field of drilling techniques in the soil that are performed for the purpose of making foundations and retaining structures in the ground.
  • the invention relates more specifically to a method for producing an anchoring in a soil.
  • anchoring we mean in particular small diameter drilled piles, also called micropiles, or anchor rods.
  • a liquid called a drilling fluid
  • a drilling fluid is generally injected in order to cool the cutting tool and to evacuate the cuttings.
  • a reinforcement is then placed in the bore before injecting a grout.
  • An object of the invention is to provide a method for producing an anchoring in a soil having a better efficiency than the traditional method.
  • the invention achieves its object by the fact that the method according to the invention comprises the following steps:
  • a drilling tool comprising a drill pipe having an open distal end and means for vibrating the drill pipe;
  • an armature is introduced into the drill pipe, and a grout of sealing into the bore via the drill pipe before or after introducing the reinforcement into the drill pipe.
  • Sealing grout is any cement-based sealant, slag, or other binder.
  • the drill pipe can be removed while leaving the reinforcement in the borehole due to the fact that the distal end of the drill pipe is open.
  • the drill pipe thus serves both as means for excavating the ground, but also means for injecting the drilling fluid and the grout into the borehole, in addition to ensuring the maintenance of drilling during the insertion of the drill. frame.
  • the vibration frequency is chosen so as to vibrate the drill pipe at its resonant frequency or at least at a frequency close to said resonant frequency.
  • the vibration frequency applied to the drill pipe is between 50 Hz and 200 Hz.
  • the speed of the implementation of the method according to the invention results in particular from the fact that the drilling is performed by vibrating the drill pipe.
  • the vibration which enters the drill pipe and in particular its distal end at the resonant frequency or at least at a frequency close to the resonant frequency, facilitates the penetration of the drill pipe into the ground.
  • the drill pipe is also rotated to change the position of cutting teeth disposed at the distal end of the drill pipe.
  • the drill pipe serves both as a drill member and as a protective tube for setting up the reinforcement.
  • a drilling fluid is injected into the drill pipe during drilling.
  • the reinforcement is introduced into the drill pipe before the injection of grouting grout.
  • said reinforcement is maintained by appropriate means during the injection of grout.
  • An interest is to get an anchor provided with a frame properly centered in the anchorage.
  • the reinforcement is introduced into the drill pipe after the injection of grouting grout.
  • the armature is held so that its lower end is slightly distant from the bottom of the borehole, which ensures that the distal portion of the frame is completely embedded in the grout.
  • the drill pipe is removed after injecting the grout into the borehole.
  • the reinforcement is preferably introduced before withdrawal of the drill pipe.
  • the drill pipe is removed while injecting the grout into the borehole.
  • the sealing slurry is injected while vibrating said drill pipe.
  • This vibration can be performed in the context of the first or second embodiment of the invention.
  • An interest is to improve the flow and distribution of the grout in the borehole.
  • the drill pipe is removed while vibrating and while injecting the grout.
  • an interest in vibrating the drill pipe is to allow the withdrawal of the drill pipe without rotation, which has the effect of substantially reducing the risk of circulation of grout between the drill pipe and the drill pipe. ground.
  • Another advantage of vibrating the drill pipe is to tighten the ground around the drill pipe, which further reduces the risk of circulation of the grout between the drill pipe and the ground.
  • pressurized grout is applied, the drill pipe is removed while injecting pressurized grout through the drill pipe, and while vibrating the drill pipe.
  • a pump is preferably used which makes it possible to inject the grout at a pressure of between 0.5 and 5 MPa.
  • the pressure injection makes it possible to create a grouting bulb with a diameter substantially greater than the diameter of the borehole, which has the effect of further improving the support.
  • the vibration setting advantageously makes it possible to tighten the ground around the drill pipe.
  • This tightening has the effect of consolidating the soil and thus allows a pressure injection of the grout in many types of soil without requiring the traditional use of additional accessories type cuffed tubes.
  • the direction of drilling is vertical.
  • the distal end is formed by the lower end of the drill pipe.
  • the direction of drilling is inclined relative to a vertical direction.
  • An interest is to be able to achieve inclined anchors.
  • An advantageous application lies in the manufacture of inclined anchors.
  • the drilling direction is inclined relative to the vertical direction by an angle strictly greater than 90 °.
  • An interest is for example to achieve ascending anchorages in a tunnel.
  • sealing grout is used as a drilling fluid.
  • a vibration target frequency is calculated, and the drill pipe is vibrated at said vibration target frequency during drilling.
  • This vibration target frequency which is applied to the drill pipe, is optimally selected to facilitate the drilling operation, particularly in particularly hard soils.
  • the computation is carried out starting from a modelization of the phenomena of perforation.
  • the calculation uses the length of the drill pipe.
  • the vibration target frequency is a function of the length of the drill pipe, while being limited by a value of predetermined maximum frequency, denoted Fmax.
  • This predetermined maximum frequency value which preferably corresponds to the maximum frequency that can develop the means for vibrating the drill pipe is preferably between 100 and 160 Hz.
  • the calculation uses a constant value corresponding to the speed of propagation of the compression waves in the drill pipe, this speed depending on the constituent material of the drill pipe.
  • the reference target frequency is equal to:
  • This calculation is performed by a computer having appropriate calculation means.
  • drill pipe For deep drilling, the length of the drill pipe is increased during drilling. To do this, tube sections are used that are attached end to end during drilling to increase the length of the borehole. Consequently, within the meaning of the invention, the term “drill pipe” is understood to mean a single drill pipe, a plurality of tubular elements attached end to end, for example by screwing.
  • the target frequency of vibration is recalculated with each increase in the length of the drill pipe.
  • An interest is to ensure drilling with optimum efficiency over the entire depth of drilling.
  • the method is a method of producing a anchor in which the frame is a tie frame.
  • the method is a method for producing a micropile, in which the reinforcement is a micropile reinforcement.
  • Figure 1A illustrates the drilling step of the method according to the invention
  • FIG. 1B illustrates the step of introducing an armature inside the drill pipe
  • Figure 1C illustrates the step of injecting the grout into the drill pipe to embed the frame
  • Figure 1D illustrates the step of withdrawal of the drill pipe
  • FIG. 1E schematically illustrates a micropile obtained at the end of steps 1A to 1D;
  • FIG. 2A illustrates an alternative in which sealing grout is injected into the borehole while withdrawing the drill pipe;
  • FIG. 2B illustrates the step of introducing the reinforcement into the drilling filled with grout;
  • FIG. 3A illustrates another variant of the invention in which seal grout is injected under pressure while raising and vibrating the drill pipe to form a grout bulb;
  • FIG. 3B illustrates the introduction of the reinforcement into the grouting bulb
  • FIG. 3C illustrates the anchoring obtained at the end of the step of FIG.
  • FIG. 4 illustrates variants of the anchoring obtained by implementing the method according to the invention.
  • Figure 5 shows schematically the method of optimizing the vibration frequency applied to the drill pipe.
