EP2899824B1 - Dispositif de prévention contre les surtensions et circuit de redressement de courant - Google Patents

Dispositif de prévention contre les surtensions et circuit de redressement de courant Download PDF

Info

Publication number
EP2899824B1
EP2899824B1 EP15152466.7A EP15152466A EP2899824B1 EP 2899824 B1 EP2899824 B1 EP 2899824B1 EP 15152466 A EP15152466 A EP 15152466A EP 2899824 B1 EP2899824 B1 EP 2899824B1
Authority
EP
European Patent Office
Prior art keywords
short
circuit
circuit device
frequency converter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15152466.7A
Other languages
German (de)
English (en)
Other versions
EP2899824A1 (fr
Inventor
Ryuta Hasegawa
Teruyuki Ishizuki
Takashi Fujita
Takahisa Kageyama
Yutaro Kitamori
Sho Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of EP2899824A1 publication Critical patent/EP2899824A1/fr
Application granted granted Critical
Publication of EP2899824B1 publication Critical patent/EP2899824B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/005Arrangements for controlling doubly fed motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/002Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers

Definitions

  • Embodiments described herein relate generally to an over-voltage prevention device which protects a frequency converter or a secondary winding of a wound-rotor induction machine from an over-voltage, and a current rectifying circuit provided in the over-voltage prevention device.
  • WO 03 065567 A1 relates to a circuit with a variable rotational speed to be used particularly in a wind power plant, comprising a double fed asynchronous generator, a crow-bar, an additional resistor and a converter.
  • the additional resistor can be regulated with the aid of a fast switch in such a way that the converter can be provisionally disconnected at least partly in case of a short circuit in the network.
  • the rotor current is momentarily assumed by the additional resistor and disconnected after the rotor short circuit current dies out so that the converter can be subsequently connected once again and so that it can supply the desired active short circuit current to the network.
  • JP S 54150626 A relates to a prevention of the destruction of device by taking measures to meet an instantaneous power cut-off and an instantaneous phase lack separately.
  • the wound-rotor type induction motor is connected to the Graetz rectifier circuit and the inverter circuit.
  • the gate of inverter is turned down by a signal.
  • the secondary side of motor is shorted with the resistance by giving a signal to the thyristor in order to prevent the destruction of semiconductor by a transient high voltage.
  • the motor speed is less than the minimum speed of the Scherbius control range, the breaker is opened by a command, a high resistance is inserted in the secondary side of motor to perform a resistance starting.
  • an instantaneous phase lack is produced, the power breaker is turned off, the thyristor is turned on, the gate of inverter SCR is turned down by signals respectively, and an OFF command is provided to the breaker at the same time.
  • WO 2015/092553 relates to a circuit with a variable rotational speed to be used particularly in a wind power plant, comprising a double fed asynchronous generator, a crow-bar, an additional resistor and a converter.
  • the additional resistor can be regulated with the aid of a fast switch in such a way that the converter can be provisionally disconnected at least partly in case of a short circuit in the network.
  • the rotor current is momentarily assumed by the additional resistor and disconnected after the rotor short circuit current dies out so that the converter can be subsequently connected once again and so that it can supply the desired active short circuit current to the network.
  • FIG. 4 shows an example of a circuit structure including a secondary over-voltage prevention device of the conventional wound-rotor induction machines.
  • a primary winding terminal of a wound-rotor induction machine 1 is connected to an electric power system 3 through a main transformer 2 and a power transmission line 4.
  • a voltage of the primary winding terminal of a wound-rotor induction machine 1 is converted to a voltage equivalent to that of the electric power system 3 at the main transformer 2, and then supplied to the electric power system 3 through the power transmission line 4.
  • the secondary winding terminal of the wound-rotor induction machine 1 is connected, through a first short-circuit device 12, to a frequency converter 7 comprising, for example, a self-excited converter 5/inverter 6 connected to the main transformer 2.
  • a three-phase AC voltage is converted to a DC voltage by the converter 5, and the DC voltage is stored at the DC link capacitor 8.
  • the DC voltage is then converted to a three-phase AC voltage corresponding to a slip frequency of the wound-rotor induction machine 1 by the inverter 6.
  • the frequency converter 7 excites the secondary side of the wound-rotor induction machine 1 by the three-phase AC voltage.
  • the frequency converter 7 comprises a chopper 11 including a resistor 9 and a power semiconductor element 10 (e.g., GTO or IGBT) to protect an element forming the converter 5 or the inverter 6 from an over-voltage due to an increase of DC link voltage.
