EP2897748A1 - Outil de perçage et dispositif de perçage à refroidissement cryogénique et procédé de perçage d'un empilage de matériaux hétérogènes - Google Patents

Outil de perçage et dispositif de perçage à refroidissement cryogénique et procédé de perçage d'un empilage de matériaux hétérogènes

Info

Publication number
EP2897748A1
EP2897748A1 EP13765365.5A EP13765365A EP2897748A1 EP 2897748 A1 EP2897748 A1 EP 2897748A1 EP 13765365 A EP13765365 A EP 13765365A EP 2897748 A1 EP2897748 A1 EP 2897748A1
Authority
EP
European Patent Office
Prior art keywords
drill
liquid nitrogen
cutting edge
drilling
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13765365.5A
Other languages
German (de)
English (en)
Inventor
Daniel Aliaga
Dominique SCHUSTER
Fernand VINHAS
Guillaume ABRIVARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus SAS
Original Assignee
European Aeronautic Defence and Space Company EADS France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Aeronautic Defence and Space Company EADS France filed Critical European Aeronautic Defence and Space Company EADS France
Publication of EP2897748A1 publication Critical patent/EP2897748A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/04Drills for trepanning
    • B23B51/0486Drills for trepanning with lubricating or cooling equipment
    • B23B51/0493Drills for trepanning with lubricating or cooling equipment with exchangeable cutting inserts, e.g. able to be clamped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1015Arrangements for cooling or lubricating tools or work by supplying a cutting liquid through the spindle
    • B23Q11/1023Tool holders, or tools in general specially adapted for receiving the cutting liquid from the spindle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1038Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
    • B23Q11/1053Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality using the cutting liquid at specially selected temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1038Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
    • B23Q11/1061Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality using cutting liquids with specially selected composition or state of aggregation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/88Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites
    • B23B2226/275Carbon fibre reinforced carbon composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/36Multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2250/00Compensating adverse effects during turning, boring or drilling
    • B23B2250/12Cooling and lubrication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/03Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/44Cutting by use of rotating axially moving tool with means to apply transient, fluent medium to work or product
    • Y10T408/45Cutting by use of rotating axially moving tool with means to apply transient, fluent medium to work or product including Tool with duct