  • FIGS. 1A to 1E a first embodiment of the method for producing an anchoring in a soil conforming to FIG. the present invention.
  • a micropile M is produced with an armature 30 which is particularly visible in FIG. 1E.
  • a drilling tool 10 which comprises a drilling tube 12 consisting of a plurality of tubular elements 12a, 12b, 12c, .... These tubular elements are fixed to each other end to end so as to constitute the drill pipe 12.
  • the length L of the drill pipe 12 varies during the drilling. More exactly, during the drilling, a new tubular element is added as the drilling tool penetrates into the ground to those already introduced into the ground, in order to increase the length L of the tube. drilling 12.
  • the drill pipe 12 includes a distal end 14 which is open.
  • the drilling direction is vertical downward, so that the distal end here corresponds to the lower end of the drill pipe.
  • the drill pipe 12 further includes a proximal end 16 which is connected in this example to means 18 for rotating the drill pipe 12 and means 20 for vibrating the drill pipe 12.
  • the Means 18 for rotating the drill pipe 12 comprise a hydraulic motor.
  • the means 20 for vibrating the drill pipe in this case a vibration generator 20, can generate compressional waves that are transmitted along the drill pipe 12 from the proximal end 16 to the distal end 14 .
  • open distal end is meant that the distal end 14 of the drill tube 12 has a through opening which is provided at the center of the distal end 14. As will be explained below, this opening opening has a section of dimension sufficient to be traversed by the frame 30.
  • the distal end 14 is completely open, which means in particular that the distal end is in particular devoid of diametral cutting member.
  • the distal open end 14 has an annular peripheral edge which is provided with cutting teeth 22.
  • cutting teeth By cutting teeth, one means drilling tools in general, such as pimples, knobs, tungsten carbide pellets, etc. These cutting teeth 22 are sized to excavate the soil S during the drilling.
  • the length of the drill pipe 12 is referenced L. This length corresponds in fact to the distance between the means 20 for vibrating the drill pipe 12 and the distal end 14 of the drill pipe 12. which essentially corresponds to the distance between the distal and proximal ends of the drill pipe.
  • a drilling F is carried out in the soil S by means of the drilling tool 10 by rotating the drill pipe around the vertical axis A by virtue of the rotating drive means 18 and by vibrating it by means 20 to vibrate the drill pipe 12.
  • a drilling fluid is injected into the drill pipe so as to evacuate the debris excavated by the cutting teeth 22.
  • the distal end 14 comprises perforations 26 at the end of the borehole. through which the drilling fluid flows out of the drill pipe 12 before rising to the surface while flowing between the drill pipe and the wall of the bore F.
  • the drilling is performed to bring the distal end of the drill pipe to a predetermined depth H.
  • the reinforcement 30 is introduced into the drill pipe.
  • the reinforcement could also be introduced into the drill pipe before the drilling fluid is substituted by the grout.
  • the armature 30 is a metal bar whose length is slightly greater than the height H of the bore F.
  • the armature 30 is lowered to the bottom of the bore while being maintained substantially centered in the drill pipe by holding means 32. As can be seen in FIG. 1C, the armature 30 is held so that its distal end 30a slightly elevated compared to the bottom Fa of drilling F.
  • a sealing grout C for example a grout of cement
  • the frame is tubular so it can be used advantageously as a pipe and inject the grout from its upper end. The grout is then progressively substituted for the drilling fluid from the lower end by driving it towards the upper end of the borehole.
  • the grout is injected into the drill pipe 12 while vibrating the drill pipe through the vibration generator 20.
  • the drill pipe 12 After injecting the grout into the bore 12, the drill pipe 12 is removed as shown in FIG. 1D. Alternatively, one can begin to extract the drill pipe before having completely filled the borehole with the grout.
  • the micropile M shown in FIG. 1E is then obtained.
  • connecting means may be optionally attached to the proximal end 30b of the armature 30 which emerges from the ground.
  • FIGS. 2A and 2B show a second embodiment in which the drill pipe 12 is withdrawn while injecting the sealing grout C.
  • the withdrawal of the drill pipe is accompanied by a vibrating the drill pipe to prevent the grout from circulating between the drill pipe 12 and the ground S.
  • the armature 30 is introduced after removal of the drill pipe.
  • the armature could be introduced before removal of the drill pipe.
  • FIGS. 3A to 3C disclose a third embodiment of the invention.
  • This third mode of implementation differs from that of FIGS. 1A to 1E in that the sealing grout C is pressurized by a pump P in order to be injected under pressure into the drill pipe 12.
  • the pressure of the injected grout is of the order of 5 MPa.
  • the drill pipe is raised while being vibrated. Vibration has the effect of tightening the ground around the drill pipe 12 and allows to perform a pressure injection, which has the effect of creating a bulb B grout the diameter of which is much greater than that of drilling.
  • the bulb B is made over the entire height of the borehole.
  • the bulb could be shorter, for example being located at the bottom of the borehole.
  • the armature 30 is inserted into the bulb B after the withdrawal of the drill pipe 12.
  • the armature 30 could be introduced before the withdrawal of the drill pipe 12.
  • FIG. 4 shows another embodiment of anchors obtained by implementing the method according to the invention.
  • the anchors made are tie rods referenced Tl and T2, which are obtained by the implementation of the method described above, except that the direction of the drilling Fl for the tie Tl and F2 for the tie T2 , are inclined with respect to a vertical direction.
  • the direction of the bore F1 is inclined relative to the vertical direction by an angle strictly greater than 90 °
  • the direction of the bore F2 is inclined relative to the vertical direction by an angle of less than 90 °. but strictly greater than 0 °.
  • the drill pipe 12 is thus vibrated at the vibration target frequency during the completion of the various drillings F, Fl and F2. It is therefore clear that this vibration target frequency is a vibration frequency that is applied to the drill pipe.
  • these vibrations are compressional waves that are transmitted along the drill pipe defining bellies and nodes. These vibration waves bring the drill pipe 12 into resonance, or at least at a frequency close to its resonance frequency, which produces a maximum energy at the distal end 14 carrying the cutting teeth 22, with effect of substantially increasing the drilling efficiency, and therefore the overall efficiency of the method according to the invention.
  • the calculation of the vibration target frequency firstly comprises a step S100 during which is manually entered or automatically determines the length L of the drill pipe 12. It is therefore assumed here that the drill pipe is vibrated over its entire length.
  • the target frequency of vibration during a step S102 is calculated from the length L of the drill pipe, the speed of propagation of the compression wave in the drill pipe 12
  • the drill pipe is made of steel.
  • the calculation uses a constant value corresponding to the speed of propagation of the compression waves in the drill pipe, this speed depending on the constituent material of the drill pipe.
  • the target frequency of vibrations is recalculated with each increase in the length. of the drill pipe. This keeps an optimal vibration frequency throughout the duration of the drilling.
  • the vibration target frequency thus calculated is then displayed as a suggestion to the operator. It may also in another embodiment be sent as a setpoint to the vibration generator 20 during a step S104.
  • the reference target frequency is equal to:
  • n is an integer greater than or equal to 1 chosen so that
  • V is equal to 5000 m / s
  • Fmax is equal to 130 Hz
  • L the length of the borehole, is equal to the sum of the lengths of the tubular elements 12a, 12b, 12c, .... this example, the elements tubular have the same unit length, namely a length of 3 meters.