  • a first short-circuit device 12 is provided between the frequency converter 7 and the secondary winding terminal of the wound-rotor induction machine 1.
  • the first short-circuit device 12 has a function of short-circuiting between phases of three-phase AC currents when an over-voltage is produced at the secondary side of the wound-rotor induction machine 1.
  • the chopper 11 and the short-circuit device 12 are activated at the time t2.
  • the chopper 11 is activated first, and if the over-voltage is not eliminated after a predetermined time has elapsed, the first short-circuit device 12 is activated; however, the illustration is simplified so that the overall operation may be easily understood.
  • the first short-circuit device 12 performs three-phase short-circuiting to the secondary winding of the wound-rotor induction machine 1 and the output-side of the frequency converter 7.
  • a short-circuit current flows between phases in the secondary side of the wound-rotor induction machine 1 through the first short-circuit device 12, and the short-circuit current decays in accordance with the time constant of the secondary winding of the wound-rotor induction machine 1.
  • the short-circuiting of the first short-circuit device 12 is terminated at the time t3 in consideration of the time when the failure in the electric power system 3 or the power transmission line 4 is eliminated. Since the first short-circuit device 12 is formed of a thyristor with high current tolerance, the first short-circuit device 12 cannot be turned off unless the short-circuit current becomes zero. The frequency converter 7 is restarted to apply a voltage in the direction opposite to the short-circuit current flowing through the first short-circuit device 12 so that the current flowing through the first short-circuit device 12 becomes zero.
  • FIG. 1 illustrates an example of a configuration of a circuit including a secondary over-voltage prevention device of the wound-rotor induction machine 1 according to the first embodiment.
  • the same reference numerals as in FIG. 4 denote the same elements.
  • a primary winding terminal of the wound-rotor induction machine 1 is connected to the electric power system 3 through the main transformer 2 and the power transmission line 4.
  • a voltage of the primary winding terminal of the wound-rotor induction machine 1 is converted to a voltage equivalent to that of the electric power system 3 at the main transformer 2, and then supplied to the electric power system 3 through the power transmission line 4.
  • the secondary winding terminal of the wound-rotor induction machine 1 is connected, through a first short-circuit device 12 and a current rectifying circuit 15, to a frequency converter 7 comprising, for example, a self-excited converter 5/inverter 6 connected to the main transformer 2.
  • a three-phase AC voltage is converted to a DC voltage by the converter 5, and the DC voltage is stored at the DC link capacitor 8.
  • the DC voltage is then converted to a three-phase AC voltage corresponding to a slip frequency of the wound-rotor induction machine 1 by the inverter 6.
  • the frequency converter 7 excites the secondary side of the wound-rotor induction machine 1 by the three-phase AC voltage.
  • the frequency converter 7 comprises a chopper 11 including a resistor 9 and a power semiconductor element 10 (e.g., GTO or IGBT) to protect an element forming the converter 5 or the inverter 6 from an over-voltage due to a DC link voltage increase.
  • the first short-circuit device 12 and the current rectifying circuit 15 are provided between the frequency converter 7 and the secondary winding terminal of the wound-rotor induction machine 1 in this embodiment.
  • the first short-circuit device 12 has a function of short-circuiting between phases of three-phase AC currents when an over-voltage is produced at the secondary side of the wound-rotor induction machine 1.
  • the current rectifying circuit 15 comprises resistors 13 each connected between the first short-circuit device 12 and the frequency converter 7 for each phase and second short-circuit devices 14 connected respectively to the resistors 13 in parallel.
  • the second short-circuit device 14 has a function of short-circuiting between the frequency converter 7 and the secondary side of the wound-rotor induction machine 1.
  • the second short-circuit device 14 is formed of a plurality of mechanic breakers connected in parallel, as shown in FIG. 1 .
  • a controller 100 controls the secondary side of the wound-rotor induction machine 1.
  • a part of the controller 100 forms the secondary over-voltage prevention device together with the first short-circuit device 12 and the current rectifying circuit 15.
  • the controller 100 obtains a measured value of voltage at the DC link capacitor 8 (capacitor voltage), a measured value of current flowing from the frequency converter 7 (converter current) and a measured value of current flowing through the first short-circuit device 12 (first short-circuit device current) through various sensors placed at particular spots, and drives each element included in the converter 5/inverter 6, the first short-circuit device 12, and the second short-circuit devices 14, based on the obtained measured values.