Definitions

  • the present invention belongs to the field of tools and devices for drilling materials.
  • the invention relates to a drill and a drilling device for drilling in stacks of metal materials and composite materials such as those made during the assembly of structures for aircraft.
  • titanium alloys whose thermal conductivity is low, about ten times lower than that of aluminum, are generally pierced by cobalt-bonded tungsten carbide (WC) substrates that tolerate temperatures up to 1000 ° C when drilling using a grease lubricant. These high temperatures are at the origin of accelerated wear drills implemented for drilling.
  • WC cobalt-bonded tungsten carbide
  • composite materials which have high abrasive characteristics are generally dry drilled with tungsten carbide tools with diamond inserts or diamond coated, preferably polycrystalline diamond (PCD). Because of these very different drilling conditions and the need to implement drill bits specific to each of these conditions, the drilling of a stack of parts made of titanium alloy materials and a fiber composite. carbon is delicate.
  • the composite materials for the most common, must not exceed locally a glass transition temperature of the resin, in the most common cases a temperature of the order of 180 ° C, and that the tools for the drilling of composite materials are not suitable for drilling titanium alloys because of the temperature reached which would damage the tool, diamond graphitization occurring around 800 ° C, the drilling in one pass of a stack of these different materials is usually made with a tool suitable for drilling titanium by increasing as much as necessary the amount of lubricant to limit the rise in temperature.
  • the drilling of the composite material portion of the stack is then penalized by accelerated wear of the abrasive piercing tool.
  • the invention provides a solution to these various problems by means of a drill, arranged to pierce a stack comprising at least one layer of a metallic material, for example a titanium-based alloy, and at least one layer of a composite material having fibers held in a hard matrix, for example carbon fibers in a cured organic resin matrix.
  • the drill has a channel, at least inside the drill bit, for the passage of liquid nitrogen passing through a body of the drill along an axis which, for example, substantially corresponds to a shaft for driving the drill in rotation during a drilling operation.
  • the channel opening for example on the side of a tail by which the drill is intended to be held on a rotary drive machine, the channel having on the side of at least one cutting edge of the drill, edge located at a end opposite to the shank along a length of the drill, at least one liquid nitrogen ejection duct opening near the at least one cutting edge, the at least one cutting edge being formed by a wafer made with polycrystalline diamond attached to the body of the forest.
  • the polycrystalline diamond-shaped drill bit thus formed makes it possible, by being associated with cryogenic liquid nitrogen distribution means in the channel, to pierce metallic materials releasing a large quantity of heat energy which is difficult to discharge without provoking overheating of the tool which can damage the tool very quickly.
  • the drill has a plurality of cutting edges and each cutting edge has at least one liquid nitrogen ejection conduit opening in the vicinity of the cutting edge considered so that the liquid nitrogen is concentrated to the corresponding cutting edge during a drilling operation.
  • each cutting edge comprises at least one liquid nitrogen ejection duct opening on a cutting face of this cutting edge and at least one liquid nitrogen ejection duct opening on one face. clearance of this cutting edge which allows both to increase the flow of liquid nitrogen cooling the edge in question and also to distribute the liquid nitrogen cooling the cutting edge on both sides of the wafer forming the cutting edge.
  • the channel for the passage of liquid nitrogen is for example axial, which makes it possible, by a straight channel and of diameter as wide as possible, to reduce the pressure drops and to facilitate the circulation of the liquid nitrogen.
  • the drill channel is insulated internally by a layer of insulating material. on at least a portion of a channel length.
  • the drill channel has an enlarged section forming a reservoir in an area of the body on the side of the cutting edge (s). It is thus formed in operation of the device a reservoir liquid nitrogen providing an increased cooling mass in the vicinity of the heating zone and a buffer volume of liquid nitrogen in case of failure in the supply of liquid nitrogen or in the event of an early break in the delivery of liquid nitrogen at the end of drilling a metal material.
  • the liquid nitrogen passageway through the body and the liquid nitrogen ejection duct or ducts are sized so as to ensure a flow of liquid nitrogen, substantially at the temperature of 77 Kelvin, sufficient to maintaining the cutting edge (s) at a temperature below a graphite transformation temperature of the polycrystalline diamond of the one or more platelets when the drill is used to drill a titanium-based alloy according to predicted cutting conditions so that the one-pass drilling of a stack comprising a titanium-based alloy is possible industrially.
  • a piercing device for piercing a stack comprising at least one layer of a metallic material and at least one layer of a composite material comprising fibers held in a hard matrix, comprises a drill according to one of the preceding claims, a liquid nitrogen production unit and a liquid nitrogen distribution network from said production unit to the drill so that the device provides cooling of the drill when drilling is in progress.
  • the invention also relates to a drilling method, adapted to pierce a stack comprising at least one layer of a metallic material, for example a titanium-based alloy, and at least one layer of a composite material comprising fibers maintained in a hard matrix, for example carbon fibers in a matrix of hardened organic resin, in which a hole is made in a single pass of a drill having at least one cutting edge, formed by a wafer made of fixed polycrystalline diamond to a body of the drill, and in which liquid nitrogen at cryogenic temperature is brought near the cutting edge, by a drill channel opening through at least one ejection conduit near the cutting edge when the cutting edge formed by the wafer made of polycrystalline diamond is in contact with the metallic material during the piercing the stack.
  • a drilling method adapted to pierce a stack comprising at least one layer of a metallic material, for example a titanium-based alloy, and at least one layer of a composite material comprising fibers maintained in a hard matrix, for example carbon fibers in a matrix of hardened organic
  • the liquid nitrogen is sent close to the cutting edge simultaneously on a cutting face of the cutting edge and on one side of the cutting edge. stripping of the cutting edge for each cutting edge.
  • the liquid nitrogen is sent into the channel according to a measured or estimated position of the drill relative to the stack when the position determines that the drilling of the material. This condition can be obtained from a knowledge of the characteristics of the pierced stack and from measuring or estimating the position of the end of the drill with respect to a reference frame of the stack. piercing course.
  • the liquid nitrogen is brought with a flow rate sufficient to maintain the drill temperature below a temperature of transformation of the drill. graphite diamond when said drill drills a titanium metal alloy.
  • Figure 1 a drilling device according to the invention
  • Figure 2 along a longitudinal section, an example drill bit implemented in the drilling device of Figure 1;
  • FIG. 3 the steps of a method of piercing a stack using the piercing device of FIG. 1;
  • Figure 4 An example of an arrangement of a drilling device on a portable drilling unit in position on a drill grid.
  • the scale is not respected both between the figures and between the parts of the same figure to facilitate understanding and similar parts of the different figures bear identical references.
  • the device 100 shown in Figure 1 comprises a drill 101, a production unit 102 of low temperature nitrogen in the liquid state and a distribution network 103 of liquid nitrogen from the production unit 102 to the drill 101.
  • the production unit 102 consists of any means capable of producing liquid nitrogen substantially at ambient pressure, ie cryogenic nitrogen at a temperature of the order of 77 Kelvin, with the desired flow rate depending on the temperature.
  • the production unit 102 consists of a tank with a reinforced thermal insulation of the cryostat type containing a reserve of liquid nitrogen.
  • the production unit consists of an apparatus for producing liquid nitrogen by condensation of atmospheric nitrogen, for example by means of a Stirling cycle machine.
  • the distribution network 103 consists of any means capable of conveying the liquid nitrogen from the production unit 102 to the drill 101 and to control the flow rate.
  • the distribution network 103 comprises at least one liquid nitrogen conveying conduit, a portion of said conduit being advantageously incorporated in a rotary drive machine, not shown in FIG. 1, which drives in rotation the forest 101.