Abstract

L'invention concerne un procédé de réalisation d'un ancrage dans un sol dans lequel : on fournit un outil de forage comprenant un tube de forage (12) qui présente une extrémité distale ouverte (14), et des moyens (20) pour faire vibrer le tube de forage; on réalise un forage (F) dans le sol (S) à l'aide de l'outil de forage (10) en faisant vibrer le tube de forage (12), le tube de forage étant amené à une profondeur prédéterminée; lorsque le tube de forage (12) a atteint la profondeur prédéterminée, on introduit une armature (30) dans le tube de forage (12) et on injecte un coulis de scellement dans le forage (F) via le tube de forage avant ou après avoir introduit l'armature dans le tube de forage.

Description

Procédé de réalisation d'un ancrage dans un sol
Arrière-plan de l'invention
La présente invention concerne le domaine des techniques de forage dans le sol qui sont exécutés dans le but de réaliser des fondations et des ouvrages de soutènement dans le sol.
L'invention porte plus spécifiquement sur un procédé de réalisation d'un ancrage dans un sol.
Par ancrage, on entend notamment les pieux forés de petits diamètres, également appelés micropieux, ou bien les tirants d'ancrage.
Traditionnellement, pour réaliser un tel ancrage, on réalise tout d'abord un forage en entraînant en rotation un outil de coupe qui va excaver le sol.
Pendant le forage, on injecte en général un liquide, appelé fluide de forage, afin de refroidir l'outil de coupe et d'évacuer les déblais.
On dispose ensuite une armature dans le forage avant d'y injecter un coulis de scellement.
Ces différentes étapes sont généralement réalisées successivement à l'aide de différents matériels selon les terrains en présence, en conséquence de quoi ce procédé traditionnel présente l'inconvénient d'être assez lent à mettre en œuvre.
Objet et résumé de l'invention
Un but de l'invention est de proposer un procédé de réalisation d'un ancrage dans un sol présentant une meilleure efficacité que le procédé traditionnel.
L'invention atteint son but par le fait que le procédé selon l'invention comprend les étapes suivantes :
on fournit un outil de forage comprenant un tube de forage qui présente une extrémité distale ouverte et des moyens pour faire vibrer le tube de forage ;
on réalise un forage dans le sol à l'aide de l'outil de forage en faisant vibrer le tube de forage, le tube de forage étant amené à une profondeur prédéterminée;
lorsque le tube de forage a atteint la profondeur prédéterminée, on introduit une armature dans le tube de forage, et on injecte un coulis de scellement dans le forage via le tube de forage avant ou après avoir introduit l'armature dans le tube de forage.
Par coulis de scellement, on entend tout produit de scellement à base de ciment, de laitier, ou de tout autre liant.
Ainsi, à l'issue de la mise en œuvre du procédé selon l'invention, on obtient un ancrage dans le sol dans lequel l'armature est noyée dans le coulis de scellement.
Ainsi, grâce à l'invention, le tube de forage peut être retiré tout en laissant l'armature dans le forage grâce au fait que l'extrémité distale du tube de forage est ouverte. Le tube de forage sert donc à la fois de moyen pour excaver le sol, mais aussi de moyen pour injecter le fluide de forage et le coulis de scellement dans le forage, en plus de garantir le maintien du forage pendant l'insertion de l'armature.
De manière avantageuse, la fréquence de vibration est choisie de manière à faire vibrer le tube de forage à sa fréquence de résonance ou à tout le moins à une fréquence proche de ladite fréquence de résonance.
Avantageusement, la fréquence de vibration appliquée au tube de forage est comprise entre 50 Hz et 200 Hz.
Il s'ensuit que la rapidité de la mise en œuvre du procédé selon l'invention résulte notamment du fait que le forage est réalisé en faisant vibrer le tube de forage. La vibration, qui fait entrer le tube de forage et notamment son extrémité distale à la fréquence de résonance ou à tout le moins à une fréquence proche de la fréquence de résonance, facilite la pénétration du tube de forage dans le sol.
De préférence, mais non nécessairement, pendant le forage, on fait également tourner le tube de forage pour modifier la position de dents de coupe disposées au niveau de l'extrémité distale du tube de forage.
Aussi, selon l'invention, le tube de forage sert à la fois d'organe de forage et de tube de protection pour la mise en place de l'armature.
Encore de préférence, on injecte un fluide de forage dans le tube de forage pendant la réalisation du forage.
Selon une première variante, on introduit l'armature dans le tube de forage avant l'injection de coulis de scellement.
Avantageusement, après avoir introduit l'armature dans le tube de forage, on maintient ladite armature par des moyens appropriés pendant l'injection de coulis de scellement. Un intérêt est d'obtenir un ancrage muni d'une armature correctement centrée dans l'ancrage. Selon une autre variante, on introduit l'armature dans le tube de forage après l'injection de coulis de scellement.
De préférence, l'armature est maintenue de sorte que son extrémité inférieure soit légèrement distante du fond du forage, ce qui permet de s'assurer que la partie distale de l'armature soit totalement noyée dans le coulis de scellement.
Selon un premier mode de mise en oeuvre, on retire le tube de forage après avoir injecté le coulis de scellement dans le forage. Dans ce cas, l'armature est préférentiellement introduite avant le retrait du tube de forage.
Selon un deuxième mode de mise en uvre, on retire le tube de forage tout en injectant le coulis de scellement dans le forage.
De manière avantageuse, on injecte le coulis de scellement tout en faisant vibrer ledit tube de forage. Cette mise en vibration peut être effectuée dans le cadre du premier ou du deuxième mode de mise en œuvre de l'invention.
Un intérêt est d'améliorer l'écoulement et la répartition du coulis de scellement dans le forage.
Ainsi, grâce à la vibration du tube de forage pendant le forage, et pendant l'injection de coulis de scellement, on améliore la vitesse d'exécution du procédé.