  • the controller 100 controls the first short-circuit device 12 to perform short-circuiting, stops the frequency converter 7, and cancels short-circuiting of the second short-circuit devices 14. After the failure is eliminated, the controller 100 restarts the frequency converter 7 to set the current flowing through the first short-circuit device 12 to be zero, cancels short-circuiting of the first short-circuit device 12, and then controls the second short-circuit devices 14 to perform short-circuiting after a predetermined time has elapsed.
  • the resistance of the resistor 13 is a value ensuring that the capacitor voltage at a time when the short-circuit current flows into the frequency converter 7 from the first short-circuit device 12 due to restart of the frequency converter 7 is below an operational threshold of the first short-circuit device 12.
  • the resistance of the resistor 13 is smaller than a value obtained by dividing the maximum output voltage of the frequency converter 7 by the estimated maximum current when flowing from the first short-circuit device 12 into the frequency converter 7.
  • a low-cost mechanical breaker or a disconnector without a current blocking function may be utilized instead of the breaker. Otherwise, a plurality of mechanical breakers connected in parallel may be used as the second short-circuit devices 14. In the configuration where a plurality of breakers are used, even if one of the breakers is erroneously opened during normal operation, a current flows into the parallel breakers. Accordingly, continuous operation or safe operation can be realized without producing an arc.
  • the interval between time t1 and time t2 is about 10 msec
  • the interval between time t2 and time t3 is about 70 msec
  • the interval between time t2 and time t4 is about 200 msec.
  • the chopper 11 and the first short-circuit device 12 are activated.
  • the chopper 11 is activated first, and if the over-voltage is not overcome after a predetermined time has elapsed, the first short-circuit device 12 is activated; however, the illustration is simplified so that the overall operation may be easily understood.
  • the first short-circuit device 12 performs three-phase short-circuiting to the secondary winding of the wound-rotor induction machine 1 and the output-side of the frequency converter 7.
  • the short-circuiting of the first short-circuit device 12 is canceled at the time t3. Since the first short-circuit device 12 is formed of a thyristor, it is not possible to cause the current to be zero even by switching a gate signal off. Accordingly, when a short-circuit canceling signal is sent to the first short-circuit device 12, the frequency converter 7 is driven, and an inverse voltage is applied to the thyristor. As a result, the short-circuit current flows from the first short-circuit device 12 to the frequency converter 7 through the resistor 13.
  • the second short-circuit device 14 is controlled to execute short-circuiting to return to the normal operation.
  • the first embodiment after a failure in the electric power system, short-circuiting of the first short-circuit device 12 is canceled, and a short-circuit current flows into the frequency converter 7 through the resistor 13, thereby reducing the current to flow into the frequency converter 7, and suppressing increase of the DC link voltage. Since the capacitor voltage at a time when flowing into the frequency converter 7 does not reach an operational threshold, the first short-circuit device 12 is not reactivated. In addition, the system can be recovered from the failure in a short time without depending on a time constant or an operation condition of the secondary winding of the wound-rotor induction machine 1.
  • the second embodiment will be explained with reference to FIG. 3 together with FIGS. 1 and 2 .
  • the same reference numerals as in the first embodiment denote the same elements, a detailed explanation thereof will be omitted, and different portions will mainly be described.
  • a semiconductor breaker is utilized for the second short-circuit device 14, instead of the mechanical breaker, as shown in FIG. 3 .
  • the semiconductor breaker is configured of a power semiconductor element such as an IGBT or a GTO and a diode connected in anti-parallel. An AC current continuously flows by connecting them in anti-series.
  • the current amount and the number of parallel connections are determined by a current flowing through the semiconductor in normal operation.
  • the number of series connections and the withstand voltage of the semiconductor breaker are determined based on voltage decrease when a short-circuit current flows through the resistor 13.
  • the number of parallel connections or series connections may increase in consideration of the case where a failure occurs in the semiconductor breaker.
  • the timings of activating and inactivating the second short-circuit device are the same as those explained in the first embodiment.
  • the second embodiment it is possible to realize high-speed short-circuiting and canceling operations by utilizing the semiconductor breaker as the second short-circuit device. This allows the system to recover from a failure in a short time when a failure occurs continuously in a short time period. In addition, it is possible to reduce the interval between t3 to t5 during which a current flows into the resistor 13, thereby reducing the capacity of the resistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Protection Of Static Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Claims (14)