  • Such a rotary drive machine is for example a stationary drilling machine on which are clamped pieces forming a stack to be drilled or a portable piercing unit used on the assembly stations of large structural assemblies, a station joining an aircraft wing to the fuselage for example.
  • stacking will be used here generically to refer to an area of a structure comprising two or more pieces comprising distinct materials, and or two or more distinct materials, including at least one metallic material and at least one composite material, according to the trajectory of a hole to be produced.
  • the drill 101 comprises a body 10 of generally cylindrical shape with an axis 11 corresponding to a longitudinal axis of the drill around which said drill is rotated during drilling operations.
  • a first end of the body 10 forms a shank 12 by which the drill is attached to a rotary drive machine, where appropriate via a not shown mounting cone, and a second end of the body, opposite on the body 10 at the first end, has one or more cutting edges 13 as shown in detail a) of Figure 1 of a drill with two cutting edges.
  • an inner channel 20 to the body 10 passes through said body along a substantially axial length and opens on the one hand in an area of the shank 12 at at least one opening liquid nitrogen inlet 21 and secondly in the vicinity of the cutting edge (s) 13 at the level of nitrogen ejection ducts 22.
  • each cutting edge 13 is associated with at least one ejection duct opening on a cutting face 131 of said cutting edge and at least one ejection duct opening on a flank face 132. of said cutting edge, detail a) of Figure 1.
  • PCD polycrystalline diamond
  • the inlet opening 21 of the liquid nitrogen is arranged on one face of the first end of the drill 10 substantially centered on the axis 11.
  • the channel 20 has an enlarged section at least a part of a length of said channel so as to form a reservoir 23.
  • the channel 20 comprises a thermal insulating coating 24, for example a sleeve in an alloy with a high content of chromium and nickel, such as an invar®, or a non-metallic material, for example cork or a polymeric material such as polytetrafluorocarbon, so that the material constituting the body 10 is not in direct contact with the liquid nitrogen passing through said channel and limits the heat exchange at the body 10.
  • the thermal insulating coating 24 only concerns part of the channel 20 from the inlet opening 21 to an uninsulated zone 25, said zone being able for example to correspond to the reservoir 23 when the drill is provided with such tank.
  • a cross section of the channel 20 is in practice as large as possible, without however weakening the mechanical strength of the drill 101 to a point which could lead to a breakage of said drill under efforts expected during a drilling operation, in order to promote a high flow of liquid nitrogen passing through the body 10 to maintain the temperature at the cutting edges at an acceptable value for the drill.
  • the cross section of the channel 20, as well as a section of the reservoir 25, limited by the depth of the flutes of the drill, is for example determined by calculations of the mechanical strength of the drill.
  • the device 100 is mounted 510 on a drilling unit 40, for example an autonomous drilling unit as shown in FIG. 4, can be brought to an assembly station and moved to different locations where a drilling must be performed through a stack 41 of parts 411, 412 comprising metal materials, in particular based on titanium such as a Ti6A14V alloy, and composite materials with mineral fibers, in particular carbon fibers.
  • the drill 101 is fixed on a driving head in rotation and in advance of the drilling unit adapted to allow a passage of liquid nitrogen towards the inlet opening 21 of the drill bit and the drilling unit 40 is connected to the distribution network 103 for example by means of a flexible connector 104 for delivering the liquid nitrogen.
  • the device 100 and the piercing unit 40 form a cryogenic piercing unit comprising a source of liquid nitrogen 102 at a pressure close to ambient pressure, means for driving in rotation, the where appropriate in advance of drilling, a drill according to the drill 101 described above, and the distribution network 103 of the liquid nitrogen bringing the liquid nitrogen from the reservoir to the drill through a head of the drilling unit through which the drill is attached to said drilling unit.
  • a drilling unit 40 and the stack 41 in which a drilling is to be made are clamped in the desired relative position, for example by means of a drilling grid 42.
  • a third step 530 the drilling is initiated, that is to say that the drill 101 is rotated and that an advance, that is to say a movement of axial movement towards the assembly to be drilled, is engaged.
  • cryogenic liquid nitrogen is sent 531 in the channel 20 from the production unit 102 via the distribution network 103 at least in the positions of the drill 101 whose advance corresponds to a drilling in a metal.
  • the position of the drill in the direction of advance corresponding to the depth of penetration is for example obtained by a signal from a sensor used to activate a valve 105 of the distribution network 103.
  • the nitrogen flow rate brought to the cutting edges 13 is determined to maintain a temperature of the drill 101 at said cutting edges below 800 ° C. when the pierced material is a titanium alloy, which is considered here as the more restrictive, in practice below a temperature for which the diamond of the drill could turn into graphite.
  • liquid nitrogen is sent throughout the piercing operation of the stack from the engagement of the advance until the removal of the drill, or at least until at a step 540 in which the advance movement is reversed to clear the drill bit made.
  • the piercing unit is stopped and separated 550 from the pierced assembly.
  • step 510 is not necessarily performed when the drilling unit 40 is simply moved, for example to another position of the same drilling grid 42, without having been separated. of the device 100.
  • PCD polycrystalline diamond
  • Such a polycrystalline diamond insert drill bit is perfectly suitable for drilling highly abrasive composite materials, such as carbon fiber composite materials, and consequently drilling of the stack of different metallic and composite materials is achieved in one. only one passes with the same drill.
  • the life of the forest is also multiplied by three on average.
  • the use of a cooling of the drill with liquid nitrogen brought closer to cutting edges, that is to say closer to the creation of thermal energy during drilling, is much more effective than with known fatty lubricants.
  • the duration of use of the drills 101 of the invention is in particular increased by a factor of three in industrial drilling conditions compared to tungsten carbide substrate drills used with fatty lubricants to achieve piercing such piles.
  • the liquid nitrogen used is a neutral body with no problem with respect to the environment, which is not the case for fatty lubricants.
  • the cost of the liquid nitrogen is also much lower than that of the lubricants, especially for the latter it is necessary to take into account the costs associated with the reprocessing of the lubricants that have been used.
  • Liquid nitrogen in addition to its chemical neutrality, is vaporized almost instantaneously during the drilling operation and results in increased safety for the operators.
  • the tank is filled with liquid nitrogen as soon as the liquid nitrogen is sent into the channel 20 and guaranteed by remaining fed with nitrogen maintenance from the end of the drill to a low temperature serving as a heat sink.
  • a partial vaporization of the liquid nitrogen will have the effect of absorbing more thermal energy and promoting the passage of nitrogen at low temperature through the ejection ducts. 22.
  • the reservoir 23 also acts as a buffer in the event of a momentary interruption of the supply of liquid nitrogen and delays a rise in temperature to a level harmful to the drill.
  • the channel 20 When the channel 20 has a thermal insulating coating, it is decreased risk of premature vaporization of the nitrogen in the channel and a risk of condensation and or external icing of the body 10 and limiting heat losses, the cooling is better concentrated in the area of the cutting edges 13.
  • Another advantage of the device 100 is its security with respect to the pierced stack.
  • the cost of the parts forming the stack is generally, at the stage of their final assembly, very high, in any case disproportionate to the cost of a drill, and damage to the parts at this stage can have economic consequences. significant with respect to the parts themselves as implications for the production cycle of the products manufactured.
  • the drill is suitable for dry drilling and without the need for cooling in the composite material but requires significant cooling in the metallic material.
  • a loss of the cooling function by the liquid nitrogen for example by depletion of the liquid nitrogen or by a failure of the distribution network 103, during the drilling of the metallic material will only result in the destruction of the liquid nitrogen. tool, which is not suitable in the absence of cooling, without damaging the metal part.
  • the parts forming the stack during drilling are thus protected in case of failure of the device, to the detriment of a drill whose cost remains in general much less than that of the parts worked.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Drilling And Boring (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Earth Drilling (AREA)
  • Drilling Tools (AREA)