Selon une variante de mise en œuvre, on retire le tube de forage tout en le faisant vibrer et tout en injectant le coulis de scellement. Dans ce cas, un intérêt de la mise en vibration du tube de forage est de permettre le retrait du tube de forage sans rotation, ce qui a pour effet de réduire sensiblement le risque de circulation de coulis de scellement entre le tube de forage et le sol. Un autre intérêt de la mise en vibration du tube de forage est de resserrer le terrain autour du tube de forage, ce qui diminue encore le risque de circulation du coulis de scellement entre le tube de forage et le sol.
Selon un troisième mode de mise en œuvre, on met le coulis de scellement sous pression, on retire le tube de forage tout en injectant le coulis mis sous pression à travers le tube de forage, et tout en faisant vibrer le tube de forage. Pour effectuer cette mise sous pression, on utilise préférentiellement une pompe permettant d'injecter le coulis de scellement à une pression comprise entre 0,5 et 5 MPa.
L'injection sous pression permet de créer un bulbe de coulis de scellement dont le diamètre est sensiblement supérieur au diamètre du forage, ce qui a pour effet d'améliorer encore le soutènement.
Comme on l'a mentionné plus haut, la mise en vibration permet avantageusement de resserrer le terrain autour du tube de forage. Ce resserrement a pour effet de consolider le sol et permet ainsi de réaliser une injection sous pression du coulis de scellement dans de nombreux types de sols sans requérir l'utilisation traditionnelle d'accessoires complémentaires de type tubes à manchettes.
Le plus souvent, la direction de forage est verticale. Dans ce cas, l'extrémité distale est constituée par l'extrémité inférieure du tube de forage.
Selon une variante, la direction du forage est inclinée par rapport à une direction verticale.
Un intérêt est de pouvoir réaliser des ancrages inclinés. Une application avantageuse réside dans la fabrication de tirants d'ancrage inclinés.
De préférence, la direction du forage est inclinée par rapport à la direction verticale d'un angle strictement supérieur à 90°. Un intérêt est par exemple de pouvoir réaliser des ancrages remontants dans un tunnel.
Dans une variante, on utilise le coulis de scellement comme fluide de forage.
Selon un mode de réalisation avantageux, on calcule une fréquence cible de vibration, et on fait vibrer le tube de forage à ladite fréquence cible de vibration lors de la réalisation du forage.
Cette fréquence cible de vibration, qui est appliquée au tube de forage, est choisie de manière optimale afin de faciliter l'opération de forage, notamment dans des sols particulièrement durs. D'une façon générale, le calcul est effectué à partir d'une modélisation des phénomènes de perforation.
De manière avantageuse, le calcul utilise la longueur du tube de forage. De préférence, la fréquence cible de vibration est fonction de la longueur du tube de forage, tout en étant bornée par une valeur de fréquence maximale prédéterminée, notée Fmax. Cette valeur de fréquence maximale prédéterminée, qui correspond de préférence à la fréquence maximale que peuvent développer les moyens pour faire vibrer le tube de forage est comprise de préférence entre 100 et 160 Hz.
Encore de préférence, le calcul utilise une valeur constante correspondant à la vitesse de propagation des ondes de compression dans le tube de forage, cette vitesse dépendant du matériau constitutif du tube de forage.
De manière préférentielle mais non nécessairement, la fréquence cible de référence est égale à :
• Fmax (la valeur de fréquence maximale prédéterminée) si Fmax<(V)/(2*L), où V est la vitesse de propagation des ondes de compression dans le tube de forage, et L la longueur du tube de forage, OU :
· (n*V)/(2*L) si Fmax>(V)/(2*L), où n est un nombre entier supérieur ou égal à 1 choisi de sorte que {n*V)/(2*L)<=Fmax et ((n+l)*V)/(2*L)>Fmax, Les inventeurs ont constaté que cette formule permet d'obtenir une fréquence cible de vibration optimale qui accroît sensiblement l'efficacité de l'opération de forage.
Ce calcul est effectué par un ordinateur comportant des moyens de calculs appropriés.
Pour réaliser des forages profonds, on augmente la longueur du tube de forage pendant la réalisation du forage. Pour ce faire, on utilise des portions de tube qui sont fixées bout à bout au cours du forage afin d'augmenter la longueur du forage. Par conséquent, au sens de l'invention, on entend par tube de forage aussi bien un unique tube de forage, qu'une pluralité d'éléments tubulaires fixés bout à bout, par exemple par vissage.
De manière avantageuse, on recalcule la fréquence cible de vibration à chaque augmentation de la longueur du tube de forage.
Un intérêt est d'assurer un forage ayant une efficacité optimale sur toute la profondeur du forage.
Selon un premier mode de mise en œuvre avantageux, le procédé est un procédé de réalisation d'un tirant d'ancrage dans lequel l'armature est une armature de tirant. Selon un deuxième mode de mise en œuvre avantageux, le procédé est un procédé de réalisation d'un micropieu, dans lequel l'armature est une armature de micropieu.
Brève description des dessins
L'invention sera mieux comprise à la lecture de la description qui suit de modes de réalisation de l'invention donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
la figure 1A illustre l'étape de forage du procédé selon l'invention ;
• la figure 1B illustre l'étape d'introduction d'une armature à l'intérieur du tube de forage ;
la figure 1C illustre l'étape d'injection du coulis de scellement dans le tube de forage afin de noyer l'armature ;
la figure 1D illustre l'étape de retrait du tube de forage ;
• la figure 1E illustre de manière schématique un micropieu obtenu à l'issue des étapes 1A à 1D ;
la figure 2A illustre une variante dans laquelle on injecte du coulis de scellement dans le forage tout en retirant le tube de forage ; la figure 2B illustre l'étape d'introduction de l'armature dans le forage rempli de coulis de scellement ;