  1. Circuit applicable à un dispositif qui inclut un convertisseur de fréquence (7) configuré pour exciter un côté secondaire d'une machine à induction à rotor bobiné (1) par un courant alternatif triphasé, et un premier dispositif de court-circuit (12) prévu entre le côté secondaire de la machine à induction à rotor bobiné (1) et le convertisseur de fréquence (7), le premier dispositif de court-circuit (12) présentant une fonction de court-circuitage entre des phases du courant alternatif triphasé, le circuit étant caractérisé en ce qu'il comprend :
    des résistors (13) pouvant chacun être connectés entre le premier dispositif de court-circuit (12) et le convertisseur de fréquence (7) pour chaque phase ;
    des seconds dispositifs de court-circuit (14) connectés respectivement aux résistors (13) en parallèle et présentant une fonction de court-circuitage entre le convertisseur de fréquence (7) et le côté secondaire de la machine à induction à rotor bobiné (1) ; et
    un dispositif de commande (100) i) configuré pour, en réponse à une détection d'une surtension au niveau du côté secondaire de la machine à induction à rotor bobiné, activer le premier dispositif de court-circuit (12) pour effectuer un court-circuitage, désactiver le convertisseur de fréquence (7), et annuler un court-circuitage des seconds dispositifs de court-circuit (14), à un premier point temporel, ii) configuré pour redémarrer le convertisseur de fréquence (7) pour régler le courant circulant à travers le premier dispositif de court-circuit (12) à zéro, et annuler un court-circuitage du premier dispositif de court-circuit (12), à un deuxième point temporel après qu'une période de temps prédéterminée se soit écoulée depuis le premier point temporel et iii) configuré pour commander les seconds dispositifs de court-circuit (14) pour effectuer un court-circuitage, à un troisième point temporel après qu'une période de temps prédéterminée se soit écoulée depuis le premier point temporel, dans lequel le troisième point temporel vient après le deuxième point temporel,
    ledit circuit pouvant être commandé de telle sorte qu'un courant de court-circuit circule à partir du premier dispositif de court-circuit (12) à travers les résistors (13) jusque dans le convertisseur de fréquence (7) lorsqu'un court-circuitage du premier dispositif de court-circuit (12) est annulé.
  2. Circuit selon la revendication 1, caractérisé en ce qu'une résistance du résistor (13) est inférieure à une valeur obtenue en divisant une tension de sortie maximale du convertisseur de fréquence (7) par un courant maximal lors d'une circulation à partir du premier dispositif de court-circuit (12) à travers le résistor (13) jusque dans le convertisseur de fréquence (7).
  3. Circuit selon la revendication 1 ou 2, caractérisé en ce qu'une résistance du résistor (13) est une valeur garantissant qu'une tension d'un condensateur de liaison CC (8) prévu dans le convertisseur de fréquence (7) à un moment où un courant de court-circuit circule dans le convertisseur de fréquence (7) à partir du premier dispositif de court-circuit (12) en raison d'un redémarrage du convertisseur de fréquence (7) est inférieure à un seuil opérationnel du premier dispositif de court-circuit (12).
  4. Circuit selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le second dispositif de court-circuit (14) est formé d'un disjoncteur mécanique.