Abstract

Un foret (101) comporte un canal intérieur de passage de l'azote liquide traversant longitudinalement le corps (10) du foret, ledit canal comportant du côté d'une arête de coupe (13) du foret au moins un conduit d'éjection de l'azote liquide débouchant à proximité de l'arête de coupe qui est formée par une plaquette (30) réalisée avec du diamant polycristallin fixée au corps (10) du foret. Un dispositif (100) de perçage d'un empilage métallique-composite comporte un tel foret (101), une unité de production d'azote liquide (102) et un réseau de distribution (103) de l'azote liquide. Pour percer un empilage métallique-composite en mettant en œuvre le dispositif (100), le perçage est réalisé en une seule passe du foret (101), l'azote liquide à température cryogénique étant amenée à proximité de l'arête de coupe (13) au moins lorsque l'arête de coupe (13) est en contact avec le matériau métallique.

Description

Outil de perçage et dispositif de perçage à refroidissement cryogénique et procédé de perçage d'un empilage de matériaux hétérogènes
La présente invention appartient au domaine des outils et dispositifs destinés au perçage de matériaux.
Plus particulièrement l'invention concerne un foret et un dispositif de perçage pour la réalisation de perçage dans des empilages de matériaux métalliques et de matériaux composites tel que ceux réalisés lors de l'assemblage de structures pour aéronefs.
La réalisation de structures présentant des performances mécaniques élevées et des masses aussi réduites que possible conduit les concepteurs de ces structures à utiliser des alliages métalliques à base de titane et des matériaux composites comportant des fibres de carbone, verre ou aramide maintenues dans une matrice organique dure, en général une résine polymère.
Lorsque ces pièces doivent être percées ou alésées pour réaliser des assemblages, les conditions du perçage doivent être adaptées en fonction du matériau usiné.
Ainsi les alliages de titane, dont la conductivité thermique est faible, environ dix fois moindre que celle d'un aluminium, sont généralement percés au moyen d'outils à substrats en carbure de tungstène (WC) avec liant cobalt qui tolèrent des températures pouvant atteindre les 1000°C lors du perçage en utilisant un lubrifiant gras. Ces températures élevées sont à l'origine d'une usure accélérée des forets mis en œuvre pour le perçage.
Par contre les matériaux composites, qui présentent des caractéristiques abrasives élevées, en particulier dans le cas des fibres de carbone, qui endommagent l'outil de perçage par abrasion, sont généralement percés à sec avec des outils en carbure de tungstène avec des inserts diamant ou à revêtement diamant, de préférence à diamants polycristallin (PCD). Du fait de ces conditions de perçage très différentes et de la nécessité de mettre en œuvre des forets spécifiques à chacune de ces conditions, le perçage d'un empilage de parties en matériaux d'un alliage de titane et d'un composite à fibre de carbone s'avère délicat.
En particulier du fait que les matériaux composites, pour les plus courants, ne doivent pas dépasser localement une température de transition vitreuse de la résine, dans les cas les plus courants une température de l'ordre de 180°C, et que les outils pour le perçage des matériaux composites ne sont pas adaptés au perçage des alliages de titane en raison de la température atteinte qui endommagerait l'outil, la graphitisation du diamant se produisant vers 800°C, le perçage en une passe d'un empilage de ces différents matériaux est en général réalisé avec un outil adapté au perçage du titane en augmentant autant que de besoin la quantité de lubrifiant pour limiter l'élévation de température.
Le perçage de la partie en matériau composite de l'empilage se trouve alors pénalisé par une usure accélérée de l'outil de perçage par abrasion.
L'invention apporte une solution à ces différents problèmes au moyen d'un foret, agencé pour percer un empilage comportant au moins une couche d'un matériau métallique, par exemple un alliage à base de titane, et au moins une couche d'un matériau composite comportant des fibres maintenues dans une matrice dure, par exemple des fibres de carbone dans une matrice en résine organique durcie. Le foret comporte un canal, au moins, intérieur au foret, de passage de l'azote liquide traversant un corps du foret suivant un axe qui par exemple correspond sensiblement à un axe d'entraînement en rotation du foret lors d'une opération de perçage, le canal débouchant par exemple du côté d'une queue par laquelle le foret est destiné à être maintenu sur une machine d'entraînement en rotation, le canal comportant du côté d'au moins une arête de coupe du foret, arête située à une extrémité opposée à la queue suivant une longueur du foret, au moins un conduit d'éjection de l'azote liquide débouchant à proximité de l'au moins une arête de coupe, l'au moins une arête de coupe étant formée par une plaquette réalisée avec du diamant polycristallin fixée au corps du foret.
Le foret de perçage à plaquette à diamant polycristallin ainsi constitué permet, en étant associé à des moyens de distribution d'azote liquide cryogénique dans le canal, de réaliser le perçage de matériaux métalliques dégageant une grande quantité d'énergie thermique difficile à évacuer sans provoquer d'échauffement excessif de l'outil susceptible d'endommager très rapidement l'outil.
L'usure usuelle par l'abrasion des composite est retardé par l'utilisation des PCD.
Dans une forme de réalisation le foret comporte une pluralité d'arêtes de coupe et chaque arête de coupe comporte au moins un conduit d'éjection de l'azote liquide débouchant à proximité de l'arête de coupe considérée de sorte que l'azote liquide est concentré vers l'arête de coupe correspondante pendant une opération de perçage.
Dans une forme de réalisation chaque arête de coupe comporte au moins un conduit d'éjection de l'azote liquide débouchant sur une face de coupe de cette arête de coupe et au moins un conduit d'éjection de l'azote liquide débouchant sur une face de dépouille de cette arête de coupe ce qui permet à la fois d'augmenter le débit d'azote liquide refroidissant l'arête considérée et également de répartir l'azote liquide assurant le refroidissement de cette arête de coupe sur les deux faces de la plaquette formant l'arête de coupe.
Le canal de passage de l'azote liquide est par exemple axial ce qui permet, par un canal droit et de diamètre aussi large que possible, de diminuer les pertes de charge et faciliter la circulation de l'azote liquide.
Pour améliorer l'efficacité du refroidissement par l'azote liquide en limitant les pertes thermiques avant que l'azote liquide ne parvienne à proximité de la ou des arête de coupe, le canal du foret est isolé intérieurement par une couche d'un matériau isolant thermique sur au moins une partie d'une longueur du canal.
Dans une forme de réalisation, le canal du foret comporte une section élargie formant un réservoir dans une zone du corps situé du côté de la ou des arêtes de coupe. Il est ainsi formé en fonctionnement du dispositif un réservoir d'azote liquide assurant une masse de refroidissement augmentée à proximité de la zone d'échauffement et un volume tampon d'azote liquide en cas de défaut dans l'apport d'azote liquide ou en cas de coupure précoce de l'envoi d'azote liquide en fin de perçage d'un matériau métallique.
Avantageusement, le canal de passage de l'azote liquide traversant le corps et le ou les conduits d'éjection de l'azote liquide sont dimensionnés de sorte à assurer un débit d'azote liquide, sensiblement à la température de 77 Kelvin, suffisant pour maintenir la ou les arrêtes de coupe à une température inférieure à une température de transformation en graphite du diamant polycristallin de la ou des plaquettes lorsque le foret est mis en œuvre pour réaliser un perçage dans un alliage à base de titane suivant des conditions de coupe prévues de sorte que le perçage en une passe d'un empilage comportant un alliage à base de titane est possible industriellement.
Un dispositif de perçage, pour percer un empilage comportant au moins une couche d'un matériau métallique et au moins une couche d'un matériau composite comportant des fibres maintenues dans une matrice dure, comporte un foret conforme à l'une des revendications précédentes, une unité de production d'azote liquide et un réseau de distribution de l'azote liquide depuis ladite unité de production vers le foret de sorte que le dispositif assure le refroidissement du foret lorsqu'un perçage est en cours.