la figure 3A illustre une autre variante de l'invention dans laquelle on injecte du coulis de scellement sous pression tout en remontant et en faisant vibrer le tube de forage afin de former un bulbe de coulis de scellement ;
• la figure 3B illustre l'introduction de l'armature dans le bulbe de coulis de scellement ;
• la figure 3C illustre l'ancrage obtenu à l'issue de l'étape de la figure
3B ;
• la figure 4 illustre des variantes de l'ancrage obtenu par la mise en oeuvre du procédé selon l'invention ; et
• la figure 5 schématise le procédé d'optimisation de la fréquence de vibration appliquée au tube de forage.
Description détaillée de l'invention
A l'aide des figures 1A à 1E, on va décrire un premier mode de réalisation du procédé de réalisation d'un ancrage dans un sol conforme à la présente invention. Dans ce premier mode de réalisation, on réalise un micropieu M muni d'une armature 30 qui est particulièrement visible sur la figure 1E.
Conformément au procédé selon l'invention, on fournit un outil de forage 10 qui comprend un tube de forage 12 constitué d'une pluralité d'éléments tubulaires 12a, 12b, 12c,.... Ces éléments tubulaires sont fixés les uns aux autres bout à bout de manière à constituer le tube de forage 12.
On comprend donc que la longueur L du tube de forage 12 varie lors de la réalisation du forage. Plus exactement, lors de la réalisation du forage, on ajoute au fur et à mesure de la pénétration de l'outil de forage dans le sol un nouvel élément tubulaire à ceux déjà introduits dans le sol, afin d'augmenter la longueur L du tube de forage 12.
Le tube de forage 12 comprend une extrémité distale 14 qui est ouverte. Dans l'exemple de la figure 1A, la direction du forage est verticale vers le bas, de sorte que l'extrémité distale correspond ici à l'extrémité inférieure du tube de forage.
Le tube de forage 12 comporte par ailleurs une extrémité proximale 16 qui est reliée dans cet exemple à des moyens 18 pour entraîner en rotation le tube de forage 12 et à des moyens 20 pour faire vibrer le tube de forage 12. Dans cet exemple, les moyens 18 pour entraîner en rotation le tube de forage 12 comprennent un moteur hydraulique.
Les moyens 20 pour faire vibrer le tube de forage, en l'espèce un générateur de vibrations 20, permettent de générer des ondes de compression qui se transmettent le long du tube de forage 12 depuis l'extrémité proximale 16 vers l'extrémité distale 14.
Par extrémité distale ouverte, on entend que l'extrémité distale 14 du tube de forage 12 présente une ouverture débouchante qui est ménagée au centre de l'extrémité distale 14. Comme il sera expliqué ci- dessous, cette ouverture débouchante présente une section de dimension suffisante pour être traversée par l'armature 30.
Dans ce mode de réalisation, l'extrémité distale 14 est totalement ouverte, ce qui signifie en particulier que l'extrémité distale est notamment dépourvue d'organe de découpe diamétral.
L'extrémité distale ouverte 14 présente un bord périphérique annulaire qui est pourvu de dents de coupe 22. Par dents de coupe, on entend les outils de forage en général, comme les picots, les boutons, les pastilles de carbure de tungstène, etc. Ces dents de coupe 22 sont dimensionnées pour excaver le sol S lors de la réalisation du forage.
Sur la figure 1A, on a référencé par L la longueur du tube de forage 12. Cette longueur correspond en fait à la distance entre les moyens 20 pour faire vibrer le tube de forage 12 et l'extrémité distale 14 du tube de forage 12, qui correspond essentiellement à la distance entre les extrémités distale et proximale du tube de forage.
Conformément à l'invention, on réalise un forage F dans le sol S à l'aide de l'outil de forage 10 en faisant tourner le tube de forage autour de l'axe vertical A grâce aux moyens d'entraînement en rotation 18 et en le faisant vibrer grâce aux moyens 20 pour faire vibrer le tube de forage 12.
Pendant la réalisation du forage, on injecte un fluide de forage dans le tube de forage de manière à évacuer les débris excavés par les dents de coupe 22. Comme on le constate sur la figure 1A, l'extrémité distale 14 comprend des perforations 26 au travers desquelles s'écoule le fluide de forage hors du tube de forage 12 avant de remonter en surface tout en s'écoulant entre le tube de forage et la paroi du forage F.
Le forage est réalisé de manière à amener l'extrémité distale du tube de forage jusqu'à une profondeur prédéterminée H.
Dans cet exemple non limitatif, après que le tube de forage a atteint la profondeur prédéterminée H, on introduit l'armature 30 dans le tube de forage. On pourrait également introduire l'armature dans le tube de forage avant la substitution du fluide de forage par le coulis de scellement. Dans cet exemple, l'armature 30 est un barreau métallique dont la longueur est légèrement supérieure à la hauteur H du forage F.
L'armature 30 est descendue au fond du forage tout en étant maintenue sensiblement centrée dans le tube de forage par des moyens de maintien 32. Comme on le constate sur la figure 1C, l'armature 30 est maintenue de sorte que son extrémité distale 30a soit légèrement surélevée par rapport au fond Fa du forage F.
Tout en maintenant l'armature 30, on injecte un coulis de scellement C, par exemple un coulis de ciment, dans le tube de forage par son extrémité supérieure 15 afin de noyer l'armature 30 dans le coulis de scellement. Dans une autre variante, l'armature est tubulaire de sorte qu'on peut l'utiliser avantageusement comme conduite et injecter le coulis de scellement à partir de son extrémité supérieure. Le coulis se substitue alors progressivement au fluide de forage à partir de l'extrémité inférieure en le chassant vers l'extrémité supérieure du forage.
Dans cet exemple, on injecte le coulis de scellement dans le tube de forage 12 tout en faisant vibrer le tube de forage grâce au générateur de vibrations 20.
Après avoir injecté le coulis de scellement dans le forage 12, on retire le tube de forage 12 comme cela est représenté sur la figure 1D. Dans une variante, on pourra commencer à extraire le tube de forage avant d'avoir complètement rempli le forage avec le coulis de scellement.