  5. Circuit selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le second dispositif de court-circuit (14) est formé d'une pluralité de disjoncteurs mécaniques connectés en parallèle.
  6. Circuit selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le second dispositif de court-circuit (14) est formé d'un disjoncteur à semi-conducteur.
  7. Circuit selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le second dispositif de court-circuit (14) est formé d'une pluralité de disjoncteurs à semi-conducteur connectés en parallèle.
  8. Dispositif anti-surtension comprenant un circuit selon la revendication 1, et
    le premier dispositif de court-circuit (12) pouvant être prévu entre le côté secondaire de la machine à induction à rotor bobiné (1) et le convertisseur de fréquence (7) configuré pour exciter le côté secondaire par le courant alternatif triphasé, le premier dispositif de court-circuit (12) présentant une fonction de court-circuitage entre des phases du courant alternatif triphasé,
    ledit dispositif anti-surtension pouvant être commandé de telle sorte qu'un courant de court-circuit circule à partir du premier dispositif de court-circuit (12) à travers les résistors (13) jusque dans le convertisseur de fréquence (7) lorsqu'un court-circuitage du premier dispositif de court-circuit (12) est annulé.
  9. Dispositif anti-surtension selon la revendication 8, caractérisé en ce qu'une résistance du résistor (13) est inférieure à une valeur obtenue en divisant une tension de sortie maximale du convertisseur de fréquence (7) par un courant maximal lors d'une circulation à partir du premier dispositif de court-circuit (12) à travers le résistor (13) jusque dans le convertisseur de fréquence (7).
  10. Dispositif anti-surtension selon l'une quelconque des revendications 8 et 9, caractérisé en ce qu'une résistance du résistor (13) est une valeur garantissant qu'une tension d'un condensateur de liaison CC (8) prévu dans le convertisseur de fréquence (7) à un moment où un courant de court-circuit circule dans le convertisseur de fréquence (7) à partir du premier dispositif de court-circuit (12) en raison d'un redémarrage du convertisseur de fréquence (7) est inférieure à un seuil opérationnel du premier dispositif de court-circuit (12).
  11. Dispositif anti-surtension selon l'une quelconque des revendications 8 à 10, caractérisé en ce que le second dispositif de court-circuit (14) est formé d'un disjoncteur mécanique.
  12. Dispositif anti-surtension selon l'une quelconque des revendications 8 à 10, caractérisé en ce que le second dispositif de court-circuit (14) est formé d'une pluralité de disjoncteurs mécaniques connectés en parallèle.
  13. Dispositif anti-surtension selon l'une quelconque des revendications 8 à 10, caractérisé en ce que le second dispositif de court-circuit (14) est formé d'un disjoncteur à semi-conducteur.
  14. Dispositif anti-surtension selon l'une quelconque des revendications 8 à 10, caractérisé en ce que le second dispositif de court-circuit (14) est formé d'une pluralité de disjoncteurs à semi-conducteur connectés en parallèle.
EP15152466.7A 2014-01-27 2015-01-26 Dispositif de prévention contre les surtensions et circuit de redressement de courant Active EP2899824B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012825A JP6071912B2 (ja) 2014-01-27 2014-01-27 過電圧保護装置および電流調整回路