L'invention concerne également un procédé de perçage, adapté pour percer un empilage comportant au moins une couche d'un matériau métallique, par exemple un alliage à base de titane, et au moins une couche d'un matériau composite comportant des fibres maintenues dans une matrice dure, par exemple des fibres de carbone dans une matrice en résine organique durcie, dans lequel un perçage est réalisé en une seule passe d'un foret comportant au moins une arête de coupe, formée par une plaquette réalisée avec du diamant polycristallin fixée à un corps du foret, et dans lequel de l'azote liquide à température cryogénique est amenée à proximité de l'arête de coupe, par un canal du foret débouchant par au moins un conduit d'éjection à proximité de l'arête de coupe, lorsque l'arête de coupe formée par la plaquette réalisée avec du diamant polycristallin est en contact avec le matériau métallique lors du perçage de l'empilage.
Il est ainsi par le procédé rendu possible de réaliser le perçage de l'empilage comportant des matériaux métalliques avec un outil adapté au perçage des matériaux composites.
Pour assurer un refroidissement suffisant des arrêtes de coupes et permettre un perçage relativement rapide des matériaux métalliques, l'azote liquide est envoyé à proximité de l'arête de coupe simultanément sur une face de coupe de l'arête de coupe et sur une face de dépouille de l'arête de coupe, et ce pour chaque arête de coupe.
Pour limiter la consommation d'azote liquide d'un perçage si besoin, l'azote liquide est envoyé dans le canal en fonction d'une position mesurée ou estimée du foret par rapport à l'empilage lorsque la position détermine que le perçage du matériau métallique est en cours ou probable, une telle condition pouvant être obtenue d'une connaissance des caractéristiques de l'empilage percé et de mesure ou d'estimation de la position de l'extrémité du foret par rapport à un référentiel de l'empilage en cours de perçage.
Afin d'assurer une durée de vie satisfaisante du foret utilisé pour réaliser des perçages dans les métaux ayant une mauvaise conduction thermique, l'azote liquide est amené avec un débit suffisant pour maintenir la température du foret en dessous d'une température de transformation du diamant en graphite lorsque ledit foret perce un alliage métallique à base de titane.
La présente invention est décrite en référence aux figures qui, de manière non limitative, représentent schématiquement :
figure 1 : un dispositif de perçage suivant l'invention ;
figure 2 : suivant une section longitudinale, un exemple de foret mis en œuvre dans le dispositif de perçage de la figure 1 ;
figure 3 : les étapes d'un procédé de perçage d'un empilage mettant en œuvre le dispositif de perçage de la figure 1 ;
figure 4 : .un exemple d'agencement d'un dispositif de perçage sur une unité de perçage portable en position sur une grille de perçage. Sur les figures l'échelle n'est pas respectée tant entre les figures qu'entre les parties d'une même figure pour en faciliter la compréhension et des parties similaires des différentes figures portent des repères identiques.
Le dispositif 100 représenté sur la figure 1 comporte un foret 101, une unité de production 102 d'azote basse température à l'état liquide et un réseau de distribution 103 d'azote liquide depuis l'unité de production 102 vers le foret 101.
L'unité de production 102 consiste en tout moyen pouvant produire de l'azote liquide sensiblement à la pression ambiante, c'est à dire de l'azote cryogénique à une température de l'ordre de 77 Kelvin, avec le débit souhaité en fonction des conditions de mise en œuvre du foret 101. Dans une forme simple l'unité de production 102 consiste en un réservoir à isolation thermique renforcée du type cryostat contenant une réserve d'azote liquide. Dans une autre forme de réalisation l'unité de production consiste en un appareil de production de l'azote liquide par condensation de l'azote atmosphérique, par exemple au moyen d'une machine à cycle Stirling.
Le réseau de distribution 103 consiste en tout moyen apte à acheminer l'azote liquide depuis l'unité de production 102 vers le foret 101 et à en contrôler le débit.
En particulier le réseau de distribution 103 comporte au moins une conduite d'acheminement de l'azote liquide, une partie de ladite conduite étant avantageusement incorporée à une machine d'entraînement en rotation, non représentée sur la figure 1, qui entraîne en rotation le foret 101.
Une telle machine d'entraînement en rotation est par exemple une machine de perçage à poste fixe sur laquelle sont bridées des pièces formant un empilage devant être percé ou une unité de perçage portable utilisée sur les poste d'assemblage de grands ensembles structuraux, un poste de jonction d'une aile d'avion au fuselage par exemple.
Le terme "empilage" sera utilisé ici de manière générique pour désigner une zone d'une structure comportant deux ou plus pièces comportant des matériaux distincts, et ou deux ou plus matériaux distincts, dont au moins un matériau métallique et au moins un matériau composite, suivant la trajectoire d'un perçage à réaliser.
Le foret 101 comporte un corps 10 de forme globalement cylindrique d'axe 11 correspondant à un axe longitudinal du foret autour duquel ledit foret est entraîné en rotation lors d'opérations de perçage.
Une première extrémité du corps 10 forme une queue 12 par laquelle le foret est fixé à une machine d'entraînement en rotation, le cas échéant par l'intermédiaire d'un cône de montage non représenté, et une seconde extrémité du corps, opposée sur le corps 10 à la première extrémité, comporte une ou plusieurs arêtes de coupe 13 tel qu'illustré sur le détail a) de la figure 1 d'un foret à deux arêtes de coupe.
Comme illustré sur la figure 2 représentant schématiquement le foret en coupe axiale, un canal 20 intérieur au corps 10 traverse ledit corps suivant une longueur sensiblement axiale et débouche d'une part dans une zone de la queue 12 au niveau d'au moins une ouverture d'arrivée 21 d'azote liquide et d'autre part à proximité de la ou des arêtes de coupes 13 au niveau de conduits d'éjection 22 d'azote.
Dans une forme préférée de réalisation, chaque arête de coupe 13 est associée à au moins un conduit d'éjection débouchant sur une face de coupe 131 de ladite arête de coupe et à au moins un conduit d'éjection débouchant sur une face de dépouille 132 de ladite arête de coupe, détail a) de la figure 1.
Des plaquettes diamant 30, en pratique des plaquettes réalisées avec du diamant polycristallin (PCD) produit de manière industrielle, sont fixées sur le corps 10 de sorte à former les arêtes de coupe 13.
Dans une forme de réalisation, l'ouverture d'arrivée 21 de l'azote liquide est agencée sur une face de la première extrémité du foret 10 sensiblement centrée sur l'axe 11.
Dans une forme de réalisation, le canal 20 présente une section élargie sur une partie au moins d'une longueur dudit canal de sorte à former un réservoir 23.
Dans une forme de réalisation, le canal 20 comporte un revêtement isolant thermique 24, par exemple un fourreau dans un alliage à forte teneur en chrome et en nickel, tel qu'un invar®, ou un matériaux non métallique, par exemple du liège ou un matériau polymère tel que du polytetrafluorocarbone, de sorte que le matériau constituant le corps 10 ne soit pas en contact direct avec l'azote liquide passant par ledit canal et limite les échanges thermiques au niveau du corps 10. Dans l'exemple de réalisation illustré, le revêtement isolant thermique 24 ne concerne qu'une partie du canal 20 depuis l'ouverture d'arrivée 21 jusqu'à une zone non isolée 25, ladite zone pouvant par exemple correspondre au réservoir 23 lorsque le foret est pourvu d'un tel réservoir.
Une section transversale du canal 20 est en pratique aussi grande que possible, sans toutefois affaiblir la résistance mécanique du foret 101 à un point qui pourrait conduire à une rupture dudit foret sous des efforts attendus lors d'une opération de perçage, afin de favoriser un débit élevé d'azote liquide traversant le corps 10 pour maintenir la température au niveau des arêtes de coupe à une valeur acceptable pour le foret. La section transversale du canal 20, de même qu'une section du réservoir 25, limitée par la profondeur des goujures du foret, est par exemple déterminée par des calculs de la résistance mécanique du foret.
Les avantages du dispositif 100 qui vient d'être décrit seront mieux compris à la description du procédé de perçage 500, figure 3, mettant en œuvre ledit dispositif.