On obtient alors le micropieu M représenté sur la figure 1E.
Bien entendu, des moyens de connexion (non représentés ici) pourront le cas échéant être fixés à l'extrémité proximale 30b de l'armature 30 qui émerge hors du sol.
Sur les figures 2A et 2B, on a représenté un deuxième mode de mise en uvre dans lequel on retire le tube de forage 12 tout en injectant le coulis de scellement C. Selon une variante, le retrait du tube de forage est accompagné d'une mise en vibration du tube de forage afin d'éviter que le coulis de scellement circule entre le tube de forage 12 et le sol S. Dans cet exemple, l'armature 30 est introduite après retrait du tube de forage. Toutefois, sans sortir du cadre de l'invention, l'armature pourrait être introduite avant le retrait du tube de forage.
Les figures 3A à 3C divulguent un troisième mode de mise en oeuvre de l'invention.
Ce troisième mode de mise en œuvre se distingue de celui des figures 1A à 1E par le fait que le coulis de scellement C est mis sous pression par une pompe P afin d'être injecté sous pression dans le tube de forage 12. Dans cet exemple, la pression du coulis de scellement injecté est de l'ordre de 5 MPa.
Pendant l'injection du coulis de scellement sous pression, le tube de forage est remonté tout en étant mis en vibration. La mise en vibration a pour effet de resserrer le terrain autour du tube de forage 12 et permet de réaliser une injection sous pression, laquelle a pour effet de créer un bulbe B de coulis de scellement dont le diamètre est très supérieur à celui du forage. Dans cet exemple, le bulbe B est réalisé sur toute la hauteur du forage. Cependant, sans sortir du cadre de l'invention, le bulbe pourrait être plus court, en étant par exemple localisé en pied de forage.
Dans cet exemple, l'armature 30 est introduite dans le bulbe B après le retrait du tube de forage 12. Là encore, l'armature 30 pourrait être introduite avant le retrait du tube de forage 12.
Sur la figure 4, on a représenté un autre exemple de réalisation d'ancrages obtenus par la mise en œuvre du procédé selon l'invention.
Dans cet exemple, les ancrages réalisés sont des tirants d'ancrage référencés Tl et T2, qui sont obtenus par la mise en œuvre du procédé décrit précédemment, à ceci près que les directions des forages Fl pour le tirant Tl et F2 pour le tirant T2, sont inclinées par rapport à une direction verticale.
On constate notamment que la direction du forage Fl est inclinée par rapport à la direction verticale d'un angle strictement supérieur à 90°, tandis que la direction du forage F2 est inclinée par rapport à la direction verticale d'un angle inférieur à 90° mais strictement supérieur à 0°.
Selon un aspect particulièrement avantageux de l'invention, lors de la réalisation des forages F, Fl, et F2 décrits précédemment, on cherche à optimiser la fréquence de vibration afin de maximiser l'énergie de forage transmise par le tube de forage 12. Pour ce faire, on calcule une fréquence cible de vibrations que l'on applique grâce au générateur de vibrations au tube de forage 12.
On fait donc vibrer le tube de forage 12 à la fréquence cible de vibration lors de la réalisation des différents forages F, Fl et F2. On comprend donc que cette fréquence cible de vibration est une fréquence de vibration qui est appliquée au tube de forage. En l'espèce, ces vibrations sont des ondes de compression qui se transmettent le long du tube de forage définissant des ventres et des nœuds. Ces ondes de vibration font entrer le tube de forage 12 en résonance, ou à tout le moins à une fréquence proche de sa fréquence de résonance, ce qui produit une énergie maximale à l'extrémité distale 14 portant les dents de coupe 22, avec pour effet d'augmenter sensiblement l'efficacité du forage, et donc l'efficacité globale du procédé selon l'invention.
Comme on l'a représenté sur la figure 5, le calcul de la fréquence cible de vibration comporte tout d'abord une étape SlOO au cours de laquelle on saisit manuellement ou on détermine de manière automatisée la longueur L du tube de forage 12. On suppose donc ici que le tube de forage est mis en vibration sur toute sa longueur.
Puis, à partir de cette longueur, on calcule la fréquence cible de vibration au cours d'une étape S102 à partir de la longueur L du tube de forage, de la vitesse de propagation de l'onde de compression dans le tube de forage 12. Dans cet exemple, le tube de forage est réalisé en acier.
Encore de préférence, le calcul utilise une valeur constante correspondant à la vitesse de propagation des ondes de compression dans le tube de forage, cette vitesse dépendant du matériau constitutif du tube de forage.
Conformément à l'invention, dans la mesure où la longueur du tube de forage 12 augmente pendant la réalisation du forage en raison de l'ajout successif des éléments tubulaires 12a, 12b, on recalcule la fréquence cible de vibrations à chaque augmentation de la longueur du tube de forage. Cela permet de conserver une fréquence de vibration optimale pendant toute la durée du forage.
La fréquence cible de vibration ainsi calculée est ensuite affichée en tant que suggestion à l'opérateur. Elle peut aussi dans un autre mode de réalisation être envoyée en tant que consigne au générateur de vibrations 20 au cours d'une étape S104.
De manière préférentielle, mais non nécessairement, la fréquence cible de référence est égale à :
· Fmax (la valeur de fréquence maximale prédéterminée) si
Fmax<(V)/(2*L), où V est la vitesse de propagation des ondes de compression dans le tube de forage, et L la longueur du tube de forage, OU :
• (n*V)/(2*L) si Fmax>(V)/(2*L), où n est un nombre entier supérieur ou égal à 1 choisi de sorte que
(n*V)/(2*L)<=Fmax et ((n+l)*V)/(2*L)>Fmax,
Dans l'exemple qui suit, V est égal 5000 m/s, Fmax est égal à 130 Hz. L, la longueur du forage, est égale à la somme des longueur des éléments tubulaires 12a, 12b, 12c,.... Dans cet exemple, les éléments tubulaires ont la même longueur unitaire, à savoir une longueur de 3 mètres.
On obtient le tableau de résultats suivant :
Figure imgf000014_0001