Publications (2)

Publication Number Publication Date
EP2899824A1 EP2899824A1 (fr) 2015-07-29
EP2899824B1 true EP2899824B1 (fr) 2021-08-18

Family

ID=52394174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15152466.7A Active EP2899824B1 (fr) 2014-01-27 2015-01-26 Dispositif de prévention contre les surtensions et circuit de redressement de courant

Country Status (4)

Country Link
US (1) US9548685B2 (fr)
EP (1) EP2899824B1 (fr)
JP (1) JP6071912B2 (fr)
CN (1) CN104810799B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2923441B1 (fr) * 2012-11-20 2019-01-09 Vestas Wind Systems A/S Procédés et systèmes pour réduire l'impact d'un court-circuit de générateur dans une turbine éolienne
US10193322B2 (en) * 2015-11-13 2019-01-29 Silicon Power Corporation Low-loss and fast acting solid-state breaker
JP6640635B2 (ja) * 2016-03-28 2020-02-05 株式会社東芝 可変速揚水発電システムの過電圧保護装置
JP6730113B2 (ja) * 2016-07-05 2020-07-29 株式会社東芝 制御装置および可変速発電電動機始動方法
WO2018096930A1 (fr) * 2016-11-25 2018-05-31 株式会社 東芝 Dispositif de protection contre les surtensions d'un système de génération d'énergie à vitesse variable
JP6725446B2 (ja) * 2017-03-23 2020-07-15 株式会社東芝 巻線形誘導機の制御システム、および制御方法
JP6371021B1 (ja) * 2017-03-24 2018-08-08 株式会社東芝 可変速揚水発電システムおよび可変速揚水発電方法
US20200158075A1 (en) * 2017-04-13 2020-05-21 Voith Patent Gmbh Hydropower plant for controlling grid frequency and method of operating same
CN110277764B (zh) * 2019-07-24 2022-04-08 阳光电源股份有限公司 一种电网过压保护电路和方法
JP6848041B2 (ja) * 2019-12-24 2021-03-24 株式会社東芝 可変速揚水発電システムの過電圧保護装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150626A (en) * 1978-05-19 1979-11-27 Toshiba Corp Scherbius device
WO2015092553A2 (fr) * 2013-12-18 2015-06-25 Ingeteam Power Technology, S.A. Dispositif à impédance variable pour une turbine éolienne

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812729A (en) * 1986-08-19 1989-03-14 Hitachi Ltd. Protecting apparatus for secondary excitation type variable speed AC generator/motor
JP2777307B2 (ja) * 1992-04-28 1998-07-16 株式会社東芝 短絡保護回路
JPH0654444A (ja) * 1992-07-24 1994-02-25 Toshiba Corp 過電圧保護装置
JP2001251884A (ja) * 2000-03-03 2001-09-14 Hitachi Engineering & Services Co Ltd 誘導電動機の運転制御装置
CN100356683C (zh) * 2002-01-29 2007-12-19 威斯塔斯风力系统公开有限公司 用于风力装置中的电路结构
DE10232423A1 (de) * 2002-07-17 2004-01-29 Ge Wind Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage zum Ausführen derartiger Verfahren
PT1499009E (pt) * 2003-07-15 2008-01-14 Gamesa Innovation & Tech Sl Controlo e protecção de um sistema gerador de indução de dupla alimentação
ES2298014B1 (es) * 2005-12-30 2009-07-23 Universidad Publica De Navarra Metodo y sistema para la proteccion de una instalacion de generacion electrica conectada a una red electrica ante la presencia de huecos de tension en dicha red.
US7276807B2 (en) * 2006-01-19 2007-10-02 General Electric Company Wind turbine dump load system and method
JP5427793B2 (ja) * 2009-01-14 2014-02-26 東芝三菱電機産業システム株式会社 ダブルフェッド誘導発電機を備えた風力発電システムに用いられる保護回路
CN103081273B (zh) * 2010-06-30 2016-05-11 维斯塔斯风力系统有限公司 风力涡轮机
CN102983587B (zh) * 2011-09-07 2015-01-07 台达电子企业管理(上海)有限公司 具有超速保护的风力发电系统及其操作方法
US9041234B2 (en) * 2012-03-26 2015-05-26 Rockwell Automation Technologies, Inc. Double fed induction generator (DFIG) converter and method for improved grid fault ridethrough