Dans une première étape 510, le dispositif 100 est monté 510 sur une unité de perçage 40, par exemple une unité de perçage autonome telle que représentée sur la figure 4, pouvant être amenée sur un poste d'assemblage et déplacée en différents emplacements où un perçage doit être réalisé au travers d'un empilage 41 de pièces 411, 412 comportant des matériaux métalliques, en particulier à base de titane tel qu'un alliage TÏ6A14V, et des matériaux composites avec des fibres minérales, en particulier des fibres de carbone. En pratique le foret 101 est fixé sur une tête d'entraînement en rotation et en avance de l'unité de perçage adaptée pour permettre un passage d'azote liquide vers l'ouverture d'arrivée 21 du foret et l'unité de perçage 40 est raccordé au réseau de distribution 103 par exemple au moyen d'un raccord flexible 104 pour délivrer l'azote liquide.
A l'issu de cette première étape le dispositif 100 et l'unité de perçage 40 forment une unité de perçage cryogénique comportant une source d'azote liquide 102 à une pression voisine de la pression ambiante, des moyens d'entraînement en rotation, le cas échéant en avance de perçage, d'un foret conforme au foret 101 décrit précédemment, et du réseau de distribution 103 de l'azote liquide amenant l'azote liquide du réservoir au foret en traversant une tête de l'unité de perçage par laquelle le foret est fixé à ladite unité de perçage.
Dans une seconde étape 520 l'unité de perçage 40 et l'empilage 41 dans lequel doit être réalisé un perçage sont bridés dans la position relative souhaitée, par exemple par l'intermédiaire d'une grille de perçage 42.
Dans une troisième étape 530, le perçage est initié, c'est à dire que le foret 101 est entraîné en rotation et qu'une avance, c'est à dire un mouvement de déplacement axial en direction de l'assemblage à percer, est engagée.
Au cours de cette seconde étape 530 de l'azote liquide à température cryogénique est envoyé 531 dans le canal 20 depuis l'unité de production 102 via le réseau de distribution 103 au moins dans les positions du foret 101 dont l'avance correspond à un perçage dans un métal.
En pratique, la connaissance de l'assemblage à percer permet de déterminer pour quelles profondeurs de pénétration du foret les arêtes de coupe de la seconde extrémité du foret sont en contact avec un matériau métallique.
La position du foret suivant la direction d'avance correspondant à la profondeur de pénétration est par exemple obtenue par un signal d'un capteur utilisé pour activer une vanne 105 du réseau de distribution 103.
Le débit d'azote amené au niveau des arêtes de coupe 13 est déterminé pour maintenir une température du foret 101 au niveau des dites arêtes de coupe en dessous de 800°C lorsque le matériau percé est un alliage de titane, cas considéré ici comme le plus contraignant, en pratique en dessous d'une température pour laquelle le diamant du foret pourrait se transformer en graphite.
Dans ce cas il sera pris soin de prendre en compte toute les incertitudes de mesure par le ou les capteurs et la dispersion des épaisseurs des différents matériaux de l'empilage à percer pour que l'arrivée de l'azote liquide se produise dés le début du perçage du matériau métallique, et de préférence au moins un court instant avant le début du perçage du matériau métallique, et se poursuive jusqu'à la fin de ce perçage, de préférence au moins un cours instant après cette fin de perçage, pour éviter réchauffement du foret.
Dans une forme de réalisation, moins économe en azote liquide, de l'azote liquide est envoyé pendant toute l'opération de perçage de l'empilage depuis l'engagement de l'avance jusqu'au retrait du foret, ou au moins jusqu'à une étape 540 dans laquelle le mouvement d'avance est inversé pour dégager le foret du perçage réalisé.
Lorsque l'opération de perçage 500 est terminée, l'unité de perçage est arrêtée est séparée 550 de l'assemblage percé.
Une autre opération de perçage peut alors être réalisée dans laquelle l'étape 510 n'est pas nécessairement réalisée lorsque l'unité de perçage 40 est simplement déplacée, par exemple sur une autre position de la même grille de perçage 42, sans avoir été séparée du dispositif 100.
Ainsi contrairement aux principes admis pour le perçage des matériaux métalliques, en particulier des alliages de titane, il a été rendu possible d'utiliser un foret à plaquettes en diamants polycristallin (PCD), dont la température pendant le perçage est restée bien en dessous de températures qui auraient entraîné la destruction de l'outil.
Un tel foret à plaquettes en diamant polycristallin est parfaitement adapté pour réaliser le perçage des matériaux composites fortement abrasif, tels que les matériaux composites à fibres de carbone, et en conséquences le perçage de l'empilement des différents matériaux métalliques et composite est réalisé en une seule passe avec le même foret.
Il résulte de cette possibilité un gain de temps important, évalué de l'ordre de 40%, sur un temps de cycle pour réaliser un perçage.
En outre la durée de vie du foret se trouve également multipliée par trois en moyenne. L'utilisation d'un refroidissement du foret avec de l'azote liquide amené au plus prés des arrêtes de coupe, c'est à dire au plus prés de la création d'énergie thermique pendant le perçage, se révèle beaucoup plus efficace qu'avec les lubrifiants gras connus. La durée d'utilisation des forets 101 de l'invention s'en trouve en particulier augmentée d'un facteur évalué à trois dans des conditions de perçage industrielles par rapport à des forets à substrat au carbure de tungstène utilisés avec des lubrifiants gras pour réaliser les perçages de tels empilages.
L'azote liquide mis en œuvre est un corps neutre sans problème vis à vis de l'environnement, ce qui n'est pas le cas des lubrifiants gras.
Le coût de l'azote liquide est également très inférieur à celui des lubrifiants gras, surtout que pour ces derniers il est nécessaire de prendre en compte les coûts liés au retraitement des lubrifiants qui ont été utilisés.
L'azote liquide, outre sa neutralité chimique, est vaporisé de manière quasi instantanée lors de l'opération de perçage et il en résulte une sécurité accrue pour les opérateurs.
Dans le cas d'un foret 101 comportant un réservoir 23 à proximité de la seconde extrémité dudit foret, le réservoir se rempli d'azote liquide dès que l'azote liquide est envoyé dans le canal 20 et garanti en restant alimenté en azote le maintien de l'extrémité du foret à une température basse en servant de puits de chaleur. En cas d'élévation momentanée de la température une vaporisation partielle de l'azote liquide aura pour effet d'une part d'absorber plus d'énergie thermique et de favoriser le passage de l'azote à basse température par les conduits d'éjection 22.
Le réservoir 23 fait également office de tampon en cas d'interruption momentanée de l'alimentation en azote liquide et retarde une élévation de température à un niveau dommageable pour le foret.
Lorsque le canal 20 comporte un revêtement isolant thermique, il est diminué un risque de vaporisation prématuré de l'azote dans le canal ainsi qu'un risque de condensation et ou de givrage extérieur du corps 10 et en limitant les pertes thermiques, le refroidissement se trouve mieux concentré dans la zone des arrêtes de coupe 13.
Un autre avantage du dispositif 100 est sa sécurité vis à vis de l'empilage percé.
En effets le coût des pièces formant l'empilage est généralement, au stade de leur de assemblage final, très élevé, en tout cas disproportionné par rapport au coût d'un foret, et un endommagement des pièces à ce stade peut avoir des conséquences économiques significatives tant vis à vis des pièces elles mêmes que des implications sur le cycle de production des produits fabriqués.
Dans le cas du dispositif 100, le foret est adapté au perçage à sec et sans besoin de refroidissement dans le matériau composite mais exige un refroidissement important dans le matériau métallique. Toutefois une perte de la fonction de refroidissement par l'azote liquide, par exemple par épuisement de l'azote liquide ou par une panne du réseau de distribution 103, pendant le perçage du matériau métallique n'aura pour conséquences que la destruction de l'outil, qui n'est pas adapté en absence de refroidissement, sans endommager la pièce métallique.
Les pièces formant l'empilement en cours de perçage sont donc protégées en cas de défaillance du dispositif, au détriment d'un foret dont le coût reste en général bien moindre que celui des pièces travaillées.