Claims

REVENDICATIONS
1. Procédé de réalisation d'un ancrage dans un sol caractérisé en ce qu'il comprend les étapes suivantes :
on fournit un outil de forage (10) comprenant un tube de forage (12) qui présente une extrémité distale ouverte (14), et des moyens (20) pour faire vibrer le tube de forage ;
on réalise un forage (F, Fl, F2) dans le sol (S) à l'aide de l'outil de forage (10) en faisant vibrer le tube de forage (12), le tube de forage étant amené à une profondeur prédéterminée;
lorsque le tube de forage (12) a atteint la profondeur prédéterminée (H), on introduit une armature dans le tube de forage (12) et on injecte un coulis de scellement dans le forage (F) via le tube de forage avant ou après avoir introduit l'armature dans le tube de forage.
2. Procédé selon la revendication 1, dans lequel on retire le tube de forage après avoir injecté le coulis de scellement dans le forage (12).
3. Procédé selon la revendication 1, dans lequel on retire le tube de forage (12) tout en injectant le coulis de scellement dans le forage.
4. Procédé selon l'une quelconque des revendications 2 ou 3, dans lequel on injecte le coulis de scellement tout en faisant vibrer ledit tube de forage (12).
5. Procédé selon les revendications 3 et 4, dans lequel on met le coulis de scellement sous pression, on retire le tube de forage tout en injectant le coulis de scellement sous pression dans le forage, et tout en faisant vibrer le tube de forage (12).
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la direction du forage (Fl, F2) est inclinée par rapport à une direction verticale.
7. Procédé selon la revendication 6, dans lequel la direction du forage (Fl) est inclinée par rapport à la direction verticale d'un angle strictement supérieur à 90°.
8. Procédé d'injection selon l'une quelconque des revendications 1 à 7, dans lequel on injecte le coulis de scellement dans le tube de forage pendant le forage de sorte que le coulis de scellement est également utilisé comme fluide de forage.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel on calcule une fréquence cible de vibration, et on fait vibrer le tube de forage (12) à ladite fréquence cible de vibration lors de la réalisation du forage (F, Fl, F2).
10. Procédé selon la revendication 9, dans lequel on augmente la longueur du tube de forage (12) pendant la réalisation du forage, et on recalcule la fréquence cible de vibration à chaque augmentation de la longueur du tube de forage.
11. Procédé selon la revendication 9 ou 10, dans lequel, pour calculer la fréquence cible, on utilise au moins la longueur (L) du tube de forage (12), la vitesse de propagation (V) des ondes de compression dans le tube de forage (12), et une valeur de fréquence maximale prédéterminée (Fmax).
12. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel, la fréquence cible de vibration est égale à :
• une valeur de fréquence maximale prédéterminée, notée Fmax, si Fmax<(V)/(2*L), où V est la vitesse de propagation des ondes de compression dans le tube de forage, et où L est la longueur du tube de forage, OU : • (n*V)/(2*L) si Fmax>(V)/(2*L), où n est un nombre entier supérieur ou égal à 1 choisi de sorte que (n*V)/(2*L)<=Fmax et ((n+l)*V)/(2*L)>Fmax.
13. Procédé de réalisation d'un tirant d'ancrage (Tl, T2) selon l'une quelconque des revendications 1 à 12, dans lequel l'armature est une armature de tirant.
14. Procédé de réalisation d'un micropieu (M) selon l'une quelconque des revendications 1 à 12, dans lequel l'armature est une armature de micropieu.
PCT/FR2013/052274 2012-09-27 2013-09-26 Procédé de réalisation d'un ancrage dans un sol WO2014049277A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13779318.8A EP2900875B8 (fr) 2012-09-27 2013-09-26 Procédé de réalisation d'un ancrage dans un sol
ES13779318T ES2929861T3 (es) 2012-09-27 2013-09-26 Procedimiento de realización de un anclaje en un suelo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1259134A FR2995917B1 (fr) 2012-09-27 2012-09-27 Procede de realisation d'un ancrage dans un sol
FR1259134 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014049277A1 true WO2014049277A1 (fr) 2014-04-03