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150626A (en) * 1978-05-19 1979-11-27 Toshiba Corp Scherbius device
WO2015092553A2 (fr) * 2013-12-18 2015-06-25 Ingeteam Power Technology, S.A. Dispositif à impédance variable pour une turbine éolienne

Also Published As

Publication number Publication date
CN104810799A (zh) 2015-07-29
EP2899824A1 (fr) 2015-07-29
US20150214870A1 (en) 2015-07-30
JP6071912B2 (ja) 2017-02-01
JP2015142398A (ja) 2015-08-03
CN104810799B (zh) 2018-03-13
US9548685B2 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
EP2899824B1 (fr) Dispositif de prévention contre les surtensions et circuit de redressement de courant
JP6636207B2 (ja) 電動機の駆動装置および冷凍サイクル適用機器
US9950626B2 (en) Overvoltage protection for active rectifiers in the event to load shedding
CN107240912B (zh) 可变速扬水发电系统的过电压保护装置
US9478972B2 (en) Over-voltage prevention device
JP2009296858A (ja) 電力変換装置
US20140159628A1 (en) Switch arrangement
CN110073592B (zh) 用于电驱动系统的保护装置、电驱动系统和用于运行电驱动系统的方法
US20140103886A1 (en) Method for producing reactive current with a converter and converter arrangement and energy supply plant
CN108631264B (zh) 可变速抽水发电系统以及可变速抽水发电方法
JP2020065437A (ja) 可変速揚水発電システムの過電圧保護装置
CN1985435B (zh) 回馈换流器桥的灭弧装置
EP4084325A1 (fr) Appareil de transformation de puissance et climatiseur le comprenant
JP2001218476A (ja) 電動機の制御装置
US10291159B2 (en) Control system, controller, and control method for wound induction machine
US11923798B2 (en) Drive system with inverter and electric motor, and method for operating a drive system
JPH0662600A (ja) 2次励磁装置
JP2695958B2 (ja) 巻線形誘導機の二次過電圧保護装置
EP3267576B1 (fr) Contrôleur et procédé de démarrage de moteur générateur
JP6431777B2 (ja) 電力変換器
JP2634692B2 (ja) 交流励磁形同期機の2次過電圧保護装置
JP2022079389A (ja) 電力変換装置
CN117356005A (zh) 电力转换装置和电力转换方法
JP2005229725A (ja) 巻線形誘導電動機の制御装置
UA89701C2 (uk) Станція керування асинхронними двигунами (варіанти)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170428

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H02H 9/00 20060101ALN20210315BHEP

Ipc: H02H 7/12 20060101ALN20210315BHEP

Ipc: H02P 29/024 20160101ALI20210315BHEP

Ipc: H02P 9/00 20060101ALI20210315BHEP

Ipc: H02J 3/38 20060101ALI20210315BHEP

Ipc: F03D 9/00 20160101ALI20210315BHEP

Ipc: H02H 7/06 20060101AFI20210315BHEP

INTG Intention to grant announced

Effective date: 20210421

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015072328

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 1422490

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015072328

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220126

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220126

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220126

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1422490

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20231227

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231128

Year of fee payment: 10

Ref country code: CH

Payment date: 20240202

Year of fee payment: 10