Claims

REVENDICATIONS
1 - Foret (101), pour percer un empilage comportant au moins une couche d'un matériau métallique et au moins une couche d'un matériau composite comportant des fibres maintenues dans une matrice dure, caractérisé en ce que ledit foret comporte un canal (20) intérieur de passage d'azote liquide traversant un corps (10) dudit foret, ledit canal comportant du côté d'au moins une arête de coupe (13) dudit foret, à une extrémité opposée suivant une longueur dudit foret à une queue (12) par laquelle le foret (101) est destiné à être maintenu sur une machine d'entraînement en rotation, au moins un conduit d'éjection (22) de l'azote liquide débouchant à proximité de ladite au moins une arête de coupe, ladite au moins une arête de coupe étant formée par une plaquette (30) réalisée avec du diamant polycristallin fixée au corps (10) du foret.
2 - Foret suivant la revendication 1 comportant une pluralité d'arêtes de coupe (13), chaque arête de coupe (13) comportant au moins un conduit d'éjection (22) de l'azote liquide débouchant à proximité de l'arête de coupe considérée.
3 - Foret suivant la revendication 1 ou la revendication 2 dans lequel chaque arête de coupe (13) comporte au moins un conduit d'éjection de l'azote liquide débouchant sur une face de coupe (131) de ladite arête de coupe et au moins un conduit d'éjection de l'azote liquide débouchant sur une face de dépouille (132) de ladite arête de coupe. 4 - Foret suivant l'une des revendications précédentes dans lequel le canal (20) est sensiblement axial dans le corps (20).
5 - Foret suivant l'une des revendications précédentes dans lequel le canal (20) est isolé intérieurement par une couche d'un matériau isolant thermique (24) sur au moins une partie d'une longueur dudit canal.
Foret suivant l'une des revendications précédentes dans lequel le canal (20) du foret (101) comporte une section élargie formant un réservoir (23) dans une zone du corps (10) situé du côté de la ou des arêtes de coupe (13).
Foret suivant l'une des revendications précédentes dans lequel le canal (20) de passage de l'azote liquide traversant le corps (10) et le ou les conduits d'éjection (22) de l'azote liquide sont dimensionnés de sorte à assurer un débit d'azote liquide, sensiblement à la température de 77 Kelvin, suffisant pour maintenir la ou les arrêtes de coupe (13) à une température inférieure à une température de transformation en graphite du diamant polycristallin de la ou des plaquettes (30) lorsque le foret est mis en œuvre pour réaliser un perçage dans un alliage à base de titane suivant des conditions de coupe prévues.
8 - Dispositif (100) de perçage, pour percer un empilage comportant au moins une couche d'un matériau métallique et au moins une couche d'un matériau composite comportant des fibres maintenues dans une matrice dure, comportant un foret (101) conforme à l'une des revendications précédentes, une unité de production d'azote liquide (102) et un réseau de distribution (103) de l'azote liquide depuis ladite unité de production vers ledit foret. 9 - Procédé de perçage (500), pour percer un empilage comportant au moins une couche d'un matériau métallique et au moins une couche d'un matériau composite comportant des fibres maintenues dans une matrice dure, dans lequel un perçage est réalisé en une seule passe d'un foret (101) comportant au moins une arête de coupe (13), ladite au moins une arête de coupe étant formée par une plaquette (30) réalisée avec du diamant polycristallin fixée à un corps (10) dudit foret, et dans lequel de l'azote liquide à température cryogénique est amenée (522) à proximité de l'arête de coupe (13) par un canal (20) dudit foret, débouchant par au moins un conduit d'éjection (22) à proximité de ladite l'arête de coupe, lorsque l'arête de coupe (13) formée par la plaquette (30) réalisée avec du diamant polycristallin est en contact avec le matériau métallique lors du perçage de l'empilage. - Procédé de perçage suivant la revendication 9 dans lequel l'azote liquide est envoyé à proximité de l'au moins une arête de coupe (13) simultanément sur une face de coupe (131) et sur une face de dépouille (132) de ladite arête de coupe. - Procédé de perçage suivant la revendication 9 ou la revendication 10 dans lequel l'azote liquide est envoyé dans le canal (20) en fonction d'une position mesurée ou estimée du foret (101) par rapport à l'empilage lorsque ladite position détermine que le perçage du matériau métallique est en cours ou probable. - Procédé de perçage suivant l'une des revendications 9 à 11 dans lequel l'azote liquide est amené avec un débit suffisant pour maintenir la température du foret (101) en dessous d'une température de transformation du diamant en graphite lorsque ledit foret perce un alliage métallique à base de titane.
EP13765365.5A 2012-09-21 2013-09-19 Outil de perçage et dispositif de perçage à refroidissement cryogénique et procédé de perçage d'un empilage de matériaux hétérogènes Withdrawn EP2897748A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1258901A FR2995808B1 (fr) 2012-09-21 2012-09-21 Outil de percage et dispositif de percage a refroidissement cryogenique et procede de percage d'un empilage de materiaux heterogenes
PCT/EP2013/069506 WO2014044769A1 (fr) 2012-09-21 2013-09-19 Outil de perçage et dispositif de perçage à refroidissement cryogénique et procédé de perçage d'un empilage de matériaux hétérogènes

Publications (1)

Publication Number Publication Date
EP2897748A1 true EP2897748A1 (fr) 2015-07-29

Family

ID=47594906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13765365.5A Withdrawn EP2897748A1 (fr) 2012-09-21 2013-09-19 Outil de perçage et dispositif de perçage à refroidissement cryogénique et procédé de perçage d'un empilage de matériaux hétérogènes

Country Status (5)

Country Link
US (2) US20150273597A1 (fr)
EP (1) EP2897748A1 (fr)
CN (1) CN104755207A (fr)
FR (1) FR2995808B1 (fr)
WO (1) WO2014044769A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013205889B3 (de) 2013-04-03 2014-05-28 Kennametal Inc. Kupplungsteil, insbesondere Schneidkopf für ein Rotationswerkzeug sowie ein derartiges Rotationswerkzeug
DE102013220884B4 (de) 2013-10-15 2022-02-17 Kennametal Inc. Modulares Trägerwerkzeug sowie Werkzeugkopf
DE102014206796B4 (de) 2014-04-08 2020-10-15 Kennametal Inc. Rotationswerkzeug, insbesondere Bohrer sowie Schneidkopf für ein solches Rotationswerkzeug
DE102015211744B4 (de) 2015-06-24 2023-07-20 Kennametal Inc. Rotationswerkzeug, insbesondere Bohrer, und Schneidkopf für ein solches Rotationswerkzeug
US10071430B2 (en) 2015-10-07 2018-09-11 Kennametal Inc. Cutting head, rotary tool and support for the rotary tool and for the accommodation of the cutting head
US9937567B2 (en) 2015-10-07 2018-04-10 Kennametal Inc. Modular drill
CN106475591B (zh) * 2016-09-27 2018-02-27 西北工业大学 纤维复合材料与金属叠层结构低温制孔装置和方法
TWI624326B (zh) * 2016-11-30 2018-05-21 Prec Machinery Research&Development Center 主軸及其冷卻迴路模組
DE102017205166B4 (de) 2017-03-27 2021-12-09 Kennametal Inc. Modulares Rotationswerkzeug und modulares Werkzeugsystem
DE102017212054B4 (de) 2017-07-13 2019-02-21 Kennametal Inc. Verfahren zur Herstellung eines Schneidkopfes sowie Schneidkopf
US10799958B2 (en) 2017-08-21 2020-10-13 Kennametal Inc. Modular rotary cutting tool
CN107764658B (zh) * 2017-11-23 2023-08-11 中南大学 模拟二维加载液氮降温巷道开挖卸荷的试验装置及方法
CN107764657B (zh) * 2017-11-23 2024-01-09 中南大学 模拟二维加载液氮降温机械开挖卸荷的试验装置及方法
CN107764628B (zh) * 2017-11-23 2023-06-06 中南大学 模拟深部三维加载条件下开挖卸荷的试验装置及试验方法
CN108907297A (zh) * 2018-07-18 2018-11-30 佛山市蓝瑞欧特信息服务有限公司 一种冷热钻头
CN110116223A (zh) * 2019-05-31 2019-08-13 青岛理工大学 电卡辅助内冷织构车刀及纳米流体微量润滑智能工作系统
CN112077370A (zh) 2019-06-13 2020-12-15 肯纳金属印度有限公司 可转位钻头刀片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116825A (en) * 1995-08-08 2000-09-12 Kennametal Hertel Ag Werkzeuge + Hartstoffe Rotating cutting tool with a coolant passage and a method of providing it with coolant
US7771145B2 (en) * 2007-03-01 2010-08-10 Toshiba Kikai Kabushiki Kaisha Method and apparatus for machining deep hole
US20120093604A1 (en) * 2010-10-15 2012-04-19 Jay Christopher Rozzi Mechanism for delivering cryogenic coolant to a rotating tool
WO2012052650A1 (fr) * 2010-10-22 2012-04-26 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation d'usinage avec refroidissement cryogénique