Family

ID=47902057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052274 WO2014049277A1 (fr) 2012-09-27 2013-09-26 Procédé de réalisation d'un ancrage dans un sol

Country Status (4)

Country Link
EP (1) EP2900875B8 (fr)
ES (1) ES2929861T3 (fr)
FR (1) FR2995917B1 (fr)
WO (1) WO2014049277A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3240931B1 (fr) 2014-12-30 2020-02-19 High Five Solutions B.v. Procédée d'installation d'une ancrage dans un sol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995918B1 (fr) * 2012-09-27 2014-10-17 Soletanche Freyssinet Procede de realisation d'une structure armee dans un sol

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3270511A (en) 1963-10-10 1966-09-06 Intrusion Prepakt Inc Method of forming piles
US3864923A (en) 1973-09-18 1975-02-11 Lee A Turzillo Impacted casing method for installing anchor piles or tiebacks in situ
US4618289A (en) 1984-05-22 1986-10-21 Federer David L Method of forming a cast-in-place support column
DE3612437A1 (de) 1986-04-12 1987-10-15 Preussag Ag Bauwesen Verfahren zur herstellung von betonsaeulen im boden und vorrichtung zur durchfuehrung des verfahrens
US4808038A (en) 1986-04-25 1989-02-28 Shell Oil Company Method for installing a hollow closed bottom pile
EP2246482A1 (fr) * 2010-04-22 2010-11-03 Bauer Spezialtiefbau GmbH Procédé et dispositif d'établissement d'un élément de fondation à friction partiellement réduite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3270511A (en) 1963-10-10 1966-09-06 Intrusion Prepakt Inc Method of forming piles
US3864923A (en) 1973-09-18 1975-02-11 Lee A Turzillo Impacted casing method for installing anchor piles or tiebacks in situ
US4618289A (en) 1984-05-22 1986-10-21 Federer David L Method of forming a cast-in-place support column
DE3612437A1 (de) 1986-04-12 1987-10-15 Preussag Ag Bauwesen Verfahren zur herstellung von betonsaeulen im boden und vorrichtung zur durchfuehrung des verfahrens
US4808038A (en) 1986-04-25 1989-02-28 Shell Oil Company Method for installing a hollow closed bottom pile
EP2246482A1 (fr) * 2010-04-22 2010-11-03 Bauer Spezialtiefbau GmbH Procédé et dispositif d'établissement d'un élément de fondation à friction partiellement réduite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3240931B1 (fr) 2014-12-30 2020-02-19 High Five Solutions B.v. Procédée d'installation d'une ancrage dans un sol

Also Published As

Publication number Publication date
FR2995917A1 (fr) 2014-03-28
EP2900875B8 (fr) 2022-12-14
EP2900875B1 (fr) 2022-08-17
FR2995917B1 (fr) 2014-10-17
EP2900875A1 (fr) 2015-08-05
ES2929861T3 (es) 2022-12-02

Similar Documents

Publication Publication Date Title
EP0240493B1 (fr) Procede de compactage-armature-injection ou de decompactage-drainage et de construction d&#39;ouvrages lineaires et d&#39;ouvrages plans dans les sols
EP0265344B1 (fr) Procédé pour la réalisation d&#39;un pieu dans le sol, machine de forage et dispositif pour la mise en oeuvre de ce procédé
EP2900876B1 (fr) Procédé de réalisation d&#39;une structure armée dans un sol
EP0747537A1 (fr) Mèche de refoulement et procédé pour la réalisation d&#39;un pieu à vis dans le sol
EP2156907A1 (fr) Equipement de traitement de polluants dans le sol
EP2900875B1 (fr) Procédé de réalisation d&#39;un ancrage dans un sol
EP2157277B1 (fr) Dispositif pour la réalisation d&#39;un puits dans un sol
EP2976465B1 (fr) Procede de consolidation d&#39;un sol encaissant un tunnel
EP0404703A1 (fr) Pieux de fondation, procédés, outils et machines pour la construction desdits pieux
EP2652205B1 (fr) Procede de forage
EP2908316B1 (fr) Procédé et installation de découpage d&#39;un massif en béton renforcé
EP0413676A1 (fr) Procédé de fixation d&#39;ancrages
EP2925935B1 (fr) Procede de mise en place et de scellement d&#39;un element tubulaire dans un sol sous charge d&#39;eau
FR2995931A1 (fr) Procede d&#39;injection dans un sol
FR2574442A1 (fr) Procede pour le compactage des terrains et la construction d&#39;ouvrages dans le sol enrobes de terrain compacte ou decompacte
JP2006063526A (ja) 摩擦杭を用いた拡大根固め方法
FR2891287A1 (fr) Machine de realisation d&#39;une paroi continue dans le sol
BE522814A (fr)
JP2002081059A (ja) 杭の埋設工法及びその装置
BE1006194A5 (fr) Dispositif et procede de forage pour la formation de pieux ou analogues.
FR3047510A1 (fr) Dispositif de forage de roche en tranchee &#34;forage revolver&#34;
FR2615880A1 (fr) Procede pour integrer a un terrain vertical en pente ou en contre-pente des ossatures de consolidation ou autres et outillage pour sa mise en oeuvre
FR2646862A1 (fr) Machine de foncage du sol destinee notamment a la pose de canalisations
JP2005200910A (ja) 基礎杭の施工方法
FR2756853A1 (fr) Colonne de materiau dans le sol, destinee a encaisser des charges ou a compacter le sol, procede et appareil pour sa realisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13779318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013779318

Country of ref document: EP