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096668A (en) * 1962-04-25 1963-07-09 Harlan J Maynard Mist cooled cutting tool
US4770570A (en) * 1985-04-19 1988-09-13 Cbc Industries, Inc. Gun drill coolant bushing
US4648759A (en) * 1985-08-28 1987-03-10 Waukesha Cutting Tools, Inc. Automatic coolant inducer arrangement
US5006021A (en) * 1988-11-16 1991-04-09 Ltv High pressure gas drilling
JPH04201107A (ja) * 1990-11-30 1992-07-22 Yoshino Seiki:Kk 回転切削工具
CN2178590Y (zh) * 1993-08-28 1994-10-05 张达奇 Cnc车床钻削刀具的冷却装置
US5415500A (en) * 1993-10-04 1995-05-16 Rockwell International Corp. Method of drilling holes in reinforced metal matrix composites
US5595462A (en) * 1994-11-17 1997-01-21 Western Atlas, Inc. Machine tool coolant delivery method and apparatus
CA2226754A1 (fr) * 1995-07-14 1997-02-06 Kennametal Hertel Ag Werkzeuge + Hartstoffe Foret avec canal a refrigerant lubrifiant
JPH11309616A (ja) * 1998-04-28 1999-11-09 Ebara Corp オイルミスト加工用ドリル
US6637984B2 (en) * 2000-03-03 2003-10-28 Masao Murakawa Heat absorbing throw-away tip and heat absorbing throw-away tool using the throw-away tip
DE10140718A1 (de) * 2001-08-27 2003-04-03 Walter Jaeger Verfahren und Werkzeug zur Bearbeitung von Werkstücken mit Kühlung
US6746185B2 (en) * 2002-01-02 2004-06-08 University Of Missouri Board Of Curators Nozzle for lubricating a workpiece
US7252024B2 (en) * 2002-05-23 2007-08-07 Air Products & Chemicals, Inc. Apparatus and method for machining with cryogenically cooled oxide-containing ceramic cutting tools
DE20211592U1 (de) * 2002-07-15 2004-04-01 Gühring, Jörg, Dr. Bohrer
US7387477B2 (en) * 2003-02-25 2008-06-17 Shimane University Controlled atmosphere cutting method using oxygen enrichment and cutting tool
DE10317567A1 (de) * 2003-04-16 2004-10-28 Gühring, Jörg, Dr. Hochgeschwindigkeits-Zerspanungsverfahren
SE527227C2 (sv) * 2003-09-12 2006-01-24 Seco Tools Ab Verktyg för spånavskiljande bearbetning med en axiell cylindrisk kanal
US20060123801A1 (en) * 2004-12-13 2006-06-15 Cool Clean Technologies, Inc. Device for applying cryogenic composition and method of using same
ITRM20050238A1 (it) * 2005-05-13 2006-11-14 Natalino Capone Tecnologia di foratura innovativa
ITTO20060724A1 (it) * 2006-10-09 2008-04-10 Alenia Aeronautica Spa Utensile e metodo di fresatura, in particolare per la fresatura di materiali compositi
JP2010214545A (ja) * 2009-03-17 2010-09-30 Daihatsu Motor Co Ltd エンドミル
US8303220B2 (en) * 2009-04-22 2012-11-06 Creare Incorporated Device for axial delivery of cryogenic fluids through a machine spindle
US8215878B2 (en) * 2009-04-22 2012-07-10 Creare Incorporated Indirect cooling of a rotary cutting tool
US9539652B2 (en) * 2010-04-30 2017-01-10 Kennametal Inc. Rotary cutting tool having PCD cutting tip
CN202270995U (zh) * 2011-09-22 2012-06-13 杭州西湖台钻有限公司 一种内冷却式钻床

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116825A (en) * 1995-08-08 2000-09-12 Kennametal Hertel Ag Werkzeuge + Hartstoffe Rotating cutting tool with a coolant passage and a method of providing it with coolant
US7771145B2 (en) * 2007-03-01 2010-08-10 Toshiba Kikai Kabushiki Kaisha Method and apparatus for machining deep hole
US20120093604A1 (en) * 2010-10-15 2012-04-19 Jay Christopher Rozzi Mechanism for delivering cryogenic coolant to a rotating tool
WO2012052650A1 (fr) * 2010-10-22 2012-04-26 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation d'usinage avec refroidissement cryogénique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014044769A1 *

Also Published As

Publication number Publication date
US20150273597A1 (en) 2015-10-01
FR2995808B1 (fr) 2015-05-15
US20170056983A1 (en) 2017-03-02
WO2014044769A1 (fr) 2014-03-27
FR2995808A1 (fr) 2014-03-28
US10124416B2 (en) 2018-11-13
CN104755207A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2014044769A1 (fr) Outil de perçage et dispositif de perçage à refroidissement cryogénique et procédé de perçage d'un empilage de matériaux hétérogènes
CA2637652C (fr) Foret ceramique pour percage grande vitesse de materiaux composites
EP2501888B1 (fr) Procédé de fabrication d'un vitrage isolant
BE1012823A5 (fr) Elements rapportes a pointe superabrasive pour trepans de forage de terre.
EP1927426B1 (fr) Procédé de perçage laser d'une pièce en matériau composite à matrice céramique
EP2340142A1 (fr) Assemblage de pieces en titane et en acier par soudage diffusion
EP2254729A1 (fr) Procede de fabrication d'une aube creuse
WO2006089379A1 (fr) Trepan a structure de coupe fixe
EP2365892B1 (fr) Porte outils comportant des moyens de refroidissement
EP0369852A1 (fr) Procédé composite abrasif comportant une partie active de matériau ultra-dur et procédé de fabrication d'un tel produit
FR2975027A1 (fr) Outil de percage de trous dans une piece, notamment en materiau composite a matrice organique, procede de percage correspondant
EP2032321A1 (fr) Dispositif et méhode de perçage de produits en caoutchouc
FR3021570A1 (fr) Outil de percage
WO2017168104A1 (fr) Procédé et dispositif d'implantation d'un insert dans une plaque composite
EP3207266A1 (fr) Procede de fabrication d'un palier fluide hydrostatique alveole
FR2953438A1 (fr) Dispositif de percage
BE1023352B1 (fr) Couronne miniere comprenant des segments impregnes de diamant obtenus par frittage a chaud
EP2800649B1 (fr) Outil pour l'usinage d'une paroi d'une pièce, notamment en matériau composite
FR2955510A1 (fr) Outil et procede de percage par ultrasons des materiaux en composite a matrice ceramique
WO2013150251A1 (fr) Procede d'enduction d'une fibre avec pre-enduction
WO2019179960A1 (fr) Dispositif pour l'application d'un produit d'étanchéité sur le chant d'une pièce en matériau composite
WO2015018798A1 (fr) Rouleau de compactage pour tête de placement de fibres imprégnées de résine thermoplastique et tête de placement de fibres
FR3040322A1 (fr) Outil de percage
EP3921113A1 (fr) Procede de desolidarisation d'une premiere piece mecanique d'une deuxieme piece mecanique
EP2942135B1 (fr) Procédé de perçage d'un empilage de matériaux, et dispositif de perçage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS (SAS)

17Q First examination report despatched

Effective date: 20180613

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180725